UML 2: A model-driven
development tool

The Unified Modeling Language® (UML®) industry standard has recently undergone a
major upgrade, resulting in a revision called UML 2. The primary motivation for this
revision was to make UML better suited to model-driven development™ (MDD™), an
approach to software development in which software models play a vital role. This
requires a modeling language that is not only highly expressive but also capable of

B. Selic

specifying models that are precise and unambiguous. In this overview article, we

describe the key developments in UML 2 and the rationale behind them, and we
explain how they help meet the needs of MDD. These new capabilities can be grouped
into two distinct categories: (1) internal and architectural changes required to support
MDD and (2) new modeling features. This paper is a revised version of a Web article,
“Unified Modeling Language Version 2.0,” which was published on March 21, 2005,
by developerWorks®, IBM Corporation.

INTRODUCTION

The early part of the 1990s saw heightened interest
in the object paradigm and related technologies.
New programming languages based on this para-
digm, such as Smalltalk, Eiffel, C++, and Java**,
were defined and widely used. These were then
accompanied by a prodigious and confusing glut of
object-oriented software design methods and mod-
eling notations. For example, in his very thorough
overview of object-oriented (OO) analysis and
design methods (covering over 800 pages), Ian
Graham lists over 50 seminal OO methods.' Given
that the object paradigm consists of a relatively
compact set of core concepts, such as encapsulation,
inheritance, and polymorphism, there was clearly a
great deal of overlap and conceptual alignment
across these methods, much of it obscured by
notational and other differences of little or no

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

consequence. This caused much confusion and
needless fragmentation, which, in turn, impeded
adoption of this extremely useful paradigm. Devel-
opers were forced to make difficult and binding
choices between mutually incompatible languages,
tools, methods, and vendors. The fragmentation
also made it very difficult to find experts who were
sufficiently fluent in the language chosen, leading to
additional training costs.

For this reason, when the Unified Modeling Lan-
guage** (UML**) initiative was announced by

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

SELIC

607

Rational* Software, the reaction by the software
development community was overwhelmingly pos-
itive. UML started as an amalgamation of the two
most popular OO methods of the time: the OMT
method of Rumbaugh et al.? and the Booch
method.” The primary authors of these two meth-
ods, Jim Rumbaugh and Grady Booch, were later
joined by Ivar Jacobson, whose OOSE method was
noted for its seminal contribution to requirements-
driven software construction processes, based on
the now familiar notion of use cases.” Following this
initial effort, which provided a homogenous con-
ceptual and notational framework, a number of
leading methodologists and thought leaders were
invited to critique and to contribute to UML.
Particularly notable was the contribution of David
Harel, whose statechart formalism® was adapted and
then adopted as one of the core elements of the
language.

The intent behind UML was not invention but
consolidation. The result was a synergistic blending
of the best features of the various OO languages,
methods, and notations into a single vendor-
independent modeling language and notation. This
open quality is one of the main reasons why UML
very quickly became a de facto standard and,
following its adoption by the Object Management
Group (OMG**) in 1996, a bona fide industry
standard.’™®

Since then, UML has been widely adopted and is
supported by the majority of major modeling tool
vendors. It has also been incorporated as an
essential part of the computer science and engi-
neering curricula in universities throughout the
world and in various professional training pro-
grams. Last but not least, it is being used extensively
by academic and research communities as a
convenient lingua franca and is itself the subject of
significant research.

UML has also helped raise general awareness of the
value of software modeling as a means for coping
with the complexity of modern software. Although
this highly useful technique is almost as old as
software itself (flowcharts and finite state machines
are early examples of software modeling), the
majority of practitioners have generally been slow in
accepting it as anything more than a minor power
assist. Because this is still the dominant attitude,

608 skuc

model-based development methods are encounter-
ing a great deal of resistance.

Even though some of this can be ascribed to an
irrational fear of change, there are some valid
reasons why practitioners doubt the value of
models. Probably the most important is that
experience has shown that software models are
often wildly inaccurate, sometimes obscuring fatal
design flaws behind fancy but ambiguous graphics.
Clearly, the practical value of any model increases
with its accuracy. If a model cannot be trusted to tell
us what we need to know about the software system
that it represents, then it can be even worse than
useless because it can lead to the wrong conclu-
sions. The key, then, to increasing the value of
software models is to narrow the semantic gap
between them and the systems they are modeling.
However, as we shall explain later, it turns out that
this is far easier to do with software than with any
other engineering medium.

Much of the inaccuracy of software models is due to
the extremely detailed and sensitive nature of
current programming languages. Minor lapses and
barely detectable coding errors, such as misaligned
pointers or uninitialized variables, can have enor-
mous but generally unpredictable consequences. For
instance, there is a well-documented case where a
single missing ‘break’ statement in a C program
resulted in the loss of long-distance telephone
service for a large part of the United States. The
economic damage this caused was estimated to be in
the hundreds of millions of dollars.” This “chaotic”
nature of modern software technologies, where a
seemingly minute defect can have major effects on
the overall system, makes it very difficult to model
software systems accurately. After all, the essence of
modeling lies in abstraction or the removal of
unessential detail. Because it is difficult to predict
which fragment of software is unessential, how is it
possible to have a model of software that is accurate
and yet abstract enough to be useful?

One very effective solution to this dilemma is to
formally link a model with its corresponding
software implementation through one or a series of
automated model transformations. Perhaps the best
and most successful exemplar of that approach is
the compiler, which automatically translates a high-
level language program into an equivalent machine
language implementation. In this case, the “model”

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

is the high-level language program, which, like all
useful models, hides irrelevant detail such as the
idiosyncrasies of the underlying computing tech-
nology (e.g., internal word size, word orientation,
the number of accumulators and index registers, the
details of arithmetic and logic unit (ALU) program-
ming).

