
Model-driven development:
Assets and reuse

&

G. Larsen

Several of the challenges that software organizations face today include an increase in

the complexity of their information technology (IT) infrastructures and solutions,

applications that may be difficult to use, and continued pressure to achieve tight time-

to-market timelines. Organizations use many approaches to address these problems,

including models. Models can embody critical solutions and insights and thus can be

seen as assets for an organization. For example, a pattern that describes a recurring

problem, its recurring solution, and the context in which it is relevant can be expressed

as a model and shared with others. This paper presents some of the steps to identify

reusable models, organize them for reuse, and package, publish, and ultimately reuse

them—all with a focus on the benefit to the business and the alignment of IT to the

needs of the business. Whereas the concepts associated with reuse are not new,

organizing models for reuse in the manner described herein represents more recent

techniques.

INTRODUCTION

There are many challenges in software develop-

ment, but in this paper, we focus on mitigating

complexity, improving consumability (the ease of

use by which a model can be approached, its

organization understood, and a determination made

concerning how to apply it to one’s needs), and

reducing time to market.

Background

Several years ago, a consortium of software industry

leaders—including IBM, Rational* Software (before

its acquisition by IBM), and Microsoft—began

exploring ways to help organizations repurpose

software investments. In this exploration, it was

determined that software entities need to be named,

organized, reviewed, and reused to improve the

return on the investment in them.

The consortium began to describe these software

investments as software assets. This led us ulti-

mately to create standards for asset packaging

formats and then to develop tools and processes to

work with assets throughout their life cycle.

Although we found that assets take on many shapes

and sizes and are used in multiple roles throughout

the development life cycle, we found similarities

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LARSEN 541

among asset types. This made it possible to consider

using automation with reusable assets.

Models, a reusable asset, provide a unique oppor-

tunity to mitigate complexity, improve consumabil-

ity, and reduce time to market. We proceed by

addressing each of these areas.

Complexity

The demand for more sophisticated solutions is one

impetus to the increase in complexity of our

software development projects. Increasing com-

plexity is also driven by the pervasive nature of

software in today’s business and government

processes. With software reaching into all aspects of

business and government, software design and

testing have become two of the critical factors to

address the inherent complexity.

Some see complexity in software stemming from the

variety that software organizations face—the variety

of methods and tools available, the variety of

software and hardware, and the variety in skill sets

and organizational structures. The value of decom-

posing the technology stack that organizations use

to deliver solutions can be argued, but with that

comes an increasing number of elements and

combinations. All of these factors—methods, tools,

software, hardware, and organizational structures—

add to the increasing complexity of software.

In The Economist,
1

an article on managing com-

plexity outlined some of the well-known software

project failures and posited that a fundamental

reason for such failures is the lack of tools for

developers and management that scale to the level

of complexity required by today’s solutions. Specif-

ically, poor software design was identified as a

fundamental element of this failure: As software has

become more and more pervasive in business and

government, and more complicated, the impact of

poor software design has been steadily growing.

Consumability

From experience we learn that the longer it takes to

locate, evaluate, use, and extend an asset the more

difficult it is to preserve its value. Many of us have

experienced the frustration of trying to find and

understand work someone else performed. If it takes

us longer than what seems reasonable, then we

often look elsewhere or stop looking and re-create

the content ourselves.

There are no hard-and-fast rules about how long

that time is, but some common sense prevails. If we

are looking for a model that describes the architec-

ture for a system that our team will build for the

organization, it is reasonable that we may take

several days or more to find and evaluate it.

Conversely, if we are looking for a sort routine, then

we are less inclined to spend such a lengthy time.

Finding the asset is only part of the problem.

Understanding its purported solution and its rele-

vance to the context at hand is another challenge to

reusing it. The ability to comprehend what has been

created and shared is the next major hurdle. There is

a balance between complexity and comprehension,

and often solutions are provided that are complex

and difficult to understand. In the end, this can be

summarized as consumability and ease of use.

Poulin points out that one aid to achieving

consumability is to organize the assets in a

consistent manner.
2

He notes from a study on the

topic that using a standard layout lets a potential

reuser quickly scan the important aspects of a

component, such as text descriptions, pseudo-code,

illustrations, and implementation information. More

is said on this topic later in the paper.

Time to market

The notion of time to market is comprised of the

individual daily wins an organization makes in its

software development process. This includes the

notion of time to value, a test that reusable assets

must pass constantly to ensure their investment.

Time to value means discovering and understanding

the right model for the relevant context in a timely

manner to achieve productivity improvements. It is

directly impacted by the amount of time required to

find the right model, but even more so by its

reusability. Two factors that make an asset reusable,

impacting its time to value and thereby affecting the

organization’s time to market, are its complexity

and its comprehensibility.

