Feature-based survey of model
transformation approaches

Model transformations are touted to play a key role in Model Driven Development™.
Although well-established standards for creating metamodels such as the Meta-Object
Facility exist, there is currently no mature foundation for specifying transformations

K. Czarnecki
S. Helsen

among models. We propose a framework for the classification of several existing and
proposed model transformation approaches. The classification framework is given as a

feature model that makes explicit the different design choices for model transforma-
tions. Based on our analysis of model transformation approaches, we propose a few
major categories in which most approaches fit.

INTRODUCTION

Model-driven software development is centered on
the use of models." Models are system abstractions
that allow developers and other stakeholders to
effectively address concerns, such as answering a
question about the system or effecting a change.
Examples of model-driven approaches are Model
Driven Architecture** (MDA**),Z’3 Model-Inte-
grated Computing (MIC),4 and Software Factories.”
Software Factories, with their focus on automating
product development in a product-line context, can
also be viewed as an instance of generative software
development.6

Model transformations are touted to play a key role
in Model Driven Development** (MDD**). Their
intended applications include the following:

* Generating lower-level models, and eventually
code, from higher-level models’

* Mapping and synchronizing among models at the
same level or different levels of abstraction®

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

¢ Creating query-based views of a system9’10

* Model evolution tasks such as model refactor-
ing11,12

* Reverse engineering of higher-level models from
lower-level models or code."

Considerable interest in model transformations has
been generated by the standardization effort of the
Object Management Group, Inc. (OMG**). In April
2002, the OMG issued a Request for Proposal (RFP)
on Query/Views/Transformations (QVT),14 which
led to the release of the final adopted QVT
specification in November 2005."° Driven by prac-
tical needs and the OMG’s request, a large number
of approaches to model transformation have been
proposed over the last three years. However, as of

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

CZARNECKI AND HELSEN 621

this writing, industrial-strength and mature model-
to-model transformation systems are still not avail-
able, and the area of model transformation contin-
ues to be a subject of intense research. In this paper,
we propose a feature model to compare different
model transformation approaches and offer a survey
and categorization of a number of existing ap-
proaches from four sources:

1. Published in the literature—VIATRA (VIsual
Automated model TRAnsformations) frame-
Work,16’17 Kent Model Transformation lan-
guage,l&19 Tefkat,”””" GReAT (Graph Rewriting
and Transformation languagezz), ATL (Atlas
Transformation Language23’24), UMLX,25 AToM3
(A Tool for Multi-formalism and Meta-Model-
ing26), BOTL (Bidirectional Object-oriented
Transformation Language27’28), MOLA (MOdel
transformation LAnguagezg), AGG (Attributed
Graph Grammar systemso), AMW (Atlas Model-
Weaversl), triple-graph grammars,32 MTL (Model
Transformation Languagess), YATL (Yet Another
Transformation Language34), Kermeta,” C-SAW
(Constraint-Specification Aspect Weaver),36 and
MT Model Transformation Language.37

2. Described in the final adopted QVT specifica-
tion—The Core, Relations, and Operational lan-
guages.15 Older QVT submissions are also
mentioned whenever appropriate.

3. Implemented within open-source tools—Andro-
MDA,38 openArchitectureWare,39 Fujaba (From
UML** to Java** And Back Again40), Jamda
(JAva Model Driven Architecture“), JET (Java
Emitter Templates“), FUUT-je,43 and MTF
(Model Transformation Framework44), which is a
freely available prototype.

4. Implemented within commercial tools—XMF-Mo-
saic,45 OptimalJ **,46 MetaEdit **,47’48
ler,”” and Codagen Architect.”’

The feature model makes explicit the possible design
choices for a model transformation approach, which
is the main contribution of this paper. We do not
give detailed classification data for each individual
approach mainly because these details are con-
stantly changing. Instead, we give examples of
approaches for each design choice. Furthermore, we
propose a clustering of existing approaches into a
few major categories that capture their main
characteristics and design choices. We conclude
with remarks on the practical applicability of the
different categories.

622 CZARNECKI AND HELSEN

WHAT IS MODEL TRANSFORMATION?
Transformation is a fundamental theme in computer
science and software engineering. After all, compu-
tation can be viewed as data transformation.
Computing with basic data such as numeric values
and with data structures such as lists and trees is at
the heart of programming. Type systems in pro-
gramming languages help ensure that operations are
applied compatibly to the data. However, when the
subject of a transformation approach is metadata,
i.e., data representing software artifacts such as data
schemas, programs, interfaces, and models, then we
enter the realm of metaprogramming—writing pro-
grams called metaprograms that write or manipulate
other programs. One of the key challenges in this
realm is that metaprograms have to respect the rich
semantics of the metadata upon which they operate.
Similarly, model transformation is a form of
metaprogramming and, thus, must face the same
challenge.

Model transformation is closely related to program
transformation.”" In fact, their boundaries are not
clear-cut, and both approaches overlap. Their
differences occur in the mindsets and traditions of
their respective transformation communities, the
subjects being transformed, and the sets of require-
ments being considered. Program transformation is
a more mature field with a strong programming
language tradition. On the other hand, model
transformation is a relatively new field, essentially
rooted in software engineering. Consequently, the
transformation approaches found in both fields have
quite different characteristics. While program
transformation systems are typically based on
mathematically oriented concepts such as term
rewriting, attribute grammars, and functional pro-
gramming, model transformation systems usually
adopt an object-oriented approach for representing
and manipulating their subject models.

Because model transformations operate on models,
we need to clarify what models are. A model is an
abstraction of a system or its environment, or both.
In software engineering, the term model is often
used to refer to abstractions above program code,
such as requirements and design specifications.
Some authors in model-driven software develop-
ment consider program code as models too. This
view is consistent with the fact that program code is
an abstraction of the underlying machine code
produced by the compiler. Although being visual is
not a defining characteristic of models, requirements

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Source Metamodel Refers to

IConforms to
Reads

Source Model

Basic concepts of model transformation

Transformation Definition
T Executes

Transformation
Engine

Refers to

Target Metamodel

I Conforms to
Writes

Target Model

| Figure 1
1

and design models are often more visual than
programs. Models are frequently expressed in
focused languages specialized for a particular class
of software applications or a particular aspect of an
application. For example, the Matlab** Simulink**/
Stateflow** environment offers notations special-
ized for modeling control software, whereas inter-
action diagrams in Unified Modeling Language**
(UML**) are focused on representing the interaction
aspect of a wide range of systems. Highly special-
ized modeling languages are increasingly referred to
as domain-specific modeling languages.

In general, model transformations involve models
(in the sense of abstractions above program code) or
models and programs. Because the concept of
models is more general than the concept of program
code, model transformations tend to operate on a
more diverse set of artifacts than program trans-
formations. Model transformation literature consid-
ers a broad range of software development artifacts
as potential transformation subjects. These include
UML models, interface specifications, data schemas,
component descriptors, and program code. The
varied nature of models further invites specialized
transformation approaches that are geared to trans-
forming particular kinds of models. For example, as
explained later in the discussion section, most
model transformation approaches based on graph
transformations are better suited for transforming
UML models than program code. However, there is
no fundamental reason why program transforma-
tion systems could not be applied to the same
artifacts as model transformations. In fact, trans-
formational software development,52 which in-
volves the automated refinement of high-level
specifications into implementations, is an old and
familiar theme in the area of program transforma-
tion.

In summation, perhaps the most important distinc-
tion between the current approaches to program
transformation and model transformation is that the

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

latter has been targeted for a particular set of
requirements that include the representation of
models using an object-oriented paradigm, the
traceability among models at different levels of
abstraction, the transformation mapping among
multiple models (i.e., n-way transformations), and
the multidirectionality of transformations. Although
these requirements could also be the subject of
program transformation approaches, they are typi-
cally not considered by program transformation
systems.

EXAMPLES OF MODEL TRANSFORMATIONS

To make our discussion more concrete, we present
two examples of model transformations: one that
maps models to models and another that maps
models to code.

Figure 1 gives an overview of the main concepts
involved in model transformation. The figure shows
the simple scenario of a transformation with one
input (source) model and one output (target) model.
Both models conform to their respective metamod-
els. A metamodel typically defines the abstract
syntax of a modeling notation. A transformation is
defined with respect to the metamodels. The
definition is executed on concrete models by a
transformation engine. In general, a transformation
may have multiple source and target models.
Furthermore, the source and target metamodels may
be the same in some situations.

Sample metamodels and models

Figures 2A and 2B show sample metamodels
expressed as UML class diagrams. Figure 2A gives a
simplified metamodel for class models that includes
the abstract concept of classifiers, which comprises
classes and primitive data types. Packages contain
classes, and classes contain attributes. All model
elements have names, and classes can be marked as
persistent. Figure 2B shows a simple metamodel for
defining relational database schemas for a relational
database management system (RDBMS). A schema

CZARNECKI AND HELSEN 623

A | Simple UML metamodel

Classifier type

name : String 1

[*

Package * Class « | Attribute
>~

PrimitiveDataType —>

name : String | elems | isPersistent : Bool | attrs | name : String

B | Simple RDBMS metamodel

0.1 1
Schema " Table ——» Column

—j>———] - pkey -
name : String tbls - name : String * name : String

cols| type : String
* | refs
* | f

keys * Tcols

FKey
C | UML sample model
:Package :Class ‘Attribute
EC - C5E o | = .
name = 'App' name = 'Customer’ name = 'name'

isPersistent = true @

‘Attribute :Class :Attribute

name = 'addln' | name ='Address' |4 Iname = 'addr'
isPersistent = false | type

:PrimitiveDataType

type ' name = 'STRING' ‘type

D | RDBMS sample model

:Schema Table :Column
> >—
name = 'App' name = 'Customer’ name = 'name’
? type = 'STRING'
pkey

:Column :Column
name = 'Customer_tid' name = 'addrln’
type = 'NUMBER' type = 'STRING'

Figure 2

UML-to-RDBMS example and sample models: (A) Simple
UML metamodel, (B) Simple RDBMS metamodel,

(C) UML sample model, and (D) RDBMS sample model

624 CZARNECKI AND HELSEN

contains tables, and tables contain columns. The
column type is represented as a string. Every table
has one primary-key column, which is pointed to by
pkey. Additionally, the concept of foreign keys is
modeled by FKey, which relates foreign-key columns
to tables.

