Rational Software Architect: A
tool for domain-specific

modeling

Rational Software Architect (RSA), the latest generation Rational® modeling tool, is
based on Eclipse™ Modeling Framework (EMF) technology. RSA offers all the

D. Leroux
M. Nally
K. Hussey

important features of the previous generation of Rational modeling tools, while

supporting a much wider range of model formats. RSA diagrams can be used in editing
and displaying models derived from any EMF-based metamodel. The combination of
RSA and EMF provides a powerful capability for integrating domain-specific languages

(DSLs) with UML® in a single toolset. This paper describes how RSA and EMF provide
these capabilities and explores some of the ways that IBM is currently exploiting them.

INTRODUCTION

The development of the Unified Modeling Lan-
guage"‘*1 (UML**), standardized by the Object
Management Group, Inc. (OMG**) in 1997, was an
important step in focusing efforts to create a single
object-oriented modeling language. An industry of
services, consultants, and tools has sprung up
around UML, and tools from IBM Rational* are
among the market leaders. In 2005, a major revision
of UML, UML Version 2.0° (also called UML 2), was
created, expanding the scope of concepts described
in the UML standard.

One of the reasons for UML’s success is that it
contains abstractions for many standard object-
oriented modeling concepts, such as class diagrams,
state-machine diagrams, use-case diagrams, and
sequence diagrams, with which users can describe
the architecture, design, and even implementation
of software systems. Despite this richness, users

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

sometimes want to capture information in models
not provided for in UML. For this purpose, UML
provides the concept of a UML profile. UML profiles
allow the definition of stereotypes, which are
designed extensions of UML elements that allow
users of UML to annotate UML elements with extra
information. Stereotypes provide a simple but
powerful mechanism for extending and adapting
UML. If users want to model something that is not
exactly the same as a UML concept, they can often
find a UML concept that is close to what they want
and customize it with a stereotype. Because UML
tools support the concept of a stereotype, users can

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

LEROUX, NALLY, AND HUSSEY

555

556

create their own UML modeling extensions and still
exploit UML tools to display and edit their models.

This use of stereotypes to extend UML and UML
tools is a good example of the value of reuse;
defining a whole new modeling language and toolset
would usually be prohibitively expensive. Still, the
definition of stereotypes is not adequate if one needs
to define a concept for which there is no similar
UML concept. There are also cases where users need
more control over the behavior of the modeling tool
than can be achieved by customizing a UML
modeling tool with stereotypes. Models that define
concepts different from the standard concepts in
UML are sometimes called domain-specific lan-
guages (DSLs) or domain-specific modeling (DSM)
languages. Some DSLs describe concepts that are
specific to a particular technical domain but outside
the scope of UML. Other DSLs describe concepts
unique to a particular application or solution
domain. Many articles and books have described the
value of DSM languages3 or “software factories™ for
particular domains.

Although UML is a powerful force for unifying
modeling concepts within the object-oriented do-
main, there are many modeling languages from
other domains, some of which predate UML. The
entity-relationship (E-R) rnodel,5 first proposed in
1976, inspired some of the ideas that found their
way into UML, but E-R modeling itself has also
continued to be successful, especially in the rela-
tional database domain. There are enough differ-
ences between the E-R model and the concepts it
inspired in UML, such as support for explicit keys,
that E-R modeling has never been subsumed by
UML. More recently, the Extensible Markup Lan-
guage6 (XML) and Internet standards have created
modeling languages such as XML Schema’ (XSD)
and Web Services Description Language8 (WSDL).
XML Schema is a language for modeling XML data,
and WSDL models the interfaces to Web services.

Recognizing the need for supporting the develop-
ment of DSLs, and the continuing and emerging
importance of non-UML standard modeling lan-
guages, the designers of Rational’s next-generation
modeling tools set out to make sure the tools could
support a broad range of modeling languages
equally. RSA supports the same UML extension
capabilities as the previous Rational modeling tools,
Rational Rose* and Rational XDE* (Extended

LEROUX, NALLY, AND HUSSEY

Development Environment). These extensions en-
able users to quickly create UML profiles to address
domain-specific concerns, but unlike the previous
tools, RSA offers other means for integrating non-
UML standard modeling languages and DSLs.

Rational Rose and XDE relied on reverse engineering
and round-trip engineering to create UML from
domain models such as Enterprise JavaBeans**
(EJBs**), Java**, and C++. (Reverse engineering in
this context is the process of converting source code
files into UML model elements. Round-trip engi-
neering, found in XDE and Rose, allows the user to
synchronize the contents of a UML model with a set
of source code files.) A domain-specific profile was
used in order to visualize, model, and reference
existing domain models. This led to significant
redundancy between the UML models and the
domain models, and many issues related to syn-
chronization of these artifacts. Users had to create
large UML “library” models for referencing existing
domain-specific libraries; for example, with Rational
Rose, using a type from the standard Java library
requires importing the Java library package into a
model.

Unlike these previous tools, the modeling capabil-
ities of RSA allow users to visualize and integrate
models and model elements from different domain
formats without having to create, store, and
synchronize reverse-engineered versions of these
models transformed into UML models. Because
RSA’s internal model representations are based on
EMF metamodels (a metamodel is a model that
defines another model), this task is made easier.
RSA includes EMF representations for UML2, EJBs
and C++, among others. (For an example of an EMF-
based model, see Reference 9, which provides an
overview of the open implementation of the UML2
metamodel underlying RSA.) RSA integrates these
metamodels, allowing them to reference one an-
other by leveraging EMF and the RSA-specific
extensions to EMF for DSM. These extensions are
called the visualization and metamodel integration
services. These services have many capabilities,
including allowing the user to leverage existing
artifacts when designing new systems with UML.

