
Rational Software Architect: A
tool for domain-specific
modeling

&

D. Leroux

M. Nally

K. Hussey

Rational Software Architect (RSA), the latest generation Rationalt modeling tool, is

based on Eclipsee Modeling Framework (EMF) technology. RSA offers all the

important features of the previous generation of Rational modeling tools, while

supporting a much wider range of model formats. RSA diagrams can be used in editing

and displaying models derived from any EMF-based metamodel. The combination of

RSA and EMF provides a powerful capability for integrating domain-specific languages

(DSLs) with UMLt in a single toolset. This paper describes how RSA and EMF provide

these capabilities and explores some of the ways that IBM is currently exploiting them.

INTRODUCTION

The development of the Unified Modeling Lan-

guage**
1

(UML**), standardized by the Object

Management Group, Inc. (OMG**) in 1997, was an

important step in focusing efforts to create a single

object-oriented modeling language. An industry of

services, consultants, and tools has sprung up

around UML, and tools from IBM Rational* are

among the market leaders. In 2005, a major revision

of UML, UML Version 2.0
2

(also called UML 2), was

created, expanding the scope of concepts described

in the UML standard.

One of the reasons for UML’s success is that it

contains abstractions for many standard object-

oriented modeling concepts, such as class diagrams,

state-machine diagrams, use-case diagrams, and

sequence diagrams, with which users can describe

the architecture, design, and even implementation

of software systems. Despite this richness, users

sometimes want to capture information in models

not provided for in UML. For this purpose, UML

provides the concept of a UML profile. UML profiles

allow the definition of stereotypes, which are

designed extensions of UML elements that allow

users of UML to annotate UML elements with extra

information. Stereotypes provide a simple but

powerful mechanism for extending and adapting

UML. If users want to model something that is not

exactly the same as a UML concept, they can often

find a UML concept that is close to what they want

and customize it with a stereotype. Because UML

tools support the concept of a stereotype, users can

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LEROUX, NALLY, AND HUSSEY 555

create their own UML modeling extensions and still

exploit UML tools to display and edit their models.

This use of stereotypes to extend UML and UML

tools is a good example of the value of reuse;

defining a whole new modeling language and toolset

would usually be prohibitively expensive. Still, the

definition of stereotypes is not adequate if one needs

to define a concept for which there is no similar

UML concept. There are also cases where users need

more control over the behavior of the modeling tool

than can be achieved by customizing a UML

modeling tool with stereotypes. Models that define

concepts different from the standard concepts in

UML are sometimes called domain-specific lan-

guages (DSLs) or domain-specific modeling (DSM)

languages. Some DSLs describe concepts that are

specific to a particular technical domain but outside

the scope of UML. Other DSLs describe concepts

unique to a particular application or solution

domain. Many articles and books have described the

value of DSM languages
3

or ‘‘software factories’’
4

for

particular domains.

Although UML is a powerful force for unifying

modeling concepts within the object-oriented do-

main, there are many modeling languages from

other domains, some of which predate UML. The

entity-relationship (E-R) model,
5

first proposed in

1976, inspired some of the ideas that found their

way into UML, but E-R modeling itself has also

continued to be successful, especially in the rela-

tional database domain. There are enough differ-

ences between the E-R model and the concepts it

inspired in UML, such as support for explicit keys,

that E-R modeling has never been subsumed by

UML. More recently, the Extensible Markup Lan-

guage
6

(XML) and Internet standards have created

modeling languages such as XML Schema
7

(XSD)

and Web Services Description Language
8

(WSDL).

XML Schema is a language for modeling XML data,

and WSDL models the interfaces to Web services.

Recognizing the need for supporting the develop-

ment of DSLs, and the continuing and emerging

importance of non-UML standard modeling lan-

guages, the designers of Rational’s next-generation

modeling tools set out to make sure the tools could

support a broad range of modeling languages

equally. RSA supports the same UML extension

capabilities as the previous Rational modeling tools,

Rational Rose* and Rational XDE* (Extended

Development Environment). These extensions en-

able users to quickly create UML profiles to address

domain-specific concerns, but unlike the previous

tools, RSA offers other means for integrating non-

UML standard modeling languages and DSLs.

Rational Rose and XDE relied on reverse engineering

and round-trip engineering to create UML from

domain models such as Enterprise JavaBeans**

(EJBs**), Java**, and Cþþ. (Reverse engineering in

this context is the process of converting source code

files into UML model elements. Round-trip engi-

neering, found in XDE and Rose, allows the user to

synchronize the contents of a UML model with a set

of source code files.) A domain-specific profile was

used in order to visualize, model, and reference

existing domain models. This led to significant

redundancy between the UML models and the

domain models, and many issues related to syn-

chronization of these artifacts. Users had to create

large UML ‘‘library’’ models for referencing existing

domain-specific libraries; for example, with Rational

Rose, using a type from the standard Java library

requires importing the Java library package into a

model.

