B. Hailpern
P. Tarr

Model-driven development: The
good, the bad, and the ugly

In large software development organizations, increased complexity of products,
shortened development cycles, and heightened expectations of quality have created
major challenges at all the stages of the software life cycle. As this issue of the 1BV
Systems Journal illustrates, there are exciting improvements in the technologies of
model-driven development (MDD) to meet many of these challenges. Even though
the prevalent software-development practices in the industry are still immature, tools
that embody MDD technologies are finally being incorporated in large-scale
commercial software development. Assuming MDD pervades the industry over the
next several years, there is reason to hope for significant improvements in software

quality and time to value, but it is far from a foregone conclusion that MDD will
succeed where previous software-engineering approaches have failed.

INTRODUCTION

Most developers operate by sitting down with their
favorite text editor and typing in their program,
attempting to compile it, making changes, compiling
it, testing it, and so on until the program “works.”
Sometimes the various reasons for design decisions
are captured in comments or other documents.
Often, they are lost to posterity. Those rationales
and design decisions are, however, critical for the
success of a long-lived, ongoing, high-quality pro-
gramming product. Hence, the standard laissez faire
approach to programming that many practitioners
learned must be replaced by a more disciplined
engineering methodology.

Various software-engineering rnethodologiesl_S de-
scribe processes whereby requirements, architec-
ture, design, implementation, and testing
information—along with their interrelationships—
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can be captured. Why is this information preserved
at all? Maintaining this captured data may be a
requirement of a customer or mandated for software
quality certification. In addition, it may be essential
to the development organization, when the devel-
opment of software extends beyond a single
individual developer or development team. It can
also be useful or required when teams are distrib-
uted geographically (i.e., when requirements are
gathered in one city, but code is developed in
another). Then this captured data becomes a vital
communication link between the teams for many
purposes, even as a contract between them. When a
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software product takes a long time to develop or has
multiple versions over time, then this captured data
becomes essential to support the institutional
memory as team members leave the project or are
required to revisit parts of the software that they
have not seen for some time. For large ongoing
programming products, capturing and maintaining
this data is critical to the success of the product.

It is challenging to convince development teams to
create the information in the first place, because it
costs time and money that could be used to meet
immediate deadlines. It is even more challenging to
ensure that the critical information is kept current as
changes to the requirements or system are made
over time, especially when some information will
never be critical and some critical information will
“age” and eventually stop being critical. In both
cases, the cost of creating/updating the information
lies on one part of a team, but the benefit usually
accrues to someone elsewhere or “elsewhen.” Yet
once a development process can rely on the
existence of current, accurate information, oppor-
tunities for automation abound. Everyone wishes
the information were available when questions arise
about why some concept was included or excluded
or tested or not tested, but collecting and maintain-
ing this data costs time and money.

How then should one describe and preserve the
various documents (and other artifacts, such as
program comments, test scripts, architectural dia-
grams) associated with a software project? The
simplest answer is to “do what comes naturally.”
Requirements are often written (text) documents
(with bullet points or textual scenarios). Architec-
tures are (unfortunately) frequently just pretty
pictures with annotated details of programming
interfaces. Programs are almost always source code
in some programming language. Test suites are
usually embodied by scripts and regression test
data. “Bug” (unexpected defect) reports are kept (if
at all) in databases or logs. The problem with this
simplistic approach is that none of the meta-
information associated with these artifacts is cap-
tured, and therefore, nothing explicitly relates to
anything else, even though the relationships are
clearly present. If requirements are documented in
unstructured text, what chance does a person (or a
system) have of matching them to an architectural
element or injecting task automation? What chance
is there that someone else will understand the
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requirement a year later? How well can we under-
stand C code without (or even with) comments?
Why was a particular test case included and is it still
valid?

An alternative to this multidocument, natural
collection of information is to use a “single source”
approach, where a given concept is represented only
once, in one type of software-engineering electronic
artifact, rather than having multiple artifacts per
concept. This approach can help reduce the number
of types of artifacts and the interrelationships among
those artifacts. It does not, however, eliminate the
problem described in this section. Interrelationships
among concepts (and hence, among artifacts) still
exist. Moreover, interrelationships to existing
libraries also exist.””