Sample instances of the metamodels using the UML
object diagram notation are shown in Figures 2C
and 2D. The instance in Figure 2C represents a class
model with one package, App, containing two
classes, Customer and Address. Customer is persis-
tent, and Address is not. Figure 2D shows an
instance of the schema metamodel. The instance
represents a schema that can be used to make
Customer objects persistent.

UML-to-schema transformation

As a first example, we consider transforming class
models into schema models described in the
previous section. Such a transformation needs to
realize the following three mappings:

1. Package-to-schema: Every package in the class
model should be mapped to a schema with the
same name as the package.

2. Class-to-table: Every persistent class should be
mapped to a table with the same name as the
class. Furthermore, the table should have a
primary-key column with the type NUMBER and the
name being the class name with _tid appended.

3. Attribute-to-column—The class attributes have to
be appropriately mapped to columns, and some
columns may need to be related to other tables by
foreign key definitions. For simplicity, the attri-
bute mapping is not further considered in this
paper.

The above transformation would map the class
model in Figure 2C to the schema model in Figure
2D. The part of the result in Figure 2D shown in
green (lefthand and middle boxes) is handled by the
first two mappings. The blue part (righthand boxes)
corresponds to the result of the attribute-to-column
mapping.

Transformations expressed in QVT Relations
language

Example 1 shows how this transformation can be
expressed using the QVT Relations language, which
is a declarative language for model-to-model trans-
formations. The language has both a textual and a
graphical representation, but only the textual
representation is shown here. The transformation

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

declaration specifies two parameters for holding the
models involved in the transformation. The param-
eters are typed over the appropriate metamodels.
The execution direction is not fixed at transforma-
tion definition time, which means that both um1 and
rdbms could be source and target models and vice
versa. The user specifies the direction in which the
transformation has to be executed only upon
invoking the transformation.

Example 1

transformation umlRdbms {
uml : SimpleUML, rdbms : Simp1eRDBMS) {
key Table (name, schema);
key Column (name, table);

top relation PackageToSchema {
domain uml p:Package {name =pn}
domain rdbms s:Schema {name =pn}

top relation ClassToTable {
domain uml c:Class {
package =p:Package {},
isPersistent =true,

name =c¢cn

}
domain rdbms t:Table {

schema =s:Schema {},

name =cn,

cols=cl:Column {
name=cn+'_tid’,
type=/NUMBER'},

pkey =cl
}
when {
PackageToSchema (p, s);
}
where {
AttributeToColumn (c, t);
}

relation AttributeToColumn {

}

Each mapping is represented as a relation. A relation
has as many domain declarations as there are
models involved in the transformation. A domain is

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

bound to a model (e.g., um1) and declares a pattern,
which will be bound with elements from the model
to which the domain is bound. Such patterns consist
of a variable and a type declaration, which itself
may specify some of the properties of that type.
When the transformation is executed, the relations
are verified and, if necessary, enforced by manipu-
lating the target model. If the target model is empty,
its content is freshly created; otherwise, the existing
content is updated.

A relation may specify a condition under which it
applies by using a when clause. The where clause
specifies additional constraints among the involved
elements, which may need to be enforced. The key
definitions are used by the transformation engine to
identify objects that need to be updated during a
transformation execution. There is much more to
say about the execution semantics of QVT Relations,
and the interested reader is invited to explore the
QVT specification document."

UML-to-Java transformation

In this example, we consider the generation of Java
code from class models conforming to the meta-
model in Figure 2A. In particular, a Java class with
the appropriate attribute definitions and getters and
setters should be generated for each class in the
class model. Example 2 shows the desired output for
the input model from Figure 2C.

Example 2

public class Customer {
private String name;
private Address addr;

pubTic void setName (String name) {

this.name =name;

public String getName () {
return this.name;

public void setAddr (String addr) {
this.addr =addr;

public String getAddr () {
return this.addr;

}

CZARNECKI AND HELSEN

625

Model Transformation

e ———— |

Specification | | Transform- Rule Rule Source-Target | Incremen-| | Direction- | Tracing»
ation Rules» Application Organization» | | Relationship»| | tality» ality»
Control
Location Scheduling»

Determinaton »

Figure 3
Top-level feature diagram

The code can conveniently be generated using a
textual template approach, such as the openArchi-
tectureWare template language demonstrated in
Example 3. A template can be thought of as the
target text with holes for variable parts. The holes
contain metacode which is run at template instan-
tiation time to compute the variable parts. The
metacode in Example 3 is underlined. It has facilities
to iterate over the elements of the input model
(FOREACH), access the properties of the elements,
and call other templates (EXPAND).

Example 3

<<DEFINE Root FOR Class>>
public class <<name>> {
<<FOREACH attrs AS a>>
private <<a.type.name>> <<a.name>>;
<<ENDFOREACH>>
<<EXPAND AccessorMethods FOREACH attribute>>

}
<<ENDDEFINE>>

<<DEFINE AccessorMethods FOR Attribute>>
public <<type.name>> get<<name.toFirstUpper>>() {
return this.<<name>>;

}

public void set<<name.toFirstUpper>>(

<<type.name>> <<name>>) {

this.<<name>>=<<name>>

}
<<ENDDEFINE>>

FEATURES OF MODEL TRANSFORMATION
APPROACHES

This section presents the results of applying domain
analysis to existing model transformation ap-
proaches. Domain analysis is concerned with

626 CZARNECKI AND HELSEN

analyzing and modeling the variabilities and com-
monalities of systems or concepts in a given
domain.” We document our results using feature
diagrams.S‘L’55 Essentially, a feature diagram is a
hierarchy of common and variable features charac-
terizing the set of instances of a concept. In our case,
the features provide a terminology and representa-
tion of the design choices for model transformation
approaches. We do not aim for this terminology to
be normative. Unfortunately, the relatively new area
of model transformation has many overloaded
terms, and many of the terms we use in our
terminology are often used with different meanings
in the original descriptions of the different ap-
proaches. Consequently, we provide the definitions
of the terms as we use them. Furthermore, we
expect the terminology to evolve as our under-
standing of model transformation matures. Our
main goal is to show the vast range of available
choices as represented by the current approaches.

Figure 3 shows the top-level feature diagram, where
each subnode represents a major point of variation.
The fragment of the cardinality-based feature
modeling notation”™*’ used in this paper is further
explained in Table 7. Note that our feature diagrams
treat model-to-model and model-to-text approaches
uniformly. We will distinguish between these
categories later in the “Major Categories” section.
The description of the top-level features in Figure 3
follows.

e Specification—Some transformation approaches
provide a dedicated specification mechanism,
such as preconditions and postconditions ex-
pressed in Object Constraint Language (OCL).58 A
particular transformation specification may rep-
resent a function between source and target

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

models and be executable; however, in general,
specifications describe relations and are not
executable. The QVT-Partners59 submission dis-
tinguished between relations as potentially non-
executable specifications of transformations and
their executable implementations. The QVT spec-
ification’ still keeps this distinction, although the
Relations language is now meant to be used
primarily for expressing executable transforma-
tions.

* Transformation rules—In this paper, transforma-
tion rules are understood as a broad term
describing the smallest units of transformation.
Rewrite rules with a lefthand side (LHS) and a
righthand side (RHS) are obvious examples of
transformation rules; however, we also consider a
function or a procedure implementing some
transformation step as a transformation rule. In
fact, the boundary between rules and functions is
not so clear-cut; for example, function definitions
in modern functional languages such as Haskell
resemble rules with patterns on the left and
expressions on the right. Templates can be
considered as a degenerate form of rules, as
discussed later in the “Template-Based Ap-
proaches” section.

® Rule application control—This has two aspects:
location determination and scheduling. Location
determination is the strategy for determining the
model locations to which transformation rules are
applied. Scheduling determines the order in which
transformation rules are executed. Although con-
trol mechanisms usually address both aspects at
the same time, for presentation purposes, we
discuss them separately.

* Rule organization—This comprises general struc-
turing issues, such as modularization and reuse
mechanisms.

e Source-target relationship—This is concerned with
issues such as whether source and target are one
and the same model or two different models.

e Incrementality—This refers to the ability to update
existing target models based on changes in the
source models.

e Directionality—This describes whether a trans-
formation can be executed in only one direction
(unidirectional transformation) or multiple direc-
tions (multidirectional transformation).

e Tracing—This is concerned with the mechanisms
for recording different aspects of transformation
execution, such as creating and maintaining trace
links between source and target model elements.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Table 1 Symbols used in cardinality-based feature
modeling

Symbol Explanation
é Solitary feature with cardinality
F [1..1], i.e., mandatory feature
6 Solitary feature with cardinality
F [0..1], i.e., optional feature

Solitary feature with cardinality
[n.m], n>0A\m>nAm>1,
i.e., mandatory clonable feature

[n.,m]|

Grouped feature

™

F> Reference to feature model F
A xor-group
A or-group

Each of the following subsections elaborates on one
major area of variation represented as a reference in
Figure 3 by giving its feature diagram, describing the
different choices, and providing examples of ap-
proaches supporting a given feature. The diagrams
remain at a certain level of detail to fit the available
space; however, each feature could be further
analyzed uncovering additional subfeatures. Also,
the feature groups in the presented diagrams usually
express typical rather than all possible feature
combinations. For example, different language
paradigms (see Figure 5B later) are organized into
an xor-group rather than an or-group (Table 1).
Hybrid approaches may always provide any combi-
nations of these features, which would correspond
to an or-group.

Transformation rules
The features of transformation rules are given in
Figure 4A. Their descriptions follow.

Domains

A domain is the part of a rule responsible for
accessing one of the models on which the rule
operates. Rules usually have a source and a target
domain, but they may also involve more than two
domains. Transformations involving n domains are
sometimes referred to as n-way transformations.
Examples are model merging or model Weaving,31
which are transformations with more than one input
domain. In general, a set of domains can also be
seen as one large composite domain; however, it is

CZARNECKI AND HELSEN

627

Transformation Rules

(1.%]

Domain » Syntactic Multidirection- Application Intermediate | | Parameterization» | Reflection| | Aspects
Separation ality Conditions Structures
B
Domain

T

Domain Static Dynamic Mode Body Typing >
Language Mode Restriction
m Variables Patterns » Logic >
In Out In/Out
Figure 4
Features of transformation rules: (A) rules and (B) domains

useful to distinguish among individual domains
when writing transformations.