There are few metrics dealing with either of these

two factors. Quantitative metrics include the Mac-

Cabe Cyclomatic Complexity metric
3

and the Hal-

stead Software Science metrics.
4

These metrics focus

on program logic, structure, and lines of code, but

they do not directly translate to the complexity of a

model asset. Several studies that focused on

comprehension concluded that if users were

presented with consistently structured information

LARSEN IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006542

and artifacts regarding assets, the comprehensibility

of those assets improved.
5,6

We can conclude that if

an asset is truly comprehensible, offers minimal

complexity, and solves a recurring problem, and if

the consumer of the asset can discover it quickly,

then that asset has its best chance at providing value

in a timely manner. It is the aggregation of many

time-to-value wins that can ultimately affect time to

market.

Show me the money

Walker Royce describes the context within which

asset reuse flourishes
7
: In general, things get reused

for economic reasons. Therefore, the key metric in

identifying whether a component is truly reusable is

to see whether some organization is making money

on it.

In our corporate zeal to develop technologies and

solutions, we often become enamored by technical

brilliance. The cycle for innovation should always

be tempered by value to the customer and to the

business. In Model Driven Development** (MDD**)

work, the same holds true for the use and reuse of

assets. We use models as the basis for creating

reusable assets; these models should provide value

to the customer. The model used in this paper is

introduced later.

ASSET-BASED DEVELOPMENT

Several years ago, we at Rational Software began an

effort to describe how to leverage software invest-

ments for future use. Asset-based development

(ABD) organizes the software-related investments,

requirements, models, code, tests, and deployment

scripts to be used for future software project

activities. The four major areas of ABD are the

following:

� Process—Describes the life cycle of assets, both

assets relevant to a project and across projects
� Standards—Describes the standards to be used for

assets, such as standard asset packaging, and for

specific asset types like services
� Tooling—Describes the tools necessary to work

with assets throughout their life cycles
� Assets—Describes the kinds of assets that are

relevant to a particular organization

What is the relationship of ABD and component-

based development? Component-based develop-

ment focuses on the specification and implementa-

tion of software bits that can be reused. ABD

broadens this to include a set of asset types that are

useful to personnel in roles other than the developer

role and to include other points in the development

life cycle, such as during the inception and elabo-

ration phases.

Some of the high-value assets we deal with are in

the early stages of a project or application design.

For example, a powerful mechanism to bridge the

business and information technology (IT) gap and

provide flexibility and productivity to an organiza-

tion would be the ability to reuse a business process

model as a template, customize it for a specific

project or customer need, and then realize that

business process with a set of reusable IT assets,

such as use-case documents, services, and models.

Nature of assets

When we formally started working on ABD several

years ago, we first sought agreement with several

organizations on the definition of an asset. This is

the result:

An asset is a collection of artifacts that provides a

solution to a problem. The asset has instructions

on how it should be used and is reusable in one

or more contexts, such as a development or a

runtime context. The asset may also be extended

and customized through variability points.

There are three key dimensions that describe

reusable assets: granularity, variability, and articu-

lation.

Granularity is the spectrum of asset size and shape.

Assets may range from fine-grained, meaning they

are small in size and purpose, to coarse-grained,

providing larger size and purpose and often con-

taining or referring to fine-grained assets.

Variability refers to the asset’s degree of custom-

ization. This, too, is a spectrum. On one end, the

asset is fixed, and on the other, it is widely visible

and changeable.

Articulation is the level of completeness of artifacts

in an asset. That provides a solution. We can again

view it as a spectrum; some assets have very few

artifacts that aid the consumer; whereas, others are

fully articulated, providing artifacts that include, for

instance, requirements and testing validation. Refer

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LARSEN 543

to the Object Management Group, Inc. (OMG**)

Reusable Asset Specification (RAS)
8

for further

refinement on these dimensions. Models can cross

degrees of granularity, variability, and articulation.

It is important for us to describe the scope,

customization, and supporting material for the

model.

Models are assets

The general asset definition may be refined for

various kinds of software assets. For example, a

specific kind of asset, such as a service or in this

case, a model, may specify the artifacts that must be

in the asset. Some artifacts that are part of a model

asset will be shown later. The following clarifies the

terminology we use here.

� An asset is a collection of artifacts providing a

solution to a problem (Figure 1).
� A pattern has a specification and one or more

implementations. A pattern specification describes

the solution to a recurring problem and may be

implemented in many forms, such as a component

or a model (using the term ‘‘implemented’’

loosely). The term pattern represents both the

specification and the implementation when it is

not necessary to distinguish between them.

� A model is a kind of asset, which may or may not

implement a pattern specification.