Model-driven development (MDD) is a software-
engineering approach consisting of the application
of models and model technologies to raise the level
of abstraction at which developers create and evolve
software, with the goal of both simplifying (making
easier) and formalizing (standardizing, so that
automation is possible) the various activities and
tasks that comprise the software life cycle. MDD
imposes structure and common vocabularies so that
artifacts are useful for their main purpose in their
particular stage in the life cycle (such as describing
an architecture), for the underlying need to link with
related artifacts (earlier or later in the life cycle), and
to serve as a communication medium between
participants in the project (over space or time).

The Object Management Group, Inc. (OMG**)
defines a particular realization of MDD using the
term Model Driven Architecture** (MDA**). Fur-
ther, they define a special concept of models that
distinguishes those models that take into account
the details of the underlying hardware and software
(platform) and those that do not. OMG defines MDA
to be

based on a Platform-Independent Model (PIM) of
the application or specification’s business
functionality and behavior. A complete MDA
specification consists of a definitive platform-
independent base model, plus one or more
Platform-Specific Models (PSMs) and sets of
interface definitions, each describing how the
base model is implemented on a different
middleware platform. A complete MDA
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application consists of a definitive PIM, plus one
or more PSMs and complete implementations,
one on each platform that the application
developer decides to support.9

MDA begins with a model concerned with the
(business-level) functionality of the system, inde-
pendent of the underlying technologies (processors,
protocols, etc.). MDA tools then support the map-
ping of the PIM to the PSMs as new technologies
become available or implementation decisions
change.

MDA represents just one view of MDD, though it is
perhaps the most prevalent at present. Others also
exist, such as Agile Model-Driven Developrnent,10
Domain-Oriented Programming,11 and Microsoft’s
Software Factories.'* This paper is about MDD in
general. However, due to its prevalence and status
as a standardized entity, OMG’s MDA is used to
exemplify issues throughout this paper. This paper
is not, however, intended to be a full exposition of
the advantages and disadvantages of MDA. 1t is too
early to predict which—if any—of the current MDD
approaches will perform best in real-world
scenarios.

Thus far, we have defined MDD in terms of
“models,” relying on the reader’s intuition about
what models are. We now turn to the question,
“What is a model?”

BACKGROUND: TERMINOLOGY AND
DEFINITIONS

Because one of the goals of this special issue of the
IBM Systems Journal is to be accessible to the
students of software engineering at large, we define
relevant terminology and its implications (we
include pseudo-formal notation for this terminology,
but it is not essential for the basic understanding of
problem definition). Note that among researchers
there is no universal agreement as to the precise
definitions of the following terms. The reader is
encouraged to view these as a consistent set of
terminology and indicative of what is meant by
many researchers in the field, including the authors
of this special issue.

A model M is an abstraction over some (part of a)
software product (e.g., requirements specification,
design, code, test, call-flow graph). There is a
variety of kinds of models and we indicate those
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Example UML model (class diagram)

kinds by using subscripts on M, such as M, for
a Unified Modeling Language** (UML**) model."”
Of course, a fully formal notation would distinguish
among the different levels of abstraction and kinds
of diagrams within, for example, a UML model. For
the purposes of this paper, this level of detail is not
necessary. In our (semi-formal) notation, a model is
an annotated graph over a set of model nodes, a set
of model edges, an alphabet of labels, and a function
annotating nodes and edges (M=<N, E, DI AM>).
Model edges are the usual directed edges from nodes
to nodes (E C N X N). The annotation function maps
either nodes or edges into labels (A,:NUE—X ). A
model element is a subgraph of M (possibly just an
individual node). There exists a mapping from each
model element to one or more elements of an
underlying (uninterpreted) domain. Hence model
elements represent (or abstract from) real or
conceptual objects. It should be noted that the use of
a graph representation supports different kinds of
structures that might be used for models, such as
tables, stacks, code (modeled using abstract syntax
graphs), and structured text, such as requirements
documents.