Domains can have different forms. In QVT Rela-
tions, a domain is a distinguished typed variable
with an associated pattern that can be matched in a
model of a given model type (Example 1). In a
rewrite rule, each side of the rule represents a
domain. In an implementation of a rule as an
imperative procedure, a domain corresponds to a
parameter and the code that navigates or creates
model elements by using the parameter as an entry
point. Furthermore, a rule may combine domains of
different forms. For example, the source domain of
the templates in Example 3 is captured by the
metacode, whereas the target domain has the form
of string patterns.

The features of a domain are shown in Figure 4B
and described in the following subsections:

Domain languages. A domain has an associated
domain language specification that describes the
possible structures of the models for that domain. In
the context of MDA, that specification has the form
of a metamodel expressed in the Meta Object Facility
(MOF**).60 Transformations with source and target
domains conforming to a single metamodel are
referred to as endogenous or rephrasings, whereas
transformations with different source and target
metamodels are referred to as exogenous or
translations.”" "

628 CZARNECKI AND HELSEN

Static modes. Similar to the parameters of a proce-
dure, domains have explicitly declared or implicitly
assumed static modes, such as in, out, or in/out.
Classical unidirectional rewrite rules with an LHS
and RHS can be thought of as having an in-domain
(source) and an out-domain (target), or a single in/
out-domain for in-place transformations. Multidi-
rectional rules, such as in MTF, assume all domains
to be in/out.

Dynamic mode restriction. Some approaches allow
dynamic mode restriction—restricting the static
modes at execution time. For example, MTF allows
marking any of the participating in/out-domains as
read-only, that is, restricting them to in for a
particular execution of a transformation. Essentially,
such restrictions define the execution direction.

Body. There are three subcategories under Body,
variables, patterns, and logic:

e Variables may hold elements from the source and/
or target models (or some intermediate elements).
They are sometimes referred to as metavariables
to distinguish them from variables that may be
part of the models being transformed (e.g., Java
variables in transformed Java programs).

* Patterns are model fragments with zero or more
variables. Sometimes, such as in the case of
templates, patterns can have not only variables
embedded in their body, but also expressions and
statements of the metalanguage. Depending on the

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Patterns

— e

Logic

Syntax

oy

Abstract Concrete

oy

Textual Graphical

— e —

Structure
Strings Terms Graphs
B
Language
Paradigm
Object-Oriented Functional Logic Procedural

Figure 5

Imperative
Assignment

Value Element
Specification Creation

P e S

Value Constraint Implicit Explicit
Binding

Features of the body of a domain: (A) patterns and (B) logic

internal representation of the models being trans-
formed, we can have string, term, or graph
patterns (Figure 5A). String patterns are used in
textual templates, as discussed later in the
“Template-Based Approaches” section. Model-to-
model transformations usually apply term or
graph patterns. Patterns can be represented using
the abstract or concrete syntax of the corre-
sponding source or target model language, and the
syntax can be textual or graphical.

* Logic expresses computations and constraints on
model elements (Figure 5B). Logic may follow
different programming paradigms such as object-
oriented or functional and be nonexecutable or
executable. Nonexecutable logic is used to specify
relationships among models. Executable logic can
take a declarative or imperative form. Examples of
the declarative form include OCL queries to
retrieve elements from the source model and the
implicit creation of target elements through con-
straints, as in the QVT Relations and Core
languages. Imperative logic often has the form of
program code calling repository application pro-
gramming interfaces (APIs) to manipulate models
directly. For instance, the Java Metadata Interface

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

(JMI)63 provides a Java API to access models in a
MOF repository. Imperative code uses imperative
assignment, whereas declarative approaches may
bind values to variables, as in functional pro-

gramming, or specify values through constraints.

Typing. The typing of variables, logic, and patterns
can be untyped, syntactically typed, or semantically
typed (Figure 6). Textual templates are examples of
untyped patterns (see the “Template-Based Ap-
proaches” section). In the case of syntactic typing, a
variable is associated with a metamodel element
whose instances it can hold. Semantic typing allows
stronger properties to be asserted, such as well-
formedness rules (static semantics) and behavioral
properties (dynamic semantics). A type system for a
transformation language could statically ensure for a
transformation that the models produced by the
transformation will satisfy a certain set of syntactic
and semantic properties, provided the input models
satisfy some syntactic and semantic properties.

Syntactic separation
Some approaches offer syntactic separation (see
Figure 4A). They clearly separate the parts of a rule

CZARNECKI AND HELSEN 629

Typing

Untyped Syntactically Typed Semantically Typed
Figure 6

Typing

Parameterization

—

Control Parameters Generics Higher-Order Rules

Figure 7
Parameterization

operating on one model from the parts operating on
other models. For example, classical rewrite rules
have an LHS operating on the source model and an
RHS operating on the target model. In other
approaches, such as a rule implemented as a Java
program, there might not be any such syntactic
distinction.

Multidirectionality

Multidirectionality refers to the ability to execute a
rule in different directions (see Figure 4A). Rules
supporting multidirectionality are usually defined
over in/out-domains. Multidirectional rules are
available in MTF and QVT Relations.

Application condition

Transformation rules in some approaches may have
an application condition (see Figure 4A) that must
be true in order for the rule to be executed. An
example is the when-clause in QVT Relations
(Example 1).

Intermediate structure

The execution of a rule may require the creation of
some additional intermediate structures (see Figure
4A) which are not part of the models being trans-
formed. These structures are often temporary and
require their own metamodel. A particular example
of intermediate structures are traceability links. In
contrast to other intermediate structures, trace-
ability links are usually persisted. Even if trace-
ability links are not persisted, some approaches,
such as AGG and VIATRA, rely on them to prevent

630 CZARNECKI AND HELSEN

multiple “firings” of a rule for the same input
element.

Parameterization

The simplest kind of parameterization is the use of
control parameters that allow passing values as
control flags (Figure 7). Control parameters are
useful for implementing policies. For example, a
transformation from class models to relational
schemas could have a control parameter specifying
which of the alternative patterns of object-relational
mapping should be used in a given execution.”
Generics allow passing data types, including model
element types, as parameters. Generics can help
make transformation rules more reusable. Generic
transformations have been described by Varré and
Pataricza."’ Finally, higher-order rules take other
rules as parameters and may provide even higher
levels of reuse and abstraction. Stratego64 is an
example of a term rewriting language for program
transformation supporting higher-order rules. We
are currently not aware of any model transformation
approaches with a first class support for higher-
order rules.

Reflection and aspects

Some authors advocate the support for reflection
and aspects (Figure 4) in transformation languages.
Reflection is supported in ATL by allowing reflective
access to transformation rules during the execution
of transformations. An aspect-oriented extension of
MTL was proposed by Silaghi et al.%® Reflection and
aspects can be used to express concerns that
crosscut several rules, such as custom traceability
management policies.66

Rule application control: Location determination
A rule needs to be applied to a specific location
within its source scope. As there may be more than
one match for a rule within a given source scope, we
need a strategy for determining the application
locations (Figure 8A). The strategy could be
deterministic, nondeterministic, or interactive. For
example, a deterministic strategy could exploit some
standard traversal strategy (such as depth first) over
the containment hierarchy in the source. Stratego64
is an example of a term rewriting language with a
rich mechanism for expressing traversal in tree
structures. Examples of nondeterministic strategies
include one-point application, where a rule is
applied to one nondeterministically selected loca-
tion, and concurrent application, where one rule is

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

I Rule Application Strategy |

N . l—‘ - . . L
I Deterministic ” Non-Deterministic ” Interactive |

I Concurrent | I One-Point |

Rule Scheduling

Rule Iteration Phasing

1 % % 1 * o
Non- Conflict Interactive

Deterministic | | Resolution

Y
Fixpoint
lteration

L]
Explicit Recursion | | Looping

Condition

I Rule Organization | I Source-Target Relationship I
e o =
Modularity Reuse Organizational I New Target | I Existing Target |
Mechanisms Mechanisms Structure
._. I I Update “ln-PIace |
Inheritance | | Logical Source- Target- Independent
Composition Oriented | | Oriented r/<'>\

I Destructive | I Extension Only |

. ® e

Dedicated Support
I

.
I Target-Incrementality | I Source-Incrementality | | Preservation of
User Edits in

the Target

Storage
Location

Creation

Automatic
O
Directionality

. g I—‘. . .I—‘ L,
I Unidirectional ”Multldlrectlonal |

Figure 8
Model transformation approach features: (A) location determination, (B) rule scheduling, (C) rule organization,
(D) source-target relationship, (E) incrementality, (F) directionality, and (G) tracing

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 CZARNECKI AND HELSEN 631

applied concurrently to all matching locations in the
source. Concurrent application is supported in
AToM3, AGG, and VIATRA. AGG offers critical pair
analysis to verify for a set of rules that there will be
no rules competing for the same source location.
Some tools, such as AToM3, allow the user to
determine the location for rule application inter-
actively.

The target location for a rule is usually determin-
istic. In an approach with separate source and target
models, traceability links can be used to determine
the target: A rule may follow the traceability link to
a target element that was created by another rule
and use the element as its own target. In the case of
in-place update, the source location becomes the
target location, although traceability links can also
be used (as later illustrated in Figure 10).

Rule application control: Rule scheduling
Scheduling mechanisms determine the order in
which individual rules are applied. Scheduling
mechanisms can vary in four main areas
(Figure 8B).

1. Form—The scheduling aspect can be expressed
implicitly or explicitly. Implicit scheduling implies
that the user has no explicit control over the
scheduling algorithm defined by the tool, as in
BOTL. The only way a user can influence the
system-defined scheduling algorithm is by de-
signing the patterns and logic of the rules to
ensure certain execution orders. For example, a
given rule could check for some information that
only some other rule would produce. Explicit
scheduling has dedicated constructs to explicitly
control the execution order. Explicit scheduling
can be internal or external. In external schedul-
ing, there is a clear separation between the rules
and the scheduling logic. For example, VIATRA
offers rule scheduling by an external finite state
machine. In contrast, internal scheduling is a
mechanism allowing a transformation rule to
directly invoke other rules, as in ATL or the code
template shown in Example 3.

2. Rule selection—Rules can be selected by an
explicit condition, as in MOLA. Some ap-
proaches, such as BOTL, offer a nondeterministic
choice. Alternatively, a conflict resolution mech-
anism based on priorities can be provided.
Interactive rule selection is also possible. Both

632 CZARNECKI AND HELSEN

priorities and interactive selection are supported
in AToM3.

3. Rule iteration—Rule iteration mechanisms in-
clude recursion, looping, and fixpoint iteration
(i.e., repeated application until no changes are
detected). For example, ATL supports recursion,
MOLA has a looping construct, and VIATRA
supports fixpoint iteration.

