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In large software development organizations, increased complexity of products,

shortened development cycles, and heightened expectations of quality have created

major challenges at all the stages of the software life cycle. As this issue of the IBM

Systems Journal illustrates, there are exciting improvements in the technologies of

model-driven development (MDD) to meet many of these challenges. Even though

the prevalent software-development practices in the industry are still immature, tools

that embody MDD technologies are finally being incorporated in large-scale

commercial software development. Assuming MDD pervades the industry over the

next several years, there is reason to hope for significant improvements in software

quality and time to value, but it is far from a foregone conclusion that MDD will

succeed where previous software-engineering approaches have failed.

INTRODUCTION

Most developers operate by sitting down with their

favorite text editor and typing in their program,

attempting to compile it, making changes, compiling

it, testing it, and so on until the program ‘‘works.’’

Sometimes the various reasons for design decisions

are captured in comments or other documents.

Often, they are lost to posterity. Those rationales

and design decisions are, however, critical for the

success of a long-lived, ongoing, high-quality pro-

gramming product. Hence, the standard laissez faire

approach to programming that many practitioners

learned must be replaced by a more disciplined

engineering methodology.

Various software-engineering methodologies
1–5

de-

scribe processes whereby requirements, architec-

ture, design, implementation, and testing

information—along with their interrelationships—

can be captured. Why is this information preserved

at all? Maintaining this captured data may be a

requirement of a customer or mandated for software

quality certification. In addition, it may be essential

to the development organization, when the devel-

opment of software extends beyond a single

individual developer or development team. It can

also be useful or required when teams are distrib-

uted geographically (i.e., when requirements are

gathered in one city, but code is developed in

another). Then this captured data becomes a vital

communication link between the teams for many

purposes, even as a contract between them. When a
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software product takes a long time to develop or has

multiple versions over time, then this captured data

becomes essential to support the institutional

memory as team members leave the project or are

required to revisit parts of the software that they

have not seen for some time. For large ongoing

programming products, capturing and maintaining

this data is critical to the success of the product.

It is challenging to convince development teams to

create the information in the first place, because it

costs time and money that could be used to meet

immediate deadlines. It is even more challenging to

ensure that the critical information is kept current as

changes to the requirements or system are made

over time, especially when some information will

never be critical and some critical information will

‘‘age’’ and eventually stop being critical. In both

cases, the cost of creating/updating the information

lies on one part of a team, but the benefit usually

accrues to someone elsewhere or ‘‘elsewhen.’’ Yet

once a development process can rely on the

existence of current, accurate information, oppor-

tunities for automation abound. Everyone wishes

the information were available when questions arise

about why some concept was included or excluded

or tested or not tested, but collecting and maintain-

ing this data costs time and money.

How then should one describe and preserve the

various documents (and other artifacts, such as

program comments, test scripts, architectural dia-

grams) associated with a software project? The

simplest answer is to ‘‘do what comes naturally.’’

Requirements are often written (text) documents

(with bullet points or textual scenarios). Architec-

tures are (unfortunately) frequently just pretty

pictures with annotated details of programming

interfaces. Programs are almost always source code

in some programming language. Test suites are

usually embodied by scripts and regression test

data. ‘‘Bug’’ (unexpected defect) reports are kept (if

at all) in databases or logs. The problem with this

simplistic approach is that none of the meta-

information associated with these artifacts is cap-

tured, and therefore, nothing explicitly relates to

anything else, even though the relationships are

clearly present. If requirements are documented in

unstructured text, what chance does a person (or a

system) have of matching them to an architectural

element or injecting task automation? What chance

is there that someone else will understand the

requirement a year later? How well can we under-

stand C code without (or even with) comments?

Why was a particular test case included and is it still

valid?