To illustrate, consider the UML class diagram in
Figure 1. This class diagram is a model (M) —it
represents a partial abstraction of a software system.
In this case, N is the set of nodes {C1, C2, I1, and I2}.
E is the set of edges {<C2, C1>, <I1, C1>, <2,
C2>, <12, I1>}, reflecting the generalization and
realization associations in the figure. We imagine a
trivial set of annotations (£,,), shown in black in the
figure, consisting of {“annot1”, “annot2”, “annot3”,
“annot4”, “annot5”, “annot6”}. Then, our labeling
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(A,,) of the nodes would be C1 = “annotl,” C2 =
“annot2,” I1 = I2 = “annot3”. Our labeling (A,,) of
the edges would be <C2,C1> = “annot4,” <I1,C1>
= <J2,C2> = “annot5,” and <I2,I]1> = “annot6.”

An artifact (A,,) is a set of “meaningful” model
elements of M, for some definition of “meaningful.”
An artifact represents a complete, consistent, and
legal subgraph of M. For example, an artifact could
represent a complete statement in a programming-
language grammar or a legal UML class diagram. In
the preceding example, the node C1 would be a
meaningful artifact, as would the subgraph that
includes C1, I1, and the edge <I1, C1>. It should be
noted that the definition of artifacts as complete,
consistent, and legal subgraphs is only a convenient
abstraction. We recognize that, in the real world,
people may have to address artifacts that are not
complete, consistent, or legal in their modeling
notation but that represent meaningful artifacts
nonetheless. The abstraction is sufficient for the
purposes of this paper.

A relationship R maps artifacts in one model, M, to
artifacts in another model, M; (where i may equal j),
with annotations on the edges of the relationship (R
=<A, A, L, AR>). (We note that our definition
describes only binary relationships. A complete
formal definition would allow for general n-ary
relationships.) An essential case for MDD is when
the two models are distinct (i.e., i # j). For example,
if M, and M, are models, with A, being the artifacts
of M, and A, being the artifacts of M,, then R
represents the relationship edges from artifacts in A,
to artifacts in A,, with labels in the alphabet X
assigned by Ay. Our UML example can be extended
to include another model (M,_,.) containing a
Java** program that corresponds to our UML
diagram. The relationship would then contain
relationship edges from UML artifacts in M,
corresponding program artifacts in M, . (classes to
classes and interfaces to interfaces). We could then
annotate these new relationship edges.

to the

As stated above, the models need not be distinct;
that is, a relationalship can connect nodes in a
model to other nodes in the same model (Ml. = Mj,
for example, a use-def relationship in an abstract
syntax tree). We distinguish different kinds of
relationships, based on how the relationships are
defined or used; for example:
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* Instantiation—Nodes in A, are specific instances
of “class/type” nodes in A,.

* Refinement—Nodes in A, represent a more de-
tailed description of nodes in A,.

* Realization—Nodes in A, represent an imple-
mentation of nodes in A,.

* Specialization—Nodes in A, are specific instances
of “generic” nodes in A,.

* Manual—The relationship was created by the
actions of a human being.

* Generated—The relationship was created by the
actions of a program.

* Derived—Nodes in A, are a logical consequence
of, and generated from, the nodes in A,.

e Implied—The relationship can be deduced by
applying a set of rules.

The set of annotations (both at the model level, A,
and the relationship level, A;) is called metadata.
Note that “metadata” is generally understood to be
“data about data.” Hence, one could include the
relationships in the metadata, because relationships
are links between existing model subgraphs. It all
depends on what is the “base” data and what is
commentary on the data. Annotations can represent
both static and dynamic properties, and both func-
tional and nonfunctional properties.