A quick overview of the metamodel integration
capabilities of EMF and RSA follows. We then
describe two different ways that RSA provides
visualization and integration of a domain-specific

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

o~ O EModelElement
+ eModelElement
@ getEAnnotation (source : Sting) : EAnnotation
+ edrnotations L%
— @EArmtaﬂm UGW © EFactory + e actonyIrstance
i fesmumTos name : String o o (s TR T B
@ createFromString (eDataType : EDataType, kteralValue @ Sting) : ElavaObject 1
@ convertToString (eDataType : EDataType, instanceValue : ElavaObject) : String
[\ \
© ETypedElement © Eclassifier @ EPackage aback
uuduad':_bndam-m +eType | © instanceClassName : Sting o nsURI; Stiing + ePackage
9 unique : boolean = true o instanceClass : ElavaClass | © nsPrefix : Sting - 1
o lowerBound : int 0.1 |° defaltVale : ElavaObject ® getEClassifier (name : Stiing) : EClssifier
2 upperBound : int = 1 ® Blnstance (object : EdavaDbject | : boolean e
© many : boolean © getClassifieriD () : int + |+ ebuperPackage
o required ; boolean 2 + ePaclage
ZE + eExceptions | ZT "'75%5 + eSubpackages
\ \ \ \
® EOperation (@ EParameter (® EClass (3 EDataType
o abstract : boolean o serializable : boolean = true
o interface : boolean
. tq-a{)peratlon * |+ ePaameters | | @ isSuperTypeOf (someClas : EClass) : boolean
. ® getFeatureCount () : int 1
@ getEStructuralFeature (featurelD @ int) : EStructuralFeature
+ eOperations @ getFeaturelD (feature ; EStructuralFeature) : int
. e + econtaninadas L8 getEStructuralFeature (featureName : String) @ EStructuralFeature OE rammi
P "¢ |17 creferenceType s esupertypes VAR TR
+ eStructuraFeatures + eContainingClass o instance : EEnumerator
. + eallContainments
+ eflsuper Types
+ apllStucturaFeatures + eliterals | *
© EStiucturaFeature . *
o changeable : boolean = true © EReference * + eAttibuteType
o volatle : boolean 1 - + eflReferences
o contanment : boolean
1 gefa.mrd:.md'stlhg o contaner : bookean ; + eEnum
T 0.1 | @ resolveProxies : boolean = true + eReferences
o unsettable : bookean P e o) © EEnum
o derived : boolean L + eallattributes :]
@ getFeaturelD () : int N @ getEEnumLiteral (name : String) : EEnumLiteral
.mm“.ewmq YT . T ® getEEnumLiteral (value : int) : EEnumLiteral
oD:bodean | .1 + elDAttibute
Figure 1
The Ecore metamodel, which is the basis for EMF

model. The first is through the use of the visual- able since 2002), it can be used to generate code that
ization technology; the second is through the use of is typically written repeatedly, allowing developers
a custom EMF resource implementation. Like all to focus on more complex aspects of the systems

new technologies, there are areas of these solutions they are developing.

that still need to be improved. Adding modeling

support for a new DSL in RSA 6.0 is very code- EMF consists of an underlying metamodel (called
intensive and requires the use of many proprietary Ecore, for EMF’s “core” model, as shown in Figure 1)
extension points. We also discuss new technologies and tools for importing and generating code from
that will be incorporated into future versions of RSA source models in various formats. It includes an

to further improve this integration. efficient runtime model, persistence and validation

frameworks, utilities for modeling and recording
OVERVIEW OF EMF changes, user-interface-independent support for
EMEF, the Eclipse Modeling Framework,10 is a key viewing and editing data, and much more.

infrastructural element of many IBM products. It
offers a simple, pragmatic approach to modeling and The source model for an EMF project contains a
metamodeling. Based on proven technology (avail- description of an application’s data, including

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LEROUX, NALLY, AND HUSSEY 557

558

® supplier i= OrderStatus
name : String Pending
BackOrcler
Complete
- pendingOrders * | _ qreler
% P » orders | * 0..1 |- shipTo
- customers ¢
® Customer - shippedOrders _| @ PurchaseOrder 1 © Address
customerID :int * comment : String g ’ name : String
orderDate : Date . - bilTo country : String
- customer ; status : OrclerStatus 0..
bbbl -orders |potalamount ; int
1 ¥ 3 ‘ - previousOrcler
- order 1
-items | *

@ Item (® UsAddress (3 Globaladdress
productMName : String street : String location : String
& Date [EET ﬂggntitv 1 'I'll:t city : String

SPrice : in state : String
comment : String 7ip : int
shipDate : Date
parthum : SkU
(@ GlobalLocation
o countryCode : int
Figure 2
Sample EMF model for PurchaseOrder

objects and their attributes, relationships, opera-
tions, and constraints—essentially the basic con-
cepts from the Meta Object Facility11 (MOF**). It
can be in any of several formats (effectively different
views of the same information), including annotated
Java interfaces, UML, XML Schema, or Ecore itself.
Given a source model, EMF can generate Java
implementation code (including user interface
code), XML schemas, and Eclipse plug-in artifacts.
The generated code includes efficient support for
change notification, bidirectional handshaking,
type-safe enumerations (i.e., those that do not
permit assigning to an object a value of the wrong
type), and reflection, based on the EObject inter-
face. Reflection is the ability to query the metamodel
for its classes and their structural features and thus
navigate objects in a generic fashion.