Unlike these previous tools, the modeling capabil-

ities of RSA allow users to visualize and integrate

models and model elements from different domain

formats without having to create, store, and

synchronize reverse-engineered versions of these

models transformed into UML models. Because

RSA’s internal model representations are based on

EMF metamodels (a metamodel is a model that

defines another model), this task is made easier.

RSA includes EMF representations for UML2, EJBs

and Cþþ, among others. (For an example of an EMF-

based model, see Reference 9, which provides an

overview of the open implementation of the UML2

metamodel underlying RSA.) RSA integrates these

metamodels, allowing them to reference one an-

other by leveraging EMF and the RSA-specific

extensions to EMF for DSM. These extensions are

called the visualization and metamodel integration

services. These services have many capabilities,

including allowing the user to leverage existing

artifacts when designing new systems with UML.

A quick overview of the metamodel integration

capabilities of EMF and RSA follows. We then

describe two different ways that RSA provides

visualization and integration of a domain-specific

LEROUX, NALLY, AND HUSSEY IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006556

model. The first is through the use of the visual-

ization technology; the second is through the use of

a custom EMF resource implementation. Like all

new technologies, there are areas of these solutions

that still need to be improved. Adding modeling

support for a new DSL in RSA 6.0 is very code-

intensive and requires the use of many proprietary

extension points. We also discuss new technologies

that will be incorporated into future versions of RSA

to further improve this integration.

OVERVIEW OF EMF

EMF, the Eclipse Modeling Framework,
10

is a key

infrastructural element of many IBM products. It

offers a simple, pragmatic approach to modeling and

metamodeling. Based on proven technology (avail-

able since 2002), it can be used to generate code that

is typically written repeatedly, allowing developers

to focus on more complex aspects of the systems

they are developing.

EMF consists of an underlying metamodel (called

Ecore, for EMF’s ‘‘core’’model, as shown in Figure 1)

and tools for importing and generating code from

source models in various formats. It includes an

efficient runtime model, persistence and validation

frameworks, utilities for modeling and recording

changes, user-interface-independent support for

viewing and editing data, and much more.

The source model for an EMF project contains a

description of an application’s data, including

Figure 1
The Ecore metamodel, which is the basis for EMF

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LEROUX, NALLY, AND HUSSEY 557

objects and their attributes, relationships, opera-

tions, and constraints—essentially the basic con-

cepts from the Meta Object Facility
11

(MOF**). It

can be in any of several formats (effectively different

views of the same information), including annotated

Java interfaces, UML, XML Schema, or Ecore itself.

Given a source model, EMF can generate Java

implementation code (including user interface

code), XML schemas, and Eclipse plug-in artifacts.

The generated code includes efficient support for

change notification, bidirectional handshaking,

type-safe enumerations (i.e., those that do not

permit assigning to an object a value of the wrong

type), and reflection, based on the EObject inter-

face. Reflection is the ability to query the metamodel

for its classes and their structural features and thus

navigate objects in a generic fashion.

Every EMF-generated application model is an

instance of the EMF metamodel, Ecore. For example,

an application model of a simple purchase order is

shown in Figure 2. Here, PurchaseOrder and Item

would be instances of EClass; shipTo, billTo, and

productName would be instances of EAttribute; and

items would be an instance of EReference.

‘‘Persisted data’’ (i.e., data made persistent) in EMF

is referred to as a resource. EMF provides a generic,

customizable XML or XML Metadata Interchange
12

(XMI**) resource implementation, but other re-

source implementations (e.g., those backed by a

database) are possible. Data can be spread over a

number of resources, each of which is identified by a

Uniform Resource Identifier (URI). A collection of

related resources is known as a resource set; EMF

uses proxies to represent references between objects

in different resources within a resource set. EMF

uses these proxies to support on-demand loading of

referenced resources.

As an example, two purchase orders, po1 and po2

(based on the application model above) may be

saved in resources po1.epo2 and po2.epo2. Pur-

chase order po2 references po1 as its previous order,

Figure 2
Sample EMF model for PurchaseOrder

LEROUX, NALLY, AND HUSSEY IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006558

so a cross-resource reference is serialized in

po2.epo2 (using URI po1.epo2#/). When the

po2.epo2 resource is loaded, its contents are parsed

and instantiated in memory. However, the first time

po2’s previous order is accessed, the proxy for po1 is

resolved (based on the URI po1.epo2#/), the

resource containing it is loaded into the resource set

(i.e., the contents of po1.epo2 are parsed and

instantiated in memory), and the reference between

po2 and po1 is established, as shown in the

following code:

,?xml version¼‘‘1.0’’ encoding¼‘‘UTF-8’’?.