Few if any engineering media other than software
can provide such a tight coupling between a model
and its corresponding engineering artifact. A model
of any kind of physical artifact (automobile, build-
ing, bridge, etc.) inevitably involves an informal
step of abstracting the physical characteristics into a
corresponding formal model, such as a mathemat-
ical model or a scaled-down physical model.
Similarly, implementing an abstract model with
physical materials involves an informal transfor-
mation from the abstract into the concrete. The
informal nature of this step can lead to inaccuracies
that, as noted above, can render the models
ineffective or even counterproductive. When it
comes to software, however, the elements that are
being modeled typically come from the world of
ideas and are generally unfettered by intricate
physical detail or constraints. By judicious selection
of software abstractions and through the precise
definition of their semantics, the transition from an
abstraction to its software realization (and vice
versa) can be automated without loss of accuracy. In
this sense, software is an engineer’s dream material,
in which the model and its realization can be
perfectly coupled to each other.

This potent combination of abstraction and auto-
mation has inspired a set of modeling technologies
and corresponding development methods collec-
tively referred to as model-driven development
(MDD).m’11 The defining feature of MDD is that
models have become primary artifacts of software
design, shifting much of the focus away from
program code. Models serve as blueprints from
which programs and related models are derived by
various automated and semiautomated means. The
degree of automation being applied today varies
from simple skeleton code derivation all the way
through to complete automatic code generation
(comparable to traditional compilation). Clearly, the
greater the levels of automation, the more accurate
the models and the greater the benefits of MDD.
However, there are many factors that must be
considered when selecting an optimal level of

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

automation for a given project. This includes, for
example, the availability of appropriate expertise
and tools, the specific nature of the application, the
amount and characteristics of legacy code, and so
on.

Model-driven methods of software development are
not particularly new and have been used in the past
with varying degrees of success. The reason they are
receiving more attention now is that the supporting
technologies have matured to the point where
automation can be used in practical applications to a
much larger extent. This is because the new
technologies are much more scalable, more efficient,
and much more easily integrated with existing tools
and methods than was the case in the past. The
degree of maturity of these technologies has reached
a point where many of their aspects can be
standardized—resulting in a commoditization of
much MDD tooling.

To that end, OMG, the industry consortium that first
standardized UML, has launched an initiative to
develop a body of standards that support MDD.
Called Model-Driven Architecture** (MDA**), the
initiative involved standards for modeling lan-
guages, such as UML,” standards for defining
modeling languages like the Meta-Object Facility or
MOF**,"* standards for defining automated model
transformations, standards for defining model-based
software processes, and so on.

In the remainder of this article, we will examine
how the latest version of the UML standard, UML 2,
has been adjusted to meet the needs of MDD. First,
we examine the forces that led to the revision of the
original standard. This is followed by a summary of
the major new language capabilities. For conve-
nience, they have been grouped into five major
categories of changes. Each of these is then
described in a section of its own. The article
concludes with a view of current and anticipated
developments related to UML.

THE RATIONALE BEHIND UML 2

UML 2 is the first major revision of the UML
standard, following a series of lesser revisions.”"®
Why was it necessary to revise UML?

The original UML standard was primarily designed

with the traditional development process in mind:
the model was primarily a means for documenting

SELIC

609

and communicating high-level design ideas. This did
not require a precise modeling language. Nonethe-
less, a growing number of software architects
wanted their UML models to be precise specifica-
tions that could serve as formal blueprints to be
faithfully realized by the corresponding software
implementation. Any ambiguity in such models
could lead to misinterpretations and invalid real-
izations. This created pressure to define the
semantics of UML much more precisely. Simulta-
neously, many programmers were beginning to see
the benefits of more abstract graphical representa-
tions of their code, representations that were shorn
of the noise of programming-language syntax and
more clearly rendered its essence. For example, a
graph-based rendering of a class hierarchy that
shows relationships between classes visually is
generally more easily understood than the corre-
sponding textual representation. This quickly led to
the requirement to allow the code to be manipulated
in either graphical or textual form, whichever
happened to be more convenient at the time.
Therefore, it was necessary to define very precisely
the formal relationship between the graphics and the
code and also the semantics of UML diagrams.

Both tool vendors and users responded to this
pressure by defining individual specializations of
UML. Unfortunately, these custom variants differed
from case to case and from project to project, often
based on dubious or invalid interpretations of the
underlying UML concepts. This threatened to lead to
the same kind of fragmentation that the original
standard was intended to eliminate. A new, more
precise version of the standard was clearly neces-
sary to reduce the ambiguities of the original
standard. In addition, a more capable and more
clearly defined mechanism was required to support
domain-specific specializations of UML.

Whereas the pressure towards MDD was the
primary motivator for UML 2, another key factor
was the need to model important new technologies
that had emerged since the first release of the
standard, such as Web-based applications and
service-oriented architectures. Although all of these
could be represented by appropriate combinations
of existing UML 1 concepts, there were obvious
benefits to providing more direct ways of modeling
these capabilities.

Finally, although we still lack a sound and system-
atic theory of modeling language design, much has

610 seuc

been learned about suitable ways of defining,
structuring, and using such languages. For example,
new theories of meta-modeling and of model trans-
formations have emerged over the past 10 years,
which need to be incorporated into UML to ensure
its applicability and longevity. Although UML might
end up being the equivalent of FORTRAN in the
domain of software modeling languages, it is worth
recalling that FORTRAN is still an active language,
almost 50 years after its inception.

WHAT IS NEW IN UML 2

The new developments in UML 2 can be grouped
into the following five major categories, listed in
decreasing order of significance:

1. A significantly higher level of precision in the
definition of the language—This is a result of the
need to support the higher levels of automation
required for MDD. Automation implies the
elimination of ambiguity and imprecision from
models (and, hence, from the modeling language)
so that they can be transformed and analyzed by
specialized computer programs.