4. Phasing—The transformation process may be

organized into several phases, with each phase
having a specific purpose, and only certain rules
can be invoked in a given phase. For example,
structure-oriented approaches, such as OptimalJ
and the QVT submission by Interactive Objects
and partners,67 have a separate phase to create
the containment hierarchy of the target model
and a separate phase to set the attributes and
references in the target (see the “Structure-driven
approaches” section).

Rule organization

Rule organization is concerned with composing and
structuring multiple transformation rules. We con-
sider three areas of variation in this context
(Figure 8C):

1. Modularity mechanisms—Some approaches (e.g.,
QVT, ATL, MTL, and VIATRA) allow packaging
rules into modules. A module can import another
module to access its content.

2. Reuse mechanisms—Reuse mechanisms offer a
way to define a rule based on one or more other
rules. In general, scheduling mechanisms, such
as calling one rule from another, can be used to
define composite transformation rules. However,
some approaches offer dedicated reuse mecha-
nisms, such as inheritance between rules (e.g.,
rule inheritance,”® derivation,” extension,” and
specializationsg), inheritance between modules
(e.g., unit inheritanceGS), and logical composi-
tion.”

3. Organizational structure—Rules may be orga-
nized according to the structure of the source
language (as in attribute grammars, where
actions are attached to the elements of the source
language) or the target language, or they may
have their own independent organization. An
example of the organization according to the
structure of the target is the QVT submission by
Interactive Objects and partners.67 In this ap-
proach, there is one rule for each target element
type and the rules are nested according to the

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

containment hierarchy in the target metamodel.
For example, if the target language has a package
construct in which classes can be nested, the rule
for creating packages will contain the rule for
creating classes (which will contain rules for
creating attributes and methods).

Source-target relationship

Some approaches, such as ATL, mandate the
creation of a new target model that has to be
separate from the source (Figure 8D). However, in-
place transformation can be simulated in ATL
through an automatic copy mechanism. In some
other approaches, such as VIATRA and AGG, source
and target are always the same model; that is, they
only support in-place update. Yet other approaches,
for example, QVT Relations and MTF, allow creating
a new model or updating an existing one. QVT
Relations also support in-place update. Further-
more, an approach could allow a destructive update
of the existing target or an update by extension only,
that is, where existing model elements cannot be
removed. Approaches using nondeterministic selec-
tion and fixpoint iteration scheduling (see “Rule
Scheduling” section earlier) may restrict in-place
update to extension in order to ensure termination.
Alternatively, transformation rules may be orga-
nized into an expansion phase followed by a
contraction phase, which is often done in graph
transformation systems such as AGG.

Incrementality
Incrementality involves three different features
(Figure 8E):

1. Target incrementality—The basic feature of all
incremental transformations is target-incremen-
tality, that is, the ability to update existing target
models based on changes in the source models.
This basic feature is also referred to as change
propagation in the QVT final adopted specifica-
tion."” Obviously, target incrementality corre-
sponds to the feature update in Figure 8D, but it
is now seen from the change-propagation per-
spective. A target-incremental transformation
creates the target models if they are missing on
the first execution. A subsequent execution with
the same source models as in the previous
execution has to detect that the needed target
elements already exist. This detection can be
achieved, for example, by using traceability links.
When any of the source models are modified and

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

the transformation is executed again, the neces-
sary changes to the target are determined and
applied. At the same time, the target elements
that can be preserved are preserved.

2. Source incrementality—Source incrementality is
about minimizing the amount of source that
needs to be reexamined by a transformation
when the source is changed. Source incremen-
tality corresponds to incremental compilation: A
change impact analysis determines the total set of
source modules that need to be recompiled based
on the list of source modules that were changed.
Source incrementality is useful for working with
large source models.

3. Preservation of user edits in the target—Practical
scenarios in the context of model synchronization
require the ability to rerun a transformation on an
existing user-modified target to resynchronize the
target with a changed source while preserving the
user edits in the target. The dimensions of model
synchronization, such as the degree of preserva-
tion of user-provided input in the target models,
the degree of automation, and the frequency of
triggering, are discussed elsewhere.”’

Directionality

Transformations may be unidirectional or multi-
directional (Figure 8F). Unidirectional transforma-
tions can be executed in one direction only, in which
case a target model is computed (or updated) based
on a source model. Multidirectional transformations
can be executed in multiple directions, which is
particularly useful in the context of model synchro-
nization. Multidirectional transformations can be
achieved using multidirectional rules or by defining
several separate complementary unidirectional
rules, one for each direction.

Transformation rules usually have a functional
character: Given some input in the source model,
they produce a concrete result in the target model. A
declarative rule (i.e., one that only uses declarative
logic or patterns) can often be applied in the inverse
direction, too. However, as different inputs may lead
to the same output, the inverse of a rule may not be
a function. In this case, the inversion could
enumerate a number of possible solutions (this
could theoretically be infinite), or just establish a
part of the result in a concrete way (because the part
is the same for all solutions) and use variables,
defaults, or values already present in the result for
the rest of it. The invertibility of a transformation

CZARNECKI AND HELSEN 633

depends not only on the invertibility of the trans-
formation rules, but also on the invertibility of the
scheduling logic. In general, inverting a set of rules
may fail to produce any result due to nontermina-
tion.

Tracing

Tracing can be understood as the runtime footprint
of transformation execution (Figure 8G). Trace-
ability links are a common form of trace information
in model transformation, connecting source and
target elements, which are essentially instances of
the mapping between the source and target do-
mains. Traceability links can be established by
recoding the transformation rule and the source
elements that were involved in creating a given
target element. Trace information can be useful in
performing impact analysis (i.e., analyzing how
changing one model would affect other related
models), determining the target of a transformation
as in model synchronization, model-based debug-
ging (i.e., mapping the stepwise execution of an
implementation back to its high-level model), and in
debugging model transformations themselves.

Some approaches, such as QVT, ATL, and Tefkat,
provide dedicated support for tracing. Even without
dedicated support, as in the case of AGG, VIATRA
and GReAT, tracing information can always be
created just as any other target elements. Some
approaches with dedicated support, Tefkat for
example, require developers to manually encode the
creation of traceability links in the transformation
rules, while other approaches, such as QVT and
ATL, create traceability links automatically. In the
case of automated support, the approach may still
provide some control over what gets recorded. In
general, we might want to control (1) the kind of
information recorded (e.g., the links between source
and target elements, the rules that created them, and
a time stamp for the creation), (2) the abstraction
level of the recorded information (e.g., links for top-
level transformations only), and (3) the scope for
which the information is recorded (e.g., tracing for
particular rules or parts of the source only). Finally,
there is the choice of location where the links are
stored (e.g., in the source or target, or separately).

MAIJOR CATEGORIES

At the top level, we distinguish between model-to-

text and model-to-model transformation approaches.
The distinction between the two categories is that,
while a model-to-model transformation creates its

634 CZARNECKI AND HELSEN

target as an instance of the target metamodel, the
target of a model-to-text transformation is just
strings. For completeness, we mention the concept
of text-to-model transformation, but it essentially
comprises parsing and reverse-engineering technol-
ogies, which are beyond the scope of this paper.

Model-to-text transformation corresponds to the
concept of “pretty printing” in program transfor-
mation. Model-to-text approaches are useful for
generating both code and noncode artifacts such as
documents. In general, we can view transforming
models to code as a special case of model-to-model
transformations; we only need to provide a meta-
model for the target programming language. How-
ever, for practical reasons of reusing existing
compiler technology and for simplicity, code is often
generated simply as text, which is then fed into a
compiler. OMG issued an RFP for a MOF 2.0 Model-
to-Text Transformation Language in April 2004,”
which will eventually lead to a standard for mapping
MOF-based models to text.

Model-to-text approaches
In the model-to-text category, we distinguish be-
tween visitor-based and template-based approaches.

Visitor-based approach

A very basic code-generation approach consists in
providing some visitor mechanism to traverse the
internal representation of a model and write text to a
text stream. An example of this approach is Jamda—
an object-oriented framework providing a set of
classes to represent UML models, an API for
manipulating models, and a visitor mechanism
(CodeWriters) to generate code. Jamda does not
support the MOF standard to define new meta-
models; however, new model element types can be
introduced by subclassing the existing Java classes
that represent the predefined model element types.

Template-based approach

The majority of currently available MDA tools
support template-based model-to-text generation
(e.g., openArchitectureWare, JET, FUUT-je, Coda-
gen Architect, AndroMDA, ArcStyler, MetaEdit+,
and OptimalJ). AndroMDA reuses existing open-
source template-based generation technology: Ve-
locity71 and XDoclet.”” An example of the template-
based approach is shown in Example 3.

A template usually consists of the target text
containing splices of metacode to access information

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

from the source and to perform code selection and
iterative expansion. (For an introduction to tem-
plate-based code generation, see Cleaveland.73)
According to our terminology, the LHS uses ex-
ecutable logic to access source, and the RHS
combines untyped string patterns with executable
logic for code selection and iterative expansion.
Furthermore, there is no clear syntactic separation
between the LHS and RHS. Template approaches
usually offer user-defined scheduling in the internal
form of calling a template from within another
template.

The LHS logic accessing the source model may have
different forms. The logic could be simply Java code
accessing the API provided by the internal repre-
sentation of the source model such as JMI, or it
could be declarative queries, for example, in OCL or
XPath.”* The openArchitectureWare Generator
Framework propagates the idea of separating more
complex source access logic—which might need to
navigate and gather information from different
places of the source model—from templates by
moving the logic into user-defined operations of the
source-model elements.

Compared with a visitor-based transformation, the
structure of a template resembles more closely the
code to be generated. Templates lend themselves to
iterative development as they can be easily derived
from examples. Because the template approaches
discussed in this section operate on text, the patterns
they contain are untyped and can represent syntac-
tically or semantically incorrect code fragments. On
the other hand, textual templates are independent of
the target language and simplify the generation of
any textual artifacts, including documentation.

A related technology is frame processing, which
extends templates with more sophisticated adapta-
tion and structuring mechanisms (Bassett’s
frames,75 XVCL,76 XFrarner,77 ANGIEH78). To our
knowledge, XFramer and ANGIE have been applied
to generate code from models.

Model-to-model approaches

In the model-to-model category, we distinguish
among direct-manipulation, structure-driven, op-
erational, template-based, relational, graph-trans-
formation-based, and hybrid approaches.

