G. Larsen

Model-driven development:
Assets and reuse

Several of the challenges that software organizations face today include an increase in
the complexity of their information technology (IT) infrastructures and solutions,
applications that may be difficult to use, and continued pressure to achieve tight time-
to-market timelines. Organizations use many approaches to address these problems,
including models. Models can embody critical solutions and insights and thus can be
seen as assets for an organization. For example, a pattern that describes a recurring
problem, its recurring solution, and the context in which it is relevant can be expressed
as a model and shared with others. This paper presents some of the steps to identify
reusable models, organize them for reuse, and package, publish, and ultimately reuse
them—all with a focus on the benefit to the business and the alignment of IT to the
needs of the business. Whereas the concepts associated with reuse are not new,
organizing models for reuse in the manner described herein represents more recent

techniques.

INTRODUCTION

There are many challenges in software develop-
ment, but in this paper, we focus on mitigating
complexity, improving consumability (the ease of
use by which a model can be approached, its
organization understood, and a determination made
concerning how to apply it to one’s needs), and
reducing time to market.

Background

Several years ago, a consortium of software industry
leaders—including IBM, Rational* Software (before
its acquisition by IBM), and Microsoft—began
exploring ways to help organizations repurpose
software investments. In this exploration, it was
determined that software entities need to be named,

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

organized, reviewed, and reused to improve the
return on the investment in them.

The consortium began to describe these software
investments as software assets. This led us ulti-
mately to create standards for asset packaging
formats and then to develop tools and processes to
work with assets throughout their life cycle.
Although we found that assets take on many shapes
and sizes and are used in multiple roles throughout
the development life cycle, we found similarities

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

LARSEN

541

among asset types. This made it possible to consider
using automation with reusable assets.

Models, a reusable asset, provide a unique oppor-
tunity to mitigate complexity, improve consumabil-
ity, and reduce time to market. We proceed by
addressing each of these areas.

Complexity

The demand for more sophisticated solutions is one
impetus to the increase in complexity of our
software development projects. Increasing com-
plexity is also driven by the pervasive nature of
software in today’s business and government
processes. With software reaching into all aspects of
business and government, software design and
testing have become two of the critical factors to
address the inherent complexity.

Some see complexity in software stemming from the
variety that software organizations face—the variety
of methods and tools available, the variety of
software and hardware, and the variety in skill sets
and organizational structures. The value of decom-
posing the technology stack that organizations use
to deliver solutions can be argued, but with that
comes an increasing number of elements and
combinations. All of these factors—methods, tools,
software, hardware, and organizational structures—
add to the increasing complexity of software.

In The Economist," an article on managing com-
plexity outlined some of the well-known software
project failures and posited that a fundamental
reason for such failures is the lack of tools for
developers and management that scale to the level
of complexity required by today’s solutions. Specif-
ically, poor software design was identified as a
fundamental element of this failure: As software has
become more and more pervasive in business and
government, and more complicated, the impact of
poor software design has been steadily growing.

Consumability

From experience we learn that the longer it takes to
locate, evaluate, use, and extend an asset the more
difficult it is to preserve its value. Many of us have
experienced the frustration of trying to find and
understand work someone else performed. If it takes
us longer than what seems reasonable, then we
often look elsewhere or stop looking and re-create
the content ourselves.

542 |ARSEN

There are no hard-and-fast rules about how long
that time is, but some common sense prevails. If we
are looking for a model that describes the architec-
ture for a system that our team will build for the
organization, it is reasonable that we may take
several days or more to find and evaluate it.
Conversely, if we are looking for a sort routine, then
we are less inclined to spend such a lengthy time.
Finding the asset is only part of the problem.
Understanding its purported solution and its rele-
vance to the context at hand is another challenge to
reusing it. The ability to comprehend what has been
created and shared is the next major hurdle. There is
a balance between complexity and comprehension,
and often solutions are provided that are complex
and difficult to understand. In the end, this can be
summarized as consumability and ease of use.

Poulin points out that one aid to achieving
consumability is to organize the assets in a
consistent manner.” He notes from a study on the
topic that using a standard layout lets a potential
reuser quickly scan the important aspects of a
component, such as text descriptions, pseudo-code,
illustrations, and implementation information. More
is said on this topic later in the paper.

Time to market

The notion of time to market is comprised of the
individual daily wins an organization makes in its
software development process. This includes the
notion of time to value, a test that reusable assets
must pass constantly to ensure their investment.
Time to value means discovering and understanding
the right model for the relevant context in a timely
manner to achieve productivity improvements. It is
directly impacted by the amount of time required to
find the right model, but even more so by its
reusability. Two factors that make an asset reusable,
impacting its time to value and thereby affecting the
organization’s time to market, are its complexity
and its comprehensibility.