An alternative to this multidocument, natural

collection of information is to use a ‘‘single source’’

approach, where a given concept is represented only

once, in one type of software-engineering electronic

artifact, rather than having multiple artifacts per

concept. This approach can help reduce the number

of types of artifacts and the interrelationships among

those artifacts. It does not, however, eliminate the

problem described in this section. Interrelationships

among concepts (and hence, among artifacts) still

exist. Moreover, interrelationships to existing

libraries also exist.
6–8

Model-driven development (MDD) is a software-

engineering approach consisting of the application

of models and model technologies to raise the level

of abstraction at which developers create and evolve

software, with the goal of both simplifying (making

easier) and formalizing (standardizing, so that

automation is possible) the various activities and

tasks that comprise the software life cycle. MDD

imposes structure and common vocabularies so that

artifacts are useful for their main purpose in their

particular stage in the life cycle (such as describing

an architecture), for the underlying need to link with

related artifacts (earlier or later in the life cycle), and

to serve as a communication medium between

participants in the project (over space or time).

The Object Management Group, Inc. (OMG**)

defines a particular realization of MDD using the

term Model Driven Architecture** (MDA**). Fur-

ther, they define a special concept of models that

distinguishes those models that take into account

the details of the underlying hardware and software

(platform) and those that do not. OMG defines MDA

to be

based on a Platform-Independent Model (PIM) of

the application or specification’s business

functionality and behavior. A complete MDA

specification consists of a definitive platform-

independent base model, plus one or more

Platform-Specific Models (PSMs) and sets of

interface definitions, each describing how the

base model is implemented on a different

middleware platform. A complete MDA
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application consists of a definitive PIM, plus one

or more PSMs and complete implementations,

one on each platform that the application

developer decides to support.
9

MDA begins with a model concerned with the

(business-level) functionality of the system, inde-

pendent of the underlying technologies (processors,

protocols, etc.). MDA tools then support the map-

ping of the PIM to the PSMs as new technologies

become available or implementation decisions

change.

MDA represents just one view of MDD, though it is

perhaps the most prevalent at present. Others also

exist, such as Agile Model-Driven Development,
10

Domain-Oriented Programming,
11

and Microsoft’s

Software Factories.
12

This paper is about MDD in

general. However, due to its prevalence and status

as a standardized entity, OMG’s MDA is used to

exemplify issues throughout this paper. This paper

is not, however, intended to be a full exposition of

the advantages and disadvantages of MDA. It is too

early to predict which—if any—of the current MDD

approaches will perform best in real-world

scenarios.

Thus far, we have defined MDD in terms of

‘‘models,’’ relying on the reader’s intuition about

what models are. We now turn to the question,

‘‘What is a model?’’

BACKGROUND: TERMINOLOGY AND
DEFINITIONS
Because one of the goals of this special issue of the

IBM Systems Journal is to be accessible to the

students of software engineering at large, we define

relevant terminology and its implications (we

include pseudo-formal notation for this terminology,

but it is not essential for the basic understanding of

problem definition). Note that among researchers

there is no universal agreement as to the precise

definitions of the following terms. The reader is

encouraged to view these as a consistent set of

terminology and indicative of what is meant by

many researchers in the field, including the authors

of this special issue.

A model M is an abstraction over some (part of a)

software product (e.g., requirements specification,

design, code, test, call-flow graph). There is a

variety of kinds of models and we indicate those

kinds by using subscripts on M, such as M
UML

for

a Unified Modeling Language**(UML**) model.
13

Of course, a fully formal notation would distinguish

among the different levels of abstraction and kinds

of diagrams within, for example, a UML model. For

the purposes of this paper, this level of detail is not

necessary. In our (semi-formal) notation, a model is

an annotated graph over a set of model nodes, a set

of model edges, an alphabet of labels, and a function

annotating nodes and edges (M¼,N, E, R
M

, K
M

.).

Model edges are the usual directed edges from nodes

to nodes (E � N 3 N). The annotation function maps

either nodes or edges into labels (K
M

:N[E!R
M

). A

model element is a subgraph of M (possibly just an

individual node). There exists a mapping from each

model element to one or more elements of an

underlying (uninterpreted) domain. Hence model

elements represent (or abstract from) real or

conceptual objects. It should be noted that the use of

a graph representation supports different kinds of

structures that might be used for models, such as

tables, stacks, code (modeled using abstract syntax

graphs), and structured text, such as requirements

documents.

To illustrate, consider the UML class diagram in

Figure 1. This class diagram is a model (M
UML

)—it

represents a partial abstraction of a software system.