2. An improved language organization—This is
characterized by a modularity that not only
makes the language more approachable to new
users but also facilitates inter-working between
tools.

3. Significant improvements in the ability to model
large-scale software systems—Some modern soft-
ware applications represent integration of exist-
ing stand-alone applications into more complex
systems of systems. This is a trend that will likely
continue, resulting in ever more complex sys-
tems. To support such trends, flexible new
hierarchical capabilities were added to the
language to support software modeling at arbi-
trary levels of complexity.

4. Improved support for domain-based specializa-
tion—Practical experience with UML demon-
strated the value of its extension mechanisms.
These were consolidated and refined to allow
simpler and more precise refinements of the base
language.

5. Overall consolidation, rationalization, and clar-
ification of various modeling concepts resulting in
a simplified and more consistent language—This
involved consolidation of concepts, removal of
redundant concepts, refinement of definitions,
and the addition of clarifications and examples.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Each of the these categories is described individually
below.

INCREASED PRECISION OF LANGUAGE
DEFINITION

Most early software modeling languages were
defined informally, with little attention paid to
precision. More often than not, modeling concepts
were explained using imprecise and informal natu-
ral language. This was deemed sufficient at the time
because the majority of modeling languages were
used either for documentation or for what Martin
Fowler refers to as design “sketching”.13 The idea
was to convey the essential properties of a design,
leaving detail to be worked out during implemen-
tation.

This, however, often led to confusion because
models expressed in such languages could be—and
often were—interpreted differently by different
individuals. Furthermore, unless the question of
model interpretation was explicitly discussed up
front, such differences could remain undetected, to
be unmasked only in the latter phases of develop-
ment when the cost of fixing the resulting problems
was much greater.

In contrast to most other modeling languages of the
time, to minimize ambiguity the first standardized
definition of UML was specified using a metamodel.
This is a model that defines the characteristics of
each UML modeling concept and its relationships to
other modeling concepts. The metamodel was
defined using what is, in essence, an elementary
subset of UML called MOF, consisting primarily of
concepts defined in UML class diagrams and
supplemented with a set of formal constraints
written in the Object Constraint Language (OCL).
This combination represented a formal specification
of the abstract syntax of UML (in contrast to its
concrete syntax or notation). The abstract syntax is
the set of rules that can be used to determine
whether a given UML model is well formed. For
example, such rules would allow us to determine
that a model in which two UML classes are joined by
a state machine transition is illegal.

Nonetheless, the degree of precision used in this
initial UML metamodel proved insufficient to sup-
port the full potential behind MDD (see, for
example, the discussion in Reference 14). In
particular, the specification of the semantics, or

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

meaning, of the UML modeling concepts remained
inadequate for MDD-oriented activities such as
automatic code generation or formal verification.

Consequently, the degree of precision used in the
definition of UML 2 was increased significantly. This
was achieved by the following means:

* A major refactoring of the language metamodel—
The metamodel of UML, specified using the MOF
language,12 defines the formal rules to which a
well-formed (i.e., syntactically correct) UML
model must adhere. For UML 2, the core of this
metamodel was broken up into a set of fine-
grained low-level modeling concepts and patterns
that are, in most cases, too rudimentary or too
abstract to be used directly in modeling software
applications. However, their relative simplicity
makes it relatively easy to be precise about their
semantics and the corresponding well-formedness
rules. These finer-grained concepts are then
combined to produce the more complex user-level
modeling concepts. For instance, in UML 1, the
notion of ownership (i.e., elements owning other
elements), the concept of namespaces (named
collections of uniquely named elements), and the
concept of classifier (elements that can be
categorized according to their features), were all
inextricably bound into a single semantically
complex notion. (This also meant that it was
impossible to use any one of these without
implying the other two.) In the new UML 2
metamodel, these concepts were separated, and
their syntax and semantics were defined sepa-
rately.

e Extended and more precise semantics descrip-
tions—Defining the semantics of the UML 1
modeling concepts was problematic in a number
of ways. The level of description was highly
uneven, with some areas having extensive and
detailed descriptions (e.g., state machines),
whereas others had little or no explanations. The
UML 2 specification puts much more emphasis on
the semantics and, in particular, in the key area of
basic behavioral dynamics (see below). (A more
detailed discussion of the semantics of UML can
be found in Reference 15.)

® A clearly defined dynamic semantic framework—
The UML 2 specification clarifies some of the
critical semantic gaps in the original version,
including a clear specification of the relationship

SELIC

611

Activities State Machines Interactions

Actions

Intra-Object Behavior Base = Inter-Object Behavior Base

| Structural Foundations

Figure 1
The UML 2 semantics framework

between structure and behavior as illustrated in
Figure 1.

Note that the bottom (foundational) layer in this
framework deals with the semantics of structure.
This is because UML is, at its core, based on the
object paradigm, wherein all behavior is assumed to
emanate from the actions of objects. This core layer
covers the essential properties of the structural
concepts of UML, such as objects, variables, and
links, which provide the setting for behavior.
Overlaid on the foundational layer there is another
shared semantic layer. This layer, represented by
the middle area in Figure 1, is concerned with how
the core structural elements are created and
manipulated (the Intra-Object Behavior Base) as
well as with how objects communicate with each
other (the Inter-Object Behavior Base). The seman-
tics of primitive actions that can cause this behavior
are also part of this layer. The two shared layers in
this framework provide the shared foundation on
which the dynamic semantics of higher-level for-
malisms, such as state machines and interactions,
are based. This ensures that objects can interact
with each other regardless of which formalism is
used to describe their behavior. More details can be
found in References 15 and 7.