,epo2:PurchaseOrder xmi:version¼‘‘2.0’’
xmlns:xmi¼‘‘http://www.omg.org/XMI’’
xmlns:xsi¼‘‘http://www.w3.org/2001/
XMLSchema-instance’’

xmlns:epo2¼‘‘http:///epo2.ecore’’
comment¼‘‘po1’’.

,shipTo xsi:type¼‘‘epo2:USAddress’’ name¼‘‘John
Doe’’/.

,/epo2:PurchaseOrder.

,?xml version¼‘‘1.0’’ encoding¼‘‘UTF-8’’?.

,epo2:PurchaseOrder xmi:version¼‘‘2.0’’
xmlns:xmi¼‘‘http://www.omg.org/XMI’’
xmlns:xsi¼‘‘http://www.w3.org/2001/
XMLSchema-instance’’

xmlns:epo2¼‘‘http:///epo2.ecore’’
comment¼‘‘po2’’.

,shipTo xsi:type¼‘‘epo2:USAddress’’ name¼‘‘Jane
Doe’’/.

,previousOrder href¼‘‘po1.epo2#/’’/.

,/epo2:PurchaseOrder.

An Ecore model of application data can also be

defined at runtime (without requiring code gener-

ation) by using the Ecore API (application pro-

gramming interface) or by loading it from a

persistent form. A dynamic implementation of the

EObject reflective API provides the same runtime

behavior as that for a generated implementation.

EMF treats all model instances the same, regardless

of whether they are defined statically (i.e. gener-

ated) or dynamically.

OVERVIEW OF RSA METAMODEL INTEGRATION

As mentioned previously, RSA includes a set of EMF

metamodels (UML2, EJBs, data, etc.). EMF provides

a basic language (Ecore) and a set of services for

working with instances of these models.

The visualization and metamodel-integration ser-

vices component of the RSA architecture allows

different domain-specific models to be visualized

and integrated. The primary purpose of this com-

ponent is to allow for the integration and dynamic

mapping of elements from a source metamodel to a

different target metamodel. This set of services

allows any EMF metamodel to be mapped to, and

therefore be integrated with, another EMF meta-

model.

This component is required because metamodels

from standard specifications such as UML are

usually closed systems. UML elements can only

have relationships to other UML elements; there-

fore, to reference non-UML elements from a UML

model, one needs some way of mapping the element

to a concept that UML understands. In RSA 6.0, the

services provided by this component allow EJB,

Java, and Cþþ elements to be visualized and

integrated into UML models.

As an example, in Figure 3 an EJB called ‘Customer’

can be dragged onto a UML diagram and visualized

by using UML component notation. The same EJB

can reference a data table called ‘Customer’. This

reference crosses a metamodel boundary. The data

table is itself referenced from a UML2 use case called

‘UpdateCustomer’. This reference also crosses a

metamodel boundary. The CustomerLocal Java

interface that is exposed by the EJB and a legacy Cþþ
class called ‘LegacyCPPSystem’ that is also traceable

to the use case are also shown in the figure. These

relationships also cross metamodel boundaries.

The key concept underlying this ability is called a

visualization reference, that is, a URI that uses the

vizref schema and can represent a domain element

or an association between elements. These refer-

ences support the ability to specify a mapping and

extra properties that should be applied to the target

when the reference is resolved.

If a domain element is visualized on a diagram or

referenced from an element from a different

metamodel, all that is persisted (i.e., made persis-

tent) is a reference to the domain element, which

consists of a URI with a vizref schema that includes

the following fields: VizRefHandler (its creator),

target language kind (what it maps to), supporting

vizrefs, and other properties. The data stored in a

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LEROUX, NALLY, AND HUSSEY 559

vizref is completely defined by the person who

implements the domain mapping.

This sounds fairly complicated, but it actually is not.

The following examples of visualization references

illustrate this. In order to duplicate these examples,

one simply drags various Java elements onto an RSA

diagram and then opens up the .dnx or .emx file

with a text editor.

In the first example, a Java class named

com.ibm.demo.JavaSubclass in a project named

TraceDemoJava is visualized as a UML class. We

therefore have a vizref, with a type of uml:Class,

containing the class name, package name, and Java

file name properties. There is also a supporting

vizref (composite) to the Eclipse project in which

the Java file resides. A Java project is mapped to

uml2.Model.

