
Model Driven Development for
Business Performance
Management

&

P. Chowdhary

K. Bhaskaran

N. S. Caswell

H. Chang

T. Chao

S.-K. Chen

M. Dikun

H. Lei

J.-J. Jeng

S. Kapoor

C. A. Lang

G. Mihaila

I. Stanoi

L. Zeng

Business process integration and monitoring provides an invaluable means for an

enterprise to adapt to changing conditions. However, developing such applications

using traditional methods is challenging because of the intrinsic complexity of

integrating large-scale business processes and existing applications. Model Driven

Developmente (MDDe) is an approach to developing applications—from domain-

specific models to platform-sensitive models—that bridges the gap between business

processes and information technology. We describe the MDD framework and

methodology used to create the IBM Business Performance Management (BPM)

solution. We describe how we apply model-driven techniques to BPM and present a

scenario from a pilot project in which these techniques were applied. Technical details

on models and transformation are presented. Our framework uses and extends the

IBM business observation metamodel and introduces a data warehouse metamodel

and other platform-specific and transformational models. We discuss our lessons

learned and present the general guidelines for using MDD to develop enterprise-scale

applications.

INTRODUCTION

Business Performance Management (BPM)
1–4

has

emerged as a critical discipline to enable enterprises

to manage their business solutions in an on demand

fashion. Gartner has coined the term business

activity monitoring (BAM)
3

and predicts significant

growth in this area. With such wide interest, the

market has been flooded with terminology similar to

BAM, creating some confusion. It is not the intent of

this paper to attempt to clarify this confusion; we

direct the reader to Reference 2, which describes in

detail the IBM BPM approach and how it is

positioned with respect to competing terminology.

Even before Gartner drew attention to the need large

enterprises had for BAM, Stephan Haeckel of the

IBM Advanced Business Institute described in his

book the transformation from a make-and-sell

organization to a sense-and-respond organization.
5

Inspired by Haeckel’s work and market needs,

various IBM divisions have been developing meth-

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 CHOWDHARY ET AL. 587

odologies, frameworks, tools, and software compo-

nents to support adaptive enterprises. IBM Research

has been active in the development of this technol-

ogy and has sponsored several pilot projects
6,7

to

better understand its applicability and benefits.

From the IBM point of view,
1,2

a BPM system is an

on demand platform for business performance

monitoring and control. It takes data monitored

from targeted business solutions and events, in-

vokes BPM services, and renders actions back to the

target business solutions. The BPM reference archi-

tecture and its components are described in Refer-

ence 2, p. 37. The BPM architecture for our solution

closely follows the reference architecture.

Originally, models were used in software develop-

ment solely for the purpose of documentation and

presentation. The advent of extensible tools
8,9

brought about Model Driven Development**

(MDD**). With it, users could create new notations

to express an artifact in a model and attach software

components to it. This ability makes it possible to

automate the transformation of user-annotated

enhanced models into deployed code and services. In

recent years, new emphasis in research and devel-

opment has focused on MDD
10,11

as an alternative to

traditional software development methodology.

Once BPM systems are implemented, they are very

hard to change because they are engineered as

software development solutions that are linear and

rigid or because the monitoring solution derives

from process models. Solutions derived from pro-

cesses are flexible but not comprehensive enough to

include the nonprocess metrics needed to represent

the full state of a business. Thus, a BPM approach

not based on models can fall short of fully meeting

business needs.

The abstraction of the BPM solution to higher-level

models, as we propose, overcomes the shortcomings

of BPM alone. It enables business analysts and

system architects to contribute directly to the

solution. The MDD approach to BPM means that

business goals can be defined independent of an

information technology (IT) platform. Business-

level models either provide linkage to or can be

automatically transformed directly to IT-level mod-

els using transformation routines. MDD can quickly

reflect changing business goals and monitoring

needs through models. This paper explains our

modeling approach to BPM and demonstrates the

ease of use of our modeling framework. We also

describe the modeling annotations of various

artifacts that make up the BPM solution and the

process of automating the production of code from

model to deployment.

OVERVIEW OF OUR APPROACH
We have developed a technology framework and

software platform to represent a BPM solution by

using formal BPM models in a top-down fashion.

We have also developed model software compo-

nents that can be attached to a modeling tool and

that can automate the transformation of BPM

models into deployable code.

The BPM modeling framework is a refinement and

augmentation of the observation metamodel. At a

high level, it captures the following aspects of a BPM

solution: information gathering from real-time

business events and other data sources, information

aggregation to calculate business metrics, recogni-

tion of situations warranting business actions, and

the invocation of actions that address the situations

detected.

To enable the representation of a solution using

models, we decompose various aspects of BPM into

smaller manageable components, called BPM ele-

ments. These elements, together with their opera-

tional semantics, comprise the BPM metamodel. The

elements are designed with ease of use in mind and

are at the same time rich enough to represent a

complete BPM solution. To represent BPM elements,

we chose Unified Modeling Language** (UML**)

with UML Version 2.0 (UML2) profiles
12

for exten-

sion. We selected IBM Rational* Software Architect

(RSA), which supports UML model extensions. Fig-
ure 1 represents the various BPM elements and their

relationships with one another. Together, they

collectively comprise the BPM metamodel.