In this case, N is the set of nodes fC1, C2, I1, and I2g.
E is the set of edges f,C2, C1., ,I1, C1., ,I2,

C2., ,I2, I1.g, reflecting the generalization and

realization associations in the figure. We imagine a

trivial set of annotations (R
M

), shown in black in the

figure, consisting of f‘‘annot1’’, ‘‘annot2’’, ‘‘annot3’’,

‘‘annot4’’, ‘‘annot5’’, ‘‘annot6’’g. Then, our labeling

Figure 1
Example UML model (class diagram)

C1
annot1

C2

annot4

annot2

annot3

annot6

annot5

annot5 annot3

«interface» I1

«interface» I2
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(K
M

) of the nodes would be C1 ¼ ‘‘annot1,’’ C2 ¼
‘‘annot2,’’ I1 ¼ I2 ¼ ‘‘annot3’’. Our labeling (K

M
) of

the edges would be ,C2,C1.¼ ‘‘annot4,’’ ,I1,C1.

¼,I2,C2. ¼ ‘‘annot5,’’ and ,I2,I1. ¼ ‘‘annot6.’’

An artifact (A
M

) is a set of ‘‘meaningful’’ model

elements of M, for some definition of ‘‘meaningful.’’

An artifact represents a complete, consistent, and

legal subgraph of M. For example, an artifact could

represent a complete statement in a programming-

language grammar or a legal UML class diagram. In

the preceding example, the node C1 would be a

meaningful artifact, as would the subgraph that

includes C1, I1, and the edge ,I1, C1.. It should be

noted that the definition of artifacts as complete,

consistent, and legal subgraphs is only a convenient

abstraction. We recognize that, in the real world,

people may have to address artifacts that are not

complete, consistent, or legal in their modeling

notation but that represent meaningful artifacts

nonetheless. The abstraction is sufficient for the

purposes of this paper.

A relationship R maps artifacts in one model, M
i
, to

artifacts in another model, M
j
(where i may equal j),

with annotations on the edges of the relationship (R

¼,A
1
, A

2
, R

R
, K

R
.). (We note that our definition

describes only binary relationships. A complete

formal definition would allow for general n-ary

relationships.) An essential case for MDD is when

the two models are distinct (i.e., i = j). For example,

if M
1

and M
2

are models, with A
1

being the artifacts

of M
1

and A
2

being the artifacts of M
2
, then R

represents the relationship edges from artifacts in A
1

to artifacts in A
2
, with labels in the alphabet R

R

assigned by K
R
. Our UML example can be extended

to include another model (M
Java

) containing a

Java** program that corresponds to our UML

diagram. The relationship would then contain

relationship edges from UML artifacts in M
UML

to the

corresponding program artifacts in M
Java

(classes to

classes and interfaces to interfaces). We could then

annotate these new relationship edges.

As stated above, the models need not be distinct;

that is, a relationalship can connect nodes in a

model to other nodes in the same model (M
i
¼M

j
,

for example, a use-def relationship in an abstract

syntax tree). We distinguish different kinds of

relationships, based on how the relationships are

defined or used; for example:

� Instantiation—Nodes in A
2

are specific instances

of ‘‘class/type’’ nodes in A
1
.

� Refinement—Nodes in A
2

represent a more de-

tailed description of nodes in A
1
.

� Realization—Nodes in A
2

represent an imple-

mentation of nodes in A
1
.

� Specialization—Nodes in A
2

are specific instances

of ‘‘generic’’ nodes in A
1
.

� Manual—The relationship was created by the

actions of a human being.
� Generated—The relationship was created by the

actions of a program.
� Derived—Nodes in A

2
are a logical consequence

of, and generated from, the nodes in A
1
.

� Implied—The relationship can be deduced by

applying a set of rules.

The set of annotations (both at the model level, K
M

,

and the relationship level, K
R
) is called metadata.

Note that ‘‘metadata’’ is generally understood to be

‘‘data about data.’’ Hence, one could include the

relationships in the metadata, because relationships

are links between existing model subgraphs. It all

depends on what is the ‘‘base’’ data and what is

commentary on the data. Annotations can represent

both static and dynamic properties, and both func-

tional and nonfunctional properties.