Assets are packaged according to the needs of the

intended user—the asset consumer. Given a model

that is built to a certain level of abstraction,

granularity, variability, and articulation, an architect

may determine that it is highly reusable in a certain

business context to solve a specific engineering

problem. This model may be packaged as an asset,

or other packaging schemes may be used. A

component with its attendant Java** Archive (JAR)

file may be created, or it may be packaged with a

model that describes the design of the component,

and together, they comprise the asset.

For our purposes, models are treated as assets.

Later, we cover the use of models to capture the

implementation of IBM Patterns for e-business and

organize and package these models as reusable

assets that can be searched and reused for a specific

development platform.

The OMG Model Driven Architecture** (MDA**)
9

describes a model organization for separating busi-

ness and application logic from the platform

technology. The approach described here for or-

ganizing models as reusable assets can be used with

models organized according to MDA, but MDA is

not a prerequisite for using the techniques described

herein.

MDA describes several kinds of models, such as

Platform Independent Models (PIM) and Platform

Specific Models (PSM). These models can be

packaged as reusable assets. If there is a situation in

which some recurring business concepts can be

applied across multiple applications and implemen-

tation technologies, it can be valuable to invest the

effort to create the PIM and PSM models and any

associated transformations, each of which may be a

reusable asset and stored in an asset repository.

Life cycle of a model asset
The life cycle of assets includes the following major

workflows:

� Candidate asset identification—Identify potential

assets.
� Asset production—Harvest and create artifacts,

packaging them into reusable assets.
� Asset management—Review, certify, manage ver-

sion, and publish.

Figure 1
Assets and RAS metadata

Name Description State Version Profile
RAS Metadata

Artifacts

By value

By value

By reference

Descriptors

Classification
and Context

Name
Version
Type
Dependencies
. . .

Solution
Artifacts

Activities
Usage

Variability Point Bindings Name
Relation Type

ID and Version

Related Assets

Artifact

Artifact

Artifact

Asset

Name Description State Version Profile
RAS Metadata

Artifacts

By value

By value

By reference

Descriptors

Classification
and Context

Name
Version
Type
Dependencies
. . .

Solution
Artifacts

Activities
Usage

Variability Point Bindings Name
Relation Type

ID and Version

Related Assets

Artifact

Artifact

Artifact

Asset

Name Description State Version Profile
RAS Metadata

Artifacts

By value

By value

By reference

Descriptors

Classification
and Context

Name
Version
Type
Dependencies
. . .

Solution
Artifacts

Activities
Usage

Variability Point Bindings Name
Relation Type

ID and Version

Related Assets

Artifact

Artifact

Artifact

Asset

LARSEN IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006544

� Asset consumption—Search, browse, reuse, and

provide feedback.

A model is first identified as a candidate asset and

then produced into a reusable asset for a specified

context. It is then reviewed, the version is updated,

and it is published as part of asset management.

Finally, the model is searched, browsed, reused, and

rated as part of asset consumption.

A challenge in working with assets of any kind—be

they services, models, or components—is to identify

which are reusable. As practitioners, we are often

tempted to think that all the artifacts we create are

candidates for reusable assets. This is a dangerous

practice because, as assets grow, so do their

attendant costs. Time needs to be invested to

identify which assets are classed as reusable. This is

one of the workflows in the asset life cycle. This is

done by discovering recurring problems and their

solutions and the context within which an asset

might be reusable in solving the problems.

Although this may sound like identifying a pattern,

which it is on one level because it is a recurring

solution to a recurring problem, we are not

conducting formal pattern-writing workshops to

identify these recurring problems and solutions. In

practice, we find that if candidate asset identification

is made by looking for recurring problems and

solutions rather than by relying on intuition, we

improve our chances of making good investments.

Standards for assets
Earlier we cited Poulin’s description of consum-

ability and the impact of having a consistent

approach to organizing assets. Several years ago,

Rational Software began an effort to describe the

metadata of assets. This structure was modeled,

documented, and published as the OMG Reusable

Asset Specification (RAS).
8

Today, RAS is expressed

in Extensible Markup Language (XML) for each

asset. The metadata that should be considered for

packaging a model as a reusable asset is addressed

in the section ‘‘Example: Patterns for e-business

model.’’

For each asset, its name, several types of descrip-

tions, its state, and its version can be described.

Different sections of RAS metadata support various

activities in the asset life cycle. For example, the

classification section is targeted for asset consump-

tion, giving one or more structures and perspectives

through which a potential asset consumer can find

the asset. The artifacts in the solution section can be

included by value or by reference. By design, the

majority of the elements described in RAS are

optional to allow for a spectrum of reuse formalities.