The UML representation of the metamodel helps if

one is designing a solution from the beginning, but if

someone has an existing solution in some repre-

sentation and does not want to start with BPM UML

models, we also provide a representation of the BPM

metamodel as an Extensible Markup Language

(XML) definition.
13

This enables users to transform

their solution into an XML representation.

A BPM solution as a UML model can be created with

the elements shown in Figure 1 by using the RSA

modeling tool. One can then use the software

component plug-in to perform an automated trans-

CHOWDHARY ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006588

formation of the model into a deployment module

(e.g., a monitor runtime, data warehouse, or dash-

board module). The automated transformation hides

the complex inner workings of the transformations

that create intermediate metamodels. The code is

generated based on these intermediate models and

finally packaged for deployment. One can make

changes to the intermediate models to further

augment the model if desired, but normally it is not

needed. One also has the choice to go back to the

UML model and make changes as needed. This can

be an iterative process until a satisfactory version of

the model is created. With MDD, business analysts

can visually design BPM solutions without devel-

opment team involvement.

Figure 2 shows the BPM tooling flow and user

roles. In the modeling stage, one can start with

either an XML editor or RSA. Both approaches

can generate an observation model (OM), repre-

sented in the XML Metadata Interchange (XMI**)

format.
14

In this paper, we focus on using the

RSA approach.

Once the model is created, the transformation

generates intermediate models, such as the OM and

the data warehouse model. The intermediate models

then generate code. In the figure, we show

observation, action, and visibility code being gen-

erated. The code generated then generates what we

call a deployment module, and each module

contains multiple services.

The next step is to deploy these service components

to their respective runtime environments. Figure 3

shows input sources and the deployment of BPM

components, including their respective software.

(The indicated execution steps are discussed later in

the section on sample scenario execution.)

Input sources are modeled in UML. (Later we

describe how to represent such input sources.) If an

ad hoc event is input, then the data is sent through

the event infrastructure, which could be, for

example, an Enterprise Service Bus (ESB)
15

or

Common Event Infrastructure (CEI)
16

(our choice).

Decision Map

Data Warehouse

Metric

Business
Event

Metric
(Key)

Management
Dashboard

Situation

Business Action Business Action

Fact Table

Figure 1
BPM metamodel: elements and operational semantics

Management Context

eventContextLink

Map

Data Store
(External)

Metric
Map

MetricMetric

measureDimensionLink attributeDimensionLink

Dimension Table

Map

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 CHOWDHARY ET AL. 589

BPM services is a collection of runtime services and

their deployment scripts generated from the BPM

models. The BPM services collectively process

incoming data, correlate and compute metrics,

evaluate business or IT situations, send alert

notifications through preferred channels, and store

processed data in an operational data store (ODS).

The Extraction, Transformation, and Loading (ETL)

service processes data by pulling it from the ODS on

a periodic basis, transforming the data, and storing

transformed data in the data warehouse. The

management dashboard retrieves data from the data

warehouse and generates reports.

Advantages of the MDD approach

Our MDD approach to BPM has advantages over

general IT systems development because the ex-

pressive power of our BPM metamodel is purposely

restricted to generic and relatively simple con-

structs, such as metrics, maps, dimensions, business

events, situations, and actions (Figure 1). By

restricting the expressive power, we assure that a

well-defined, nonambiguous solution is generated.

In addition, our model takes a holistic view of

monitoring requirements and can represent them

with formal models. Our solution also performs

basic model validation to assure that the BPM

elements used are semantically correct and can be

automatically transformed into deployable code.

Our solution is deterministic and repetitive and

supports the iterative MDD approach. It also

generates a default dashboard component that can

be deployed on the IBM DB2* Alphablox
17

; hence,

one can view the output of a modeled solution and

change or add features to the models.

This basic approach has been further refined and the

software transformation components made more

UML2 Model-Driven
Business Transformation
(MDBT) Profile

Figure 2
BPM tooling flow

Monitoring and Action
Services

Refactored
Observation

Model

Action
Configuration

Expression Java**

Classes

Data Management
and Workplace Services

Warehouse
Schema

Online Analytic
Process (OLAP)
Cube Definitions

Extraction,
Transformation, and
Loading (ETL) Logic

Management
Dashboard

RSA

XML Schema
for BPM

BPM Model
in UML

XML-to-XMI
Transformer

Observation
Model

Data Warehouse
Model

BPM Model
in XML

XML Editor

Eclipse UML2
Transformation
Plug-in

Modeling

Business Analyst
and Solution
Designer

Modeling Transformation

System

Intermediate Model

System / IT Architect

Code Generation

System

Deployment

IT Deployment

Visibility Code
Generation

Observation
and
Action Code
Generation

**Trademark of Sun Microsystems, Inc.

CHOWDHARY ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006590

robust by implementing the solution on many IBM

Research projects, such as Distributed Enterprise

Services (DES) and On Demand Distributed Com-

puting Services (ODCS). MDD BPM is still in an

early stage of development, but is expected to

continue gaining wider acceptance. The work we are

presenting is part of the larger Model Driven

Business Transformation (MDBT) toolkit effort

within IBM Research. The MDBT toolkit with

instruction documents is available to download.