THE NEW LANGUAGE ARCHITECTURE

One of the immediate consequences of the increased
level of precision in UML 2 is that the language
definition has gotten bigger, even without account-
ing for the new modeling capabilities. This would
normally be of concern, especially given that the
original UML was criticized as being too rich and,
therefore, too cumbersome to learn and use. Such
criticisms typically ignore the fact that UML is
intended to address some of today’s most complex
software problems and that such problems demand

612 seuc

sufficiently powerful tools. (Successful technologies
such as automobiles and electronics have never
gotten simpler; it is a part of human nature to
persistently demand more of our machinery, which,
ultimately, implies more sophisticated tools. No one
would even contemplate building a modern sky-
scraper with basic hand tools.)

To deal with the problem of language complexity,
UML 2 was modularized in a way that allows
selective use of language modules. The general form
of this structure is shown in Figure 2. It consists of a
foundation comprising shared structural and be-
havioral modeling concepts, such as classes and
associations, on top of which is a collection of
vertical “sub-languages” or language units, each
one suited to modeling a specific form or aspect (see
Table 1). These vertical language units are generally
independent of each other and can, therefore, be
used independently. This was not the case in UML 1,
where, for example, the activities formalism was
based entirely on the state machine formalism.

Furthermore, the vertical language units are hier-
archically organized into up to three levels, with
each successive level adding more modeling capa-
bilities to those available in the levels below. This
provides an additional dimension of modularity so
that, even within a given language unit, it is possible
to use only specific subsets.

This architecture means that users can learn and use
only the subset of UML that suits them best. It is no
more necessary to become familiar with the full
extent of UML in order to use it effectively than it is
necessary to learn all of English to use it effectively.
As they gain experience, users have the option of
gradually introducing more powerful modeling
concepts as necessary.

As part of the same architectural reorganization, the
definition and structure of compliance has been
significantly simplified in UML 2. In UML 1, the
basic units of compliance were defined by the
packages of the metamodel, with literally hundreds
of possible combinations. This meant that it was
highly unlikely to find two or more modeling tools
that could interchange models, because each would
likely support a different combination of packages.

In UML 2, only three levels of compliance are
defined, and those correspond to the hierarchical

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

language unit levels already mentioned and depicted Level 3
in Figure 2. (The infrastructure of UML defines an

additional two levels, but those are not visible or of

particular interest to the general UML user.) These N e e ey

OCL | Structures @ State Activities

Interactions
Machines

compliance levels are defined in such a way that
models at level n (n =1,2) are compliant with the
higher compliance levels; that is, a tool compliant

Level 1

with a given level can import models produced by
tools that are compliant with any level equal to or
below its own, without loss of information.

In addition to the compliance levels, four distinct
types of compliance are also defined that cut across
each of the compliance levels:

1. Compliance with the abstract syntax—This means
compliance with the well-formedness rules of
UML as defined by the UML 2 metamodel. It also
includes the ability to interchange models with
other tools.

2. Compliance with the concrete syntax—This means
support for the UML 2 notation as defined in the
UML standard. In principle, it is possible for tools
to comply with the notation without necessarily
supporting the abstract syntax. This form of
compliance is intended for relatively simple tools
whose primary purpose is to assist in the drawing
of UML diagrams.

3. Compliance with both abstract and concrete
syntax—This type of compliance combines the
two forms of compliance listed above and is
presumed to be supported by most tools. Com-
pliance of this type means compatibility with
either of the previous two types (at a given level
of compliance).

4. Compliance with both the abstract and concrete
syntax and the diagram interchange standard—
This form of compliance adds support for the
diagram interchange standard,'® which ensures
the preservation of graphical information related
to a model, such as font selections, position and
sizing of graphical elements, and so forth, when
models are exchanged between compliant tools.

For example, a given tool might provide abstract
syntax compliance up to level 2 but concrete syntax
compliance only up to level 1. This means that it
does not support the standard notation for all the
level-2 concepts which it provides (e.g., it may use a
vendor-specific notation for some or all of the level-
2 concepts, and at the same time, use the standard
UML notation for the level-1 concepts).

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Language Foundation

Figure 2
The language architecture of UML 2

Table 1 The language units of UML 2

Language Unit Purpose

Actions (Foundation) modeling of
fine-grained actions

Activities Data and control flow
behavior modeling

Classes (Foundation) modeling of
basic structures

Components Complex structure modeling
for component technologies

Deployments Deployment modeling

General Behaviors (Foundation) common
behavioral semantic base

and time modeling

Information Flows Abstract data flow modeling

Interactions Inter-object behavior modeling
Models Model organization
Profiles Language customization

State Machines Event-driven behavior modeling

Structures Complex structure modeling
Templates Pattern modeling
Use Cases Behavioral requirements

modeling

This matrix of three compliance levels and four
types yields 12 different forms of compliance with
varying degrees of capability, such that certain less
capable forms are upward compatible with certain
more capable forms. Consequently, in UML 2, model
interchange between compliant tools from different

Seuc 613

relatively simple set of graph-like concepts: basic
structural nodes called parts that may have one or
more interaction points called ports and that are
interconnected by communication channels called
connectors. Aggregates of this type may be encap-
sulated within higher-level units, which can have
their own ports so that they can themselves be
combined with other similar units into yet higher-
level compositions, as shown in Figure 3.

/partA:A

=-—-part
/partB:B

/subsystem1:C

————— connector

/subsystem?2:D

|ﬁI

— == port

Figure 3
Example of the use of new structure modeling concepts

vendors is now more than just a theoretical
possibility.

MODELING OF LARGE-SCALE SYSTEMS

The number of features added in UML 2 is inten-
tionally relatively small in order to avoid the
infamous “second system” effect,'” whereby a
language becomes bloated by an excess of new
features demanded by a highly diverse user com-
munity. In fact, the majority of new modeling
capabilities are essentially simply extensions of
existing features that allow them to be used for
modeling large-scale software systems. Moreover,
these extensions were all achieved by using the
same basic approach: recursive application of the
same basic set of concepts at different levels of
abstraction. This means that model elements of a
given type could be combined into units that, in
turn, would be used as the building blocks to be
combined in the same way at the next level of
abstraction, and so on—analogous to the way that
procedures in programming languages could be
nested within other procedures to any desired depth.