Every EMF-generated application model is an

instance of the EMF metamodel, Ecore. For example,
an application model of a simple purchase order is
shown in Figure 2. Here, PurchaseOrder and Item

LEROUX, NALLY, AND HUSSEY

would be instances of EClass; shipTo, bil1To, and
productName would be instances of EAttribute; and
items would be an instance of EReference.

“Persisted data” (i.e., data made persistent) in EMF
is referred to as a resource. EMF provides a generic,
customizable XML or XML Metadata Interchange12
(XMI**) resource implementation, but other re-
source implementations (e.g., those backed by a
database) are possible. Data can be spread over a
number of resources, each of which is identified by a
Uniform Resource Identifier (URI). A collection of
related resources is known as a resource set; EMF
uses proxies to represent references between objects
in different resources within a resource set. EMF
uses these proxies to support on-demand loading of
referenced resources.

As an example, two purchase orders, pol and po?
(based on the application model above) may be
saved in resources pol.epo?2 and po?2.epo2. Pur-
chase order po? references pol as its previous order,

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

so a cross-resource reference is serialized in
po2.epo2 (using URI pol.epo2i/). When the
po2.epo?2 resource is loaded, its contents are parsed
and instantiated in memory. However, the first time
po2’s previous order is accessed, the proxy for pol is
resolved (based on the URI pol.epo24#/), the
resource containing it is loaded into the resource set
(i.e., the contents of pol.epo2 are parsed and
instantiated in memory), and the reference between
po2 and pol is established, as shown in the
following code:

<?xml version=<1.0" encoding=“UTF-8"7>

<epo?2:PurchaseOrder xmi:version="2.0"

xmins:xmi=*http://www.omg.org/XMI”

xmins:xsi=“http://www.w3.0rg/2001/
XMLSchema-instance”

xmlns:epo2=*http:///epo2.ecore”
comment="pol”>

<shipTo xsi:type=‘epo2:USAddress” name=*John
Doe”/>

</epo2:PurchaseOrder>

<?xml version=<1.0" encoding="UTF-8"7>

<epo?2:PurchaseOrder xmi:version="2.0"

xmlns:xmi=*“http://www.omg.org/XMI”

xmins:xsi=*http://www.w3.0rg/2001/
XMLSchema-instance”

xmins:epoZ2=“http:///epol.ecore”
comment="po2”>

<shipTo xsi:type=“epo2:USAddress” name=*Jane
Doe”/>

<previousOrder href=*pol.epo2#/”/>

</epo2:PurchaseOrder>

An Ecore model of application data can also be
defined at runtime (without requiring code gener-
ation) by using the Ecore API (application pro-
gramming interface) or by loading it from a
persistent form. A dynamic implementation of the
EObject reflective API provides the same runtime
behavior as that for a generated implementation.
EMF treats all model instances the same, regardless
of whether they are defined statically (i.e. gener-
ated) or dynamically.

OVERVIEW OF RSA METAMODEL INTEGRATION
As mentioned previously, RSA includes a set of EMF
metamodels (UML2, EJBs, data, etc.). EMF provides
a basic language (Ecore) and a set of services for
working with instances of these models.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

The visualization and metamodel-integration ser-
vices component of the RSA architecture allows
different domain-specific models to be visualized
and integrated. The primary purpose of this com-
ponent is to allow for the integration and dynamic
mapping of elements from a source metamodel to a
different target metamodel. This set of services
allows any EMF metamodel to be mapped to, and
therefore be integrated with, another EMF meta-
model.

This component is required because metamodels
from standard specifications such as UML are
usually closed systems. UML elements can only
have relationships to other UML elements; there-
fore, to reference non-UML elements from a UML
model, one needs some way of mapping the element
to a concept that UML understands. In RSA 6.0, the
services provided by this component allow EJB,
Java, and C++ elements to be visualized and
integrated into UML models.

As an example, in Figure 3 an EJB called ‘Customer’
can be dragged onto a UML diagram and visualized
by using UML component notation. The same EJB
can reference a data table called ‘Customer’. This
reference crosses a metamodel boundary. The data
table is itself referenced from a UML2 use case called
‘UpdateCustomer’. This reference also crosses a
metamodel boundary. The CustomerLocal Java
interface that is exposed by the EJB and a legacy C++
class called ‘LegacyCPPSystem’ that is also traceable
to the use case are also shown in the figure. These
relationships also cross metamodel boundaries.

The key concept underlying this ability is called a
visualization reference, that is, a URI that uses the
vizref schema and can represent a domain element
or an association between elements. These refer-
ences support the ability to specify a mapping and
extra properties that should be applied to the target
when the reference is resolved.