Direct manipulation approach
This category of approach offers an internal model
representation and some APIs to manipulate it, such

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

as JML. It is usually implemented as an object-
oriented framework, which may also provide some
minimal infrastructure to organize the transforma-
tions (e.g., abstract class for transformations).
However, users usually have to implement trans-
formation rules, scheduling, tracing, and other
facilities, mostly from the beginning, in a program-
ming language such as Java.

Structure-driven approach

Approaches in this category have two distinct
phases: The first phase is concerned with creating
the hierarchical structure of the target model;
whereas, the second phase sets the attributes and
references in the target. The overall framework
determines the scheduling and application strategy;
users are only concerned with providing the trans-
formation rules.

An example of the structure-driven approach is the
model-to-model transformation framework provided
by OptimalJ. The framework is implemented in Java
and provides incremental copiers that users have to
subclass to define their own transformation rules.
The basic metaphor is the idea of copying model
elements from the source to the target, which can
then be adapted to achieve the desired transforma-
tion effect. The framework uses reflection to provide
a declarative interface. A transformation rule is
implemented as a method with an input parameter
whose type determines the source type of the rule,
and the method returns a Java object representing
the class of the target model element. Rules are not
allowed to have side effects, and scheduling is
completely determined by the framework.

Another structure-driven approach is the QVT
submission by Interactive Objects and Project
Technology.67 A special property of this approach is
the target-oriented rule organization, where there is
one rule per target element type and the nesting of
the rules corresponds to the containment hierarchy
in the target metamodel. The execution of this
model can be viewed as a top-down configuration of
the target model.

Operational approach

Approaches that are similar to direct manipulation
but offer more dedicated support for model trans-
formation are grouped in this category. A typical
solution in this category is to extend the utilized
metamodeling formalism with facilities for express-
ing computations. An example would be to extend a

CZARNECKI AND HELSEN

635

query language such as OCL with imperative
constructs. The combination of MOF with such
extended executable OCL becomes a fully-fledged
object-oriented programming system. Examples of
systems in this category are QVT Operational
mappings, XMF-Mosaic’s executable MOF, MTL,
C-SAW, and Kermeta. Specialized facilities such as
tracing may be offered through dedicated libraries.

Example 4 shows our sample transformation from
class models to schemas expressed in the QVT
Operational language. In contrast to the QVT
Relations solution from Example 1, the transforma-
tion declaration specifies the parameter modes; that
is, the transformation is executed only in one
direction from um1 to rdbms. The entry point for the
execution is the function main(), which invokes the
packageToSchema mapping on all packages and then
the attributeToColumn mapping on all attributes
contained in the input model um1. The mappings are
defined by using an imperative extension of OCL. A
mapping is defined as an operation on a model
element. For example, packageToSchema is an
operation of Package with Schema as its return type.
The body of the mapping populates the properties of
the return object, while self refers to the object on
which the mapping was invoked. QVT Operations is
a quite feature-rich language. The interested reader
is invited to explore the QVT specification
document.”

Example 4

transformation umlRdbms(
inuml : SimpleUML,
out rdbms : SimpleRDBMS

main() {
uml.objectsOfType(Package)->map packageToSchema();
uml.objectsOfType(Attribute)->map attributeToColumn();

mapping Package::packageToSchema () : Schema {
--population section for the schema
name :=self.name;
thls :=self.elems->map classToTable();

mapping Class::classToTable () : Table
when { self.isPersistent=true; }{

636 CZARNECKI AND HELSEN

name :=self.name;
key :=object Column {
name :=self.name +/_tid’;
type :='NUMBER’;
}s
cols :=key;
}
mapping Attributes::attributeToColumn () : Column {

Template-based approach

Model templates are models with embedded meta-
code that compute the variable parts of the resulting
template instances. Model templates are usually
expressed in the concrete syntax of the target
language, which helps the developer to predict the
result of template instantiation. The metacode can
have the form of annotations on model elements.
Typical annotations are conditions, iterations, and
expressions, all being part of the metalanguage. An
obvious choice for the expression language to be
used in the metalanguage is OCL.

A concrete model-template approach is given by
Czarnecki and Antkiewicz.”” In that approach, a
template of a UML model, such as a class or activity
diagram, is created by annotating model elements
with conditions or expressions represented as
stereotypes. A very simple example is shown in
Figure 9, which reuses the class model from Figure
2C. This time, however, the model is shown in its
UML concrete syntax. The class Address and the
addr attribute of Customer are annotated with the
presence condition addrFeature. When the tem-
plate is instantiated with addrFeature being true,
the resulting model is the same as the template. If
the condition is false, the annotated elements, which
are blue in the figure, are removed.

Relational approach

This category groups declarative approaches in
which the main concept is mathematical relations.
In general, relational approaches can be seen as a
form of constraint solving. Examples of relational
approaches are QVT Relations, MTF, Kent Model
Transformation Language, Tefkat, AMW, and map-
pings in XMF-Mosaic.

The basic idea is to specify the relations among
source and target element types using constraints. In

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

its pure form, such a specification is nonexecutable
(e.g., relations'®”” and mapping rules68). However,
declarative constraints can be given executable
semantics, such as in logic programming. In fact,
logic programming with its unification-based
matching, search, and backtracking seems a natural
choice to implement the relational approach, where
predicates can be used to describe the relations.
Gerber et al.” explore the application of logic
programming, in particular Mercury, a typed dialect
of Prolog, and F-logic, an object-oriented logic
paradigm, to implement transformations. An exam-
ple of the relational approach is shown in

Example 1.

All of the relational approaches are side-effect-free
and, in contrast to the imperative direct manipu-
lation approaches, create target elements implicitly.
Relational approaches can naturally support multi-
directional rules. They sometimes also provide
backtracking. Most relational approaches require
strict separation between source and target models;
that is, they do not allow in-place update.

Graph-transformation-based approach

This category of model transformation approaches
draws on the theoretical work on graph trans-
formations. In particular, this category operates on
typed, attributed, labeled graphs,so which can be
thought of as formal representations of simplified
class models. Examples include AGG, AToM3,
VIATRA, GReAT, UMLX, BOTL, MOLA, and Fujaba.

Graph transformation rules have an LHS and an RHS
graph pattern. The LHS pattern is matched in the
model being transformed and replaced by the RHS
pattern in place. The LHS often contains conditions
in addition to the LHS pattern, for example, negative
conditions. Some additional logic, for example, in
string and numeric domains, is needed to compute
target attribute values such as element names.
GReAT offers an extended form of patterns with
multiplicities on edges and nodes.

Graph patterns can be rendered in the concrete
syntax of their respective source or target language
(e.g., in VIATRA) or in the MOF abstract syntax
(e.g., in BOTL and AGG). The advantage of the
concrete syntax is that it is more familiar to
developers working with a given modeling language
than the abstract syntax. Also, for complex lan-
guages like UML, patterns in a concrete syntax tend

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

App

<<addrFeature>>
Address
{isPersistent=false}

Customer
{isPersistent=true}

name: String

<<addrFeature>>addr: Address addIn: String

Figure 9
Example of a model template

to be much more concise than patterns in the
corresponding abstract syntax (compare Figures 3C
and 9 and also see the work by Marschall and
Braun”® for examples). On the other hand, it is easy
to provide a default rendering for abstract syntax
that will work for any metamodel, which is useful
when no specialized concrete syntax is available.

AGG and AToM3 are systems directly implementing
the theoretical approach to attributed graphs and
transformations on such graphs. They have built-in
fixpoint scheduling with nondeterministic rule
selection and concurrent application to all matching
locations, and they rely on implicit scheduling by
the user. The transformation rules are unidirectional
and in-place.

Figure 10 illustrates how the transformation from
class models to schemas can be expressed in AGG.
Only two rules are shown. The rule in Figure 10A
maps packages to schemas. The mapping from
classes to tables is given in Figure 10B. The mapping
of attributes to columns is not shown. The RHS of an
AGG rule contains a mixture of the new elements
and elements from the LHS, as indicated by the
indexes prefixing their names. When the LHS is
matched, new elements are created. The implicit
scheduling is achieved through correspondence
objects connecting source and target elements
(which are an example of intermediate structures)
and negative conditions. For example, the package-
to-schema rule matches packages and creates the
corresponding schemas and the package-to-schema
correspondence objects (i.e., instances of P2S). Each
rule has a negative application condition, which is
implicitly assumed to be its RHS. Because of the
negative application condition, no additional sche-
ma objects will be created for a package that is
already connected to a schema by a P2S object.

CZARNECKI AND HELSEN

637

1:Package 1:Package
name = pn name = pn
srcT
—_— P2S
tarl Column
N name = cn+'_tid'
faem? type ='NUMBER'
name = pn
colsT pkey T
B
1:Class 1:Class Table
src tar
name = cn name = cn @O name = cn
isPersistent = true EE— isPersistent = true
tar tar ‘
2:Package ¢ 23:p2s 4:Schema 2:Package € L 3.2 4:Schema
Figure 10

Graph transformation in AGG: (A) package-to-schema rule and (B) class-to-table rule

Systems such as VIATRA, GReAT, MOLA, and
Fujaba extend the basic functionality of AGG and
AToM3 by adding explicit scheduling. For example,
VIATRA users can build state machines to schedule
transformation rules. The explicit representation of
scheduling in GReAT is a data-flow graph. MOLA
and Fujaba use control-flow graphs for that purpose.
The class-model-to-schema transformation ex-
pressed in MOLA is shown in Figure 11. Each
enclosing rectangular box represents a looping
construct. Boxes with rounded corners represent
looping conditions. The elements to be matched are
drawn using solid lines; dashed lines are used for
the elements to be created. The top condition
matches package objects. When a package object is
matched, the corresponding schema is created and
the body of the loop, which is another loop, is
executed. The latter loop iterates over all classes in
the package that was matched in the current
iteration of the outer loop and creates the corre-
sponding classes and primary-key columns. The
final step is a call to ProcessClassAttributes,
which is a subprogram mapping attributes to
columns.

Relational-style, multidirectional approaches based
on graph transformations are also possible. For
example, Ktinigs32 discusses using a transformation
approach based on triple-graph grammars to simu-
late QVT Relations.

638 CZARNECKI AND HELSEN

Hybrid approach

Hybrid approaches combine different techniques
from the previous categories. The different ap-
proaches can be combined as separate components
or, in a more fine-grained fashion, at the level of
individual rules. QVT is an example of a hybrid
approach with three separate components, namely
Relations, Operational mappings, and Core. Exam-
ples of the fine-grained combination are ATL and
YATL.