Specifically, the following modeling capabilities are
extended in this way:

Complex structures
® Activities

¢ Interactions

e State machines

The first three of these capabilities account for more
than 90 percent of the new features added to UML 2.

Complex structures

The basis for this set of features comes from long-
term experience with various architectural descrip-
tion languages, such as UML-RT,"® Acme,"” and
SDL.*’ These languages are characterized by a

614 seuc

In the example, a collaboration structure consisting
of internal parts and connectors is nested within a
class specification. This means that, upon creation,
all instances of this class will have an internal
structure specified by the class definition. For
example, in Figure 3, parts/partA:A and/partB:B are
nested within part/subsystem1:C. The latter repre-
sents an instance of the composite class C. Note that
other instances of class C have the same structural
pattern including all the ports, internal parts, and
interconnections.

The rudiments of this type of structural composition
based on parts and connectors existed in the UML 1
collaboration diagrams. However, it was not possi-
ble to easily use the concepts recursively to
construct multilevel structural decomposition hier-
archies. Also, the crucial port concept was missing.
This important concept serves a dual purpose.

First, a port allows an object to distinguish between
different potentially concurrent collaborators, based
on which port is used for a given interaction. In
principle, each port could present a different inter-
face, depending on the type of interaction taking
place through that port. This type of interface
separation is particularly useful when modeling
complex architectural-level components, which are
often involved in multiple interactions. In addition,
ports act as intermediaries, relaying information
back and forth between the internal entities of the
component and its environment. If all external
interactions of a component occur through its ports,
then its internal entities are fully isolated from any
direct knowledge of any external entities. Conse-
quently, the same component definition can be
reused in many different applications without any
modification. In other words, ports enable true two-
way encapsulation of components by preventing
direct coupling between component internal entities
and external entities in either direction.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

It turns out that by simple recursive application of
these three simple concepts (ports, parts, and
connectors), it is possible to model arbitrarily
complex software systems.

Activities

Activities in UML are used to model flows of various
kinds: signal or data flows as well as algorithmic and
procedural (i.e., control) flows. There are numerous
domains and applications that are most naturally
rendered by such flow-based descriptions. In par-
ticular, this formalism was embraced by business-
process modelers and by systems engineers, who
tend to view many of their systems as intercon-
necting signal processors.

The UML 1 version of activity modeling had a
number of serious limitations in the types of flows
that could be represented. Many of these were due
to the fact that activities were overlaid on top of the
basic state-machine formalism and were, therefore,
constrained to the semantics of state machines.

UML 2 replaced the state-machine underpinning
with a much more general semantic foundation
based on Petri nets, which eliminates all of these
restrictions. In addition, inspired by a number of
industry-standard business-processing formalisms,
including notably BPEL4AWS,”' a very rich set of new
and highly refined modeling features were added to
the basic formalism. These include the ability to
represent interrupted activity flows, sophisticated
forms of concurrency control, and diverse buffering
schemes. The result is a very rich modeling toolset
that can represent a wide variety of flow types.

The integration of the UML action semantics
specification into the new semantic foundations
provided for activities is an important new devel-
opment. UML action semantics were first introduced
as a separate OMG specification, which was
subsequently included in the UML 1.5 revision as an
addendum. Action semantics provide a language-
neutral facility for specifying detail-level behavior in
the context of a UML model (see also Figure 1). This
includes the definition of actions that create and
destroy objects, that read and write object attributes
and variables, that invoke operations and send
signals, and so forth. In effect, action semantics
complement the higher-level modeling capabilities
of UML to the extent that it is possible to use UML as
a fully-fledged implementation language. The rules

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

for combining UML actions using control and data
flows are essentially the same as the composition
rules for combining activities, so that the consol-
idation of these two areas resulted in a significant
overall simplification.

As with other complex structures, activities and
their interconnecting flows can be recursively
grouped into higher-level activities with clearly
defined inputs and outputs. These can, in turn, be
combined with other activities to form more com-
plex activities, up to the highest system levels.

Interactions

Interactions in UML 1 were represented either as
sequenced message annotations on collaboration
diagrams or as separate sequence diagrams. Un-
fortunately, two fundamental capabilities were
missing:

1. The ability to reuse sequences that may be
repeated in the context of more extensive (higher
level) sequences. For example, a sequence that
validates a password may appear in multiple
contexts in a given application. If such repeated
sequences cannot be packaged into separate
units, they have to be defined numerous times,
not only adding overhead but also complicating
model maintenance (e.g., when the sequence
needs to be changed).

2. The ability to adequately model various complex
control flows that are common in representing
interactions of complex systems, including repe-
tition of subsequences, alternative execution
paths, and concurrent and order-independent
execution.

Fortunately, the problem of specifying complex
interactions was extensively studied in the tele-
communications domain, where a standard was
evolved based on many years of practical experience
. 22 .

in defining communications protocols.” This for-
malism was used as a basis for representing
interactions in UML 2.

The key innovation was the introduction of an
interaction as a separately named modeling unit.
Such an interaction represents a sequence of inter-
object communications of arbitrary complexity. It
may even be parameterized to allow the specifica-
tion of context-independent interaction patterns.

SELIC

615

sd ATMAccess |
| |
ref
CheckPIN(3)
1 1
: Msg(t) .
: :
i i
alt i [t="cash]
I
ref :
Dispense Cash
! I
,,,,,,,,,, s s e e e e e e e e e e e
I
! [t="bill"]
I
1 .
ref .
PayBill
1 1
Figure 4
Example of a complex interaction model

These “packaged” interactions can be invoked
recursively from within higher-level interactions
analogous to macro or subroutine invocations (the
“ref” block in Figure 4 labeled CheckPIN). Just like
macros and subroutines, they provide both a reuse
facility and an abstraction facility.