There are few metrics dealing with either of these
two factors. Quantitative metrics include the Mac-
Cabe Cyclomatic Complexity metric’ and the Hal-
stead Software Science metrics.” These metrics focus
on program logic, structure, and lines of code, but
they do not directly translate to the complexity of a
model asset. Several studies that focused on
comprehension concluded that if users were
presented with consistently structured information

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

and artifacts regarding assets, the comprehensibility
of those assets improved.s’6 We can conclude that if
an asset is truly comprehensible, offers minimal
complexity, and solves a recurring problem, and if
the consumer of the asset can discover it quickly,
then that asset has its best chance at providing value
in a timely manner. It is the aggregation of many
time-to-value wins that can ultimately affect time to
market.

Show me the money

Walker Royce describes the context within which
asset reuse flourishes’: In general, things get reused
for economic reasons. Therefore, the key metric in
identifying whether a component is truly reusable is
to see whether some organization is making money
on it.

In our corporate zeal to develop technologies and
solutions, we often become enamored by technical
brilliance. The cycle for innovation should always
be tempered by value to the customer and to the
business. In Model Driven Development** (MDD**)
work, the same holds true for the use and reuse of
assets. We use models as the basis for creating
reusable assets; these models should provide value
to the customer. The model used in this paper is
introduced later.

ASSET-BASED DEVELOPMENT

Several years ago, we at Rational Software began an
effort to describe how to leverage software invest-
ments for future use. Asset-based development
(ABD) organizes the software-related investments,
requirements, models, code, tests, and deployment
scripts to be used for future software project
activities. The four major areas of ABD are the
following:

e Process—Describes the life cycle of assets, both
assets relevant to a project and across projects

e Standards—Describes the standards to be used for
assets, such as standard asset packaging, and for
specific asset types like services

* Tooling—Describes the tools necessary to work
with assets throughout their life cycles

¢ Assets—Describes the kinds of assets that are
relevant to a particular organization

What is the relationship of ABD and component-

based development? Component-based develop-
ment focuses on the specification and implementa-

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

tion of software bits that can be reused. ABD
broadens this to include a set of asset types that are
useful to personnel in roles other than the developer
role and to include other points in the development
life cycle, such as during the inception and elabo-
ration phases.

Some of the high-value assets we deal with are in
the early stages of a project or application design.
For example, a powerful mechanism to bridge the
business and information technology (IT) gap and
provide flexibility and productivity to an organiza-
tion would be the ability to reuse a business process
model as a template, customize it for a specific
project or customer need, and then realize that
business process with a set of reusable IT assets,
such as use-case documents, services, and models.

Nature of assets

When we formally started working on ABD several
years ago, we first sought agreement with several
organizations on the definition of an asset. This is
the result:

An asset is a collection of artifacts that provides a
solution to a problem. The asset has instructions
on how it should be used and is reusable in one
or more contexts, such as a development or a
runtime context. The asset may also be extended
and customized through variability points.

There are three key dimensions that describe
reusable assets: granularity, variability, and articu-
lation.

Granularity is the spectrum of asset size and shape.
Assets may range from fine-grained, meaning they
are small in size and purpose, to coarse-grained,
providing larger size and purpose and often con-
taining or referring to fine-grained assets.

Variability refers to the asset’s degree of custom-
ization. This, too, is a spectrum. On one end, the
asset is fixed, and on the other, it is widely visible
and changeable.

Articulation is the level of completeness of artifacts
in an asset. That provides a solution. We can again
view it as a spectrum; some assets have very few

artifacts that aid the consumer; whereas, others are
fully articulated, providing artifacts that include, for
instance, requirements and testing validation. Refer

LARSEN

543

* A model is a kind of asset, which may or may not

Asset . e
implement a pattern specification.

RAS Metadata

Name Description State Version Profile

Classification
and Context

Descriptors Artifacts
Solution Name Artifact
Artifacts Version By value
Type Artifact
Dependencies ~ BY value p——_ 1
! Artifact |
By reference nanssssssd
Us:?Jge” Activities Related AssetsName
Variability Point Bindings Relationhil

ID and Version

Figure 1
Assets and RAS metadata

to the Object Management Group, Inc. (OMG**)
Reusable Asset Specification (RAS)8 for further
refinement on these dimensions. Models can cross

degrees of granularity, variability, and articulation.

It is important for us to describe the scope,
customization, and supporting material for the
model.

Models are assets

The general asset definition may be refined for
various kinds of software assets. For example, a
specific kind of asset, such as a service or in this

case, a model, may specify the artifacts that must be
in the asset. Some artifacts that are part of a model
asset will be shown later. The following clarifies the

terminology we use here.

* An asset is a collection of artifacts providing a
solution to a problem (Figure 1).
e A pattern has a specification and one or more

implementations. A pattern specification describes

the solution to a recurring problem and may be

implemented in many forms, such as a component

or a model (using the term “implemented”
loosely). The term pattern represents both the
specification and the implementation when it is
not necessary to distinguish between them.