Related work

Due to its high-level abstraction and code reuse

feature, the MDD methodology has been widely

applied in related areas such as software reuse,
18,19

reverse engineering,
20

and user interface design.
21

The benefits of adopting MDD include reduced

software development time, enhanced code quality,

and improved code maintenance.
10,22

There are also numerous related works about

business processes. Widely considered as an exten-

sion of a workflow management system, business

process management enables the management and

analysis of operational business processes.
23

Most

recent work has focused on modeling business

processes, consistency checking for model integra-

tion, and composing Web services and business

processes by using the model-driven approach.
24–26

Recently, model transformation has received much

attention because it can bridge between source

models and target models.
22,27

Though there are

many standards defining individual models, there is

no one model transformation standard. Domain-

specific languages
28–30

and UML profiles have been

defined and used to express the transformation logic

or mapping rules.

Our work focuses on a generic model-driven

framework that aims at code customization, code

reuse, merging multiple models, and constraint

validation. Due to the well-defined BPM observation

metamodel and the many strict constraints imposed

by it, we chose to deal with the model trans-

formation and mapping the code after the code-

generation phase for both the source model and

target model. We used the well-developed Eclipse

Modeling Framework (EMF)
31

to generate model

manipulation code for instantiating in-memory

model instances, which have strong built-in vali-

dations.

To better understand our technology framework, we

used the IBM DES project as an example and a

generalized scenario.

Figure 3
BPM runtime system deployment

Alphablox

Common
Business
Events

DES
Business Process
Runtime

Input Sources Event Infrastructure BPM Components

- Ad hoc
 events

Event
Simulator

- Processes
- Databases
- Others

1a

1b

Execution steps

Common
Event
Infrastructure/
WBISF 5.1.1.

2

BPM Services
WBISF 5.1.1

3
Management
Dashboard
WebSphere*
Application
Server 5.1

5

BPM ODS
DB2 8.2

ETL Service
(Scheduler)
JVM**

4

Data
Warehouse
DB2 8.2

 *Trademark of International Business Machines Corporation
**Trademark of Sun Microsystems, Inc.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 CHOWDHARY ET AL. 591

SAMPLE SCENARIO

The IBM DES pilot project was the first to

demonstrate the BPM solution using UML models

and MDD techniques. We describe DES and then a

sample scenario known as service delivery.

Large enterprises with a number of relatively

homogeneous but independently operating sites at

which the central value of the enterprise is created

are referred to as distributed enterprises. Examples

are national retail chains or banks with many

branch offices. Each property operates in many

ways as an independent business but with varying

degrees of central ownership, shared resources, and

business function. Such enterprises have a project

management office (PMO) that centrally serves the

needs of the distributed customers, promotes the

efficient use of resources, and manages costs by

using economies of scale. This scenario is called the

service delivery model, and a generalized business

process for such a model is shown in Figure 4. The

business operations were defined as an artifact-

based model,
32,33

a business modeling technique

particularly suited to direct business goal mapping

and business integration. The operational model of

the business consists of the steps required to achieve

operational goals and the flow of business artifacts

through them.

The goal of delivering a complete service to a

customer site on an agreed-upon schedule is

captured in the DES operational delivery model.

Actually, it involves two interacting sets of goals:

satisfying customer needs and performing specific

services to that end. This leads to three primary

artifacts:

1. Schedule—An attachment to a statement of work

for services and equipment delivered to a

particular site. The schedule is the primary

artifact for customer delivery interactions. Ser-

vices defined in the schedule include a delivery

plan organized by task. The task information

maintained in the schedule represents units of

work required to complete the schedule, includ-

ing service provision and equipment delivery.

2. Supplier task—A unit of work performed by a

service provider.

3. Project—A set of schedules.

Process monitoring, measurement, and metric in-

formation can be obtained by monitoring the

Plan with
service
providers

Plan with
customer

Complete
and record
financial
data

Event
notification
by service
providers

Handle
exceptions

Customer order

Service provider task

Event source

Figure 4
DES service-delivery operations model

Business Artifacts

Project
Schedule
Site
Tasks
Service provider

Business Artifacts

Project
Schedule
Site
Statement of work

Business Artifacts

Project
Schedule
Site
Tasks
Service provider
Status
Invoice

Accept
customer
order

E1 E2 E3

Customer
plan
approval

CHOWDHARY ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006592

process events generated at probe points within

tasks and repositories. Figure 4 shows the event

source probe points E1, E2, and E3. These events

must contain sufficient information for correlation

and metric calculation. The BPM technique can be

used to provide sophisticated real-time notification

of complex patterns of events. An entire suite of

composite metrics can be updated at the end of each

business event.

GUIDELINES FOR IMPLEMENTING A BPM
SOLUTION
Based on our experiences with DES and several

other projects, we have developed a set of guidelines

that can ease the task of designing and developing a

complex BPM solution (Table 1). Although the

guidelines are expressed as six steps, we recognize

that it might take several iterations of design and

development before an optimal level of solution

maturity is achieved and business monitoring

requirements are met. It is advisable to start with a

project of small scope with few metrics, but

important enough for stakeholders to measure the

success of BPM technology.

Step 1: To gather requirements, the end user of the

solution and the sources of the input data for the

BPM runtime system are determined, and the

reports that the end user would like to see on the

dashboard are identified. It is also necessary to

identify the metrics (business goals) that the end

user wants to monitor, the business conditions that

must be detected, and the actions that may need to

be taken. Some metrics may be related to one

another; others may need sophisticated calculation.