Given a set of models M, M,, ..., M and a set of
relationships R ,,R,5 .., R, atrace represents
a path through the R, , ,, so that the destination
artifact of one R “matches” with the source artifact
of another. Thus, a trace represents a chain of
relationships across the different models (or artifact
representations) through a software product’s life
cycle (for example, mapping a requirement to its
corresponding architectural element, to the code
that implements it, and to the test case that validates
it). The property of traceability (which enables
creating or following a trace) is core to the value
proposition of MDD. Traceability relies on the
essential meta-information that must be communi-
cated among the people, teams, and roles that
participate in a large software development process.
Participants in the (model-driven) software life cycle
must be able to communicate what needs to be done
(for example, the architect specifies what the
developer is to build) and to determine what caused
a particular event to occur or artifact to exist (for
example, what requirement resulted in a particular
test case that just failed). The ability to round-trip
across the models in a life cycle embodies the
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bidirectional nature of a trace path (that is, the
ability to go forward and backward along a trace,
and not lose your way).

It should be noted that this recognition of the
important nature of traceability is not universally
accepted. Some Agile development proponents
advocate minimal models and eschew some or all
traceability in favor of “traveling light,” reducing to
a minimum the need to maintain these artifact
interrelationships. Whether explicitly represented or
not, interrelationships across different artifacts exist.
To the extent that these relationships impact the
correctness and evolution of the code and the
execution of the process, they are critical to under-
standing and communication among stakeholders.

At a metalevel, the sets of models and relationships
(including their annotations) can be constrained to
satisfy a set of consistency specifications. For
example, “every use case must be implemented by
(i.e., connected to by an “implements” relationship)
a code artifact, and it must be tested by (i.e.,
connected to by a “testedBy” relationship) at least
one test case.” Unlike consistency specifications in
traditional databases, we do not assume some kind
of atomicity or transactional underpinnings which
would ensure that consistency is maintained at
every observable point. Rather, because of the
human nature of the software-development process,
the feel is more of long-running transactions, where
consistency issues are identified, prioritized, and
managed. Inconsistency may persist and must be
managed for extended periods of the software life
cycle. This process of controlled chaos has been
called inconsistency mana(g'ement.lzl’ls

Once we have a set of models and the relationships
between them, we can define transformations as the
systematic (manual or automated) modification of a
model and its set of affected relationships. Hence, a
transformation could change a model into a new
model, constrained by its current relationships, or it
could leave one model unchanged and instead
create new models or new relationships based on
the existing ones. The term reengineering refers to a
set of changes that adds to or changes the
functionality in the system. When a more system-
atic, structured set of semantics-preserving changes
is engineered, it is termed refact()rz'rlg.l6’17 Keeping
track of changes at whatever granularity is appro-
priate is called versioning.
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The context of models and relationships also allows
us to define reverse engineering to be the extraction
of a higher-level model from another, lower-level
model (or representation). Examples of reverse
engineering include extracting architecture from
code or extracting requirements from an architec-
ture. The process of reverse engineering can be
manual, semiautomatic, or automatic.

WHAT PROBLEM IS MDD INTENDED TO SOLVE?
(THE GOOD)

The goals and approaches underlying MDD are not
new. The primary goal is to raise the level of
abstraction at which developers operate and, in
doing so, reduce both the amount of developer effort
and the complexity of the software artifacts that the
developers use. Of course, there is always a trade-off
between simplification by raising the level of
abstraction and oversimplification, where there are
insufficient details for any useful purpose.18

The desirability for more abstract artifacts and more
levels of abstraction has a long history. It goes back
to the introduction of assembly language as an
abstraction over machine code. This was followed

m Some degree of software
complexity is inherent in the
difficulty of the problems to be
solved m

by the introduction of third-generation languages,
like FORTRAN and COBOL (common business-
oriented language), that enabled developers to
ignore register allocation and other low-level,
machine-specific instructions by introducing higher-
level abstractions (such as named variables and
structured programming constructs) that are trans-
lated to the underlying machine by means of
compilation technology. Object-oriented languages,
such as Simula, Smalltalk, and C++, introduced
additional abstractions—such as abstract data types
and objects. In each case, the abstraction had twin
effects: higher quality and productivity and the
creation of a lingua franca for the users so that there
would be a vocabulary closer to the actual problem
domain. MDD follows in this tradition and extends it
by introducing model abstractions at the various
stages of the software life cycle. If the MDD
abstractions are to be realized in running code or
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instantiated data, they require a process analogous
to compilation, where models are transformed to
concrete representations.