,element xmi:type¼‘‘uml:Class’’
href¼‘‘vizref:///#jsrctype^vcore.target

¼uml2.Class^name

¼JavaSubclass[jcu^name

¼JavaSubclass.java[jpack^name

¼com.ibm.demo[jsrcroot^srcfolder

¼[project^vcore.target

¼uml2.Model^id

¼TraceDemoJava]]]]’’/.

In the second example, the relationship between

Java classes named JavaSubClass and

JavaSuperclass (an ‘‘extends’’ relationship) is

represented as a composite vizref of type

uml:Generalization containing two supporting

Figure 3
RSA diagram showing elements from various domain models

LEROUX, NALLY, AND HUSSEY IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006560

vizrefs that represent the Java class

(JavaSubclass) and its superclass

(JavaSuperclass).

,element xmi:type¼‘‘uml:Generalization’’
href¼‘‘vizref:///#jgen^vcore.target

¼uml2.Generalization[jsrctype^name

¼JavaSubclass[jcu^name

¼JavaSubclass.java[jpack^name

¼com.ibm.demo[jsrcroot^srcfolder

¼[project^vcore.target

¼uml2.Model^id

¼TraceDemoJava]]]]]
[jsrctype^name

¼JavaSuperclass[jcu^name

¼JavaSuperclass.java[jpack^name

¼com.ibm.demo[jsrcroot^srcfolder

¼[project^vcore.target

¼uml2.Model^id

¼TraceDemoJava]]]]]’’/.

We use composite visualization references in order

to improve performance. These references allow us

to reuse reference objects in memory and thus

greatly improve the performance of refactoring

operations.

In light of the previous discussion, in the following

section we examine how RSA leverages this

technology to provide a new, better integrated

workflow when dealing with a mix of general UML2

models for design- and domain-specific models for

construction or implementation. The easiest way to

do this is to compare the workflows of past Rational

tools with those of RSA.

COMPARISON OF RATIONAL ROSE AND XDE

WITH RSA

Modeling tools such as Rose and XDE are used for

many different purposes. For the purpose of this

paper we examine three categories of use: (1)

visualizing, understanding, and documenting exist-

ing code; (2) creating new designs and converting

them into implementations; and (3) forward engi-

neering (i.e., the process of transforming UML

model elements into source-code files). The first

category of use is a very common use of modeling

tools and is often the one first used when a

developer is introduced to modeling. The second

category of use occurs when the tools are used to

create new designs, possibly reusing elements from

existing implementations. These new designs are

then converted into initial implementations. In some

cases, some users may iteratively add to the model

and regenerate the implementation. The third

category of use occurs when the tool is used in a true

forward-engineering model-driven development

fashion. In this case, the model becomes the ‘‘code’’

for the user, and the implementation that is derived

from the model becomes a derived artifact.

In the following, we review each of these three

common usage categories and compare how they

are performed in Rose and XDE as compared with

RSA.

Visualization

One of the main reasons people want to create

diagrams of an existing implementation is to either

help them understand it or to help them communi-

cate it to others. UML is useful for this. For the code

segments from the AutoWorld sample project

shown in Figure 4, one may want to create a

diagram, also shown in Figure 4, showing the

inheritance relationships between the various entity

beans that are found in this project. (The AutoWorld

sample is available in XDE and RSA.) In order to

create this diagram in XDE, it is necessary to first

‘‘reverse engineer’’ the code into a model by right-

clicking on the AutoWorld Project in the Navigator

and selecting the Reverse Engineer option. This

operation creates a model called ‘‘Java 1.3 Code

Model’’ with the content shown in the model

explorer in Figure 5.

As the figure shows, XDE reverse-engineers a great

deal of detailed information into the UML model,

and therefore, navigating through the content found

in the model explorer is not as easy as navigating in

the project explorer shown in Figure 4. Once the

reverse-engineered version of the four desired EJBs

in the XDE model has been located, a new diagram

can be created, and the EJBs can be dragged onto it

to create the visualization shown in Figure 5.