544 | ARSEN

Assets are packaged according to the needs of the
intended user—the asset consumer. Given a model
that is built to a certain level of abstraction,
granularity, variability, and articulation, an architect
may determine that it is highly reusable in a certain
business context to solve a specific engineering
problem. This model may be packaged as an asset,
or other packaging schemes may be used. A
component with its attendant Java** Archive (JAR)
file may be created, or it may be packaged with a
model that describes the design of the component,
and together, they comprise the asset.

For our purposes, models are treated as assets.
Later, we cover the use of models to capture the
implementation of IBM Patterns for e-business and
organize and package these models as reusable
assets that can be searched and reused for a specific
development platform.

The OMG Model Driven Architecture** (MDA*"‘)9
describes a model organization for separating busi-
ness and application logic from the platform
technology. The approach described here for or-
ganizing models as reusable assets can be used with
models organized according to MDA, but MDA is
not a prerequisite for using the techniques described
herein.

MDA describes several kinds of models, such as
Platform Independent Models (PIM) and Platform
Specific Models (PSM). These models can be
packaged as reusable assets. If there is a situation in
which some recurring business concepts can be
applied across multiple applications and implemen-
tation technologies, it can be valuable to invest the
effort to create the PIM and PSM models and any
associated transformations, each of which may be a
reusable asset and stored in an asset repository.

Life cycle of a model asset
The life cycle of assets includes the following major
workflows:

* Candidate asset identification—Identify potential
assets.

* Asset production—Harvest and create artifacts,
packaging them into reusable assets.

* Asset management—Review, certify, manage ver-
sion, and publish.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Asset Production

Asset Management

Asset Consumption

Modeling Submit Search Modeling
Tool : RAS Repository Service - Tool
and Asset Modify Use/Customize | 5nd Asset
Packager Unpackager
Workflow f '
Certify Promote -
Repositor
jissets 4
Certification = Model, or other Asset
Figure 2

Tools that support the asset life cycle

e Asset consumption—Search, browse, reuse, and
provide feedback.

A model is first identified as a candidate asset and
then produced into a reusable asset for a specified
context. It is then reviewed, the version is updated,
and it is published as part of asset management.
Finally, the model is searched, browsed, reused, and
rated as part of asset consumption.

A challenge in working with assets of any kind—be
they services, models, or components—is to identify
which are reusable. As practitioners, we are often
tempted to think that all the artifacts we create are
candidates for reusable assets. This is a dangerous
practice because, as assets grow, so do their
attendant costs. Time needs to be invested to
identify which assets are classed as reusable. This is
one of the workflows in the asset life cycle. This is
done by discovering recurring problems and their
solutions and the context within which an asset
might be reusable in solving the problems.

Although this may sound like identifying a pattern,
which it is on one level because it is a recurring
solution to a recurring problem, we are not
conducting formal pattern-writing workshops to
identify these recurring problems and solutions. In
practice, we find that if candidate asset identification
is made by looking for recurring problems and
solutions rather than by relying on intuition, we
improve our chances of making good investments.

Standards for assets

Earlier we cited Poulin’s description of consum-
ability and the impact of having a consistent
approach to organizing assets. Several years ago,

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Rational Software began an effort to describe the
metadata of assets. This structure was modeled,
documented, and published as the OMG Reusable
Asset Specification (RAS).8 Today, RAS is expressed
in Extensible Markup Language (XML) for each
asset. The metadata that should be considered for
packaging a model as a reusable asset is addressed
in the section “Example: Patterns for e-business
model.”

For each asset, its name, several types of descrip-
tions, its state, and its version can be described.
Different sections of RAS metadata support various
activities in the asset life cycle. For example, the
classification section is targeted for asset consump-
tion, giving one or more structures and perspectives
through which a potential asset consumer can find
the asset. The artifacts in the solution section can be
included by value or by reference. By design, the
majority of the elements described in RAS are
optional to allow for a spectrum of reuse formalities.
Thus, for informal sharing, only a few metadata
elements are needed, but for formal sharing, a larger
set of elements in the metadata can potentially be
used. We use RAS to package the model assets in
our example later, but before doing so, we review
the kinds of tools that are necessary to support
model assets through their life cycle.

Tool support for assets

Various kinds of tools play a role at points in the
asset life cycle (Figure 2). To create a model as a
reusable asset, a modeling tool is, of course,
required, and there must be a capability in the
tooling that can package assets according to RAS.
The asset can be submitted to the asset certification

LARSEN

545

workflow, where it is reviewed. An asset repository
is necessary for storage and versioning. Finally, the
asset is made visible to the target asset consumers,
who then use an asset unpackager tool and the
relevant modeling tool. There are other ancillary
scenarios through this life cycle (not covered in this
paper), such as creating a new version of a model
asset, submitting defects for an asset, and providing
feedback and a rating for the model asset.

Having explained the fundamentals of ABD, we now
present a sample model to use for creating and
publishing a model asset.