Thus, for informal sharing, only a few metadata

elements are needed, but for formal sharing, a larger

set of elements in the metadata can potentially be

used. We use RAS to package the model assets in

our example later, but before doing so, we review

the kinds of tools that are necessary to support

model assets through their life cycle.

Tool support for assets

Various kinds of tools play a role at points in the

asset life cycle (Figure 2). To create a model as a

reusable asset, a modeling tool is, of course,

required, and there must be a capability in the

tooling that can package assets according to RAS.

The asset can be submitted to the asset certification

Figure 2
Tools that support the asset life cycle

Asset Production Asset Management Asset Consumption

Search

Use/CustomizeModify

Submit
RAS Repository Service

PromoteCertify Asset
Repository

Modeling
 Tool
and Asset
Packager

Asset
Certification

Modeling
 Tool
and Asset
Unpackager

= Model, or other Asset

Workflow

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LARSEN 545

workflow, where it is reviewed. An asset repository

is necessary for storage and versioning. Finally, the

asset is made visible to the target asset consumers,

who then use an asset unpackager tool and the

relevant modeling tool. There are other ancillary

scenarios through this life cycle (not covered in this

paper), such as creating a new version of a model

asset, submitting defects for an asset, and providing

feedback and a rating for the model asset.

Having explained the fundamentals of ABD, we now

present a sample model to use for creating and

publishing a model asset.

EXAMPLE: PATTERNS FOR E-BUSINESS MODEL
IBM Patterns for e-business (P4eb) is used for our

model.
10

The focus of the example is not on the

patterns themselves; therefore, it is not necessary for

the reader to be familiar with them. Rather, this

model is used to identify candidate assets and to

discuss how to organize and package the model to

be reused by others. The techniques outlined here

may be used with other models.

This model is built in IBM Rational Software

Architect (RSA) 6.0.1.
11

There are four major pack-

ages that organize this model, which is a single file

on the file system.

The IBM Patterns for e-business capture a layered

set of architectural patterns that bridge the business

and IT gap. They provide new levels of abstraction

compared with traditional patterns (e.g., Gang of

Four Design Patterns
12

), extending the use of

patterns to earlier phases of solution design and

development (e.g., inception and elaboration). A

selected group of traditional design patterns become

relevant within the context of an architectural

pattern identified by P4eb. These patterns can be

used to help design the architecture of an e-business

application by reusing existing, tried-and-true ap-

proaches (patterns).

What is the value of this model? The model is

intended to guide architects in the proper selection

and structure of both their operational architecture

and their application architecture. These patterns in

particular describe how the architectures should be

designed to meet the needs of the business. The

operational architecture describes how business and

IT services and components map onto a set of

servers. The application architecture describes how

the services and components are designed.

When these concepts are mapped to P4eb, the

application patterns provide high-level application

architectures, the runtime patterns provide high-

level operational architectures, and, as we would

expect, these are related. Finally, the runtime

patterns are mapped to products, adding more

context and refinement (though this is beyond the

scope of this paper).

IDENTIFYING MODELS AS REUSABLE ASSETS

There are many views on how much time is spent in

the software industry on projects in various phases

and activities of the development life cycle. Bor-

rowing a general profile from Poulin’s work, he cites

the following approximations
2
: 15 percent require-

ments definition, 15 percent design, 20 percent code

generation, 30 percent test, and 20 percent admin-

istration. This sets the context for the parts of the

software-development life cycle that are likely to be

impacted through model use and reuse.

Among the many kinds of models, we are talking

about models that aid software development, and

within that group, we are discussing Unified

Modeling Language** (UML**) models, which are

useful in the requirements, design, code, and test

activities. We identify a model as a reusable asset by

first asking, ‘‘What problem is recurring? What is the

recurring solution to that problem? What context are

we talking about?’’

In the case of P4eb, the problem stated by the

authors was this: Systems in many organizations

exist as islands but need to be knitted together to

provide solutions that meet the changing needs of

the business in the context of the digital economy. A

set of prescribed architectures is needed that meets

some general set of business needs in today’s

Internet world.
13

The solution is a set of models that

describe several architectural views.

A subset of these patterns, which was captured in an

RSA model, is the starting point in later sections for

going through the steps of creating the model as a

reusable asset. But first, we provide some back-

ground on models and their use to address some of

the issues we face.

Reusable models to mitigate complexity,

consumability, and time to market

Models have been used for quite some time.