The XDE diagram in Figure 5 also is not quite as

precise as the one in Figure 4. It lacks the key

indication on the ‘id’ field of the Vehicle EJB, and

because XDE is not aware of the domain-specific

WebSphere* Application Server 5.x extension that

allows EJB inheritance, it was necessary to draw the

diagram by using the bean implementation classes

instead of the logical EJBs.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LEROUX, NALLY, AND HUSSEY 561

Figure 4
AutoWorld EJB project and corresponding EJB inheritance diagram

Figure 5
AutoWorld EJB code model, Model Explorer, and diagram from XDE

LEROUX, NALLY, AND HUSSEY IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006562

In comparison, to create this diagram in RSA, one

simply selects the desired EJBs in the project

explorer and then selects ‘‘Visualize’’ and ‘‘Add to

New Diagram’’ from the context menu. The diagram

in Figure 4 was captured from RSA. In RSA, it is also

possible to simply use the ‘‘Browse Diagram’’ or

‘‘Topic Diagram’’ support and completely skip the

diagram-creation step by selecting the EJBs in the

project explorer and selecting ‘‘Visualize’’ and

‘‘Browse In Diagram.’’ This functionality allows

users to visualize elements in diagrams and navigate

through their domain-specific and UML models

without persisting the diagram itself, similar to the

way one uses a Web browser.

Thus far, the differences could be attributed to ‘‘UI

trickery.’’ Examining the files that are created (the

.mdx/.mdl file of XDE/Rose versus the .dnx/.emx

file of RSA), however, reveals a very significant

difference. In Rose and XDE, the UML objects are

persisted; therefore, a redundant copy of the

information is stored in the Rose and XDE model. In

RSA, the UML objects are not persisted, and the

views simply use the ‘‘visualization reference’’

mechanism that we described previously to refer-

ence the EJB or Java elements directly. As a result,

the XDE file we obtained was 2.5 MB, whereas the

RSA file was 25 KB.

To simulate what happens in a real team environ-

ment, we can update the source code or deployment

descriptor. For example, we add a container-

managed persistence (CMP) field

(fuelConsumption:int) to Vehicle by using the

deployment descriptor editor. In XDE, we need to

select the model in the model explorer and select

‘‘Synchronize’’ (or ‘‘Reverse Engineer’’) from the

context menu. The code model is synchronized, and

then the diagram is updated. In RSA, the diagram is

updated automatically as soon as we persist our

changes into the Java source files or deployment

descriptor.

In Rose and XDE, this scenario becomes much more

complicated in a real team environment. If two

different users are updating the source or the UML

models, then, because of the duplication of infor-

mation between models and source, during a merge

session it is necessary to reconcile the model

changes and code changes separately.

The preceding example, though simple, showed

that referencing non-UML instead of reverse-engi-

neering into UML allows RSA to integrate its

notation and presentation model (UML) with

underlying domain-specific technologies without

duplicating information. In this particular example,

RSA leveraged the existing EJB EMF models that

are available in RSA to provide first-class modeling

of EJB concepts without requiring the use of

intermediate UML code models and profiles.

Creating new designs and reusing existing
elements

Users often want to model a new system without

having to fill in all the implementation details. It is

also helpful to be able to use elements from an

existing implementation. In the following example,

we use an existing Java interface called

ExistingJavaInterface and an existing Java class

called ExistingJavaClass to represent elements

from an existing implementation. The NewClass

UML class represents our new UML design. The

desired outcome is illustrated in the diagram shown

in Figure 6.

In order to use the existing Java elements in Rose

and XDE, one must first reverse engineer the

existing Java code into a reference UML code

model. This model is shown in Figure 7 as ‘‘Java 1.3

Code Model.’’ It is also required to import a model

of the Java software development kit (SDK)

(jdk_min) for any Java types we wish to use,

such as java.lang.String. A new UML class,

‘‘Class1’’, is created in a new diagram and model,

the existing elements are dragged into it,

and relationships are created that reference the

UML version of the interface. The result is

illustrated in the diagram portion of Figure 7.

In order to draw the diagram in Figure 6 with RSA,

one simply drags the existing Java interface and

class into a diagram from the explorer and then

draws the UML implementation and aggregation

relationships directly from the UML class to the Java

elements. It is not necessary to reverse engineer the

existing elements into a UML model.

The ability to create a UML implementation rela-

tionship that references a Java interface is again

accomplished by using a vizref, as shown in:

,implementation xmi:id¼‘‘_le2AbZW50w’’
client¼‘‘_hVc0d8AbZW50w’’.

,supplier xmi:type¼‘‘uml:Interface’’

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LEROUX, NALLY, AND HUSSEY 563

href¼‘‘vizref:///#jsrctype^vcore.target

¼uml2.Interface^name

¼ExistingJavaInterface[jcu^name

¼ExistingJavaInterface.java[jpack^name

¼com.ibm.existingsystem
[jsrcroot^srcfolder

¼[project^vcore.target

¼uml2.Model^id

¼ArticleExamples]]]]’’/.

,mapping xmi:id¼‘‘_le2i0S64Edqh0d8AbZW50w’’/.

,/implementation.