EXAMPLE: PATTERNS FOR E-BUSINESS MODEL
IBM Patterns for e-business (P4eb) is used for our
model."® The focus of the example is not on the
patterns themselves; therefore, it is not necessary for
the reader to be familiar with them. Rather, this
model is used to identify candidate assets and to
discuss how to organize and package the model to
be reused by others. The techniques outlined here
may be used with other models.

This model is built in IBM Rational Software
Architect (RSA) 6.0.1."" There are four major pack-
ages that organize this model, which is a single file
on the file system.

The IBM Patterns for e-business capture a layered
set of architectural patterns that bridge the business
and IT gap. They provide new levels of abstraction
compared with traditional patterns (e.g., Gang of
Four Design Patternslz), extending the use of
patterns to earlier phases of solution design and
development (e.g., inception and elaboration). A
selected group of traditional design patterns become
relevant within the context of an architectural
pattern identified by P4eb. These patterns can be
used to help design the architecture of an e-business
application by reusing existing, tried-and-true ap-
proaches (patterns).

What is the value of this model? The model is
intended to guide architects in the proper selection
and structure of both their operational architecture
and their application architecture. These patterns in
particular describe how the architectures should be
designed to meet the needs of the business. The
operational architecture describes how business and
IT services and components map onto a set of
servers. The application architecture describes how
the services and components are designed.

546 |ARSEN

When these concepts are mapped to P4eb, the
application patterns provide high-level application
architectures, the runtime patterns provide high-
level operational architectures, and, as we would
expect, these are related. Finally, the runtime
patterns are mapped to products, adding more
context and refinement (though this is beyond the
scope of this paper).

IDENTIFYING MODELS AS REUSABLE ASSETS
There are many views on how much time is spent in
the software industry on projects in various phases
and activities of the development life cycle. Bor-
rowing a general profile from Poulin’s work, he cites
the following approximationszz 15 percent require-
ments definition, 15 percent design, 20 percent code
generation, 30 percent test, and 20 percent admin-
istration. This sets the context for the parts of the
software-development life cycle that are likely to be
impacted through model use and reuse.

Among the many kinds of models, we are talking
about models that aid software development, and
within that group, we are discussing Unified
Modeling Language** (UML**) models, which are
useful in the requirements, design, code, and test
activities. We identify a model as a reusable asset by
first asking, “What problem is recurring? What is the
recurring solution to that problem? What context are
we talking about?”

In the case of P4eb, the problem stated by the
authors was this: Systems in many organizations
exist as islands but need to be knitted together to
provide solutions that meet the changing needs of
the business in the context of the digital economy. A
set of prescribed architectures is needed that meets
some general set of business needs in today’s
Internet world."® The solution is a set of models that
describe several architectural views.

A subset of these patterns, which was captured in an
RSA model, is the starting point in later sections for
going through the steps of creating the model as a
reusable asset. But first, we provide some back-
ground on models and their use to address some of
the issues we face.

Reusable models to mitigate complexity,
consumability, and time to market
Models have been used for quite some time.
According to Schichl:

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

The word ‘modeling’ comes from the Latin word
modellus. It describes a typical human way of
coping with reality. Anthropologists think that
the ability to build abstract models is the most
important feature which gave homo sapiens a
competitive edge By 2000 BC at least three
cultures (Babylon, Egypt, India) had a decent
knowledge of mathematics and used
mathematical models."*

Complexity: Addressed by well-formed models
Schichl identifies one of the early graphical models
used in astronomy, in which Ptolemy created a
model of the solar system in 150 A.D. by using
cycles and epicycles. Apparently this model was
used until 1619 when a better model was devised,
the fundamentals of which are still used today.14

Models provide a means of communication, and
when done well, they provide useful abstractions
that can last for quite some time. How many of our
models will last beyond two or three versions of a
software application, let alone nearly 15 centuries?
Selecting the proper abstractions in a model for a
specific context is critical. However, abstraction is a
double-edged sword.

Gabriel cautions against the overuse of abstractions:

The problem is that people are taught to value
abstraction above all else, and object-oriented
languages and their philosophy of use
emphasizes reuse, which is generally good.
However, sometimes the passion for abstraction
is so strong that it is used inappropriately.
Abstractions must be carefully and expertly
designed, especially when ... reuse is intended."®

Abstractions in code as well as in models are used to
hide detail, but by doing so, one may not be able to
understand what the code does or what the model
means. The question to ask is, “At what point in my
modeling do I make heavy use of abstraction and at
what point do I make light use of it?”

Part of the answer lies in the intended use of the
model. When a model is intended to reach an
audience that is making decisions which are not
based upon the fine details of the model, then the
heavy use of abstraction is justified. If the model is
intended to communicate the essence of the solution
and guide the user through the details, then less

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

abstraction is justified. For instance, to whom is it
valuable to reverse engineer some Java classes into
a UML class diagram? The answer depends on what
is being captured in the model and who expects to
use it. If the essence of the class structure and
relationships is communicated visually and if the
intent is to communicate to software engineers and
architects the static nature of the class design so that
they can conduct impact analysis and review the
overall software design, then this is likely to be a
proper abstraction. However, one would never show
this to a business analyst seeking an IT solution to a
business problem.