According to Schichl:

LARSEN IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006546

The word ‘modeling’ comes from the Latin word

modellus. It describes a typical human way of

coping with reality. Anthropologists think that

the ability to build abstract models is the most

important feature which gave homo sapiens a

competitive edge By 2000 BC at least three

cultures (Babylon, Egypt, India) had a decent

knowledge of mathematics and used

mathematical models.
14

Complexity: Addressed by well-formed models

Schichl identifies one of the early graphical models

used in astronomy, in which Ptolemy created a

model of the solar system in 150 A.D. by using

cycles and epicycles. Apparently this model was

used until 1619 when a better model was devised,

the fundamentals of which are still used today.
14

Models provide a means of communication, and

when done well, they provide useful abstractions

that can last for quite some time. How many of our

models will last beyond two or three versions of a

software application, let alone nearly 15 centuries?

Selecting the proper abstractions in a model for a

specific context is critical. However, abstraction is a

double-edged sword.

Gabriel cautions against the overuse of abstractions:

The problem is that people are taught to value

abstraction above all else, and object-oriented

languages and their philosophy of use

emphasizes reuse, which is generally good.

However, sometimes the passion for abstraction

is so strong that it is used inappropriately.

Abstractions must be carefully and expertly

designed, especially when . . . reuse is intended.
15

Abstractions in code as well as in models are used to

hide detail, but by doing so, one may not be able to

understand what the code does or what the model

means. The question to ask is, ‘‘At what point in my

modeling do I make heavy use of abstraction and at

what point do I make light use of it?’’

Part of the answer lies in the intended use of the

model. When a model is intended to reach an

audience that is making decisions which are not

based upon the fine details of the model, then the

heavy use of abstraction is justified. If the model is

intended to communicate the essence of the solution

and guide the user through the details, then less

abstraction is justified. For instance, to whom is it

valuable to reverse engineer some Java classes into

a UML class diagram? The answer depends on what

is being captured in the model and who expects to

use it. If the essence of the class structure and

relationships is communicated visually and if the

intent is to communicate to software engineers and

architects the static nature of the class design so that

they can conduct impact analysis and review the

overall software design, then this is likely to be a

proper abstraction. However, one would never show

this to a business analyst seeking an IT solution to a

business problem.

One of the challenges we face is increasing

complexity. Abstraction in models is a powerful

means to rise above complexity, but it must be used

in a manner appropriate to a specific audience.

Properly organized models reduce the effort to

understand the abstractions they communicate.

Consumability: Model organization and metadata

Consumability is the ease of use by which a model

can be approached, its organization understood, and

a determination made concerning how to apply it to

one’s needs. To be consumable, both a model’s

structure and its diagrams should be well organized,

and it should be packaged with metadata that

further describe its intent and intended reuse

context.

Time to market: Finding the model, getting at the

value

Value is created by discovering and understanding

the right model for the relevant context in a timely

manner to achieve productivity improvements. For

this to happen, a model must be organized,

packaged, and shared as an asset with minimal

effort. The focus now shifts to examining how to

organize models as reusable assets and the impact

that can have on models and their users.

ORGANIZING MODELS TO BE REUSED

The structure of our model is shown in Figure 3. It

is organized with two top-level elements: a doc-

umentation folder and the model file itself,

p4eb_patterns.emx. A document that discusses the

modeling conventions to which the model adheres

should be included in the documentation folder to

aid in the reuse of the model. It can be seen that we

use a UML package called zAssocations. In it, we

place the associations exposed by the RSA Model

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LARSEN 547

Explorer view to make navigating the Model

Explorer easier.

Under the 2 - Business Patterns package is another

set of packages that follow the major categorization

of the P4eb patterns: Collaboration, Extended

Enterprise, Information Aggregation, and Self

Service. This structure is used throughout the

model in each of the major pattern packages:

Business Pattern package, under which are Appli-

cation Pattern packages, under which are Runtime

Pattern packages. We chose this structure to focus

the user on the relevant subset of patterns, thereby

reinforcing previous decisions and not overwhelm-

ing the user with all possible patterns from which to

choose.

One of the first questions to ask is, ‘‘With whom do

we intend to share this candidate asset?’’ It is very

important to understand the anticipated skill level of

the target consumer. The answer for our example

model is that it is intended to be shared with

architects.

The next question is, ‘‘How do we expect the

architects to approach the problem of determining

which pattern to use in the model?’’

The following are the assumptions we made about

the use of this model:

1. We assume that architects will be fairly new to

these patterns; as such, we expect they will first

review high-level information about the patterns

to become familiar with them. Hence, some

documentation or pointers to the P4eb site should

be included.

2. Next, we assume that architects will determine

the nature of the business problem to be solved,

evaluate the business patterns, and select the

relevant one. From there, the constituent appli-

cation and runtime patterns will be selected.

3. Finally, we assume architects will use the

runtime pattern models as a template to refine for

their environment and to map products that will

be used.