If the new design in XDE or Rose is satisfactory, the

new class can be forward engineered into a Java

implementation. If one wishes to retain the UML

model, it is necessary to keep this model in sync

with the code from this point on, as we described in

the previous section.

In RSA, the UML-to-Java transformation can be used

to generate an implementation for the new class. (In

RSA and other new Rational products, such as

Rational Software Modeler and Rational Systems

Developer, the term ‘‘transformation’’ is used for a

Figure 6
RSA diagram mixing UML and Java elements

Figure 7
XDE Diagram and Model Explorer showing links between the reverse-engineered existing code and the new model

LEROUX, NALLY, AND HUSSEY IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006564

process that transforms elements of one model into

elements of another model.) If the ‘‘Replace UML

Elements’’ option is selected as part of the trans-

formation configuration, the reference on the

diagram for ‘‘NewClass’’ will be updated to refer-

ence the newly created Java class. In this way, the

diagrams always stay in sync with the code. As part

of the transformation, the diagram is updated as

shown in Figure 8 to include a direct reference to

the new Java class.

Forward engineering using the UML model

A user with a forward-engineering model-driven

development approach treats the UML model as the

only persistent artifact in the process. All other

artifacts are considered derived from the UML

model. The model is transformed to the target

domain and executed.

Although RSA introduces improved support for UML

patterns and transformations to help users who take

this approach, there is no significant difference

between the capabilities and usage of RSA versus

the capabilities and usage of Rose and XDE. One still

models in UML and then does one-way trans-

formations into the target domain.

In some of these cases, users are creating large UML

profiles and storing a great deal of extra information

in models in order to avoid having to reconcile

changes between external artifacts and the UML

models. In the section ‘‘Future of RSA,’’ we discuss

some new options for creating a custom domain-

specific modeler as an option for replacing large

profiles on UML models.

WebSphere Business Modeler integration
example
The second main example that we examine is the

Websphere Business Modeler (WBM)-to-RSA inte-

gration that is now available. WBM models are

stored in a format called Business Object Model

(BOM). BOM is similar to parts of UML2 but has

significant differences and enhancements to address

the needs of business process modelers.

In the past, integration between IBM business

modeling tools and IBM software modeling tools

was one way in nature. The business modeler

exported the model to UML, and then, the UML

modeler simply imported the model into the UML

tool. No traceability was maintained, and keeping

the models in sync was almost impossible. For

example, if one wanted to use a WBM 5.x model and

XDE together, it was necessary to export to UML

from WBM and then import into XDE.

In RSA, the WBM models can simply be opened.

Once the model is opened as a read-only UML

model, links can be created to elements in this

model from other UML models, enabling the busi-

ness model to be used as a ‘‘contract model’’ for

developing a new system or a set of services. If the

WBM model is updated, changes are immediately

reflected in the UML version, thereby removing the

duplication and traceability issues that existed in

previous integrations. This functionality allows the

user to create models that have elements from both

the BOM metamodel and the UML metamodel,

providing the same expressiveness as previous tools

without their issues.

How does this work? RSA registers a custom EMF

resource implementation that loads a WBM resource

and dynamically maps its contents to UML ele-

ments. Proxies from UML elements (in other

models) to WBM elements, when resolved, cause

the correct WBM resources to be loaded. For

example, the XMI segment in Figure 9 shows a

portion of a persisted UML model that contains a

class named ‘‘Class1’’ which has an implementation

dependency on an interface from another (WBM)

model. The reference is persisted as a URI comprised

of the resource name (resources.XMI) and the

unique identifier of the element in that resource

(BLM-df04d4826b07b524c236754b558965ac).

The XMI segment in Figure 10 shows a portion of

the WBM model that contains the element refer-

Figure 8
RSA post-transformation model
(using replacement elements)

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LEROUX, NALLY, AND HUSSEY 565

enced by the class in the UML model—a role named

‘‘Role1’’ with an identifier of

BLM-df04d4826b07b524c236754b558965ac.