Given a set of models M
1
, M

2
, . . ., M

n
and a set of

relationships R
1,2

, R
2,3

, . . ., R
n-1,n

, a trace represents

a path through the R
k,kþ1

, so that the destination

artifact of one R ‘‘matches’’ with the source artifact

of another. Thus, a trace represents a chain of

relationships across the different models (or artifact

representations) through a software product’s life

cycle (for example, mapping a requirement to its

corresponding architectural element, to the code

that implements it, and to the test case that validates

it). The property of traceability (which enables

creating or following a trace) is core to the value

proposition of MDD. Traceability relies on the

essential meta-information that must be communi-

cated among the people, teams, and roles that

participate in a large software development process.

Participants in the (model-driven) software life cycle

must be able to communicate what needs to be done

(for example, the architect specifies what the

developer is to build) and to determine what caused

a particular event to occur or artifact to exist (for

example, what requirement resulted in a particular

test case that just failed). The ability to round-trip

across the models in a life cycle embodies the
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bidirectional nature of a trace path (that is, the

ability to go forward and backward along a trace,

and not lose your way).

It should be noted that this recognition of the

important nature of traceability is not universally

accepted. Some Agile development proponents

advocate minimal models and eschew some or all

traceability in favor of ‘‘traveling light,’’ reducing to

a minimum the need to maintain these artifact

interrelationships. Whether explicitly represented or

not, interrelationships across different artifacts exist.

To the extent that these relationships impact the

correctness and evolution of the code and the

execution of the process, they are critical to under-

standing and communication among stakeholders.

At a metalevel, the sets of models and relationships

(including their annotations) can be constrained to

satisfy a set of consistency specifications. For

example, ‘‘every use case must be implemented by

(i.e., connected to by an ‘‘implements’’ relationship)

a code artifact, and it must be tested by (i.e.,

connected to by a ‘‘testedBy’’ relationship) at least

one test case.’’ Unlike consistency specifications in

traditional databases, we do not assume some kind

of atomicity or transactional underpinnings which

would ensure that consistency is maintained at

every observable point. Rather, because of the

human nature of the software-development process,

the feel is more of long-running transactions, where

consistency issues are identified, prioritized, and

managed. Inconsistency may persist and must be

managed for extended periods of the software life

cycle. This process of controlled chaos has been

called inconsistency management.
14,15

Once we have a set of models and the relationships

between them, we can define transformations as the

systematic (manual or automated) modification of a

model and its set of affected relationships. Hence, a

transformation could change a model into a new

model, constrained by its current relationships, or it

could leave one model unchanged and instead

create new models or new relationships based on

the existing ones. The term reengineering refers to a

set of changes that adds to or changes the

functionality in the system. When a more system-

atic, structured set of semantics-preserving changes

is engineered, it is termed refactoring.
16,17

Keeping

track of changes at whatever granularity is appro-

priate is called versioning.

The context of models and relationships also allows

us to define reverse engineering to be the extraction

of a higher-level model from another, lower-level

model (or representation). Examples of reverse

engineering include extracting architecture from

code or extracting requirements from an architec-

ture. The process of reverse engineering can be

manual, semiautomatic, or automatic.

WHAT PROBLEM IS MDD INTENDED TO SOLVE?
(THE GOOD)
The goals and approaches underlying MDD are not

new. The primary goal is to raise the level of

abstraction at which developers operate and, in

doing so, reduce both the amount of developer effort

and the complexity of the software artifacts that the

developers use. Of course, there is always a trade-off

between simplification by raising the level of

abstraction and oversimplification, where there are

insufficient details for any useful purpose.
18

The desirability for more abstract artifacts and more

levels of abstraction has a long history. It goes back

to the introduction of assembly language as an

abstraction over machine code. This was followed

& Some degree of software
complexity is inherent in the
difficulty of the problems to be
solved &

by the introduction of third-generation languages,

like FORTRAN and COBOL (common business-

oriented language), that enabled developers to

ignore register allocation and other low-level,

machine-specific instructions by introducing higher-

level abstractions (such as named variables and

structured programming constructs) that are trans-

lated to the underlying machine by means of

compilation technology. Object-oriented languages,

such as Simula, Smalltalk, and Cþþ, introduced

additional abstractions—such as abstract data types

and objects. In each case, the abstraction had twin

effects: higher quality and productivity and the

creation of a lingua franca for the users so that there

would be a vocabulary closer to the actual problem

domain. MDD follows in this tradition and extends it

by introducing model abstractions at the various

stages of the software life cycle. If the MDD

abstractions are to be realized in running code or
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instantiated data, they require a process analogous

to compilation, where models are transformed to

concrete representations.