If a domain element is visualized on a diagram or
referenced from an element from a different
metamodel, all that is persisted (i.e., made persis-
tent) is a reference to the domain element, which
consists of a URI with a vizref schema that includes
the following fields: VizRefHandler (its creator),
target language kind (what it maps to), supporting
vizrefs, and other properties. The data stored in a

LEROUX, NALLY, AND HUSSEY 559

560

Figure 3
RSA diagram showing elements from various domain models

Fl«Database» |
{1 CRM
=~ i ~_ «contains»
7 «contains» SSao
Z «Table» AN
[CUSTOMER e «Table»
o ZECUST_ID 1 * £ ORDERS
o B NAME —— — o 2 ORD_ID : CUSTOMER
o B ADDRESS CRD_ID «Non-identifying Relationship» | o 7 QUANTITY
o & PHONE DRD_CUST_KEY o [DATA
Clerk
«Entity Bean» Z - «Table» /
[z Customer =1 CUSTOMER g
o Seustidinteger | «mapy o ZECUST_ID o R :
o (@ name : String o [NAME atracen ER &
o (& address : String o B ADDRESS H . i
o @ phone : String o B PHONE __ i ~updateCustomer
- //// '.-..-;,z-__-_______:!
N P e
o . wrace» _—— s
SN fEJB Irnplementations P e
o - «traca»//
" s
Plqava Interface, Local Interface» | —~ e
! customerLocal < 7
///
Z/
= «class»
(® LegacyCPPSystem

@ LegacyCPPSystem ()
© ~LegacyCPPSystem ()
@ UpdateCustomer ()

vizref is completely defined by the person who
implements the domain mapping.

This sounds fairly complicated, but it actually is not.
The following examples of visualization references
illustrate this. In order to duplicate these examples,
one simply drags various Java elements onto an RSA
diagram and then opens up the .dnx or .emx file
with a text editor.

In the first example, a Java class named
com.ibm.demo.JavaSubclass in a project named
TraceDemoJava is visualized as a UML class. We
therefore have a vizref, with a type of uml:Class,
containing the class name, package name, and Java
file name properties. There is also a supporting
vizref (composite) to the Eclipse project in which

LEROUX, NALLY, AND HUSSEY

the Java file resides. A Java project is mapped to
uml2.Model.

<element xmi:type=“uml:Class”
href=<vizref:///#jsrctype-vcore.target
=uml2.Class name
=JavaSubclass[jcu"name
=JavaSubclass.javaljpack " name
=com.ibm.demo[jsrcroot"srcfolder
=[project”vcore.target
=uml2.Model"id
=TraceDemoJavallll”/>

In the second example, the relationship between
Java classes named JavaSubClass and
JavaSuperclass (an “extends” relationship) is
represented as a composite vizref of type
uml:Generalization containing two supporting

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

vizrefs that represent the Java class
(JavaSubclass) and its superclass
(JavaSuperclass).

<element xmi:type=“uml:Generalization”
href=“vizref:///#jgen"vcore.target
=uml2.Generalization[jsrctype"name
=JavaSubclass[jcu name
=JavaSubclass.javal[jpack name
=com.ibm.demo[jsrcroot srcfolder
=[project vcore.target
=umlZ.Model"id
=TraceDemodavalll]l]
[jsrctype name
=JavaSuperclass[jcu name
=JavaSuperclass.javaljpack name
=com.ibm.demo[jsrcroot”srcfolder
=[projectvcore.target
=uml2.Model"id
=TraceDemodavalllll”/>

We use composite visualization references in order
to improve performance. These references allow us
to reuse reference objects in memory and thus
greatly improve the performance of refactoring
operations.

In light of the previous discussion, in the following
section we examine how RSA leverages this
technology to provide a new, better integrated
workflow when dealing with a mix of general UML2
models for design- and domain-specific models for
construction or implementation. The easiest way to
do this is to compare the workflows of past Rational
tools with those of RSA.

COMPARISON OF RATIONAL ROSE AND XDE
WITH RSA

Modeling tools such as Rose and XDE are used for
many different purposes. For the purpose of this
paper we examine three categories of use: (1)
visualizing, understanding, and documenting exist-
ing code; (2) creating new designs and converting
them into implementations; and (3) forward engi-
neering (i.e., the process of transforming UML
model elements into source-code files). The first
category of use is a very common use of modeling
tools and is often the one first used when a
developer is introduced to modeling. The second
category of use occurs when the tools are used to
create new designs, possibly reusing elements from
existing implementations. These new designs are

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

then converted into initial implementations. In some
cases, some users may iteratively add to the model
and regenerate the implementation. The third
category of use occurs when the tool is used in a true
forward-engineering model-driven development
fashion. In this case, the model becomes the “code”
for the user, and the implementation that is derived
from the model becomes a derived artifact.

In the following, we review each of these three
common usage categories and compare how they
are performed in Rose and XDE as compared with
RSA.

Visualization

One of the main reasons people want to create
diagrams of an existing implementation is to either
help them understand it or to help them communi-
cate it to others. UML is useful for this. For the code
segments from the AutoWorld sample project
shown in Figure 4, one may want to create a
diagram, also shown in Figure 4, showing the
inheritance relationships between the various entity
beans that are found in this project. (The AutoWorld
sample is available in XDE and RSA.) In order to
create this diagram in XDE, it is necessary to first
“reverse engineer” the code into a model by right-
clicking on the AutoWorld Project in the Navigator
and selecting the Reverse Engineer option. This
operation creates a model called “Java 1.3 Code
Model” with the content shown in the model
explorer in Figure 5.

As the figure shows, XDE reverse-engineers a great
deal of detailed information into the UML model,
and therefore, navigating through the content found
in the model explorer is not as easy as navigating in
the project explorer shown in Figure 4. Once the
reverse-engineered version of the four desired EJBs
in the XDE model has been located, a new diagram
can be created, and the EJBs can be dragged onto it
to create the visualization shown in Figure 5.

The XDE diagram in Figure 5 also is not quite as
precise as the one in Figure 4. It lacks the key
indication on the ‘id’ field of the Vehicle EJB, and
because XDE is not aware of the domain-specific
WebSphere* Application Server 5.x extension that
allows EJB inheritance, it was necessary to draw the
diagram by using the bean implementation classes
instead of the logical EJBs.