Analogous to Julius Caesar’s observations on
Gaul,"” the MDD community can be divided into
three parts,20 one of which is called the sketchers,
another is called the blueprinters, and the third are
those we refer to as the model programmers, who
support the direct use of modeling languages for
development. The sketchers focus on the use of
UML (or other modeling notations) to facilitate the
understanding of code’""’:

The essence of sketching is selectivity. With
forward sketching you rough out some issues in
code you are about to write, usually discussing
them with a group of people on your team. Your
aim is to use the sketches to help communicate
ideas and alternatives about what you are about
to do. You do not talk about all the code you are
going to work on, just important issues that you
want to run past your colleagues first, or sections
of the design that you want to visualize before
you begin programming. Sessions like this can be
very short, a 10-minute session to discuss a few
hours of programming or a day to discuss a two-
week iteration.

With reverse engineering you use sketches to

explain how some part of a system works. You do

not show every class, just those that are

interesting and worth talking about before you
P 21

dig into the code.

The blueprinters22 draw the analogy between soft-
ware architecture and building architecture. They
create very detailed design models, which are then
handed off to (presumably less expensive) coders to
produce implementations. This separation of tasks
enables the (generally more expensive) design
experts to focus solely on complex design issues.
This approach makes the assumption that large
development will take place in large organizations
containing many different people with many differ-
ent skill levels, in contrast with small-development
organizations made up of only “top guns.”

Both the sketchers and the blueprinters maintain a
strong distinction between design models and code
. . 20
artifacts. Both groups strongly support modeling.
Their notion of MDD assigns a facilitating role to the
models. The artifacts promote the development and
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evolution of code, but are not themselves executable
languages that would replace the likes of Java or C#.

The model programmers support the use of UML (or
some alternative modeling notation) as a develop-
ment language with executable semantics,” using,
for example, action semantics and statecharts. In
model programming, the distinction between mod-
els and code is obscured. Some form of executable
code exists, whether it is realized in a high-level
programming language or by direct “compilation” to
low-level, executable representations like assembly
language. In the former case, the generation to a
high-level programming language either produces
complete implementations or partial ones, with the
programmer left to fill in the blanks. In the latter
case, it is not generally manipulated directly by
developers. The model-programming camp is typi-
fied by the supporters of the OMG vision of MDA.**
MDA developers work predominantly in UML as
their development language. They begin by creating
a PIM of their solution in UML (e.g., defining
interfaces to domain concepts like ATMs [auto-
mated teller machines] and bank accounts), then
refine the PIM into PSMs that take into account one
or more particular target implementations (e.g.,
relational tables that store the account information
on which the ATM operates). Executable semantics
are specified using UML (e.g., activity diagrams).
Code (e.g., Java or C#) can then be generated
directly from the UML.

WHAT PROBLEMS DOES MDD CREATE? (THE
BAD)

The “modest” intent of MDD is to improve software
quality, reduce complexity, and improve reuse by
enabling developers to work at reasonably higher
levels of abstraction and to ignore “unnecessary”
details. In practice, however, MDD also raises a
number of significant issues.

Redundancy

A central tenet of MDD is that there are multiple
representations of artifacts inherent in a software
development process, representing different views
of or levels of abstraction on the same concepts. To
the extent that these are manually created, duplicate
work and consistency management are required. A
similar problem was found in the software verifica-
tion work of the 1970s and 1980s, which required
two different versions of the same software to be
written—one for specification and one for
execution.
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Rampant round-trip problems

The more models and levels of abstraction that are
associated with any given software system, the more
relationships will exist among those models. Many
of these interrelationships are complex. The round-
trip problem occurs whenever an interrelated
artifact changes in ways that affect some or all of its
related artifacts. For example, if a developer adds a
method, m, to a class, C, in a UML class diagram, the
Java code that realizes C must be modified to
include an implementation of m (or at least it must
be flagged that an implementation of m is needed).
In some cases, the change may be propagated
automatically—for example, if C were an interface
instead of a class, it might be possible to automati-
cally generate a method m in C.