One of the challenges we face is increasing
complexity. Abstraction in models is a powerful
means to rise above complexity, but it must be used
in a manner appropriate to a specific audience.
Properly organized models reduce the effort to
understand the abstractions they communicate.

Consumability: Model organization and metadata
Consumability is the ease of use by which a model
can be approached, its organization understood, and
a determination made concerning how to apply it to
one’s needs. To be consumable, both a model’s
structure and its diagrams should be well organized,
and it should be packaged with metadata that
further describe its intent and intended reuse
context.

Time to market: Finding the model, getting at the
value

Value is created by discovering and understanding
the right model for the relevant context in a timely
manner to achieve productivity improvements. For
this to happen, a model must be organized,
packaged, and shared as an asset with minimal
effort. The focus now shifts to examining how to
organize models as reusable assets and the impact
that can have on models and their users.

ORGANIZING MODELS TO BE REUSED

The structure of our model is shown in Figure 3. It
is organized with two top-level elements: a doc-
umentation folder and the model file itself,
pdeb_patterns.emx. A document that discusses the
modeling conventions to which the model adheres
should be included in the documentation folder to
aid in the reuse of the model. It can be seen that we
use a UML package called zAssocations. In it, we
place the associations exposed by the RSA Model

LARSEN 547

IERF=] Patterns for e-business
#- (= documentation
= %24 p4eb_patterns.emx
= {5} P4eb patterns
= 3 1-Overview of patterns
+ £ zAssodations
a Overview of patterns
+ I «application pattern= A application pattern
[#-+22 «business pattern= A business pattern
@ 22» auntime pattern= A runtime pattern
@ .\documentation\IBM Patterns for e-business overview.htm
= ## 2 - Business patterns
+ f# Collaboration
+ £ Extended Enterprise
+ £ Information Aggregation
+ 3 self service
D Business Patterns Overview
3 3 - Application patterns
-} 4-Runtime patterns
[Patterns for e-business overview

Figure 3
Initial P4eb model structure

Explorer view to make navigating the Model
Explorer easier.

Under the 2 - Business Patterns package is another
set of packages that follow the major categorization
of the P4eb patterns: Collaboration, Extended
Enterprise, Information Aggregation, and Self
Service. This structure is used throughout the
model in each of the major pattern packages:
Business Pattern package, under which are Appli-
cation Pattern packages, under which are Runtime
Pattern packages. We chose this structure to focus
the user on the relevant subset of patterns, thereby
reinforcing previous decisions and not overwhelm-
ing the user with all possible patterns from which to
choose.

One of the first questions to ask is, “With whom do
we intend to share this candidate asset?” It is very
important to understand the anticipated skill level of
the target consumer. The answer for our example
model is that it is intended to be shared with
architects.

The next question is, “How do we expect the
architects to approach the problem of determining
which pattern to use in the model?”

The following are the assumptions we made about
the use of this model:

1. We assume that architects will be fairly new to
these patterns; as such, we expect they will first

548 |ARSEN

review high-level information about the patterns
to become familiar with them. Hence, some
documentation or pointers to the P4eb site should
be included.

2. Next, we assume that architects will determine
the nature of the business problem to be solved,
evaluate the business patterns, and select the
relevant one. From there, the constituent appli-
cation and runtime patterns will be selected.

3. Finally, we assume architects will use the
runtime pattern models as a template to refine for
their environment and to map products that will
be used.

Understanding the cascading structure of this set of
patterns is important because once a business
pattern is chosen, we immediately ignore a whole
set of other application and runtime patterns that are
not relevant. Thus, this is a guide on how to
organize the model. Right now our model is
organized according to the preceding categories, but
our objective is to align the model closer to the reuse
boundaries. Thus, we adjust the model organization
with the following packages:

® Qverview of patterns

® Collaboration

® Fxtended Enterprise

e Information Aggregation
® Self Service

The Business pattern packages have been brought
to the top as peers of the Overview of patterns
package. Our premise here is that because of the first
assumption, the architect will start with the
Overview of patterns package and review the
patterns. According to our next assumption, the
architect will then select a relevant business pattern.
Once this decision is made, the pattern cascades into
application patterns and finally, into runtime pat-
terns. This structure allows for a mixture of
opportunistic navigation through the patterns, as
well as a prescriptive, hierarchical structure for
reviews of the constituent application and runtime
patterns.

When we built the original set of models for P4eb,
we organized the patterns according to their primary
classification, meaning that all business patterns
were in a business pattern package, and so forth.
This created some production challenges, as many
diagram and model relationships had to be created.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

This also created some reuse challenges, as it was
awkward to break the model up into multiple assets
along those boundaries—having one asset for just
business patterns and another one for just applica-
tion patterns. In the end, the affinity among the
patterns in terms of how they were reused became
the determining packaging structure and is reflected
in what is presented in this paper.