LEROUX, NALLY, AND HUSSEY

561

562

[72 Enterprise Applications
4 L Application Client Prajects

#
*
52 Yehicle
1@ Message-Driven Beans
-2 Maps
+ =, WebSphere v6.0 Runtime
+ B, JRE System Library [WebSphere v6 JRE]
%] classdiagram.dnx
i+) Other Projedts

i+ L Web Setvices
+ L[Databases
+ () Database Servers

Figure 4

«Entity Bear»
@“ﬁym

o &id:int
© (@ dateAcquired : Date

o @ celiphone : VapUSPhoneNurmber

A
«WAS T ance» Inheritance»
«WAS Inheritance»
«Entity Bean» [z Truck
b __@Bus_ e © @ maximumLoad : Integer
_© @ maxmumPassengers : it o @ numberOfwheels : Integer
«Entity Bean»
(23 Automobile

AutoWorld EJB project and corresponding EJB inheritance diagram

Element Type

'-iri_‘i‘iig

VehicleBean

+id : int

+ dateAcquired : java.sql.Date
+garage_id : java.lang.Integer

AutomobileBean
+ numberOfairBags : int

BusBean

+ max

imumPassengers : int

Figure 5
AutoWorld EJB code model, Model Explorer, and diagram from XDE

_EJSRemoteCMPYehicleHome_9576cfd7 _T!
_EJSRemoteCMPYehicleHome _Tie
_Garage_Stub

_GarageHome _Stub
_MatorVehiclePart_Stub
_MotarvehiclePartHome_Stub
_RaceCar_Stub
_RaceCarHome_Stub

_SUV_Stub

_SlvHome_Stub

_Truck_Stub

_TruckHome _Stub

_Vehicle_Stub
_VehicleHome_Stub

Automobile

AutomobileBean
«C AutomobileHome
“7) Bus

5 BusBean

«} BusHome
EJSCMPAutomobileHomeBean
EISCMPAUtomobileHomeBean_Ba9fb20e
EJSCMPBusHomeBean
EISCMPBusHomeBiean_1 ad63730
EJSCMPGarageHomeEBean
EISCMPGarageHomeBean_2648dabz
EJSCMPMotorVehiclePartHomeBean
EJSCMPMotorVehicleP artHomeBean_ffé44.
EJSCMPRaceCarHomeBean
EJSCMPRaceCarHomeBean_591743a5
EJSCMPSUYHomeBean

LEROUX, NALLY, AND HUSSEY

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

In comparison, to create this diagram in RSA, one
simply selects the desired EJBs in the project
explorer and then selects “Visualize” and “Add to
New Diagram” from the context menu. The diagram
in Figure 4 was captured from RSA. In RSA, it is also
possible to simply use the “Browse Diagram” or
“Topic Diagram” support and completely skip the
diagram-creation step by selecting the EJBs in the
project explorer and selecting “Visualize” and
“Browse In Diagram.” This functionality allows
users to visualize elements in diagrams and navigate
through their domain-specific and UML models
without persisting the diagram itself, similar to the
way one uses a Web browser.

Thus far, the differences could be attributed to “UI
trickery.” Examining the files that are created (the
.mdx/.md1 file of XDE/Rose versus the .dnx/.emx
file of RSA), however, reveals a very significant
difference. In Rose and XDE, the UML objects are
persisted; therefore, a redundant copy of the
information is stored in the Rose and XDE model. In
RSA, the UML objects are not persisted, and the
views simply use the “visualization reference”
mechanism that we described previously to refer-
ence the EJB or Java elements directly. As a result,
the XDE file we obtained was 2.5 MB, whereas the
RSA file was 25 KB.

To simulate what happens in a real team environ-
ment, we can update the source code or deployment
descriptor. For example, we add a container-
managed persistence (CMP) field
(fuelConsumption:int) to Vehicle by using the
deployment descriptor editor. In XDE, we need to
select the model in the model explorer and select
“Synchronize” (or “Reverse Engineer”) from the
context menu. The code model is synchronized, and
then the diagram is updated. In RSA, the diagram is
updated automatically as soon as we persist our
changes into the Java source files or deployment
descriptor.

In Rose and XDE, this scenario becomes much more
complicated in a real team environment. If two
different users are updating the source or the UML
models, then, because of the duplication of infor-
mation between models and source, during a merge
session it is necessary to reconcile the model
changes and code changes separately.

The preceding example, though simple, showed
that referencing non-UML instead of reverse-engi-

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

neering into UML allows RSA to integrate its
notation and presentation model (UML) with
underlying domain-specific technologies without
duplicating information. In this particular example,
RSA leveraged the existing EJB EMF models that
are available in RSA to provide first-class modeling
of EJB concepts without requiring the use of
intermediate UML code models and profiles.

Creating new designs and reusing existing
elements

Users often want to model a new system without
having to fill in all the implementation details. It is
also helpful to be able to use elements from an
existing implementation. In the following example,
we use an existing Java interface called
ExistingJavalnterface and an existing Java class
called ExistingJavaClass to represent elements
from an existing implementation. The NewClass
UML class represents our new UML design. The
desired outcome is illustrated in the diagram shown
in Figure 6.