As one might expect, such references to other
interactions can be nested to an arbitrary degree—
yet another example of the use of recursion in UML 2
to achieve scalability. Furthermore, interactions can
serve as operands in complex control constructs
such as loops (for example, a given interaction may
have to be repeated some number of times) and
alternatives. UML 2 defines a number of convenient
modeling constructs of this type, providing a very
rich facility for modeling complex end-to-end
behavior at any level of decomposition.

In Figure 4, we see an example of an extended
interaction, specified in the form of a sequence
diagram (sd), which models the use of an ATM
machine, In this case, the interaction ATMAccess first
references (i.e., invokes) another lower-level trans-
action called CheckPIN (the contents of this inter-
action are not shown in the diagram).

Note that the latter interaction has a parameter (in
this case, say, the number of times an invalid

616 seuc

personal identification number (PIN) can be entered
before the transaction is canceled). After that, the
client sends an asynchronous message specifying
what kind of interaction is required and, based on
the value in that message, one of two possible
further execution paths is selected (i.e., either the
DispenseCash interaction or the PayBi11 interaction
is performed). For compactness, both alternatives
are specified in the same diagram. This is indicated
by enclosing them in the same “alt” (alternative)
block.

Interactions in UML 2 can be represented by
sequence diagrams as shown in the preceding
example as well as by other diagram types—
including the collaboration-based form defined in
UML 1. There is even a nongraphical tabular
representation.

State machines

The main new capability added to state machines in
UML 2 is reminiscent of the aforementioned “ref”
concept in interactions: the ability to define a
generic state-machine pattern and then reuse it in
different situations. The reusable state-machine
pattern is called a submachine. It is like any other
state-machine definition with one important differ-
ence: it may include one or more entry and exit
pseudostates. These are points through which the
submachine is bound to its invoking context.
Specifically, entry points are points through which
an incoming transition contained in the invoking
state machine can enter the submachine, and exit
points are points that can be bound to outgoing
transitions in the invoking state machine.

An example can be seen in Figure 5. Figure 5A
shows the definition of the submachine CheckPIN,
which specifies the behavior required to input a PIN
on an ATM and validate it against a database of
valid PINs. This submachine can then be invoked in
higher-level state machines where appropriate. One
example of such an invocation is shown in Figure
5B, where the state CheckingPIN represents an
invocation of the CheckPIN submachine.

One other notable state-machine innovation in
UML 2 is a clarification of the semantics of state-
machine inheritance. In effect, a subclass inherits
the state machine of its parents and may add new
elements (e.g., states, transitions, triggers) or
redefine existing elements in a compatible way.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

A | CheckPIN | start
0O

S

l

CollectPIN

l enterKey

WaitForValidation

J validationResult

validPIN invalidPIN
[result ~= OK] [result == OK]

Example of a reusable submachine and its invocation

B °

Initializing

start | initDone

validPIN & ChecklngPIN % invalidPIN

¢ CheckPIN <

O
l.
O

HandlingTransaction ErrorHandling
l trxDone leerone
o
not [last] [last]

‘ Figure 5
I

LANGUAGE SPECIALIZATION CAPABILITIES

From its inception, UML was conceived as a
platform for a family of related modeling lan-
guages—languages that share a common semantics
framework and, possibly, a common notation. This
was achieved by providing so-called semantic
variation points in the definition of the language.
These are areas where the standard either provides a
selection of alternatives (e.g., single or multiple
inheritance) or leaves certain details unspecified
(e.g., scheduling policy, method dispatching rules).
The language is then customized by adding the
necessary constraints and extensions. However, any
such extensions must not violate the standard
abstract syntax and semantics.

Experience with UML 1 has proven this to be a good
design decision, because a very common way of
applying UML is to first define a UML profile for a
particular problem or domain and then use that
profile instead of or in addition to standard UML. In
essence, profiles are a way of producing what are
now commonly referred to as domain-specific
languages (DSLs).

An alternative to using UML profiles is to define a
new custom modeling language using the MOF
standard and tools. The latter approach has the
obvious advantage of providing a clean slate,
enabling the definition of a language that is
optimally suited to the problem at hand. At first
glance, this may seem preferable to DSL definition,

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

but closer scrutiny reveals that there can be serious
drawbacks to this approach.

As noted in the introduction, too much diversity
leads to the kind of fragmentation problems that
UML was designed to eliminate. In fact, this is one of
the primary reasons why it was accepted so widely
and so rapidly.

Fortunately, the profile mechanism provides a
convenient solution for many practical cases. This is
because there is typically a lot of commonality even
between diverse DSLs. For example, practically any
object-oriented modeling language needs to define
the concepts of classes, attributes, associations,
interactions, and so forth. UML, which is a general-
purpose modeling language, provides just such a
convenient and carefully defined collection of useful
concepts. This makes it a good starting point for a
large number of possible DSLs.

There is more than just conceptual reuse at play
though. Because a UML profile has to be compatible
with standard UML by definition, (1) any tool that
supports standard UML can be used for manipulat-
ing models based on that profile, and (2) any
knowledge of and experience with standard UML is
directly applicable. Therefore, many of the frag-
mentation problems stemming from diversity can be
mitigated or even avoided altogether. This type of
reasoning led the international standards body
responsible for the SDL languagezo—a DSL widely

SEuc 617

used in telecommunication—to redefine SDL as a
UML profile.zs_24

This is not to say that all DSL can and should be
realized as a UML profile; there are indeed many
cases where UML may lack the requisite founda-
tional concepts that can be cast into corresponding
DSL concepts. However, given the generality of
UML, it may be more widely applicable than might
first appear.