The far worse (and more common) case, however,
is when the round-trip problem cannot be addressed
automatically. For example, if the change occurs in a
method body, human intervention is required to
determine the impact of the change on the related
use case or business process model. In this case, the
structure of the code or model is unchanged, but the
semantics underlying the code or model have been
adjusted. Is it a change in the desired function? Is it a
bug fix? Is it part of a more extensive refactoring of
the entire package? Each will have different impli-
cations on related artifacts.

The worst forms of the round-trip problem generally
occur when changes occur in artifacts at lower levels
of abstraction, such as code, because inferring
higher-level semantics from lower-level abstractions
is much more difficult than generating lower-level
abstractions from higher-level ones. Consider the
relative difficulty of propagating changes from UML
diagrams to code artifacts, compared to the difficulty
of propagating any significant changes from code to
its corresponding UML diagrams. The problem is
magnified when transformation technologies are
involved because changes to the generated artifacts
may be lost when regeneration occurs. Generation
technologies usually generate “bad” variable names,
because they lack a programmer’s intent. Optimi-
zation techniques can reorder, combine, or elimi-
nate details that can be useful for human
understanding but are unnecessary to machine
execution.

Note that this discussion in this section could imply
that round-trip problems only occur in waterfall
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development methodologies where one stage must
be completed, before the next stage occurs.” This is
not the case. Round-trip problems occur whenever
relationships across models are important. The basic
problem is that the introduction of multiple,
interrelated representations implies the issue of
assuring their mutual consistency—a very difficult
problem.

Moving complexity rather than reducing it?
Some degree of software complexity is inherent in
the difficult problems being solved with software.
Other complexity is spurious—given an appropriate
approach, it need not be present. Differentiating
between inherent and spurious complexity can be
difficult. As with any development technique or
technology, one must determine whether a given
MDD approach reduces complexity visible to the
developer, or whether it simply moves complexity
elsewhere in the development process. As the

m Raising the level of
abstraction may lead to
oversimplification when there
is not enough detail for any
useful purpose =

number of artifacts increases, the number—and
potentially, the complexity—of artifact relationships
increases, as does the complexity of the tools that
manipulate and visualize them. It remains to be seen
if people have an easier time managing a relatively
small number of large artifacts with fewer relation-
ships, or if they manage better with a large number
of more specialized artifacts, with a correspondingly
greater numbers of relationships. The real difficulty
of this question becomes obvious when the full life
cycle of development is considered. A process may
be simple the first time through, but given the
complexity that has been “moved,” it may be
impossible (or prohibitively expensive) to maintain,
debug, or change the resulting artifacts in the future.

More expertise required?

Each type of model requires a particular set of skills
to produce and evolve effectively. In raising the
level of developer abstraction to models, MDD
enables specialists to work with abstractions that
better suit their tasks and expertise. Conversely, the
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interrelationships between multiple types of models,
and potentially, different modeling formalisms,
suggests that it will be difficult for any given
stakeholder (e.g., use case developer, architect,
implementor, tester) to understand the impact of a
proposed change on all of the related artifacts. They
must understand how a change to their artifacts
relates to or impacts other related artifacts that could
be described in different notations from the ones
they use every day. Problems like this have always
existed to some extent, but MDD makes them more
explicit and harder to ignore. This requirement for
cross-discipline understanding is reminiscent of
Ambler’s concept of “generalizing specialists.”25

Economic and other realities often dictate that
development cannot rely on small, close-knit teams
(e.g., offshore outsourcing and open-source devel-
opment). Hence, large, distributed development
teams are created so that different levels of expertise
can be exploited based on skill sets at different
development sites, such as requirement designers
who consult directly with a customer, architects
who create common designs to be used throughout
an organization, programmers in a “back-office,”
and testers who may be in yet a fourth location. In
the absence of high-bandwidth interactions, such as
face-to-face communications,”* different MDD
models can aid in the communication between these
different subteams, but it also implies that the
different subteams cannot be expert in only their
own development genre. Because artifacts resulting
from any stage in the life cycle can impact those
produced at any other stage, knowledge of different
model technologies and terminologies must exist at
each site. In the presence of the sorts of trans-
formation technologies that are part of MDD,
developers also may have to be fluent in various
transformation notations. Transformations may be
extremely complex.