Analogous to Julius Caesar’s observations on

Gaul,
19

the MDD community can be divided into

three parts,
20

one of which is called the sketchers,

another is called the blueprinters, and the third are

those we refer to as the model programmers, who

support the direct use of modeling languages for

development. The sketchers focus on the use of

UML (or other modeling notations) to facilitate the

understanding of code
21,10

:

The essence of sketching is selectivity. With

forward sketching you rough out some issues in

code you are about to write, usually discussing

them with a group of people on your team. Your

aim is to use the sketches to help communicate

ideas and alternatives about what you are about

to do. You do not talk about all the code you are

going to work on, just important issues that you

want to run past your colleagues first, or sections

of the design that you want to visualize before

you begin programming. Sessions like this can be

very short, a 10-minute session to discuss a few

hours of programming or a day to discuss a two-

week iteration.

With reverse engineering you use sketches to

explain how some part of a system works. You do

not show every class, just those that are

interesting and worth talking about before you

dig into the code.
21

The blueprinters
22

draw the analogy between soft-

ware architecture and building architecture. They

create very detailed design models, which are then

handed off to (presumably less expensive) coders to

produce implementations. This separation of tasks

enables the (generally more expensive) design

experts to focus solely on complex design issues.

This approach makes the assumption that large

development will take place in large organizations

containing many different people with many differ-

ent skill levels, in contrast with small-development

organizations made up of only ‘‘top guns.’’

Both the sketchers and the blueprinters maintain a

strong distinction between design models and code

artifacts. Both groups strongly support modeling.
20

Their notion of MDD assigns a facilitating role to the

models. The artifacts promote the development and

evolution of code, but are not themselves executable

languages that would replace the likes of Java or C#.

The model programmers support the use of UML (or

some alternative modeling notation) as a develop-

ment language with executable semantics,
23

using,

for example, action semantics and statecharts. In

model programming, the distinction between mod-

els and code is obscured. Some form of executable

code exists, whether it is realized in a high-level

programming language or by direct ‘‘compilation’’ to

low-level, executable representations like assembly

language. In the former case, the generation to a

high-level programming language either produces

complete implementations or partial ones, with the

programmer left to fill in the blanks. In the latter

case, it is not generally manipulated directly by

developers. The model-programming camp is typi-

fied by the supporters of the OMG vision of MDA.
24

MDA developers work predominantly in UML as

their development language. They begin by creating

a PIM of their solution in UML (e.g., defining

interfaces to domain concepts like ATMs [auto-

mated teller machines] and bank accounts), then

refine the PIM into PSMs that take into account one

or more particular target implementations (e.g.,

relational tables that store the account information

on which the ATM operates). Executable semantics

are specified using UML (e.g., activity diagrams).

Code (e.g., Java or C#) can then be generated

directly from the UML.

WHAT PROBLEMS DOES MDD CREATE? (THE
BAD)
The ‘‘modest’’ intent of MDD is to improve software

quality, reduce complexity, and improve reuse by

enabling developers to work at reasonably higher

levels of abstraction and to ignore ‘‘unnecessary’’

details. In practice, however, MDD also raises a

number of significant issues.

Redundancy
A central tenet of MDD is that there are multiple

representations of artifacts inherent in a software

development process, representing different views

of or levels of abstraction on the same concepts. To

the extent that these are manually created, duplicate

work and consistency management are required. A

similar problem was found in the software verifica-

tion work of the 1970s and 1980s, which required

two different versions of the same software to be

written—one for specification and one for

execution.
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Rampant round-trip problems

The more models and levels of abstraction that are

associated with any given software system, the more

relationships will exist among those models. Many

of these interrelationships are complex. The round-

trip problem occurs whenever an interrelated

artifact changes in ways that affect some or all of its

related artifacts. For example, if a developer adds a

method, m, to a class, C, in a UML class diagram, the

Java code that realizes C must be modified to

include an implementation of m (or at least it must

be flagged that an implementation of m is needed).