With these considerations in mind, the profiling
mechanism in UML 2 has been rationalized and its
capabilities extended. The conceptual connection
between a stereotype and the UML concepts that it
extends has been clarified. In effect, a UML 2
stereotype is defined as if it were simply a subclass
of an existing UML metaclass, with associated
attributes (representing tags for tagged values),
operations, and constraints. The mechanisms for
writing such constraints using a language such as
OCL have been fully specified.

In addition to constraining individual modeling
concepts, a UML 2 profile can also explicitly hide
UML concepts that make no sense or are unneces-
sary in a given DSL. This allows the definition of
minimal DSL profiles.

Finally, the UML-2 profiling mechanism can also be
used as a mechanism for viewing a complex UML
model from multiple different domain-specific per-
spectives—something generally not possible with
DSLs (i.e., a UML profile can be selectively
“applied” or “deapplied” without affecting the
underlying UML model in any way). For example, a
performance engineer may choose to apply a
performance-modeling interpretation over a model,
attaching various performance-related measures to
elements of the model. These can then be used by an
automated performance analysis tool to determine
the fundamental performance properties of a soft-
ware design. At the same time and independent of
the performance modeler, a reliability engineer
might overlay a reliability-specific view on the same
model to determine its overall reliability character-
istics, and so on.

CONSOLIDATION OF CONCEPTS

The consolidation of concepts includes the removal
of overlapping concepts and numerous editorial
modifications, such as clarifying confusing descrip-

618 seuc

tions and standardizing terminology and specifica-
tion formats.

The removal of overlapping concepts and the
clarification of poorly defined concepts have been
other important requirements for UML 2. The three
major areas affected by this are actions and
activities, templates, and component-based design
concepts.

The consolidation of actions and activities was
described earlier. From the user’s point of view,
these are formalisms that occur at different levels of
abstraction because they typically model phenom-
ena at different levels of granularity. However, the
shared conceptual base results in an overall sim-
plification and greater clarity.

In UML 1, templates were defined very generally:
any UML concept could be made into a template.
Unfortunately, this generality was an impediment to
the application of the concept because it allowed for
potentially meaningless template types and template
substitutions. The template mechanism in UML 2
was restricted to cases that were well understood:
classifiers, operations, and packages. The first two
were modeled after template mechanisms found in
popular programming languages.

In the area of component-based design, UML 1 had a
confusing abundance of concepts. One could use
classes, components, or subsystems. These concepts
had much in common but were subtly different in
non-obvious ways. There was no clear delineation
as to which to use in any given situation. Was a
subsystem just a “big” component? If so, how big
did a component have to be before it became a
subsystem? Classes provided encapsulation and
realized interfaces, but so did components and
subsystems.

In UML 2, all of these concepts were aligned, so that
components were simply defined as a special case of
the more general concept of a structured class, and,
similarly, subsystems were merely a special case of
the component concept. The qualitative differences
between these were clearly identified so that
decisions on when to use which concept could be
made on the basis of objective criteria.

On the editorial side, the format of the specification
was consolidated with the semantics and notation

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

specifications for the modeling concepts, combined
for easier reference.

Each metaclass specification has been expanded
with information that explicitly identifies semantic
variation points, notational options, and the rela-
tionship of the specification to the UML 1 specifi-
cations. Also, the terminology has been made
consistent so that a given term (e.g., type, instance,
specification, occurrence) has the same general
connotation in all contexts in which it appears.

CONCLUSION

UML 2 was specifically designed to allow a gradual
introduction of model-driven methods into software
development. For those who prefer it as a “design
sketching” tool, it can still be used in the same
informal manner as UML 1. Moreover, because the
new modeling capabilities are nonintrusive, in most
cases such users will not see any change in the look
and feel of the language.

The opportunity to use UML for more advanced
forms of MDD is now open. The increased precision
and enhanced semantics definition are available in
the revised standard, to be used—if desired—with
very sophisticated automatic code generation tech-
niques.

Although the language has added some new
features, its overall structure was carefully reor-
ganized to allow a modular and graduated approach
to adoption: users only need to learn the parts of the
language that are of interest to them and can safely
ignore the rest. As their experience and knowledge
increases, they can selectively add new language
modules. This reorganization of the language also
includes a major simplification of the compliance
strategy to facilitate interoperability between com-
plementary tools as well as between tools from
different vendors.

To avoid language bloat, only a small number of
new features were added, and practically all of those
features were designed along the same recursive
principle that enabled the modeling of very large
and complex systems. In particular, extensions were
added to more directly model software architec-
tures, complex system interactions, and flow-based
models for applications such as business-process
modeling and systems engineering.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

The language extension mechanisms were slightly
restructured and simplified for a more direct way of
defining DSLs based on UML. These languages can
directly take advantage of UML tools and expertise,
both of which are abundantly available.

The overall result is a second-generation modeling
language that has the potential to help developers
construct more sophisticated software systems
faster and more reliably. In essence, software
development with UML 2 need not be different from
traditional software design, except that it is based on
higher levels of abstraction and automation. It
requires the same types of intuition, skill, and
expertise that are the bread and butter of every
software developer.

At the time of writing, the first minor revision of the
original UML 2 specification has been finalized,
resulting in UML 2.1. This revision adds fixes to the
abstract syntax to eliminate minor inconsistencies
and ambiguities. No significant feature additions to
UML 2 are anticipated over the next several years. In
general, such standards should not change too
frequently, as it is difficult for users, tool vendors,
and book authors to keep up. There should be
enough of a pause to allow ample time for sufficient
experience with the present version to accumulate
and for new technologies and relevant theoretical
developments to emerge. Only after these are well
understood should another major revision be
considered.

*Trademark, service mark, or registered trademark of the
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sun
Microsystems Inc., or Object Management Group, Inc. in the
United States, other countries, or both.