When the UML resource is loaded, its contents are

created in memory, including Class1, and a proxy is

created for the reference to the role in the WBM

model. The first time an attempt is made to access

the implemented interface, the proxy is resolved: the

resource containing the referenced element

(resources.XMI) is added to the resource set,

the custom resource implementation is used to

convert its contents to UML elements (the

WBM role is converted to a UML interface), and

Figure 9
XMI segment illustrating a UML model with a dependency on a WBM model element

<ownedMember xmi:type="uml:Class" xmi:id="_bV9UMDBNEdq_sa2-mTt1NA" name="Class1"
 clientDependency="_dd3b4DBNEdq_sa2-mTt1NA">

 <implementation xmi:id="_dd3b4DBNEdq_sa2-mTt1NA"
 client="_bV9UMDBNEdq_sa2-mTt1NA">

 <supplier xmi:type="uml:Interface"
 href="resources.XMI#BLM-df04d4826b07b524c236754b558965ac"/>

 <mapping xmi:id="_dd9igDBNEdq_sa2-mTt1NA"/>

 <realizingClassifier xmi:type="uml:Interface"
 href="resources.XMI#BLM-df04d4826b07b524c236754b558965ac"/>

 <contract href="resources.XMI#BLM-df04d4826b07b524c236754b558965ac"/>

 </implementation>

 <ownedOperation xmi:id="_jl6YMDBNEdq_sa2-mTt1NA" name="Task"/>

</ownedMember>

Figure 10
XMI segment containing a referenced element in a WBM model

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:com.ibm.btools.bom.model.resources="http:///com/ibm/btools/
bom/model/resources.ecore"
xmlns:com.ibm.btools.model.resourcemanager.versioncontrol="http:/
//com/ibm/btools/model/resourcemanager/versioncontrol.ecore">
 <com.ibm.btools.model.resourcemanager.versioncontrol:Version
versionID="5.1.1.0"/>
 <com.ibm.btools.bom.model.resources:Role xmi:id="BLM-
df04d4826b07b524c236754b558965ac" uid="BLM-
df04d4826b07b524c236754b558965ac" name="Role1">
 <ownedComment xmi:id="BLM-4159976408b85db39a867b8fb99c3eca"
uid="BLM-4159976408b85db39a867b8fb99c3eca" body=""/>
 <ownedComment xmi:id="BLM-5a9576deb9cfa051bcc093f4730589c7"
uid="BLM-5a9576deb9cfa051bcc093f4730589c7" body=""/>
 <owningPackage href="RID-
00000000000000000000000000000011.xmi#FID-
00000000000000000000000000000011"/>
 </com.ibm.btools.bom.model.resources:Role>
</xmi:XMI>

LEROUX, NALLY, AND HUSSEY IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006566

the proxy is replaced with a reference to the

element with the referenced identifier (i.e., the

interface).

FUTURE WORK ON RSA
IBM Rational is continuing to develop and enhance

the capabilities described in this paper for future

versions of RSA. One of the key technologies that

will make it easier to add new DSL support to RSA is

currently being developed in open source on

eclipse.org under the Eclipse Graphical Modeling

Framework (GMF) project.

Eclipse GMF project
The Eclipse GMF project, as described in the GMF

tutorial,
13

has the goal of providing an open domain-

specific graphical modeling toolkit. Tool developers

will be able to use this toolkit to design and generate

a custom graphical modeling tool from an EMF

model of a domain. The toolkit will also be usable to

provide extended or custom notation support for

existing metamodels such as UML.

The GMF project consists of two major components.

The first is a runtime component that helps provide

a common platform for developing graphical DSM

tools that are extensible and integrated with one

another. The second is a set of tools that will make it

easy to create a set of graphical figures and map

them to a domain model expressed in EMF.

The IBM RSA development team is a key contributor

to the runtime components section of the GMF

project. Many of the components underlying RSA

6.0 were donated to the project in order to seed its

capabilities and to help ensure that any modeling

editor generated with the GMF tools or built directly

on the GMF runtime will be consistent with RSA’s

existing graphical editing capabilities and can be

easily integrated with other GMF-based modeling

tools.

RSA enhancements for lightweight metamodel
integration
Although the GMF project will go a long way toward

simplifying the process of building domain-specific

editors by providing the ability to define visual-

izations without requiring the entire domain to be

mapped to UML, there are still many circumstances

when the ability to integrate various metamodels is

desired. For example, in the Java modeling example

earlier, one might have built a custom DSM editor

for Java instead of using the visualization and

metamodel integration services from RSA. Although

using GMF would allow Java interfaces to be drawn

or visualized on diagrams, it would not have

enabled support of the use case where a new UML

class extends an existing Java interface. In other

words, relationships or references across elements

from different metamodels could not be created.

In order to address this, the RSA team is working on

a more lightweight version of visualization and

metamodel integration services that will allow

models to be integrated without having to share

common visualizations.

CONCLUSION
As the examples in this paper have demonstrated,

the RSA 6.0 product shows significant progress by

IBM Rational in supporting the ability to model in

different DSLs. This allows users familiar with a

domain to quickly obtain value from visualizations

based on these models.

In the section ‘‘Future work on RSA,’’ we briefly

discussed some new technologies that will make it

easier for tool developers, partners, and advanced

customers to develop their own integrated DSM

capabilities.