A transformation rule in ATL may be fully declar-
ative, hybrid, or fully imperative. The LHS of a fully
declarative rule (so-called source pattern) consists of
a set of syntactically typed variables with an
optional OCL constraint as a filter or navigation
logic. The RHS of a fully declarative rule (so-called
target pattern) contains a set of variables and some
declarative logic to bind the values of the attributes
in the target elements. In a hybrid rule, the source or
target patterns are complemented with a block of
imperative logic, which is run after the application
of the target pattern. A fully imperative rule (so-
called procedure) has a name, a set of formal
parameters, and an imperative block, but no
patterns. Rules are unidirectional and support rule
inheritance.

Other approaches

Two more approaches are mentioned for complete-
ness: transformation implemented using Extensible
Stylesheet Language Transformation (XSLTSI) and

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

»

Y

p:Package #packageToSchema s:Schema
name = @p.name
Y
@p:Package #packageToSchema @s:Schema
. t:Tabl cols I:Col
c:Class #classToTable L q Tl
{isPersistent = true} name = @c.name | pkey ' name :=@c.name+"_tid'
> type ='NUMBER'
\
C ProcessClassAttributes())

A4

o

Figure 11
Graph transformation in MOLA

the application of metaprogramming to model
transformation.

Because models can be serialized as Extensible
Markup Language (XML) using the XML Metadata
Interchange (XMI**),82 implementing model trans-
formations using XSLT, which is a standard tech-
nology for transforming XML, seems very attractive.
Such an approach can be classified as term rewriting
using a functional language. Unfortunately, the use
of XMI and XSLT has scalability limitations. Manual
implementation of model transformations in XSLT
quickly leads to non-maintainable implementations
because of the verbosity and poor readability of XMI
and XSLT. A solution is to generate the XSLT rules
from some more declarative rule descriptions, as
demonstrated in the work by Peltier et al.83’84;
however, even this approach suffers from poor
efficiency because of the copying required by the
pass-by-value semantics of XSLT and the poor
compactness of XMI.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

A more promising direction in applying traditional
metaprogramming techniques to model transforma-
tions has been proposed by Tratt.”” His solution is a
domain-specific language for model transformations
embedded in a metaprogramming language.

DISCUSSION

In this section, we comment on the practical
applicability of the different types of model trans-
formation. These comments are based on our
intuition and the application examples published
together with the approaches. Because of the lack of
controlled experiments and extensive practical
experience, these comments are not fully validated,
but we hope that they will stimulate discussion and
further evaluation.

Direct manipulation is obviously the most low-level
approach. In its basic form, it offers the user little or
no support or guidance in implementing trans-

formations. Essentially, all work has to be done by
the user. The approach can be improved by adding

CZARNECKI AND HELSEN

specialized libraries and frameworks implementing
facilities such as pattern matching and tracing.
Operational approaches are similar to direct ones
except that they offer an executable metamodeling
formalism through a dedicated language. Providing
specialized facilities through libraries and frame-
works seems to be an attractive way to improve the
support for model transformations in an evolu-
tionary way.

The structure-driven category covers pragmatic
approaches that were developed in the context of
(and seem to apply particularly well to) certain
kinds of applications such as generating Enterprise
JavaBeans** (EJB**) implementations and database
schemas from UML models. These applications
require strong support for transforming models with
a 1-to-1 and 1-to-n (and sometimes n-to-1) corre-
spondence between source and target elements.
Also, in this application context, there is typically no
need for iteration (and in particular fixpointing) in
scheduling, which can be system-defined. It is
unclear how well these approaches can support
other kinds of applications.

Template-based approaches make it easy for the
developer to predict the resulting code or models
just by looking at the templates. They also support
iterative development in which the developer can
start with a sample model or code and turn it into a
template. Current template-based approaches do not
have built-in support for tracing, although trace
information can be easily encoded in the templates.
Templates are particularly useful in code generation
and model compilation scenarios.

Relational approaches seem to strike a good balance
between flexibility and declarative expression. They
can provide multidirectionality and incrementality,
including the update of a manually modified target.
On the other hand, their power is contingent on the
sophistication of the underlying constraint-solving
facilities. As a result, performance strongly depends
on the kinds of constraints that need to be solved,
which may limit their applicability. In any case,
relational approaches seem to be most applicable to
model synchronization scenarios.

Graph-transformation-based approaches are in-
spired by theoretical work in graph transformations.
In their pure form, graph transformations are
declarative and also seem intuitive; however, the
usual fixpoint scheduling with concurrent applica-
tion makes them rather difficult to use due to the

640 CZARNECKI AND HELSEN

possible lack of confluence and termination. Exist-
ing theories for detecting such problems are not
general enough to cover the wide range of trans-
formations found in practice. As a result, tools such
as GReAT, VIATRA, and MOLA provide mecha-
nisms for explicit scheduling. It is often argued that
graph transformations are a natural choice for
model transformations because models are graphs.
As Batory points out,85 there are plenty of examples
of graph structures in practice, including the objects
in a Java program whose processing is usually not
understood as graph transformations. In our opin-
ion, a particular weakness of existing graph trans-
formation theories and tools is that they do not
consider ordered graphs, that is, graphs with
ordered edges. As a consequence, they are appli-
cable to models that contain predominantly un-
ordered collections, such as class diagrams with
classes having unordered collections of attributes
and methods. However, they do not apply well to
method bodies, where ordering is important, such as
in a list of statements. Ordering can be represented
by additional edges, but this approach leads to more
complex transformations. It is interesting to note
that ordering is well handled by classical program
transformation, which uses term rewriting on
abstract syntax trees (ASTs). Terms and ASTs are
ordered trees, and the order of child nodes is used to
encode lists of program elements such as state-
ments. Edge ordering can be modeled in graph
transformations by using edge attributes to attach an
index to each edge; however, current tools based on
graph transformation do not exploit this information
for more efficient pattern matching. Nevertheless,
graph transformation theory might turn out to be
useful for ensuring correctness in some application
scenarios. Fujaba is probably the largest and most
significant example of applying graph transforma-
tions to models to date. It remains to be seen what
impact these approaches will have on systems used
in practice.

Hybrid approaches allow the user to mix and match
different concepts and paradigms depending on the
application. Given the wide range of practical
scenarios, a comprehensive approach is likely to be
hybrid. A point in case is the QVT specification,
which also offers a hybrid solution.

RELATED WORK

The feature model and categorization presented in
. . . 86

this paper is based on our earlier paper. The

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

previous feature model has been widely discussed in
workshops and in personal communications. It has
also been used by other authors. For example,
Jouault and Kurtev™* give a classification of ATL and
AMW using the earlier version of the model.

The current feature model and categories take into
account the feedback that we have received based
on the original paper. They were also revised to
cover approaches that were proposed after 2003,
most prominently, the final adopted QVT specifica-
tion. Introducing domains into transformation rules
was one of the most important changes to the
feature model based on that specification. Only five
out of the 14 presented feature diagrams remained
unchanged compared with the original model,
namely, those in Figures 5A, 6, and 8A-8C. We also
added two new categories of model-to-model ap-
proaches, namely, operational and template-based
approaches.

In their review of the different QVT submissions,
Gardner et al.”’ propose a unified terminology to
enable a comparison of the different proposals. As
their scope of comparison is considerably different
from ours, there is not much overlap in terminology.
While Gardner et al. focus on the eight initial QVT
submissions, we discuss a wider range of ap-
proaches: In addition to the revised QVT submis-
sions, we also discuss other approaches published in
the literature and available in tools. Another differ-
ence is that Gardner et al. discuss model queries,
views, and transformations, whereas we focus on
transformations in more detail. The terms defined
by Gardner et al. that are also relevant for our
classification are model transformation, unidirec-
tional, bidirectional, declarative, imperative, and
rules.

In addition to providing the basic unifying termi-
nology, Gardner et al. discuss practical requirements
on model transformations such as requirements
scalability, simplicity, and ease of adoption. Among
others, they discuss the need to handle trans-
formation scenarios of different complexities, such
as transformations with different origin relation-
ships between source and target model elements, for
example, 1-to-1, 1-to-n, n-to-1, and n-to-m. Finally,
they make some recommendations for the final QVT
standard. In particular, they recommend a hybrid
approach, supporting declarative specification of
simpler transformations, but allowing for an im-
perative implementation of more complex ones.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Another account of requirements for model trans-
formation approaches is given by Sendall and
Kozaczynski.88

Mens and Van Gorp60 have also proposed a
classification of model transformations, which they
apply to graph transformation systems.89 That work
has been significantly influenced by our earlier
classification. The main difference is that their
classification is broader as it also covers different
aspects of model transformation tools such as
usability, extensibility, interoperability, and stan-
dards. In contrast, our feature model offers a more
detailed treatment of model transformation ap-
proaches. Another difference is that Mens and Van
Gorp present a flat list of dimensions, whereas our
dimensions are organized hierarchically. An exten-
sive comparison of graph transformation ap-
proaches using a common example is given by
Taentzer et al.”’

CONCLUSIONS

Model transformation is a relatively young area.
Although it is related to and builds upon the more
established fields of program transformation and
metaprogramming, the use of graphical modeling
languages and the application of object-oriented
metamodeling to language definitions set a new
context.

In this paper, we presented a feature model offering
a terminology for describing model transformation
approaches and making the different design choices
for such approaches explicit. We also surveyed and
classified existing approaches into visitor-based and
template-based model-to-text categories and direct-
manipulation, structure-driven, operational, tem-
plate-based, relational, graph-transformation-based,
and hybrid model-to-model categories.

Although there are satisfactory solutions for trans-
forming models to text (such as template-based
approaches), this is not the case for transforming
models to models. Many new approaches to model-
to-model transformation have been proposed over
the last three years, but relatively little experience is
available to assess their effectiveness in practical
applications. In this respect, we are still at the stage
of exploring possibilities and eliciting requirements.
Modeling tools available on the market are just
starting to offer some model-to-model transforma-
tion capabilities, but these are still very limited and

CZARNECKI AND HELSEN

641

often ad hoc, that is, without proper theoretical
foundation.

Evaluation of the different design options for a
model transformation approach will require more
experiments and practical experience.