CITED REFERENCES
1. 1. Graham, Object-Oriented Methods: Principles and
Practice (3rd edition), Addison-Wesley, Reading, MA
(2001).

2. J. Rumbaugh, M. Blaha, W. Lorenson, F. Eddy, and W.
Premerlani, Object-Oriented Modeling and Design, Pren-
tice Hall, Upper Saddle River, NJ (1990).

3. G. Booch, Object-Oriented Analysis and Design with
Applications (2nd edition), Addison-Wesley Professional,
Reading MA (1993).

4. 1. Jacobson, M. Christerson, P. Jonsson, and G. Over-
gaard, Object-Oriented Software Engineering: A Use Case

SELIC

619

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

620 seuc

Driven Approach, Addison-Wesley Professional, Reading,
MA (1992).

D. Harel, “Statecharts: A Visual Formalism for Complex
Systems,” Science of Computer Programming 8, No. 3,
231-274 (1987).

Unified Modeling Language (UML), Version 1.5, OMG
document formal/03-03-01, Object Management Group
(2003), http://www.omg.org/cgi-bin/doc?formal/
03-03-01.

UML 2.0 Superstructure Specification, OMG document
formal/05-07-04, Object Management Group, Inc. (2005),
http://www.omg.org/cgi-bin/doc?formal/05-07-04.

J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual (2nd edition),
Addison-Wesley, Reading, MA (2005).

L. Lee, The Day the Phones Stopped Ringing, Plume
Publishing (1992).

A. Brown, “An Introduction to Model Driven Architec-
ture,” developerWorks, IBM Corporation (2004), http://
www-106.ibm.com/developerworks/rational/library/
3100.html.

G. Booch, A. Brown, S. Iyengar, J. Rumbaugh, and B.
Selic, “An MDA Manifesto,” in The MDA Journal, D.
Frankel and J. Parodi, Editors, Meghan-Kiffer Press
(2004).

MetaObject Facility (MOF) 2.0 Core Specification, Avail-
able Specification, OMG document ptc/04-10-15, Object
Management Group (2004), http://www.omg.org/
cgi-bin/doc?ptc/2004-10-15.

M. Fowler, UML Distilled (3rd edition), Addison-Wesley,
Reading, MA (2004).

P. Stevens, “On the Interpretation of Binary Associations
in the Unified Modeling Language,” Journal of Software
and Systems Modeling 1, No. 1, 68-79 (2002).

B. Selic, “On the Semantic Foundations of Standard UML
2.0,” Formal Methods for the Design of Real-Time
Systems, in Lecture Notes in Computer Science 3185, M.
Bernardo and F. Corradini, Editors, Springer-Verlag
(2004), pp. 181-199.

UML 2.0 Diagram Interchange, Final Adopted Specifica-
tion, OMG document ptc/03-09-01, Object Management
Group (2004), http://www.omg.org/cgi-bin/apps/
doc?ptc/03-09-01.pdf.

F. Brooks, Jr., The Mythical Man-Month (1995 edition),
Addison-Wesley, Reading, MA (1995).

B. Selic, “Using UML for Modeling Complex Real-Time
Systems,” Languages, Compilers, and Tools for Embedded
Systems, in Lecture Notes in Computer Science 1474, F.
Mueller and A. Bestavros, Editors, Springer-Verlag
(1998), pp. 250-260.

D. Garlan, R. Monroe, and D. Wile, “Acme: an
Architecture Description Interchange Language,” Pro-
ceedings of the 1997 Conference of the Centre for
Advanced Studies on Collaborative Research, ACM, New
York (1997), p. 7.

International Telecommunication Union, ITU Recom-
mendation Z.100: Specification and Description Language
(SDL), ITU-T (August 2002).

S. Thatte, Business Process Execution Language for Web
Services (Version 1.1), BEA Systems, Inc., IBM Corpo-
ration, Microsoft Corporation, SAP AG, and Siebel
Systems (May 5, 2003), ftp://wwwo6.software.ibm.com/
software/developer/library/ws-bpel.pdf.

22. International Telecommunication Union, ITU Recom-
mendation Z.120: Message Sequence Chart (MSC), ITU-T
(April 2004).

23. International Telecommunication Union, ITU Recom-
mendation Z.109: SDL Combined with UML, ITU-T
(2000).

24. International Telecommunication Union, “Study Group
17: Question 13/17—System Design Languages Frame-
work and Unified Modeling Language,” ITU-T Study
Group 17 (2003), http://www.itu.int/ITU-T/
studygroups/com17/sg17-q13.html.

Accepted for publication December 26, 2005.
Published online July 11, 2006.

Bran Selic

IBM Rational Software, IBM Canada, 770 Palladium Dr.,
Kanata, Ontario, Canada, K2V 1C8 (bselic@ca.ibm.com).
Mr. Selic is an IBM Distinguished Engineer at IBM Canada
working on the CTO team for IBM’s Rational brand. He is also
an Adjunct Professor of Computer Science at Carleton
University in Ottawa, Canada. He has close to 40 years of
experience in designing, implementing, and maintaining
large-scale industrial software systems, working mostly with
telecommunications, aerospace, robotics, and large financial
systems. In the late 1980s, he pioneered the application of
MDD methods and tools in the real-time domain and is the
primary author of a reference text on this topic. In 1992, he
cofounded ObjectTime Limited, a highly successful company
that developed software tools for MDD. He is recognized as an
expert in modeling language design and MDD and has written
many papers and articles on this subject. A frequently invited
speaker and lecturer at various technical conferences and
symposia, he is currently chair of the OMG team responsible
for maintaining the UML modeling language standard. He
received a Dipl.Ing degree (1972) and a Mag.Ing. degree
(1974) from the University of Belgrade in Belgrade,
Yugoslavia. He has been living and working in Canada since
1977. A

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