Understanding the cascading structure of this set of

patterns is important because once a business

pattern is chosen, we immediately ignore a whole

set of other application and runtime patterns that are

not relevant. Thus, this is a guide on how to

organize the model. Right now our model is

organized according to the preceding categories, but

our objective is to align the model closer to the reuse

boundaries. Thus, we adjust the model organization

with the following packages:

� Overview of patterns

� Collaboration
� Extended Enterprise

� Information Aggregation

� Self Service

The Business pattern packages have been brought

to the top as peers of the Overview of patterns

package. Our premise here is that because of the first

assumption, the architect will start with the

Overview of patterns package and review the

patterns. According to our next assumption, the

architect will then select a relevant business pattern.

Once this decision is made, the pattern cascades into

application patterns and finally, into runtime pat-

terns. This structure allows for a mixture of

opportunistic navigation through the patterns, as

well as a prescriptive, hierarchical structure for

reviews of the constituent application and runtime

patterns.

When we built the original set of models for P4eb,

we organized the patterns according to their primary

classification, meaning that all business patterns

were in a business pattern package, and so forth.

This created some production challenges, as many

diagram and model relationships had to be created.

Figure 3
Initial P4eb model structure

LARSEN IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006548

This also created some reuse challenges, as it was

awkward to break the model up into multiple assets

along those boundaries—having one asset for just

business patterns and another one for just applica-

tion patterns. In the end, the affinity among the

patterns in terms of how they were reused became

the determining packaging structure and is reflected

in what is presented in this paper.

A key principle in packaging for reuse is to always

evaluate the skills of the expected asset consumers,

the context in which they will reuse, and the

approach they will take to reusing the assets. In

short, know your audience.

As seen at the top of Figure 4, a new project was

created in RSA called Patterns for e-business2, as

we wanted to retain the migration of this model. The

figure shows the realignment of the model based on

the preceding assumptions. Following the Directly

Integrated Single Channel Pattern all the way

through, we see the organization of business pattern

to constituent application patterns to constituent

runtime patterns.

Another modeling convention that we have found

useful is to allow for several forms of model

navigation. Figure 5 illustrates this by showing the

Self Service business pattern connected to support-

ing documentation. Next, the business pattern is

connected by diagram links to its constituent

application patterns. Thus, model organization is

more than how it appears in the Model Explorer; it is

also about its navigability on the diagrams them-

selves. We seek to minimize the amount of time and

effort required to understand the asset. By selecting

one of the application pattern diagram links on

Figure 5, we can then navigate to the application

diagram, which itself has links to constituent

runtime patterns, and so on.

It is critical, once the model has been properly

organized and packaged, for it to be validated. The

assumptions we make are critical and must be

proved or disproved before broad delivery of the

asset.

With this model organization in place, we now turn

to packaging the model for reuse by others.

PACKAGING MODELS TO BE REUSED

Our current P4eb model is now close to being ready

to be packaged as a reusable asset. As we think

about sharing this model as a reusable asset, we are

reminded of our expected use scenario; namely, the

architect will review the pattern overview, then

select a business pattern, and then the constituent

patterns. There are well over 100 patterns for

e-business, and not all of them are yet captured in

this model. The life cycle of the model elements also

needs to be considered, as there will be iterations on

the model and new versions.

Given the number of patterns, the need for iteration

on the model, and the expected use style, the model

is broken up into the five following P4eb RAS assets:

Overview, Collaboration, Extended Enterprise, In-

formation Aggregation, and Self Service. To do this,

Figure 4
P4eb model reorganization: Self Service

Figure 5
Organization of the business pattern diagram
navigation

Self Service
<<business pattern>>

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LARSEN 549

we refine the model one more time and create five

RSA projects, each containing a documentation

directory and a UML model with the relevant

constituent patterns and other model elements. We

then package the models and their RSA/Eclipse

platform projects as assets, classifying them with the

RAS metadata structure, and declare the relation-

ships among the assets. This makes it possible to

search, browse, and retrieve the overview asset and

then to find the business pattern asset of interest.

This also improves our ability to iterate on the

models, minimizing the impact to other pattern

models. This strategy could be refined into more

fine-grained assets as needed.

Figure 6 shows the RSA projects and models that

were created based on the decisions we made. Note

that the Model Explorer structure, meaning the

constituent application patterns and their constitu-

ent runtime patterns, are still in place.

RSA provides several mechanisms to package the

assets. We create five RAS assets, one for each of the

RSA projects in Figure 6. To begin, we create a RAS

manifest file and fill in the relevant metadata for the

Patterns for e-business Overview RSA project.

The RAS manifest file is an XML document that

contains information about a reusable asset. Assets

can also be packaged in the RAS format without

using RSA. Table 1 shows a subset of the metadata

entered for the Patterns for e-business Overview

asset.