Gather all such information at this stage. The input

data sources might be well-defined business pro-

cesses that emit (generate) business events, existing

data warehouses, or operational databases. It is

important that an agreement is reached with the

stakeholders regarding the business goals and how

these goals are defined and calculated.

In the DES scenario, the input data sources are

business events. The end users are of two types,

operational and executive. For operational metrics,

we selected the following key performance indica-

tors (KPIs):

� Total number of schedules or tasks by status

(planned, live, completed, or canceled)
� Total outstanding schedules or tasks at the project

level

� Time span between when schedules and tasks are

planned and their actual completion time
� Total time between plan and completion at the

project level

Executive-level metrics might be total service-level

agreement (SLA) violations and the total number of

pending schedules. Metric results can be displayed

on the dashboard in real time and one can probe

more deeply for finer detail and see broader

aggregate views.

Step 2: The requirements are analyzed to identify

the elements needed for the BPM model. These

might include events, KPIs, metrics, management

contexts, business conditions, and reports. One

needs to identify appropriate metrics and their

relationships with other metrics and the manage-

ment context.

In the case of the sample scenario, the events

identified were ScheduleEvent and

TaskOrderEvent. The management contexts identi-

fied were bySchedule, byTaskOrder, and byProject.

Similarly, metrics and business conditions need to

Table 1 BPM solution guidelines

BPM
requirements

and goals

Step 1 Requirement gathering
(business process, data,
goals, reports)

Step 2 Analyze and transform
requirements (event data,
metrics, KPIs, context,
rules, views)

BPM
Platform-

Independent
Model

Step 3 Map the requirement to
models and their constructs
(e.g., OMs and monitoring
contexts)

Step 4 Provide additional model-
related information
(metric calculation, outbound
event, data warehouse needs)

Step 5 Model transformation into
intermediate models (data
warehouse model, runtime
model, view model)

BPM
Platform-
Specific
Model

Step 6 Platform-Specific Models and
deployment (OM-runtime
code, data warehouse schema,
ETL, event emitters)

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 CHOWDHARY ET AL. 593

be defined without ambiguity because the BPM

solution is modeled based on these elements. Later,

we show the BPM elements in a requirement model.

Step 3: BPM requirements are modeled using RSA

with extended UML2 profiles for BPM elements. For

clarity, it is a good idea to create an individual

model for each management context identified in

Step 2. One might need to go back to Steps 1 and 2

while modeling the solution. The models created in

this step are the OMs. The details of how models are

created are given in subsequent sections.

Step 4: To augment the OM, the expressions that are

needed to calculate metrics or to add business

conditions or outbound events in response to

changing business situations are provided. Also, it is

determined whether there is a need for data ware-

housing. If so, the appropriate data warehouse

model needs to be created, based on the OM created

in Step 3.

Step 5: The transformation of the models is

performed by selecting the transformation menu in

RSA. The transformation results in the generation of

intermediate models in the output folder. Usually

one does not need to perform any updates at this

stage, but if there are certain complex needs that

could not be addressed by means of our model

framework, this would be the time to reflect those

changes in the intermediate models. This step may

also be of use if non-modeled BPM solutions are

transformed to our intermediate models and there is

a need for updating.

Step 6: From the intermediate models, the Platform-

Specific Model, code, and deployment scripts are

generated. The person managing the deployment

then deploys the various components in the

appropriate environment (Figure 3).

BPM MODELS

In the previous sections, we introduced our ap-

proach at a very high level and provided guidelines

to define and use BPM modeling. In this section, we

discuss core BPM models, such as the OM and the

data warehouse, in detail with the help of our DES

sample scenario.

Observation model
This section is divided into four parts: general terms

the BPM elements use to create OMs, definition of

the requirement model using the DES sample

scenario, a brief discussion on mapping the

requirement model to the OM, and a discussion on

optimizing the OM for execution.

Elements and OM detail

The main modeling elements are shown in Figure 1.

A core model element is ManagementContext. Each

ManagementContext element represents a business

artifact that needs to be monitored and controlled or

managed. A business artifact may be monitored at

either the instance level (e.g., the processing time of

individual customer orders) or at the aggregate level

(e.g., the average processing time of all customer

orders). If only instance-level monitoring is re-

quired, one ManagementContext element may suffice

to define all observables (metrics) for the same kind

of monitored entity. If aggregate-level monitoring is

desired, multiple ManagementContext elements may

need to be defined, representing the artifact

instances and different granularities of the artifact

aggregate, respectively.

A ManagementContext element encapsulates the

state and behavior of the managed artifact. The state

in a ManagementContext element consists of a

collection of metrics. Different instances of the same

ManagementContext element are uniquely identified

by a key metric. Metrics are typed and may be

computed via maps. There are two special kinds of

metrics: situations and timers. Situations are Boo-

lean-type metrics that define business conditions

warranting actions or attention. Timers are a special

kind of metric that behaves like a stopwatch. The

value of a timer is updated when the timer is started,

stopped, or reset.