In order to use the existing Java elements in Rose
and XDE, one must first reverse engineer the
existing Java code into a reference UML code
model. This model is shown in Figure 7 as “Java 1.3
Code Model.” It is also required to import a model
of the Java software development kit (SDK)
(jdk_min) for any Java types we wish to use,

such as java.lang.String. A new UML class,
“Classl”, is created in a new diagram and model,
the existing elements are dragged into it,

and relationships are created that reference the
UML version of the interface. The result is
illustrated in the diagram portion of Figure 7.

In order to draw the diagram in Figure 6 with RSA,
one simply drags the existing Java interface and
class into a diagram from the explorer and then
draws the UML implementation and aggregation
relationships directly from the UML class to the Java
elements. It is not necessary to reverse engineer the
existing elements into a UML model.

The ability to create a UML implementation rela-
tionship that references a Java interface is again
accomplished by using a vizref, as shown in:

<implementation xmi:id="_1e2AbZW50w”

client="_hVcOd8AbZW50w”>
<supplier xmi:type=“uml:Interface”

LEROUX, NALLY, AND HUSSEY

563

564

= [com.ibm.existingsystem A

= 1J] ExistinglavaClass.java
@ ExistinglavaClass

= [J) Existinglavalnterface.java
“= import declarations

=
~® AnExistingMethod (stringParam : String) : void

«Java Interface»
O Edstinglavainterface

= @ Existinglavalnterface
© AnExistingMethod(String)
+ E (default package)
= %24 Blank Model.emx *

Figure 6
RSA diagram mixing UML and Java elements

= {2} Blank Model
™ i
D) Main - newAttribute| . _«Java Class»
+ O NewClass ONewClass o i © ExistingavaClass
+ o (newattribute:ExistingJavaClass) 1 ok
4 (UML2)

href=*vizref:///#jsrctype-vcore.target
=uml2.Interface name
=ExistingJdavalnterfacel[jcu"name
=ExistingJdavalnterface.javaljpack name
=com.ibm.existingsystem
[jsrcroot®srcfolder
=[project vcore.target
=uml2.Model"id
=ArticleExamples]]11”/>
<mapping xmi:id="_1e2i0S64Edgh0d8AbZW50w”/>
</implementation>

If the new design in XDE or Rose is satisfactory, the
new class can be forward engineered into a Java
implementation. If one wishes to retain the UML
model, it is necessary to keep this model in sync
with the code from this point on, as we described in
the previous section.

In RSA, the UML-to-Java transformation can be used
to generate an implementation for the new class. (In
RSA and other new Rational products, such as
Rational Software Modeler and Rational Systems
Developer, the term “transformation” is used for a

Model Explorer

Exdstingla terface

+ AnExisti

thod ()

Element Type

=37 jdk_min
= java
B o
+ [lang
#- [util

% + + B

K
ExistinglavaClass

= (3] (articlesExample) Java 1.3 Code Model

=-B3 com

- newaAttribute

Class1

Figure 7

=123 ibm
=1-[3 existingsystem
& ExistinglavaClass
[+« Existinglavalnterface
+ 2| ExistinglavaClass.java
-2] ExistingJavalnterface.java
D Main
& (idk_min)
= [3 (AutoworldExample) Blank Modef*
Main
+ = Classl

XDE Diagram and Model Explorer showing links between the reverse-engineered existing code and the new model

LEROUX, NALLY, AND HUSSEY

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

process that transforms elements of one model into
elements of another model.) If the “Replace UML
Elements” option is selected as part of the trans-
formation configuration, the reference on the
diagram for “NewClass” will be updated to refer-
ence the newly created Java class. In this way, the
diagrams always stay in sync with the code. As part
of the transformation, the diagram is updated as
shown in Figure 8 to include a direct reference to
the new Java class.

Forward engineering using the UML model

A user with a forward-engineering model-driven
development approach treats the UML model as the
only persistent artifact in the process. All other
artifacts are considered derived from the UML
model. The model is transformed to the target
domain and executed.

Although RSA introduces improved support for UML
patterns and transformations to help users who take
this approach, there is no significant difference
between the capabilities and usage of RSA versus
the capabilities and usage of Rose and XDE. One still
models in UML and then does one-way trans-
formations into the target domain.

In some of these cases, users are creating large UML
profiles and storing a great deal of extra information
in models in order to avoid having to reconcile
changes between external artifacts and the UML
models. In the section “Future of RSA,” we discuss
some new options for creating a custom domain-
specific modeler as an option for replacing large
profiles on UML models.

WebSphere Business Modeler integration
example

The second main example that we examine is the
Websphere Business Modeler (WBM)-to-RSA inte-
gration that is now available. WBM models are
stored in a format called Business Object Model
(BOM). BOM is similar to parts of UML2 but has
significant differences and enhancements to address
the needs of business process modelers.

In the past, integration between IBM business
modeling tools and IBM software modeling tools
was one way in nature. The business modeler
exported the model to UML, and then, the UML
modeler simply imported the model into the UML
tool. No traceability was maintained, and keeping

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

«Java Interface»
O ExdstingJavalnterface

@ AnExistingMethod (stringParam : String) : void

T =
NewClass - newAttribut «lava 53

" (9 ExistingJavaClass ,
W gethNewattribute () 1 F
W setNewAttribute () -
@ AnExistingMethod ()

Figure 8
RSA post-transformation model
(using replacement elements)

the models in sync was almost impossible. For
example, if one wanted to use a WBM 5.x model and
XDE together, it was necessary to export to UML
from WBM and then import into XDE.