In some cases, the change may be propagated

automatically—for example, if C were an interface

instead of a class, it might be possible to automati-

cally generate a method m in C.

The far worse (and more common) case, however,

is when the round-trip problem cannot be addressed

automatically. For example, if the change occurs in a

method body, human intervention is required to

determine the impact of the change on the related

use case or business process model. In this case, the

structure of the code or model is unchanged, but the

semantics underlying the code or model have been

adjusted. Is it a change in the desired function? Is it a

bug fix? Is it part of a more extensive refactoring of

the entire package? Each will have different impli-

cations on related artifacts.

The worst forms of the round-trip problem generally

occur when changes occur in artifacts at lower levels

of abstraction, such as code, because inferring

higher-level semantics from lower-level abstractions

is much more difficult than generating lower-level

abstractions from higher-level ones. Consider the

relative difficulty of propagating changes from UML

diagrams to code artifacts, compared to the difficulty

of propagating any significant changes from code to

its corresponding UML diagrams. The problem is

magnified when transformation technologies are

involved because changes to the generated artifacts

may be lost when regeneration occurs. Generation

technologies usually generate ‘‘bad’’ variable names,

because they lack a programmer’s intent. Optimi-

zation techniques can reorder, combine, or elimi-

nate details that can be useful for human

understanding but are unnecessary to machine

execution.

Note that this discussion in this section could imply

that round-trip problems only occur in waterfall

development methodologies where one stage must

be completed, before the next stage occurs.
5

This is

not the case. Round-trip problems occur whenever

relationships across models are important. The basic

problem is that the introduction of multiple,

interrelated representations implies the issue of

assuring their mutual consistency—a very difficult

problem.

Moving complexity rather than reducing it?

Some degree of software complexity is inherent in

the difficult problems being solved with software.

Other complexity is spurious—given an appropriate

approach, it need not be present. Differentiating

between inherent and spurious complexity can be

difficult. As with any development technique or

technology, one must determine whether a given

MDD approach reduces complexity visible to the

developer, or whether it simply moves complexity

elsewhere in the development process. As the

& Raising the level of
abstraction may lead to
oversimplification when there
is not enough detail for any
useful purpose &

number of artifacts increases, the number—and

potentially, the complexity—of artifact relationships

increases, as does the complexity of the tools that

manipulate and visualize them. It remains to be seen

if people have an easier time managing a relatively

small number of large artifacts with fewer relation-

ships, or if they manage better with a large number

of more specialized artifacts, with a correspondingly

greater numbers of relationships. The real difficulty

of this question becomes obvious when the full life

cycle of development is considered. A process may

be simple the first time through, but given the

complexity that has been ‘‘moved,’’ it may be

impossible (or prohibitively expensive) to maintain,

debug, or change the resulting artifacts in the future.

More expertise required?

Each type of model requires a particular set of skills

to produce and evolve effectively. In raising the

level of developer abstraction to models, MDD

enables specialists to work with abstractions that

better suit their tasks and expertise. Conversely, the
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interrelationships between multiple types of models,

and potentially, different modeling formalisms,

suggests that it will be difficult for any given

stakeholder (e.g., use case developer, architect,

implementor, tester) to understand the impact of a

proposed change on all of the related artifacts. They

must understand how a change to their artifacts

relates to or impacts other related artifacts that could

be described in different notations from the ones

they use every day. Problems like this have always

existed to some extent, but MDD makes them more

explicit and harder to ignore. This requirement for

cross-discipline understanding is reminiscent of

Ambler’s concept of ‘‘generalizing specialists.’’
25

Economic and other realities often dictate that

development cannot rely on small, close-knit teams

(e.g., offshore outsourcing and open-source devel-

opment). Hence, large, distributed development

teams are created so that different levels of expertise

can be exploited based on skill sets at different

development sites, such as requirement designers

who consult directly with a customer, architects

who create common designs to be used throughout

an organization, programmers in a ‘‘back-office,’’

and testers who may be in yet a fourth location. In

the absence of high-bandwidth interactions, such as

face-to-face communications,
26

different MDD

models can aid in the communication between these

different subteams, but it also implies that the

different subteams cannot be expert in only their

own development genre. Because artifacts resulting

from any stage in the life cycle can impact those

produced at any other stage, knowledge of different

model technologies and terminologies must exist at

each site. In the presence of the sorts of trans-

formation technologies that are part of MDD,

developers also may have to be fluent in various

transformation notations. Transformations may be

extremely complex.