A ManagementContext element subscribes to

BusinessEvents that report state changes of the

managed entity. Such a subscription is specified in

an EventContextLink, which defines the filtering

and correlation constraints for BusinessEvents of a

particular type that are received in a

ManagementContext element.

The state of a ManagementContext element may be

mapped to elements in a data warehouse for online

analytical processing. A Dimension defines a di-

mension table in the warehouse, which could be

preexisting or created from scratch. A

MeasureDimensionLink maps a numeric metric

(measure) to a column in the dimension table. An

AttributeDimensionLink maps a categorical metric

CHOWDHARY ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006594

to a column in the dimension table for the purpose

of populating the column with the metric value.

DecisionMaps and BusinessActions specify the

control on managed entities. They are part of a

ManagementContext and are triggered by

Situations. A DecisionMap selects among alter-

native BusinessActions. A BusinessAction is a

logical container for actions to be undertaken to

resolve the situation at hand. Payoff Functions can

be associated with a BusinessAction to calculate

the cost of executing the action in terms of money or

duration.

ManagementContext elements can form a parent-

child ContextRelationship. A parent context may

represent a ‘‘superordinate’’ entity or an aggregate.

A parentKey map dictates how the key metric of the

parent context can be computed from the state of the

child context.

Requirement model using sample scenario

From the BPM requirement point of view, the most

important question one can ask is, ‘‘What do we

want to monitor and what notifications do we want

to receive?’’ It could be as simple as monitoring items

such as revenue and cost or tracking a forecasted

revenue against an actual revenue and having an

e-mail sent when a monitored metric violates a

threshold. For our sample scenario, the four KPI

artifacts we identified were listed earlier under

Step 1.

Other business artifacts, such as sites, task orders,

schedules, and time, characterize these monitoring

metrics. The expressions used to calculate the

monitored metrics must also be known. (Each

characteristic could lead to multiple combinations

with monitored artifacts for measurement purposes,

but only a few are deemed important from the user

perspective.) We identified three management con-

texts for our sample scenario: bySchedule,

byTaskOrder, and byProject. The following input

data, from an underlying business process system,

flows into the BPM system in the form of the

business events: ScheduleEvent and TaskEvent.

Figure 5, Part 1 represents the two management

contexts bySchedule (child) and byProject (parent–

aggregation). This figure follows the guidelines in

the IBM business-observation-metamodel specifica-

tion and extensions explained in the previous

section. Shown are the monitored metrics, events,

maps, and other elements that were identified

during Steps 1 and 2.

Conditions can be monitored and defined accord-

ingly. For instance, in the bySchedule management

context, the SLASituation element was identified to

represent the business situation if the condition

TimeDiff metric crosses a threshold value. If the

condition is set to true, then an outbound event

called SLAViolationEvent is generated.

The other management context could be represented

similarly to Figure 5, Part 1. Such graphic repre-

sentation of the models plays an important role in

creating OMs by using RSA and UML2 profiles.

Sample scenario: How to create a UML OM

We now discuss in brief how requirements are

actually modeled. We assume the BPM profiles have

been imported into the model workspace and that a

general user has a basic understanding of using UML

and profiles,
12

as it is beyond the scope of this paper

to review standard language detail. For simplicity,

we model only one management context:

bySchedule.

Figure 5, Part 2 shows the sample scenario

representing the bySchedule OM by using UML2

profiles. We refer to Figure 5, Part 1 while we create

the UML Model in the following five steps:

Step 1: Define ManagementContext class. Using the

RSA model editor,
8

we start by defining a class that

represents the management context bySchedule.

Next, we apply the stereotype

,,ManagementContext...

Step 2: Define BusinessEvent class. Define a class

called ScheduleEvent and stereotype it as

,,BusinessEvent... The BPM runtime will re-

ceive these events as input. There is a simple

association link stereotyped as

,,EventContextLink.. between the

ScheduleEvent class and the bySchedule

management context. The attribute of this

stereotype determines the system logic for the

incoming event during the runtime. The attributes

are noCorrelationMatches¼ 0(createNewContext),

oneCorrelationMatch ¼ 2(deliverToAny), and

multipleCorrelationMatches¼4(raiseException).

It also has a business rule constraint of type event

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 CHOWDHARY ET AL. 595

correlation that determines the correlation predi-

cates for creating a new management context

instance in the runtime.

Step 3: Define Metric class and mappings. Define all

classes for the monitored metrics and stereotype

them as ,,Metrics... Figure 5, Part 1 is an

excellent reference for the list of monitored metrics

that need to be modeled. Each metric class has an

attribute called ‘‘value’’, and its type determines the

data type of the attribute. At this point a composition

association is defined between the metrics and the

management context, as shown in Figure 5, Part 2.

The stereotype metric has properties that need their

values to be populated, such as keepHistory,

multiplicity, partOfKey and readOnly. If there is a

need to maintain the history of any monitored

metric, then the value of keepHistory must be set to

1. In Figure 5, Part 1, scheduleID represents the part

of the correlation key (ispkey¼true) for the current

management context; hence, the partOfkey prop-

erty is set to true. To calculate the value of the

metric, an operation is added and stereotyped as

,,Map... On this map, add the UML element

ReturnResult. From the properties of

ReturnResult, select the Create New expression and

enter the expression in the general body of the

element. The evaluation expression could look like

current time - bySchedule.startTime.value. One

also needs to define a trigger condition for this map

to be evaluated. One such condition could be the

arrival of the business event with a status metric

value of actual. (One needs to refer to the BPM

profiles document to understand the expressions

supported in the current release.)