In RSA, the WBM models can simply be opened.
Once the model is opened as a read-only UML
model, links can be created to elements in this
model from other UML models, enabling the busi-
ness model to be used as a “contract model” for
developing a new system or a set of services. If the
WBM model is updated, changes are immediately
reflected in the UML version, thereby removing the
duplication and traceability issues that existed in
previous integrations. This functionality allows the
user to create models that have elements from both
the BOM metamodel and the UML metamodel,
providing the same expressiveness as previous tools
without their issues.

How does this work? RSA registers a custom EMF
resource implementation that loads a WBM resource
and dynamically maps its contents to UML ele-
ments. Proxies from UML elements (in other
models) to WBM elements, when resolved, cause
the correct WBM resources to be loaded. For
example, the XMI segment in Figure 9 shows a
portion of a persisted UML model that contains a
class named “Class1” which has an implementation
dependency on an interface from another (WBM)
model. The reference is persisted as a URI comprised
of the resource name (resources.XMI) and the
unique identifier of the element in that resource
(BLM-df04d4826b07b524c236754b558965ac).

The XMI segment in Figure 10 shows a portion of
the WBM model that contains the element refer-

LEROUX, NALLY, AND HUSSEY

565

566

<supplier xmi:type="uml:Interface"

</implementation>

</ownedMember>

Figure 9

<ownedMember xmi:type="uml:Class" xmi:id="_bVIUMDBNEdg_sa2-mTt1NA" name="Classl"
clientDependency="_dd3b4DBNEdg_saZ2-mTtINA">

<implementation xmi:id="_dd3b4DBNEdqg_saZ2-mTtINA"

href="resources.XMI#BLM-df04d4826b07b524c236754b558965ac" />
<mapping xmi:id="_dd9igDBNEdqg_saZ2-mTtINA"/>

<realizingClassifier xmi:type="uml:Interface"
href="resources.XMI#BLM-df04d4826b07b524c236754b558965ac" />

<contract href="resources.XMI#BLM-df04d4826b07b524c236754b558965ac" />

client="_bVOUMDBNEdqg_saZ-mTt1INA">

<ownedOperation xmi:id="_j16YMDBNEdg_sa2-mTtINA" name="Task"/>

XMI segment illustrating a UML model with a dependency on a WBM model element

<?xml version="1.0" encoding="UTF-8"7>

bom/model/resources.ecore"”

versionID="5.1.1.0"/>

df04d4826b07b524c236754b558965ac"
df04d4826b07b524c236754b558965ac"

<owningPackage href="RID-
00000000000000000000000000000011 . xmifFID-
00000000000000000000000000000011" />

</ xmi s XMI>

Figure 10

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:com.ibm.btools.bom.model.resources="http:///com/ibm/btools/

xmins:com.ibm.btools.model.resourcemanager.versioncontrol="http:/
//com/ibm/btools/model/resourcemanager/versioncontrol.ecore">
<com.ibm.btools.model.resourcemanager.versioncontrol:Version

<com.ibm.btools.bom.model.resources:Role xmi:id="BLM-
uid="BLM-
name="Rolel">
<ownedComment xmi:id="BLM-4159976408b85db39a867b8fb99c3eca"
uid="BLM-4159976408b85db39a867b8fb99c3eca" body=""/>
<ownedComment xmi:id="BLM-5a9576deb9cfal51bcc093f4730589¢c7"
uid="BLM-5a9576deb9cfal51bcc093f4730589c7" body=""/>

</com.ibm.btools.bom.model.resources:Role>

XMI segment containing a referenced element in a WBM model

enced by the class in the UML model—a role named
“Rolel” with an identifier of
BLM-df04d4826b07b524c236754b558965ac.

When the UML resource is loaded, its contents are

created in memory, including Class1, and a proxy is
created for the reference to the role in the WBM

LEROUX, NALLY, AND HUSSEY

model. The first time an attempt is made to access
the implemented interface, the proxy is resolved: the
resource containing the referenced element
(resources.XMI) is added to the resource set,

the custom resource implementation is used to
convert its contents to UML elements (the

WBM role is converted to a UML interface), and

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

the proxy is replaced with a reference to the
element with the referenced identifier (i.e., the
interface).

FUTURE WORK ON RSA

IBM Rational is continuing to develop and enhance
the capabilities described in this paper for future
versions of RSA. One of the key technologies that
will make it easier to add new DSL support to RSA is
currently being developed in open source on
eclipse.org under the Eclipse Graphical Modeling
Framework (GMF) project.

Eclipse GMF project

The Eclipse GMF project, as described in the GMF
tutorial,~ has the goal of providing an open domain-
specific graphical modeling toolkit. Tool developers
will be able to use this toolkit to design and generate
a custom graphical modeling tool from an EMF
model of a domain. The toolkit will also be usable to
provide extended or custom notation support for
existing metamodels such as UML.

The GMF project consists of two major components.
The first is a runtime component that helps provide
a common platform for developing graphical DSM
tools that are extensible and integrated with one
another. The second is a set of tools that will make it
easy to create a set of graphical figures and map
them to a domain model expressed in EMF.

The IBM RSA development team is a key contributor
to the runtime components section of the GMF
project. Many of the components underlying RSA
6.0 were donated to the project in order to seed its
capabilities and to help ensure that any modeling
editor generated with the GMF tools or built directly
on the GMF runtime will be consistent with RSA’s
existing graphical editing capabilities and can be
easily integrated with other GMF-based modeling
tools.