ACKNOWLEDGMENTS

The authors thank Karl-Trygve Kalleberg for his
extensive feedback on earlier versions of the feature
model, Markus Volter for providing the template
examples in Examples 2 and 3, and Ulrich Eisenecker,
Don Batory, Jeff Gray, Laurence Tratt, Gabriele
Taentzer and the anonymous reviewers for their
valuable comments on a previous draft of the paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc., Sun Microsystems Inc., Compuware
Corporation, MetaCase Consulting, Interactive Objects Soft-
ware GmbH Corporation, The MathWorks, Inc., or Delta
Software Technology GmbH, in the United States, other
countries, or both.

CITED REFERENCES
1. T. Stahl and M. Volter, Model-Driven Software Develop-
ment—Technology, Engineering, Management, John Wi-
ley and Sons, Ltd., Chichester, England (in press June
2006), ISBN: 0470025700.

2. Object Management Group, MDA Guide, Version 1.0.1,
OMG Document omg/2003-06-01 (2003).

3. D. S. Frankel, Model Driven Architecture: Applying MDA
to Enterprise Computing, Wiley Press, Hoboken, NJ
(2003).

4. J. Sztipanovits and G. Karsai, “Model-Integrated Com-
puting,” Computer 30, No. 4, 110-111 (1997).

S. J. Greenfield and K. Short, Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and
Tools, John Wiley and Sons, Indianapolis, IN (2004).

6. K. Czarnecki, “Overview of Generative Software Devel-
opment,” Proceedings of Unconventional Programming
Paradigms, Mont Saint-Michel, France (2004), pp. 313-
328.

7. A. Kleppe, J. Warmer, and W. Bast, MDA Explained, The
Model Driven Architecture: Practice and Promise, Addi-
son-Wesley, Boston, MA (2003).

8. I Ivkovic and K. Kontogiannis, “Tracing Evolution
Changes of Software Artifacts through Model Synchroni-
zation,” Proceedings of the 20th IEEE International
Conference on Software Maintenance, Washington, DC
(2004), pp. 252-261.

9. R.I.Bull and J.-M. Favre, “Visualization in the Context of
Model Driven Engineering,” Proceedings of the Workshop
on Model Driven Development of Advanced User Inter-
faces, Montego Bay, Jamaica (2005), http://sunsite.

642 CZARNECKI AND HELSEN

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

informatik.rwth-aachen.de/Publications/CEUR-WS//
Vol-159/paper8.pdf.

A. Solberg, R. France, and R. Reddy, “Navigating the
MetaMuddle,” Proceedings of the 4th Workshop in
Software Model Engineering, Montego Bay, Jamaica
(2005), http://www.planetmde.org/wisme-2005/
NavigatingTheMetaMuddle.pdf.

G. Sunyé, D. Pollet, Y. Le Traon, and J.-M. Jézéquel,
“Refactoring UML Models,” Proceedings of the 4th
International Conference, Unified Modeling Language
Conference, Toronto, Canada (2001), pp. 134-148.

J. Zhang, Y. Lin, and J. Gray, “Generic and Domain-
Specific Model Refactoring Using a Model Transformation
Engine,” Chapter 9 in Model-Driven Software Develop-
ment, S. Beydeda, M. Book, and V. Gruhn, Editors,
Springer-Verlag, Heidelberg, Germany (2005),

pp. 199-218.

J.-M. Favre, “CacOphoNy: Metamodel-Driven Architec-
ture Reconstruction,” Proceedings of the Working Con-
ference on Reverse Engineering, Delft, The Netherlands
(2004), pp. 204-213.

Object Management Group, MOF 2.0 Query/Views/
Transformations RFP, OMG Document ad/2002-04-10
(revised on April 24, 2002).

Object Management Group, MOF QVT Final Adopted
Specification, OMG Adopted Specification ptc/05-11-01
(2005).

D. Varrd, G. Varr6, and A. Pataricza, “Designing the
Automatic Transformation of Visual Languages,” Science
of Computer Programming 44, No. 2, 205-227 (2002).

D. Varré and A. Pataricza, “Generic and Meta-Trans-
formations for Model Transformation Engineering,”
Proceedings of the 7th International Conference on the
Unified Modeling Language, Lisbon, Portugal (2004),
pp. 290-304.

D. H. Akehurstand S. J. H. Kent, “A Relational Approach to
Defining Transformations in a Metamodel,” Proceedings of
the Sth International Conference on the Unified Modeling
Language, Dresden, Germany (2002), pp. 243-258.

D. H. Akehurst, W. G. Howells, and K. D. McDonald-
Maier, “Kent Model Transformation Language,” Pro-
ceedings of Model Transformations in Practice Workshop,
MOoDELS Conference, Montego Bay, Jamaica (2005),
http://sosym.dcs.kcl.ac.uk/events/mtip05/submissions/
akehurst_howells_mcdonald-maier_ _kent_model_
transformation_language.pdf.

A. Gerber, M. Lawley, K. Raymond, J. Steel, and A.
Wood, “Transformation: The Missing Link of MDA,”
Proceedings of the 1st International Conference on Graph
Transformation, Barcelona, Spain (2002), pp. 90-105.

M. Lawley and J. Steel, “Practical Declarative Model
Transformation with Tefkat,” Proceedings of Model
Transformations in Practice Workshop, MoDELS Confer-
ence, Montego Bay, Jamaica (2005), http://sosym.dcs.
kcl.ac.uk/events/mtip05/submissions/

lawley_steel_ _practical_declarative_model_
transformation_with_tefkat.pdf.

A. Agrawal, G. Karsai, and F. Shi, Graph Transformations
on Domain-Specific Models, Technical Report ISIS-03-403,
Institute for Software Integrated Systems, Vanderbilt
University, Nashville, TN 37203 (2003).

J. Bézivin, G. Dupé, F. Jouault, G. Pitette, and J. E.
Rougui, “First Experiments with the ATL Model Trans-
formation Language: Transforming XSLT into XQuery,”
Proceedings of the Workshop on Generative Techniques in
the Context of Model Driven Architecture, Anaheim, CA

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

24.

25.

20.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

(2003), http://www.softmetaware.com/oopsla2003/
bezivin.pdf.

F. Jouault and I. Kurtev, “Transforming Models with
ATL,” Proceedings of Model Transformations in Practice
Workshop (MTIP), MoDELS Conference, Montego Bay,
Jamaica (2005), http://sosym.dcs.kcl.ac.uk/events/
mtip05/submissions/

jouault_kurtev_ _transforming_models_with_atl.pdf.

E. D. Willink, “UMLX: A Graphical Transformation
Language for MDA,” Proceedings of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Anaheim,
CA(2003), pp. 13-24 (2003).

J. de Lara and H. Vangheluwe, “AToM: A Tool for Multi-
Formalism and Meta-Modeling,” Proceedings of the 5th
International Conference on Fundamental Approaches to
Software Engineering, Grenoble, France (2002), pp. 174-188.

P. Braun and F. Marschall, The Bi-directional Object-
Oriented Transformation Language, Technical Report
TUM-I0307, Technische Universitit Miinchen 85748,
Miinchen, Germany (May 2003).

F. Marschall and P. Braun, “Model Transformations for
the MDA with BOTL,” Proceedings of the Workshop on
Model Driven Architecture: Foundations and Applica-
tions, Enschede, The Netherlands (2003), pp. 25-36.

A. Kalnins, J. Barzdins, and E. Celms, “Model Trans-
formation Language MOLA,” Proceedings of Model Driven
Architecture: Foundations and Applications, Linkoeping,
Sweden (2004), pp. 14-28.

G. Taentzer, “AGG: A Graph Transformation Environ-
ment for Modeling and Validation of Software,” Appli-
cation of Graph Transformations with Industrial
Relevance (AGTIVE’03) 3062, pp. 446-453 (2003).

J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez,
“Modeling in the Large and Modeling in the Small,”
Proceedings of the European MDA Workshops: Founda-
tions and Applications, Twente, The Netherlands (2003),
and Linkoeping, Sweden (2004), pp. 33-46.

A. Konigs, “Model Transformation with Triple Graph
Grammars,” Proceedings of Model Transformations in
Practice Workshop at MoDELS Conference, Montego Bay,
Jamaica (2005), http://www.es.tu-darmstadt.de/
download/publications/koenigs/
model_transformation_with_triple_graph_grammars.pdf.
D. Vojtisek and J.-M. Jézéquel, “MTL and Umlaut NG:
Engine and Framework for Model Transformation,”
http://www.ercim.org/publication/Ercim_News/enw58/
vojtisek.html.

0. Patrascoiu, “YATL: Yet Another Transformation
Language,” Proceedings of the 1st European MDA Work-
shop, Twente, The Netherlands (2004), pp. 83-90.

P.-A. Muller, F. Fleurey, and J.-M. Jézéquel, “Weaving
Executability into Object-Oriented Metalanguages,”
ACM/IEEE 8th International Conference on Model Driven
Engineering Languages and Systems, Montego Bay,
Jamaica (2005), pp. 264-278.

J. Gray, Y. Lin, and J. Zhang, “Automating Change
Evolution in Model-Driven Engineering,” IEEE Computer
(Special issue on Model-Driven Engineering) 36, No. 2,
51-58 (February 2006), http://www.cis.uab.edu/gray/
Pubs/computer.pdf.

L. Tratt, “The MT Model Transformation Language,”
Proceedings of ACM SIGAPP Symposium on Applied
Computing, Dijon, France (2006), http://portal.acm.org/
affiliated/citation.cfm?id=1141277.1141577&coll=ACM
&dI=ACM&type=series&idx=1141277&part=Proceedings&
WantType=Proceedings&title=Symposium%200n%
20Applied%20Computing&CFID=15151515&
CFTOKEN=6184618.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

38.
39.

40.

41.

42.

43.

44.

45.
46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

AndroMDA 2.0.3, http://www.andromda.org.

openArchitectureWare (0AW), http://www.
openarchitectureware.org/.

Fujaba Tool Suite 4, University of Paderborn Software
Engineering, http://www.fujaba.de.

JAMDA, Java Model Driven Architecture 0.2, http://
sourceforge.net/projects/jamda.

R. Pompa, Java Emitter Templates (JET) Tutorial, Azzurri
Ltd. (June 2005), http://www.eclipse.org/articles/
Article-JET/jet_tutoriall.html.

G. van Emde Boas, The Fantastic, Unique, UML Tool for
the Java Environment (FUUT-je), http://www.bronstee.
com/index.php?id=FUUT-je.