A key principle in packaging for reuse is to always
evaluate the skills of the expected asset consumers,
the context in which they will reuse, and the
approach they will take to reusing the assets. In
short, know your audience.

As seen at the top of Figure 4, a new project was
created in RSA called Patterns for e-business2, as
we wanted to retain the migration of this model. The
figure shows the realignment of the model based on
the preceding assumptions. Following the Directly
Integrated Single Channel Pattern all the way
through, we see the organization of business pattern
to constituent application patterns to constituent
runtime patterns.

Another modeling convention that we have found
useful is to allow for several forms of model
navigation. Figure 5 illustrates this by showing the
Self Service business pattern connected to support-
ing documentation. Next, the business pattern is
connected by diagram links to its constituent
application patterns. Thus, model organization is
more than how it appears in the Model Explorer; it is
also about its navigability on the diagrams them-
selves. We seek to minimize the amount of time and
effort required to understand the asset. By selecting
one of the application pattern diagram links on
Figure 5, we can then navigate to the application
diagram, which itself has links to constituent
runtime patterns, and so on.

It is critical, once the model has been properly
organized and packaged, for it to be validated. The
assumptions we make are critical and must be
proved or disproved before broad delivery of the
asset.

With this model organization in place, we now turn
to packaging the model for reuse by others.

PACKAGING MODELS TO BE REUSED
Our current P4eb model is now close to being ready
to be packaged as a reusable asset. As we think

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

= 8 Self Service Business Pattern
- 8 self Service Application Patterns

£ Agent

As-Is Host

+ 8 Customized Presentation to Host

Decomposition

= 3 Directly Integrated Single Channel
=] 'ﬁ' Runtime Pattern

D

* 'm- Runtime Pattern: Variation 1
+ 8 2associations

D Directly Integrated Single Channel Application Pattern

Figure 4
P4eb model reorganization: Self Service

about sharing this model as a reusable asset, we are
reminded of our expected use scenario; namely, the
architect will review the pattern overview, then
select a business pattern, and then the constituent
patterns. There are well over 100 patterns for
e-business, and not all of them are yet captured in
this model. The life cycle of the model elements also
needs to be considered, as there will be iterations on
the model and new versions.

Given the number of patterns, the need for iteration
on the model, and the expected use style, the model
is broken up into the five following P4eb RAS assets:
Overview, Collaboration, Extended Enterprise, In-

formation Aggregation, and Self Service. To do this,

J\documentation\Self-Service.htm

/“<«business pattern» ™
! <D Self Service //

\ <
S - ~

—
1
|
|
|
|
| |

[As-Is Host I

|
|
|

i

[standAlone Variation 1

[Directly Integrated Single Channel [Customized Presentation to Host

Figure 5
Organization of the business pattern diagram
navigation

LARSEN

549

[= =2 Patterns for e-business_Collaboration

(= documentation
=} %34 p4eb_collaboration.emx
=1-{8} p4eb_collaboration
+H} Collaboration Business Pattern
[Collaboration Business Pattern
/o (UML2)

=1-1= Patterns for e-business_Extended Enterprise

(= documentation
-] %24 p4eb_extended enterprise.emx
=1 {&} p4eb_extended enterprise
+ 3 Extended Enterprise Business Pattern
[Extended Enterprise Business Pattern
s (UML2)

[=]- 1= Patterns for e-business_Information Aggregation

(& documentation
=1 %24 p4eb_information aggregation.emx
= {2} p4eb_information aggregation
= H} Information Aggregation Business Pattern
[+ $ Information Aggregation Application Patterns
“I» «business pattern» Information Aggregation
D Information Aggregation Business Pattern
s (UML2)

- =% Patterns for e-business_Overview

+ (= documentation
- %4 p4eb_patterns_overview.emx
= {2} P4eb patterns
#-H3 Overview of patterns

D Patterns for e-business overview
s (UML2)

[=1- 1= Patterns for e-business_Self Service

+-(= documentation
- %24 pdeb_self service.emx
= {2} p4eb_self service
@ 3 Self Service Business Pattern
[self Service Business Pattern

Figure 6
Restructuring the RSA/Eclipse projects for model reuse

we refine the model one more time and create five
RSA projects, each containing a documentation
directory and a UML model with the relevant
constituent patterns and other model elements. We
then package the models and their RSA/Eclipse
platform projects as assets, classifying them with the
RAS metadata structure, and declare the relation-
ships among the assets. This makes it possible to
search, browse, and retrieve the overview asset and
then to find the business pattern asset of interest.
This also improves our ability to iterate on the
models, minimizing the impact to other pattern
models. This strategy could be refined into more
fine-grained assets as needed.

550 LARSEN

Figure 6 shows the RSA projects and models that
were created based on the decisions we made. Note
that the Model Explorer structure, meaning the
constituent application patterns and their constitu-
ent runtime patterns, are still in place.