MDD LANGUAGES (THE UGLY)

The standardization of modeling notations such as

UML is unquestionably an important step for

achieving MDD. Standardization provides develop-

ers with uniform modeling notations for a wide

range of modeling activities. Moreover, standard-

ization efforts (if successful) also open the door to

many types of tooling support for creating and

manipulating models in novel ways, generating

artifacts (such as code) from models, and reverse

engineering models from other artifacts. Unfortu-

nately, the development of the UML 2.0 standard is

not without its critics. It has been noted by some
27

to

have serious problems that may well impede the

adoption of MDD.

First, in attempting to address so many disparate

needs, UML 2.0 has become enormous and un-

wieldy. History has not been kind to kitchen-sink

languages, as their complexity has tended to impede

their successful adoption.
11

The use of UML profiles

can help with this significantly by enabling knowl-

edgeable developers to eliminate any parts of UML

that they do not need. It remains to be seen whether

this mechanism will gain widespread adoption.

UML 2.0 includes a powerful metamodeling facility,

Meta Object Facility (MOF**).
28

MOF enables UML

to be extended almost arbitrarily. Unfortunately,

some of the constructs in UML 2.0 are nearly

semantics-free (e.g., use cases). This dearth of

semantics complicates the correct usage of UML

extensions, reduces their expressive power, and

limits the ability of tool vendors to provide reliable,

consistent model technologies. As Thomas notes
29

:

UML 2.0 lacks both a reference implementation

and a human-readable semantic account to

provide an operational semantics, so it’s difficult

to interpret and correctly implement UML model

transformation tools. For example, key concepts

such as Use Cases lack sufficient semantics to

support model refinement. Why not provide a

simple accessible operational semantic account

. . . [which] would no doubt point out semantic

holes and ambiguities, leading to an improved

specification and reducing the time required to

build robust MDA tools.

The lack of semantics at the ground and extension

levels makes the production of automated MDD

tools difficult because the semantics carries the

meaning that is essential to enable automation.

The automatic generation of executable code from

high-level descriptions faces other challenges as

well. In general, the higher the level of abstraction a

developer uses, the more choices exist for how to

realize the abstraction in terms of executable code.

For this reason, design patterns
30

were conceived as,

and remain, architectural components, rather than

specifically implementation components. A design

pattern represents a solution to a problem in a

context. However, the strategy for selecting imple-
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mentations can vary widely, depending on the rest

of the system requirements. It is unrealistic to

assume that automatic generation of efficient and

customized implementations could occur for design

patterns in general.
31

There is room for some degree

of control over the implementation choices (e.g., in

the form of ‘‘pragmas’’ that some compilers accept).

& By enabling developers to
work at a higher level of
abstraction, MDD aims to
reduce complexity and thus
improve software quality &

So long as the set of implementation alternatives is

small and so long as people need not modify the

generated executable code, higher-level abstractions

can be reasonably added as first-class programming

constructs. The Eclipse** Modeling Framework

(EMF) is an example of a technology that takes this

position. It enables developers to program in Java,

while using somewhat higher-level abstractions (a

small subset of UML class diagram constructs). The

wide adoption of EMF demonstrates the value of

adding first-class support for what are now com-

monly used abstractions. However, it also rather

pointedly suggests how little of UML 2.0 may be

ready for treatment as commonly used, well-

accepted abstractions.

The notion of UML 2.0 as a model programming

language is predicated on the belief that the use of

higher levels of abstraction will make developers

more productive than current programming lan-

guages.
23,32

Fowler, however correctly makes the

following observation:

The question, of course, is whether this [belief] is

true. I don’t believe that graphical programming

will succeed just because it’s graphical. Indeed

I’ve seen (and worked with) several graphical

programming environments that failed—

primarily because it was slower to use than

writing code. (Compare coding an algorithm to

drawing a flow chart for it.) Furthermore, even if

UML is more productive than programming

languages, [it is] hard for programming

languages to become accepted. Most people I

know don’t program for a living in the language

they consider to be the most productive.