Step 4: Define Situation class. Create a class called

SLASituation and stereotype it as ,,Situation...

Next, define the gating condition for each situation.

Add an operation, for example, condition, and

stereotype it as ,,Map... Specify the expression

and evaluation trigger for this operation. The

expression forms the ReturnResult part of the

operation. Once condition is evaluated to true, an

outbound event called SLAViolationEvent is gen-

erated. Within the SLASituation element, add

another UML constraint called post-condition and

name it SLAViolationEvent. One needs to specify

the metrics that will form the data part of the

outgoing event in this constraint.

Figure 5
DES sample scenario; Part 1 of 2: observation model view

byProject

bySchedule

actionTime: String
scheduleID: String
isPKey

legalName: String

projectNum: String

Count: String

AggTimeDiff: Duration TotalCount: String
projectNum: String
isPKey

SLASituation
(TimeDiff> threshold)

correlation: scheduleID

SLAViolationEvent
Map 05

Map 09

threshold TimeDiff: Duration

StartTime: Duration

Map 07 Map 06

Map 04

Map 03

Map 01 Map 02

Map 10

Map 08

ScheduleEvent

Status: String

CHOWDHARY ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006596

Step 5: Define appropriate links with other ele-

ments. Define all the other ManagementContext

elements similarly. Then, each ManagementContext

element should be linked to its parent contexts

through a directed association stereotyped to

ContextRelationship, as shown in Figure 5, Part 2.

For each relationship, the following stereotype

properties also need to be specified:

parentContextAutoCreated,

parentContextMandatory,

parentContextTerminationCascades, and

Primarykey.

Model-driven adaptive data purging

The OM describes the processing path of inbound

events and the resulting actions. In particular, it

includes filtering conditions for business events

based on which events are considered relevant with

respect to possible management contexts. Without

the knowledge derived from the OM, general filters

need to be placed in the network at the emitters or in

the event bus. The monitor subscribes to events that

pass these filters. Clearly, several problems can

result from this approach. They include lack of

scalability with respect to event sources and

monitors, contention at the event databases during

event storage and query, and, in general, inefficient

use of network and computational resources.

To address these shortcomings, we developed a

technology for model-driven adaptive data purging.

The advantage of this approach is that it automates

the placement of filters throughout the network and

restricts event flow to the relevant events. Most

importantly, we are now able to automatically place

the right filters on the right components. These

filters are derived from the OM before its activation

and are directly relevant to the active monitors. The

following steps are necessary for adaptive data

purging:

� Extract filtering conditions from the OM.

� Decide on the semantics and the placement of

subscriptions in the system. The conditions

extracted in the previous step are analyzed against

Figure 5
DES sample scenario; Part 2 of 2: bySchedule observation model using UML2 profiles

- timediff - legalname
- starttime

- count

- scheduleid

- projectnum

- actiontime
- status

- scheduleevent

<<Event ContextLink>>

- byproject

- slasituation

- threshold

- byschedule

- byschedule

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 CHOWDHARY ET AL. 597

knowledge about the topology, available resources,

and the processing capabilities of components.
� Communicate the subscription plan to compo-

nents and ensure that they are able to process the

assigned subscriptions.
� Ensure subscription plan validity.
� Activate subscriptions.

Without model-driven adaptive data purging, the

knowledge from events flows from emitters to the

consumer, which is the OM runtime system. Our

technique allows for knowledge of the OM used by

the monitor to flow back upstream in the event flow

to facilitate the placement of tighter filters on the

right components of the system.

Data warehouse metamodel

Data warehouses are crucial as a store for historical

artifacts and to support analytics. Their design is a

highly disciplined skill; data warehouse
34,35

creation

takes considerable time and effort and is mostly a

manual process. Nonetheless, many times the data

represented in a data warehouse is not connected to

or directly representative of business models, and it

can be difficult for stakeholders to analyze the data.

Such designs are also not adaptive; with changing

business models, redesigns are required. With the

advent of BPM came a need for a data warehouse

that can adapt in real time.

To automate the process of creating a simple and

adaptive data warehouse and to also preserve

linkages with business models, a data warehouse

metamodel is proposed. We briefly describe both the

data warehouse and schema generation in the next

subsections. We also define other artifacts generated

for analytics purposes, such as IBM DB2 Cube

Views
36

models for OLAP,
34

which are used for

default dashboard generation.

The data warehouse metamodel (DWMM) provides

for capturing specific information about the struc-

ture of the data warehouse and the semantics of the

business models that it represents. Thus, an instance

of the metamodel is a DWMM that represents

information at two levels of abstraction: at the

logical level, the model keeps information about all

the measures and dimensions in the warehouse and

their interrelationships; at the physical level, the

model supplies details about the specific physical

representation of the measures and dimensions in

the database. Note that the logical part of the

metadata model contains enough information for

the automatic generation of the physical part, which

is populated at schema-generation time.