RSA provides several mechanisms to package the
assets. We create five RAS assets, one for each of the
RSA projects in Figure 6. To begin, we create a RAS
manifest file and fill in the relevant metadata for the
Patterns for e-business Overview RSA project.
The RAS manifest file is an XML document that
contains information about a reusable asset. Assets
can also be packaged in the RAS format without
using RSA. Table 7 shows a subset of the metadata
entered for the Patterns for e-business Overview
asset.

An asset can have multiple classifications. In Table
1, we created multiple descriptors; some describe
the context for which this asset is reusable, namely
the Development Environment and the phase in the
Rational Unified Process* (RUP*)16 for which this
asset is intended to be used.

We are now ready to package the assets. This is
done using the File > Export > RAS Asset options.
For each asset, we select the respective .rmd file
(RAS manifest file), and the wizard does the rest.
We published each of these assets in the local RAS
repository.

In this example, we published the assets in the
repository rather quickly. In practice, the assets
should go through extensive review and validation.
The goal is not to produce as many assets as
possible; rather, it is to produce the right set of
assets to positively impact the business. This speaks
to the need for development-time governance of
assets, which is beyond the scope of this paper. In
general, a customizable workflow and a set of
policies that can be enforced throughout that
workflow are necessary for the review, certification,
and publishing of an asset.

FINDING AND REUSING MODEL ASSETS

There are two major styles of searching for assets:
opportunistic and systematic. Assets may be dis-
played in folders in the repositories, rather oppor-
tunistically. In opportunistic searches, we browse
the repositories or conduct searches based on
keywords and phrases. Opportunistic-style tech-

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Table 1 RAS metadata for P4eb Overview asset

Element Name

Value

Name

Short description

P4eb Overview

This asset provides documentation and overview models of the Patterns for e-business.

Version 1.0

Description This model should be used to help select which Pattern for e-business Business Pattern should
be used. Below are the assumptions for using these assets.
e Architects will be fairly new to these patterns; as such, we expect they will review high-
level information about the patterns first to become familiar with them. Hence, we should in-
clude some documentation or pointers to the P4eb site.
* Next architects will determine the nature of the business problem to be solved, evaluate the
business patterns, and select the relevant one. From there, the constituent application and run-
time patterns will be selected.
* The architects will use the runtime pattern models as a template to refine for their environ-
ment and to map products that will be used.

Classification Section

Author IBM

Keyword Pattern, P4eb, architecture

Known uses Guide architects to selection of architecture

IDE RSA 6.0.1

Modeling language UML

RUP phase

Inception, Elaboration

Solution Section

Artifact.Name

Artifact.Name
Artifact.Type

Artifact.Reference

IBM Patterns for e-business Overview (other documents here were omitted for space considera-
tion)

p4eb_patterns_overview
UML model

Patterns for e-business_Overview/p4eb_patterns_overview.emx

Usage Section

Activity.Name
Activity.Name

Activity.Name

Start with Patterns for e-business Overview diagram
Read pattern overviews and select top-level P4eb pattern

Import selected P4eb pattern asset and follow instructions

Related Assets Section

Asset.Name

Asset.Name

Asset.Name

Asset.Name

Pattern for e-business — Collaboration patterns
Pattern for e-business — Extended Enterprise patterns

Pattern for e-business — Information Aggregation patterns

Pattern for e-business — Self Service patterns

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

LARSEN

551

niques are used in reuse, but we have found that
searching for assets in this manner can erode the
value proposition of the assets if reuse is scaled to
larger groups of people and across boundaries,
teams, time zones, and skill sets.

The other style of searching is systematic; this is a
more prescriptive form of reuse. It dictates associ-
ations among assets and identifies the assets to be
used. Recipes are a good metaphor for this style of
searching: We have a list of ingredients (assets) and
the guidance to “mix” them. Recipes also have the
benefit of being customizable. Rather than searching
for all the ingredients, a solution (the recipe) can be
sought that points to all the ingredients (assets)
needed. It offers the advantage of saving time.

More value can be created by producing a set of
recipes that mix multiple assets together to form
larger-grained, yet customizable solutions. We have
concluded that the prescriptive reuse of models and
other assets holds some promise for our asset-based
development efforts and most notably, for the
business.

Many techniques are used to search for assets.
Recipes, taxonomies, ontologies, and classification
schemas can be used. A classification schema
provides a structure that classifies assets. The values
from the classification schema are stored in the
asset’s classification section. The most difficult and
often least valuable approach for searching for
assets is using keywords. Expecting someone to
enter a keyword that is exactly what the asset
producer used when packaging the asset decreases
the likelihood that the appropriate asset will be
found.