Model Transformation Framework (MTF), IBM United
Kingdom Laboratories Ltd., IBM alphaWorks (2004),
http://www.alphaworks.ibm.com/tech/mtf.

XMF-Mosaic, Xactium, http://xactium.com.

OptimalJ 4.0, User’s Guide, Compuware (June 2005),
http://www.compuware.com/products/optimalj.

J.-P. Tolvanen, “Making Model-Based Code Generation
Work,” Embedded Systems Europe, pp. 36-38 (August/
September 2004), http://i.cmpnet.com/embedded/
europe/esesep04/esesep04p36.pdf.

Domain-Specific Modeling with MetaEdit+, MetaCase,
http://www.metacase.com/.

ArcStyler 5.1, Interactive Objects Software GmbH, http://
www.arcstyler.com.

Codagen Architect 3.0, Codagen Technologies Corp.,
http://www.codagen.com/products/architect/default.
htm.

H. Partsch and R. Steinbriiggen, “Program Transforma-
tion Systems,” ACM Computing Surveys 15, No. 3, 199-
236 (1983).

H. Partsch, Specification and Transformation of Pro-
grams—a Formal Approach to Software Development,
Springer-Verlag, Berlin, Germany (1990).

K. Czarnecki, “Domain Engineering,” in Encyclopedia of
Software Engineering Second Edition, J. J. Marciniak,
Editor, John Wiley and Sons, Inc., Hoboken, NJ (2002),
pp. 433-444.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Nowak, and
A. S. Peterson, Feature-Oriented Domain Analysis
(FODA) Feasibility Study, Technical Report CMU/SEI-90-
TR-21, Software Engineereing Institute, Carnegie Mellon
University, Pittsburgh, PA 15213 (1990).

K. Czarnecki and U. W. Eisenecker, Generative Program-
ming: Methods, Tools, and Applications, Addison-Wesley
Professional, Boston, MA (2000).

K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing
Cardinality-Based Feature Models and Their Special-
ization,” Software Process: Improvement and Practice 10,
No. 1, 7-29 (2005).

C. H. P. Kim and K. Czarnecki, “Synchronizing Cardin-
ality-Based Feature Models and their Specializations,”
Proceedings of the European Conference on Model Driven
Architecture, Nuremberg, Germany (2005), swen.
uwaterloo.ca/~kczarnec/ecmda05.pdf.

E. Cariou, R. Marvie, L. Seinturier, and L. Duchien, Model
Transformation Contracts and Their Definition in UML
and OCL, Technical Report LIFL 2004-n°08, Laboratoire
d’Informatique Fondamentale de Lille, Université des
Sciences et Technologies de Lille, 59655 Villeneuve
d’Ascq Cedex, France (2004).

MOF Query/Views/Transformations, OMG Document ad/
03-08-08, Object Management Group, Inc., (revised in
August 2003).

CZARNECKI AND HELSEN

643

60.

61.

62.

63.

64.

65.

60.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

Meta Object Facility (MOF) 2.0 Core Specification, OMG
Adopted Specification ptc/03-10-04, Object Management
Group, Inc., (2003).

T. Mens and P. Van Gorp, “A Taxonomy of Model
Transformation and Its Application to Graph Trans-
formation,” Proceedings of the International Workshop on
Graph and Model Transformation, Tallinn, Estonia
(2005), pp. 7-23.

E. Visser, Program-Transformation.Org: The Program
Transformation Wiki, http://www.program-transformation.
org/Transform/ProgramTransformation.

Java Metadata Interface 1.0 (JMI), Sun Microsystems,
Inc. (June 2002), http://java.sun.com/products/jmi.

E. Visser, “Program Transformation with Stratego/XT:
Rules, Strategies, Tools, and Systems in StrategoXT-0.9,”
Proceedings of the International Domain-Specific Program
Generation Seminar, Dagstuhl, Germany (2003),

pp. 216-238.

R. Silaghi, F. Fondement, and A. Strohmeier, “ ‘Weaving’
MTL Model Transformations,” Proceedings of the Euro-
pean MDA Workshops: Foundations and Applications,
Twente, The Netherlands (2003), and Linkoeping,
Sweden (2004), pp. 123-138.

1. Kurtev, Adaptability of Model Transformations, PhD
thesis, University of Twente, Enschede, The Netherlands
(2005), http://wwwhome.cs.utwente.nl/~kurtev/files/
thesis.pdf.

Object Management Group, Interactive Objects and
Project Technology, MOF Query/Views/Transformations,
OMG Document ad/03-08-11, ad/03-08-12, and ad/03-08-
13 (revised submission, 2003).

Object Management Group, Response to the MOF 2.0
Query/Views/Transformations RFP (ad/2002-04-10),
OMG Document ad/2003-08-05 (2003).

Object Management Group, MOF Query/Views/Trans-
formations, First Revised Submission, OMG Document
ad/03-08-03 (2003).

Object Management Group, MOF Model to Text Trans-
formation Language RFP, OMG Document ad/2004-04-07
(2004).

Velocity 1.4, The Apache Jakarta Project, The Apache
Software Foundation, http://jakarta.apache.org/velocity.

XDoclet—Attribute Oriented Programming, http://
xdoclet.sourceforge.net/xdoclet/index.html.

J. C. Cleaveland, Program Generators with XML and Java,
Prentice-Hall, Upper Saddle River, NJ (2001).

XML Path Language (XPath) 2.0, A. Berglund, S. Boag, D.
Chamberlin, M. F. Fernandez, M. Kay, J. Robie, and J.
Siméon, Editors,W3C Candidate Recommendation (No-
vember 3, 2005), http://www.w3.org/TR/xpath20/.

P. G. Bassett, Framing Software Reuse: Lessons from the
Real World, Prentice-Hall, Inc., Upper Saddle River, NJ
(1997).

S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang, “XVCL:
XML-Based Variant Configuration Language,” Proceed-
ings of the International Conference on Software Engi-
neering, Portland, OR (2003), pp. 810-811.

M. Emrich, Generative Programming Using Frame Tech-
nology, Diploma thesis, University of Applied Sciences,
Department of Computer Science and Micro-System
Engineering, Kaiserslautern, Germany (2003).

Frame Processor ANGIE, Delta Software Technology,
http://www.d-s-t-g.com/neu/media/pdf/facts_e/
DLT21474.pdf.

K. Czarnecki and M. Antkiewicz, “Mapping Features to
Models: A Template Approach Based on Superimposed

644 CZARNECKI AND HELSEN

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Variants,” Proceedings of the 4th International Conference
on Generative Programming and Component Engineering,
Tallinn, Estonia (2005), pp. 422-437.

M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J.
Kreowski, S. Kuske, D. Plump, A. Schiirr, and G.
Taentzer, Graph Transformation for Specification and
Programming, Technical Report 7/96, University of
Bremen, 1-D-28359 Bremen, Germany (1996).

XSL Transformations (XSLT), Version 1.0, James Clark,
Editor, W3C Recommendation (November 16, 1999),
http://www.w3.org/TR/xslt.

MOF 2.0/XMI Mapping Specification, Version 2.1, OMG
Document formal/05-09-01, Object Management Group,
Inc. (2005).

M. Peltier, F. Ziserman, and J. Bézivin, “On Levels of
Model Transformation,” XML Europe, Paris, France
(2000), pp. 1-17. Graphic Communications Association,
2000.

M. Peltier, J. Bézivin, and G. Guillaume, “MTRANS: A
General Framework, Based on XSLT, for Model Trans-
formations,” Proceedings of the Workshop on Trans-
formations in UML, Genova, Italy (April 2001), http://
Www.sciences.univ-nantes.fr/lina/atl/www/papers/
peltier-bezivin-guillaume.pdf.

D. Batory, “Multilevel Models in Model-Driven Engi-
neering, Product Lines, and Metaprogramming,” IBM
Systems Journal 45, No. 3, 527-540 (2006, this issue).

K. Czarnecki and S. Helsen, “Classification of Model
Transformation Approaches,” Proceedings of the 2nd
Workshop on Generative Techniques in the Context of
MDA, Anaheim, CA (2003), http://www.swen.
uwaterloo.ca/~kczarnec/ECE750T7/czarnecki_helsen.
pdf.

T. Gardner, C. Griffin, J. Koehler, and R. Hauser, “A
Review of OMG MOF 2.0 Query/Views/Transformations
Submissions and Recommendations Toward the Final
Standard,” Object Management Group, OMG Document
ad/03-08-02 (2003), http://www.omg.org/cgi-bin/
doc?ad/03-08-02.

S. Sendall and W. Kozaczynski, “Model Transformation:
The Heart and Soul of Model-Driven Software Develop-
ment,” IEEE Software 20, No. 5, 42-45 (2003).

T. Mens, P. Van Gorp, D. Varrd, and G. Karsai, “Applying
a Model Transformation Taxonomy to Graph Trans-
formation Technology,” Proceedings of the International
Workshop on Graph and Model Transformation, Tallinn,
Estonia (2005), pp. 24-39.

K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Leven-
dovszky, U. Prange, G. Taentzer, D. Varrd, and S. Varré-
Gyapay, “Model Transformation by Graph Transforma-
tion: A Comparative Study,” Proceedings of Model
Transformations in Practice Workshop, MoDELS Confer-
ence, Montego Bay, Jamaica (2005), http://www.inf.mit.
bme.hu/FTSRG/Publications/varro/2005/mtip05.pdf.

Accepted for publication January 25, 2006.
Published online July 25, 2006.

Krzysztof Czarnecki

University of Waterloo, Department of Electrical & Computer
Engineering, 200 University Avenue West, Waterloo,

ON N2L 3G1, Canada (kczarnec@swen.uwaterloo.ca).

Dr. Czarnecki is an Assistant Professor at the University of

Waterloo. He is a coauthor of Generative Programming:
Methods, Tools, and Applications (Addison-Wesley, 2000),
regarded as a foundational work in its area and used as a

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

graduate text at universities around the world. Dr. Czarnecki’s
current work focuses on realizing the synergies between
generative and model-driven software development.

Simon Helsen

SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany
(simon.helsen@sap.com). Dr. Helsen is a senior developer at
SAP AG, where he works on modeling infrastructure software
for SAP NetWeaver® development tools. He has an
Informatics degree from the University of Leuven (Belgium)
and a Ph.D. degree in computer science from the University of
Freiburg (Germany). Dr. Helsen’s current interests are in
scalable model-driven software engineering, domain-specific
languages, and model transformations. M

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 CZARNECKI AND HELSEN 645