Using XML Schema, the high-level structure of the

DWMM is as follows. The root element bpmschema

contains a sequence of four subelements that

represent types of information. At the logical level,

dimensions are represented by

DimensionDefinition, information about the

measures is stored in MeasureDim elements, and the

relationships between measures and dimensions are

specified by MeasureToDimension elements. At the

physical level, the elements of type

MetaFactTableGroup store details about the physical

representation of measures in tables. The informa-

tion related to the business models is also stored

within the subelements, providing the bridge be-

tween business model elements and data artifacts in

the data warehouse.

UML model

Figure 6 shows another BPM model that represents

the DWMM. To begin building this model, select the

metrics (defined earlier in Figure 5, Part 2) that are

of interest to the storage purposes in this view. To

build this model, one needs to understand dimen-

sions and facts. A dimension is a group of metrics

related by some hierarchy; for example, for the time

dimension, day, month, and year are related as

parent–child. A fact is a metric that is measurable.

For analysis, a fact metric is meaningful with a

context; for example, revenue for a given product by

month. In this case, revenue is a fact metric, and

product and month are dimension attributes. The

steps in the design of the BPM data warehouse

model proceed with this concept in mind.

Step 1: Create a Dimension class and metrics as its

attributes. This step identifies the groups of metrics

that are related, creates a class, and stereotypes it as

,,Dimension..; for example, ScheduleDim as

shown in the figure. The stereotype has attributes

such as isExisting ¼ false, which means a new

dimension (dynamic), and isPopulatedAtRunTime¼
true, which means that the source of data in this

dimension table will be the BPM runtime opera-

tional data store. Then the attributes for the

dimensions are defined, for example, scheduleID,

projectNum, and legalName, and stereotyped as

,,DimensionLevel... This stereotype has an

CHOWDHARY ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006598

attribute called level. The level is set starting at 0 for

the attribute that forms the leaf node in the

hierarchy. For example, the level for projectNum is

1, and the level for legalName is 2. Each dimension

needs to have a primary key. For scheduleDim,

scheduleID is the primary key; hence, the

,,PrimaryKey.. stereotype is also applied to this

attribute.

Step 2: Create dimension-attribute link with metrics.

This step creates a directed link from dimension

(ScheduleDim) to the metric class called

scheduleID. This link is stereotyped as

,,DimensionAttributeLink... This stereotype

has an attribute called attributeName that repre-

sents one of the attributes of the ScheduleDim

dimension, such as scheduleID. There is another

attribute for DimensionAttributeLink called

correlationID, which correlates sets of metrics that

represent the same attributes in the dimension. This

link helps in populating the dimension table at

runtime. The DimensionAttributeLink is not re-

quired if a dimension already exists and does not

need to be populated at runtime. Add the directed

link from ScheduleDim to other attributes and

sterotype it as ,,DimensionAttributeLink...

Create other dimensions as needed, for example,

StatusDim.

Step 3: Create measure dimension link with metrics.

This step identifies the measure (fact) or monitored

metric. In this example, the count and TimeDiff

metrics are identified as measure metrics. A directed

link is created from the measure metric to the

dimension class ScheduleDim and stereotyped as

,,MeasureDimensionLink... This stereotype has

the attributes bywhichDimensionAttribute ¼
scheduleID, an attribute of a dimension, and

referenceMetric ¼ scheduleID as the metric. This

defines the measure-to-dimension link that helps in

determining the relationships between the fact table

and the dimension table as part of star schema

generation. The measure metrics are linked to other

dimensions as determined by the analytics.

As the model is created, the business metrics are

used to link the data-warehouse-related schema

elements. Hence, the performance DWMM captures

Figure 6
BPM performance-warehouse model using UML2 profile

<<MeasureDimensionLink>> <<AttributeDimensionLink>>

<<AttributeDimensionLink>>

<<AttributeDimensionLink>>

<<AttributeDimensionLink>>

<<MeasureDimensionLink>>

<<MeasureDimensionLink>>

1 *

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 CHOWDHARY ET AL. 599

both business metrics and data-warehouse-element

semantics, which is helpful in managing the data

warehouse with changing business metrics.

Star schema generation

The schema-generation algorithm for the star

schema form clusters of measures by the set of

dimension attributes to which they are linked and

generates a fact table for each resulting cluster. For

increased flexibility, we decided to use a vertical

schema representation for the measures, which

accommodates the subsequent addition, renaming,

and removal of measures without needing to alter

the table definition. Thus, all measures in cluster C
i

are stored in a single fact table with the following

structure: FactTable
i
(MeasureID, MeasureValue,

RD
1
, RD

2
, . . ., RD

k
), where MeasureID stores a

numerical identifier for the measure, MeasureValue

stores the measure value (a double-precision num-

ber), and RD
1
, RD

2
, . . ., RD

k
represent references to

the dimension tables D
1
, D

2
, . . ., D

k
. It is important

to note that the RD
k

terms do not have to reference

the primary key of their respective dimension table;

they can reference an arbitrary column (or group of

columns) in the dimension table. Figure 7 shows

the data warehouse schema generated during the

transformation of the BPM data warehouse model

shown in Figure 6.