An asset can have multiple classifications. In Table

1, we created multiple descriptors; some describe

the context for which this asset is reusable, namely

the Development Environment and the phase in the

Rational Unified Process* (RUP*)
16

for which this

asset is intended to be used.

We are now ready to package the assets. This is

done using the File . Export . RAS Asset options.

For each asset, we select the respective .rmd file

(RAS manifest file), and the wizard does the rest.

We published each of these assets in the local RAS

repository.

In this example, we published the assets in the

repository rather quickly. In practice, the assets

should go through extensive review and validation.

The goal is not to produce as many assets as

possible; rather, it is to produce the right set of

assets to positively impact the business. This speaks

to the need for development-time governance of

assets, which is beyond the scope of this paper. In

general, a customizable workflow and a set of

policies that can be enforced throughout that

workflow are necessary for the review, certification,

and publishing of an asset.

FINDING AND REUSING MODEL ASSETS
There are two major styles of searching for assets:

opportunistic and systematic. Assets may be dis-

played in folders in the repositories, rather oppor-

tunistically. In opportunistic searches, we browse

the repositories or conduct searches based on

keywords and phrases. Opportunistic-style tech-

Figure 6
Restructuring the RSA/Eclipse projects for model reuse

LARSEN IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006550

Table 1 RAS metadata for P4eb Overview asset

Element Name Value

Name P4eb Overview

Short description This asset provides documentation and overview models of the Patterns for e-business.

Version 1.0

Description This model should be used to help select which Pattern for e-business Business Pattern should
be used. Below are the assumptions for using these assets.
� Architects will be fairly new to these patterns; as such, we expect they will review high-
level information about the patterns first to become familiar with them. Hence, we should in-
clude some documentation or pointers to the P4eb site.
� Next architects will determine the nature of the business problem to be solved, evaluate the
business patterns, and select the relevant one. From there, the constituent application and run-
time patterns will be selected.
� The architects will use the runtime pattern models as a template to refine for their environ-
ment and to map products that will be used.

Classification Section

Author IBM

Keyword Pattern, P4eb, architecture

Known uses Guide architects to selection of architecture

IDE RSA 6.0.1

Modeling language UML

RUP phase Inception, Elaboration

Solution Section

Artifact.Name IBM Patterns for e-business Overview (other documents here were omitted for space considera-
tion)

Artifact.Name p4eb_patterns_overview

Artifact.Type UML model

Artifact.Reference Patterns for e-business_Overview/p4eb_patterns_overview.emx

Usage Section

Activity.Name Start with Patterns for e-business Overview diagram

Activity.Name Read pattern overviews and select top-level P4eb pattern

Activity.Name Import selected P4eb pattern asset and follow instructions

Related Assets Section

Asset.Name Pattern for e-business — Collaboration patterns

Asset.Name Pattern for e-business — Extended Enterprise patterns

Asset.Name Pattern for e-business — Information Aggregation patterns

Asset.Name Pattern for e-business — Self Service patterns

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LARSEN 551

niques are used in reuse, but we have found that

searching for assets in this manner can erode the

value proposition of the assets if reuse is scaled to

larger groups of people and across boundaries,

teams, time zones, and skill sets.

The other style of searching is systematic; this is a

more prescriptive form of reuse. It dictates associ-

ations among assets and identifies the assets to be

used. Recipes are a good metaphor for this style of

searching: We have a list of ingredients (assets) and

the guidance to ‘‘mix’’ them. Recipes also have the

benefit of being customizable. Rather than searching

for all the ingredients, a solution (the recipe) can be

sought that points to all the ingredients (assets)

needed. It offers the advantage of saving time.

More value can be created by producing a set of

recipes that mix multiple assets together to form

larger-grained, yet customizable solutions. We have

concluded that the prescriptive reuse of models and

other assets holds some promise for our asset-based

development efforts and most notably, for the

business.

Many techniques are used to search for assets.

Recipes, taxonomies, ontologies, and classification

schemas can be used. A classification schema

provides a structure that classifies assets. The values

from the classification schema are stored in the

asset’s classification section. The most difficult and

often least valuable approach for searching for

assets is using keywords. Expecting someone to

enter a keyword that is exactly what the asset

producer used when packaging the asset decreases

the likelihood that the appropriate asset will be

found.

When the reuse scope and community is broad and

crosses organizational boundaries, time zones, skill

sets, and other elements, and as the number of

assets grows in a repository, it is helpful to have a

searching mechanism that lets the consumer navi-

gate the structure itself (the classification schema or

the taxonomy) from which to select values. Another

key technique is to use ontologies to model the

grammar of a domain and create relationships

among terms. Then the asset consumer searches by

using terms from the domain but is not required to

know which terms were used to package the asset

because the model of the grammar provides the

association of terms. A formal language for de-

scribing ontologies is Web Ontology Language

(OWL).
17

Earlier we stated that keyword-style searching for

assets was often the least valuable. However, many

times customers ask for Google-style searches. This

approach provides a nice balance of searching

where unstructured, opportunistic searching can

take place but the search engine can estimate the

context for the terms and apply some structured

benefits to the search.