Several examples, such as the one displayed in

Figure 3, illustrate another key focus in RSA,

namely, the integration of DSM capabilities with

general UML modeling and transformations. Be-

cause of this integration, RSA allows the user to

enhance domain-specific diagrams by adding links

to use cases, interactions, and collaborations. This

capability increases and supplements the expressive

capabilities of the tool and leverages UML and RSA’s

rich capabilities, without having to reproduce them

in each DSL.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Incorporated, Sun Microsystems, Incor-
porated, or the Eclipse Foundation, Incorporated in the United
States, other countries, or both.

CITED REFERENCES AND NOTE
1. Unified Modeling Language (UML), Version 1.4.2, ISO/

IEC 19501, International Organization for Standardiza-
tion, (April 13, 2005), http://www.iso.org/iso/en/

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LEROUX, NALLY, AND HUSSEY 567

CatalogueDetailPage.CatalogueDetail?
CSNUMBER¼32620.

2. Unified Modeling Language (UML): Superstructure Spec-
ification, Version 2.0, Object Management Group, Inc.
(May 7, 2004), http://www.omg.org/cgi-bin/doc?formal/
05-07-04.

3. For a list of articles and publications on domain-specific
modeling, see http://www.dsmforum.org/publications.
html.

4. J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupie,
Software Factories: Assembling Applications with Pat-
terns, Models, Frameworks, and Tools, Wiley Publishing,
Inc., Hoboken, NJ (2004).

5. P. P. Chen, ‘‘The Entity-Relationship Model—Toward a
Unified View of Data,’’ ACM Transactions on Database
Systems (TODS) 1, No. 1, 9–36 (1976), http://bit.csc.lsu.
edu/;chen/pdf/erd.pdf.

6. Extensible Markup Language (XML) 1.0 (Third Edition),
World Wide Web Consortium (W3C) Recommendation
(February 4, 2004), http://www.w3.org/TR/REC-xml/.

7. XML Schema Part 0: Primer Second Edition, World Wide
Web Consortium (W3C) Recommendation (October 28,
2004), http://www.w3.org/TR/xmlschema-0/.

8. E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana, Web Services Description Language (WSDL)
1.1, World Wide Web Consortium (W3C) Note (March
15, 2001), http://www.w3.org/TR/wsdl.

9. K. Hussey, Getting Started with UML2, eclipse.org
(August 4, 2005), http://www.eclipse.org/uml2.

10. F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J.
Grose, Eclipse Modeling Framework, Addison-Wesley,
Reading, MA (2004).

11. Meta-Object Facility (MOF) 2.0 Core Specification, Object
Management Group, Inc. (March 10, 2004), http://www.
omg.org/cgi-bin/doc?ptc/03-10-04.

12. XML Metadata Interchange Specification, Version 2.0.1,
Object Management Group, Inc. (May 5, 2006), http://
www.omg.org/docs/formal/05-05-06.pdf.

13. R. C. Gronback, GMF Tutorial, eclipse.org (January 22,
2006), http://wiki.eclipse.org/index.php/
GMF_Tutorial.

Accepted for publication February 16, 2006.

Daniel Leroux
IBM Software Group, Rational, 770 Palladium Drive, Ottawa,
Ontario, Canada, K2V 1C8 (dleroux@ca.ibm.com). Mr.
Leroux is a Senior Technical Staff Member and senior
development manager with IBM Rational Software. He has
been with IBM Rational Software for eight years and has held
various management and development roles for the Rational
modeling family of products. Over the last four years, he has
led the architecture and development of the Rational Software
Architect/Modeler product line.

Martin Nally
IBM Software Group, Rational, 1090 Katella St, Laguna Beach,
CA 92651 (nally@us.ibm.com). Mr. Nally is an IBM
Distinguished Engineer who joined IBM in 1990 with 10 years’
prior industry experience. He was the lead architect and
developer for IBM VisualAge/Smalltalk and lead architect and
overall development manager for IBM WebSphere Studio. His
current title is Chief Technical Officer, IBM Rational Software.

Kenneth Hussey
IBM Software Group, Rational, 770 Palladium Drive, Ottawa,
Ontario, Canada, K2V 1C8 (khussey@ca.ibm.com). Mr.
Hussey is a senior software developer for IBM Rational
Software. He is a committer (i.e., a developer with write
access to the source code repository) on the EMF project and
lead of the UML2 project, both of which are open-source tool
subprojects at Eclipse. &

LEROUX, NALLY, AND HUSSEY IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006568

Published online July 11, 2006.