When the reuse scope and community is broad and
crosses organizational boundaries, time zones, skill
sets, and other elements, and as the number of
assets grows in a repository, it is helpful to have a
searching mechanism that lets the consumer navi-
gate the structure itself (the classification schema or
the taxonomy) from which to select values. Another
key technique is to use ontologies to model the
grammar of a domain and create relationships
among terms. Then the asset consumer searches by
using terms from the domain but is not required to
know which terms were used to package the asset
because the model of the grammar provides the
association of terms. A formal language for de-

552 |ARSEN

scribing ontologies is Web Ontology Language
(owL)."”

Earlier we stated that keyword-style searching for
assets was often the least valuable. However, many
times customers ask for Google-style searches. This
approach provides a nice balance of searching
where unstructured, opportunistic searching can
take place but the search engine can estimate the
context for the terms and apply some structured
benefits to the search.

It is difficult enough, even with these structured
searching mechanisms, to find and evaluate an
asset, but it is even more difficult to understand how
multiple assets can be used together when one is not
familiar with them. Again the notion of recipes may
offer a technique to mitigate reuse costs. Asset
producers can capture this knowledge and identify
the assets themselves or the categories of assets that
should be used as the “ingredients.”

SUMMARY

This paper introduced model-driven development,
including a brief history of models and a caution
concerning the use of abstraction. We then proposed
that models be seen as assets and discussed the
fundamentals of asset-based development. An ex-
ample for organizing and packaging models as
reusable assets was given.

There are many challenges that face software
organizations today. These include increasing com-
plexity, solutions that are hard to use, and time-to-
market constraints. If we select the right models for
others to use and make them accessible for easy
reuse, then we can mitigate the impact of chal-
lenges, and we can positively affect all phases of the
software development life cycle.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc. or Sun Microsystems Inc. in the
United States, other countries, or both.

CITED REFERENCES

1. Managing Complexity, The Economist online (November
25, 2004), http://www.economist.com/printedition/
displayStory.cfm?Story_ID=3423238.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

2. J. S. Poulin, Measuring Software Reuse: Principles,
Practices, and Economic Models, Addison-Wesley Profes-
sional, New York (1996).

3. T.J. McCabe and A. H. Watson, “Software Complexity,”
Crosstalk, Journal of Defense Software Engineering 7, No.
12 (December 1994), http://www.stsc.hill.af.mil/
crosstalk/1994/12/xt94d12b.asp.

4. M. H. Halstead, Elements of Software Science, Elsevier
North-Holland Publishing Co., New York (1977).

5. M. C. Linn and M. J. Clancy, “The Case for Case Studies
of Programming Problems,” Communications of the ACM
35, No. 3, pp. 121-132 (March 1992).

6. David R. Musser and Alexander A. Stepanov, The ADA
Generic Library: Linear List Processing Packages, Spring-
er-Verlag, New York (1989).

7. W. Royce, Software Project Management: A Unified
Framework, Addison-Wesley Professional, New York
(1998), p. 38.

8. Reusable Asset Specification, Version 2.2, Object Man-
agement Group, Inc., http://www.omg.org/technology/
documents/formal/ras.htm.

9. Model Driven Architecture, Object Management Group,
Inc., http://www.omg.org/mda/.

10. IBM Patterns for e-business, IBM Corporation, http://
www-128.ibm.com/developerworks/patterns/index.html.

11. IBM Rational Software Architect, IBM Corporation,
http://www-306.ibm.com/software/awdtools/architect/
swarchitect/index.html.

12. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Professional, New York (1995).

13. J. Adams, S. Koushik, G. Vasudeva, and G. Galambos,
Patterns for e-business: A Strategy for Reuse, IBM Press,
Big Sandy, TX (2001), pp. 1-2.

14. H. Schichl, “Models and the History of Modeling,” in
Modeling Languages in Mathematical Optimization, J.
Kallrath, Editor, Springer, New York (2004), pp. 25-26.

15. R. P. Gabriel, Patterns of Software: Tales from the
Software Community, Oxford University Press, New York
(1998), p. 19.

16. M. Aked, Risk Reduction with the RUP Phase Plan, IBM
Corporation, http://www-128.ibm.com/
developerworks/rational/library/1826.html.

17. Web Ontology Language (OWL), World Wide Web
Consortium, http://www.w3.0rg/2004/OWL/.

Accepted for publication December 16, 2005.
Published online July 12, 2006.

Grant Larsen

IBM Rational Software, 10632 W. Ontario Avenue, Littleton,
Colorado 80127 (gjlarsen@us.ibm.com). Mr. Larsen is
currently the chief architect for asset management for IBM
Rational Software. He received a B.S. degree from Brigham
Young University in 1988. He works with the asset-based
development strategies through process, standards, tooling,
and reusable assets. Mr. Larsen has been a member of the
group that developed the Reusable Asset Specification (RAS),
recently adopted as a standard by Object Management Group,
Inc. At Rational Software he was a member of the UML
committee for Rational and composed portions of that
specification. Mr. Larsen has published several journal
articles, has been a guest editor, and has contributed to other
books on frameworks and related technologies. M

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

LARSEN 553