It is difficult enough, even with these structured

searching mechanisms, to find and evaluate an

asset, but it is even more difficult to understand how

multiple assets can be used together when one is not

familiar with them. Again the notion of recipes may

offer a technique to mitigate reuse costs. Asset

producers can capture this knowledge and identify

the assets themselves or the categories of assets that

should be used as the ‘‘ingredients.’’

SUMMARY

including a brief history of models and a caution

concerning the use of abstraction. We then proposed

that models be seen as assets and discussed the

fundamentals of asset-based development. An ex-

ample for organizing and packaging models as

reusable assets was given.

There are many challenges that face software

organizations today. These include increasing com-

plexity, solutions that are hard to use, and time-to-

market constraints. If we select the right models for

others to use and make them accessible for easy

reuse, then we can mitigate the impact of chal-

lenges, and we can positively affect all phases of the

software development life cycle.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc. or Sun Microsystems Inc. in the
United States, other countries, or both.

CITED REFERENCES
1. Managing Complexity, The Economist online (November

25, 2004), http://www.economist.com/printedition/
displayStory.cfm?Story_ID¼3423238.

LARSEN IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006552

This paper introduced model-driven development,

2. J. S. Poulin, Measuring Software Reuse: Principles,
Practices, and Economic Models, Addison-Wesley Profes-
sional, New York (1996).

3. T. J. McCabe and A. H. Watson, ‘‘Software Complexity,’’
Crosstalk, Journal of Defense Software Engineering 7, No.
12 (December 1994), http://www.stsc.hill.af.mil/
crosstalk/1994/12/xt94d12b.asp.

4. M. H. Halstead, Elements of Software Science, Elsevier
North-Holland Publishing Co., New York (1977).

5. M. C. Linn and M. J. Clancy, ‘‘The Case for Case Studies
of Programming Problems,’’ Communications of the ACM
35, No. 3, pp. 121–132 (March 1992).

6. David R. Musser and Alexander A. Stepanov, The ADA
Generic Library: Linear List Processing Packages, Spring-
er-Verlag, New York (1989).

7. W. Royce, Software Project Management: A Unified
Framework, Addison-Wesley Professional, New York
(1998), p. 38.

8. Reusable Asset Specification, Version 2.2, Object Man-
agement Group, Inc., http://www.omg.org/technology/
documents/formal/ras.htm.

9. Model Driven Architecture, Object Management Group,
Inc., http://www.omg.org/mda/.

10. IBM Patterns for e-business, IBM Corporation, http://
www-128.ibm.com/developerworks/patterns/index.html.

11. IBM Rational Software Architect, IBM Corporation,
http://www-306.ibm.com/software/awdtools/architect/
swarchitect/index.html.

12. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Professional, New York (1995).

13. J. Adams, S. Koushik, G. Vasudeva, and G. Galambos,
Patterns for e-business: A Strategy for Reuse, IBM Press,
Big Sandy, TX (2001), pp. 1–2.

14. H. Schichl, ‘‘Models and the History of Modeling,’’ in
Modeling Languages in Mathematical Optimization, J.
Kallrath, Editor, Springer, New York (2004), pp. 25–26.

15. R. P. Gabriel, Patterns of Software: Tales from the
Software Community, Oxford University Press, New York
(1998), p. 19.

16. M. Aked, Risk Reduction with the RUP Phase Plan, IBM
Corporation, http://www-128.ibm.com/
developerworks/rational/library/1826.html.

17. Web Ontology Language (OWL), World Wide Web
Consortium, http://www.w3.org/2004/OWL/.

Accepted for publication December 16, 2005.

Grant Larsen
IBM Rational Software, 10632 W. Ontario Avenue, Littleton,
Colorado 80127 (gjlarsen@us.ibm.com). Mr. Larsen is
currently the chief architect for asset management for IBM
Rational Software. He received a B.S. degree from Brigham
Young University in 1988. He works with the asset-based
development strategies through process, standards, tooling,
and reusable assets. Mr. Larsen has been a member of the
group that developed the Reusable Asset Specification (RAS),
recently adopted as a standard by Object Management Group,
Inc. At Rational Software he was a member of the UML
committee for Rational and composed portions of that
specification. Mr. Larsen has published several journal
articles, has been a guest editor, and has contributed to other
books on frameworks and related technologies. &

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 LARSEN 553

Published online July 12, 2006.