MDD LANGUAGES (THE UGLY)

The standardization of modeling notations such as
UML is unquestionably an important step for
achieving MDD. Standardization provides develop-
ers with uniform modeling notations for a wide
range of modeling activities. Moreover, standard-
ization efforts (if successful) also open the door to
many types of tooling support for creating and
manipulating models in novel ways, generating
artifacts (such as code) from models, and reverse
engineering models from other artifacts. Unfortu-
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nately, the development of the UML 2.0 standard is
not without its critics. It has been noted by some’’ to
have serious problems that may well impede the
adoption of MDD.

First, in attempting to address so many disparate
needs, UML 2.0 has become enormous and un-
wieldy. History has not been kind to kitchen-sink
languages, as their complexity has tended to impede
their successful adoption.11 The use of UML profiles
can help with this significantly by enabling knowl-
edgeable developers to eliminate any parts of UML
that they do not need. It remains to be seen whether
this mechanism will gain widespread adoption.

UML 2.0 includes a powerful metamodeling facility,
Meta Object Facility (MOF**).28 MOF enables UML
to be extended almost arbitrarily. Unfortunately,
some of the constructs in UML 2.0 are nearly
semantics-free (e.g., use cases). This dearth of
semantics complicates the correct usage of UML
extensions, reduces their expressive power, and
limits the ability of tool vendors to provide reliable,
consistent model technologies. As Thomas notes”:

UML 2.0 lacks both a reference implementation
and a human-readable semantic account to
provide an operational semantics, so it’s difficult
to interpret and correctly implement UML model
transformation tools. For example, key concepts
such as Use Cases lack sufficient semantics to
support model refinement. Why not provide a
simple accessible operational semantic account

. [which] would no doubt point out semantic
holes and ambiguities, leading to an improved
specification and reducing the time required to
build robust MDA tools.

The lack of semantics at the ground and extension
levels makes the production of automated MDD
tools difficult because the semantics carries the
meaning that is essential to enable automation.

The automatic generation of executable code from
high-level descriptions faces other challenges as
well. In general, the higher the level of abstraction a
developer uses, the more choices exist for how to
realize the abstraction in terms of executable code.
For this reason, design patterns30 were conceived as,
and remain, architectural components, rather than
specifically implementation components. A design
pattern represents a solution to a problem in a
context. However, the strategy for selecting imple-

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006



mentations can vary widely, depending on the rest
of the system requirements. It is unrealistic to
assume that automatic generation of efficient and
customized implementations could occur for design
patterns in general.31 There is room for some degree
of control over the implementation choices (e.g., in
the form of “pragmas” that some compilers accept).

m By enabling developers to
work at a higher level of
abstraction, MDD aims to
reduce complexity and thus
improve software quality m

So long as the set of implementation alternatives is
small and so long as people need not modify the
generated executable code, higher-level abstractions
can be reasonably added as first-class programming
constructs. The Eclipse** Modeling Framework
(EMF) is an example of a technology that takes this
position. It enables developers to program in Java,
while using somewhat higher-level abstractions (a
small subset of UML class diagram constructs). The
wide adoption of EMF demonstrates the value of
adding first-class support for what are now com-
monly used abstractions. However, it also rather
pointedly suggests how little of UML 2.0 may be
ready for treatment as commonly used, well-
accepted abstractions.

The notion of UML 2.0 as a model programming

language is predicated on the belief that the use of

higher levels of abstraction will make developers

more productive than current programming lan-
23,32

guages. Fowler, however correctly makes the

following observation:

The question, of course, is whether this [belief] is
true. I don’t believe that graphical programming
will succeed just because it’s graphical. Indeed
I've seen (and worked with) several graphical
programming environments that failed—
primarily because it was slower to use than
writing code. (Compare coding an algorithm to
drawing a flow chart for it.) Furthermore, even if
UML is more productive than programming
languages, [it is] hard for programming
languages to become accepted. Most people I
know don’t program for a living in the language
they consider to be the most productive.
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Languages need a lot of things to come together
for them to succeed.”