RSA enhancements for lightweight metamodel
integration

Although the GMF project will go a long way toward
simplifying the process of building domain-specific
editors by providing the ability to define visual-
izations without requiring the entire domain to be
mapped to UML, there are still many circumstances
when the ability to integrate various metamodels is
desired. For example, in the Java modeling example
earlier, one might have built a custom DSM editor
for Java instead of using the visualization and

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

metamodel integration services from RSA. Although
using GMF would allow Java interfaces to be drawn
or visualized on diagrams, it would not have
enabled support of the use case where a new UML
class extends an existing Java interface. In other
words, relationships or references across elements
from different metamodels could not be created.

In order to address this, the RSA team is working on
a more lightweight version of visualization and
metamodel integration services that will allow
models to be integrated without having to share
common visualizations.

CONCLUSION

As the examples in this paper have demonstrated,
the RSA 6.0 product shows significant progress by
IBM Rational in supporting the ability to model in
different DSLs. This allows users familiar with a
domain to quickly obtain value from visualizations
based on these models.

In the section “Future work on RSA,” we briefly
discussed some new technologies that will make it
easier for tool developers, partners, and advanced
customers to develop their own integrated DSM
capabilities.

Several examples, such as the one displayed in
Figure 3, illustrate another key focus in RSA,
namely, the integration of DSM capabilities with
general UML modeling and transformations. Be-
cause of this integration, RSA allows the user to
enhance domain-specific diagrams by adding links
to use cases, interactions, and collaborations. This
capability increases and supplements the expressive
capabilities of the tool and leverages UML and RSA’s
rich capabilities, without having to reproduce them
in each DSL.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Incorporated, Sun Microsystems, Incor-
porated, or the Eclipse Foundation, Incorporated in the United
States, other countries, or both.

CITED REFERENCES AND NOTE
1. Unified Modeling Language (UML), Version 1.4.2, ISO/
IEC 19501, International Organization for Standardiza-
tion, (April 13, 2005), http://www.iso.org/iso/en/

LEROUX, NALLY, AND HUSSEY

567

568

CatalogueDetailPage.CatalogueDetail?
CSNUMBER=32620.

2. Unified Modeling Language (UML): Superstructure Spec-
ification, Version 2.0, Object Management Group, Inc.
(May 7, 2004), http://www.omg.org/cgi-bin/doc?formal/
05-07-04.

3. For a list of articles and publications on domain-specific
modeling, see http://www.dsmforum.org/publications.
html.

4. J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupie,
Software Factories: Assembling Applications with Pat-
terns, Models, Frameworks, and Tools, Wiley Publishing,
Inc., Hoboken, NJ (2004).

5. P. P. Chen, “The Entity-Relationship Model—Toward a
Unified View of Data,” ACM Transactions on Database
Systems (TODS) 1, No. 1, 9-36 (1976), http://bit.csc.Isu.
edu/~chen/pdf/erd.pdf.

6. Extensible Markup Language (XML) 1.0 (Third Edition),
World Wide Web Consortium (W3C) Recommendation
(February 4, 2004), http://www.w3.org/TR/REC-xml/.

7. XML Schema Part 0: Primer Second Edition, World Wide
Web Consortium (W3C) Recommendation (October 28,
2004), http://www.w3.org/TR/xmlschema-0/.

8. E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana, Web Services Description Language (WSDL)
1.1, World Wide Web Consortium (W3C) Note (March
15, 2001), http://www.w3.org/TR/wsdl.

9. K. Hussey, Getting Started with UMLZ2, eclipse.org
(August 4, 2005), http://www.eclipse.org/uml2.

10. F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J.
Grose, Eclipse Modeling Framework, Addison-Wesley,
Reading, MA (2004).

11. Meta-Object Facility (MOF) 2.0 Core Specification, Object
Management Group, Inc. (March 10, 2004), http://www.
omg.org/cgi-bin/doc?ptc/03-10-04.

12. XML Metadata Interchange Specification, Version 2.0.1,
Object Management Group, Inc. (May 5, 2006), http://
www.omg.org/docs/formal/05-05-06.pdf.

13. R. C. Gronback, GMF Tutorial, eclipse.org (January 22,
2006), http://wiki.eclipse.org/index.php/
GMF_Tutorial.

Accepted for publication February 16, 2006.
Published online July 11, 2006.

Daniel Leroux

IBM Software Group, Rational, 770 Palladium Drive, Ottawa,
Ontario, Canada, K2V 1C8 (dleroux@ca.ibm.com). Mr.
Leroux is a Senior Technical Staff Member and senior
development manager with IBM Rational Software. He has
been with IBM Rational Software for eight years and has held
various management and development roles for the Rational
modeling family of products. Over the last four years, he has
led the architecture and development of the Rational Software
Architect/Modeler product line.

Martin Nally

IBM Software Group, Rational, 1090 Katella St, Laguna Beach,
CA 92651 (nally@us.ibm.com). Mr. Nally is an IBM
Distinguished Engineer who joined IBM in 1990 with 10 years’
prior industry experience. He was the lead architect and
developer for IBM VisualAge/Smalltalk and lead architect and
overall development manager for IBM WebSphere Studio. His
current title is Chief Technical Officer, IBM Rational Software.

LEROUX, NALLY, AND HUSSEY

Kenneth Hussey

IBM Software Group, Rational, 770 Palladium Drive, Ottawa,
Ontario, Canada, K2V 1C8 (khussey@ca.ibm.com). Mr.
Hussey is a senior software developer for IBM Rational
Software. He is a committer (i.e., a developer with write
access to the source code repository) on the EMF project and
lead of the UML2 project, both of which are open-source tool
subprojects at Eclipse. W

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