Languages need a lot of things to come together

for them to succeed.
23

Bell
33

offers additional support for Fowler’s position

by noting the difficulty of using extremely detailed

models—the sort required to enable automated

transformation:

Victims of kitchen-sink fever crave the idea of

building gargantuan UML models that include all

fine-grained design elements in their detailed

splendor. Kitchen-sink fever is often

accompanied by abracadabra fever in victims

who believe that in the absence of code,

information can be derived by describing the low-

level behaviors of interactions spanning the

model’s represented subsystems. Victims of

kitchen-sink fever typically spend significant

amounts of time recovering from the effects of

crashes of their modeling tools.

Clinical research has shown that one reason

victims of kitchen-sink fever desire all possible

artifacts in their models is that they have a poor

understanding of the information that can be

realistically derived from them. Research has also

shown that those infected with this fever have

typically never used a gargantuan model.

These and other issues have led Greenfield et al.
34

to

argue that although UML 2.0 is a useful modeling

language, it is not an appropriate language for MDD.

Their Software Factories approach
12

is based,

instead, on the use of special-purpose, domain-

specific languages (DSLs). This approach shows

some promise as well, though as Booch points out,
35

the root problem is not simply making one set of

stakeholders more expressive, but rather weaving

their work into that of all the other stakeholders.

This requires common semantics for common

tooling and training, so even if you start with a

set of pure DSLs, you’ll most often end up

covering the same semantic ground as the UML.

Clearly, UML—or any other MDD language—faces

significant hurdles to demonstrate sufficient value to

satisfy the needs of all the different kinds of MDD

users.

DISCUSSION
MDD is not the first attempt to solve the ‘‘software

life-cycle development problem.’’ For example, in
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the 1980s, Computer Aided Software Engineering

(CASE) was the promised panacea to solve the

world’s software development problems.
36

CASE

systems had suites of tools to facilitate the various

stages of the software life cycle. CASE failed. Often

the stages were not well integrated (even within the

tools of a single vendor)—this is often called the

‘‘silo problem’’—the processes did not match what

developers did or needed to do, and the systems

were extremely large and complex. Is MDD fated to

meet the same ignoble end?

We believe that MDD has a chance to succeed in the

realm of large, distributed, industrial software

development, but it is far from a sure bet. The

growth of UML-based tools (e.g., Poseidon, To-

getherSoft, I-Logix’s Rhapsody, Rational* Software

Modeler, ArgoUML, and Eclipse’s support for both

UML 2.0 and the UML-based EMF) suggests that

more and more people are finding real use for

modeling.

Standards exist so that tools from different vendors

have a chance at interoperating. (Of course, stan-

dardization alone does not ensure interoperability.

For example, different interpretations of the Exten-

sible Markup Language (XML) Metadata Inter-

change (XMI**) standard
37

have produced non-

interoperable tools.) Where those formal standards

do not yet exist (such as interchange formats for

UML 2.0), open-source tools and environments can

drive the community to adopt de facto standards.

This community pressure should motivate tool

vendors to accept these interoperability standards

and formalize them where necessary. Standards

(including standardized models, languages, and

interchange) are but one step to eliminate the silo

problem (which is still with us from the days of

CASE), but it is not the full solution. Not only must

tools interoperate, but broad support for traceability

and inconsistency management between and among

different models and artifacts is essential to the

elimination of silos.

Technology (both computing power and software

environments) has come light years since the 1980s.

Almost every personal computer sold today has the

capability to run powerful integrated software

development environments, such as Eclipse.
38

Gen-

erations of students are now taught to develop

software using these environments. Tool vendors

expect to target their tools to these environments,

which means that new tools are designed to be

integrated—to work together from scratch. Tech-

nology continues to improve the lot of the devel-

oper, as illustrated by the papers in this special issue

of the IBM Systems Journal.

This unprecedented confluence of events means that

the stage is set for MDD tools to become stars. The

entry barrier for producing and disseminating

sophisticated software-engineering concepts and

tools is as low as it has been in recent history—new

users can easily introduce and exploit extremely

complex technology. The need is there—software

complexity is at an all time high, and every aspect of

modern society depends on the quality of that same

software.
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