Bell® offers additional support for Fowler’s position
by noting the difficulty of using extremely detailed
models—the sort required to enable automated
transformation:

Victims of kitchen-sink fever crave the idea of
building gargantuan UML models that include all
fine-grained design elements in their detailed
splendor. Kitchen-sink fever is often
accompanied by abracadabra fever in victims
who believe that in the absence of code,
information can be derived by describing the low-
level behaviors of interactions spanning the
model’s represented subsystems. Victims of
kitchen-sink fever typically spend significant
amounts of time recovering from the effects of
crashes of their modeling tools.

Clinical research has shown that one reason
victims of kitchen-sink fever desire all possible
artifacts in their models is that they have a poor
understanding of the information that can be
realistically derived from them. Research has also
shown that those infected with this fever have
typically never used a gargantuan model.

These and other issues have led Greenfield et al.”* to
argue that although UML 2.0 is a useful modeling
language, it is not an appropriate language for MDD.
Their Software Factories approach12 is based,
instead, on the use of special-purpose, domain-
specific languages (DSLs). This approach shows
some promise as well, though as Booch points out,35

the root problem is not simply making one set of
stakeholders more expressive, but rather weaving
their work into that of all the other stakeholders.
This requires common semantics for common
tooling and training, so even if you start with a
set of pure DSLs, you’ll most often end up
covering the same semantic ground as the UML.

Clearly, UML—or any other MDD language—faces
significant hurdles to demonstrate sufficient value to
satisfy the needs of all the different kinds of MDD
users.

DISCUSSION
MDD is not the first attempt to solve the “software
life-cycle development problem.” For example, in
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the 1980s, Computer Aided Software Engineering
(CASE) was the promised panacea to solve the
world’s software development problems.36 CASE
systems had suites of tools to facilitate the various
stages of the software life cycle. CASE failed. Often
the stages were not well integrated (even within the
tools of a single vendor)—this is often called the
“silo problem”—the processes did not match what
developers did or needed to do, and the systems
were extremely large and complex. Is MDD fated to
meet the same ignoble end?

We believe that MDD has a chance to succeed in the
realm of large, distributed, industrial software
development, but it is far from a sure bet. The
growth of UML-based tools (e.g., Poseidon, To-
getherSoft, I-Logix’s Rhapsody, Rational* Software
Modeler, ArgoUML, and Eclipse’s support for both
UML 2.0 and the UML-based EMF) suggests that
more and more people are finding real use for
modeling.

Standards exist so that tools from different vendors
have a chance at interoperating. (Of course, stan-
dardization alone does not ensure interoperability.
For example, different interpretations of the Exten-
sible Markup Language (XML) Metadata Inter-
change (XMI**) standard’’ have produced non-
interoperable tools.) Where those formal standards
do not yet exist (such as interchange formats for
UML 2.0), open-source tools and environments can
drive the community to adopt de facto standards.
This community pressure should motivate tool
vendors to accept these interoperability standards
and formalize them where necessary. Standards
(including standardized models, languages, and
interchange) are but one step to eliminate the silo
problem (which is still with us from the days of
CASE), but it is not the full solution. Not only must
tools interoperate, but broad support for traceability
and inconsistency management between and among
different models and artifacts is essential to the
elimination of silos.

Technology (both computing power and software
environments) has come light years since the 1980s.
Almost every personal computer sold today has the
capability to run powerful integrated software
development environments, such as Eclipse.38 Gen-
erations of students are now taught to develop
software using these environments. Tool vendors
expect to target their tools to these environments,

460 HAILPERN AND TARR

which means that new tools are designed to be
integrated—to work together from scratch. Tech-
nology continues to improve the lot of the devel-
oper, as illustrated by the papers in this special issue
of the IBM Systems Journal.

This unprecedented confluence of events means that
the stage is set for MDD tools to become stars. The
entry barrier for producing and disseminating
sophisticated software-engineering concepts and
tools is as low as it has been in recent history—new
users can easily introduce and exploit extremely
complex technology. The need is there—software
complexity is at an all time high, and every aspect of
modern society depends on the quality of that same
software.
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