ETL process

ETL is the process of analyzing the incoming data

from the ODS to make it suitable for storage in the

data warehouses. In the case of BPM, the ODS is the

BPM runtime data store where metrics information

is stored as it gets created or updated. The ETL

process is the mix of Java** programs and

Structured Query Language (SQL) scripts. The Java

program is static in nature and takes the model-

generated SQL scripts as input and executes them at

appropriate intervals to populate the dimension and

fact tables. These SQL scripts are autogenerated by

the Java program during the model transformation

process by taking the data warehouse model

instance, which is created during the model trans-

formation phase, as input.

Cube model

For the historical and multidimensional analysis,

OLAP solutions are the best available tools at the

enterprise level. IBM published a cube view meta-

model
36

to represent multidimensional information

in an intermediate metadata format. IBM also made

available various adapters and techniques to export

Figure 7
BPM performance-warehouse physical model

ScheduleDim

ScheduleId (PK)
projectNum
legalName

FactTable_1

MetricID (FK)
MetricValue
scheduleID (FK)
Timestamp

MetricTable

MetricID (FK)
MetricName
FactTableName
MonitoringContextID

Relationship9 Relationship17

Relationship21 Relationship15

StatusDim

Status (PK)

FactTable_2

MetricID (FK)
MetricValue
Status (FK)
scheduleID (FK)

Relationship4

MetricName
Count
TimeDiff

CHOWDHARY ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006600

this metadata to IBM Alphablox and to other OLAP

systems, such as those by Cognos and Hyperion

Solutions Corporation. The BPM solution provides

an automated routine that transforms the model

artifacts in the data warehouse model to cube view

metadata. This enables the BPM analytics to be

installed on popular OLAP engines, such as Hyperion

System 9 BIþ**, Microsoft SQL Server, and Alpha-

blox, and allows users to perform more in-depth

analysis of the data to detect trends and patterns.

Model integration and sample scenario
execution

Figure 3 shows a deployment setup used for the DES

sample scenario. The DES artifacts-based business

process acts as the source for incoming business

events. The BPM runtime components
37

generated

from the sample scenario models are deployed in the

BPM services block, and the BPM ODS schema is

deployed as BPM ODS. The data warehouse schema

and ETL service are deployed in their respective

blocks. The data-warehouse Alphablox OLAP

application is installed in the management

dashboard block.

Once the BPM components are deployed, the event

simulator, which simulated the process events to

start the execution of the BPM system, emits the

events (Step 1a; the steps in this section refer to

Figure 3). Table 2 illustrates a few sample events

that are sent to the BPM runtime server. These

events are related to the life cycle of schedules or

orders in the process manager. In production, these

events will be replaced with events coming from

actual processes (Step 1b).

The event data is converted to the CBE (common

base event, sometimes called common business

event) format and then published to the event

infrastructure, which comprises the CEI runtime

setup (Step 2). The events are then forwarded by the

CEI to the event subscribers. These are the BPM

services, which are also the consumers of the events

(Step 3). BPM services process these events

appropriately and save runtime data in the ODS. The

ETL service is scheduled to run every 5 minutes

(Step 4) to extract, transform, and load the data into

the data warehouse. The BPM dashboard then pulls

the data from the data warehouse per reporting

requirements or queries and displays it on the

dashboard (Step 5). In case of DES, we used DB2

Alphablox and its OLAP engine to display the data in

a multidimensional format to enable the analytics

for the business user. As events are published,

processed, and stored in the data warehouse, the

Alphablox display reflects the changes.

LESSONS LEARNED

The MDD approach provides a bridge between

business and IT and provides a rapid-solution

development platform. It also provides flexibility in

adopting changes as business processes evolve.

In the initial phase of the MDD platform, we had

BPM OM for capturing monitoring elements and

automatic code generation for OM runtime only, not

for data warehouse or action management, due to a

limitation in the OM specification. For the DES

solution, we had to manually create the data

warehouse and hence, lost the business metrics

mapping with the data elements in the data ware-

house. It also took a great deal of time and much

cost to manually create the data warehouse. We had

to rely on the expertise of a business analyst and a

data architect to bridge the gap and create the

custom dashboard to display the information. Even

Table 2 Sample DES events as sent to the BPM runtime server

scheduled timestamp legalname project_number actionTime status source trigger

SC111 2005–12–10–21.12.14.658001 MyFoodInc B111 2005–12–10–21.12.14.658001 Plan business process 0

SC112 2005–12–10–21.12.14.658002 MyFoodInc B111 2005–12–10–21.12.14.658002 Plan business process 0

SC111 2005–12–14–21.12.14.658003 MyFoodInc B111 2005–12–14–21.12.14.658003 Accepted business process 0

SC112 2005–12–12–21.12.14.658004 MyFoodInc B111 2005–12–12–21.12.14.658004 Rejected business process 0

SC111 2005–12–15–21.12.14.658005 MyFoodInc B111 2005–12–15–21.12.14.658005 Live business process 0

SC111 2005–12–21–21.12.14.658006 MyFoodInc B111 2005–12–21–21.12.14.658006 Complete business process 0

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 CHOWDHARY ET AL. 601

the manual effort of developing the warehouse

schema and ETL took a number of iterations

because translating the model information into the

physical data warehouse schema was a complex

task. Hence the need for the extension of the OM

was determined; Figure 1 represents the extension.

With regard to the UML2 profiles, the BPM editor

itself had to undergo a few iterations of change as

the functionality in the initial version was not

sufficient to support the DES solution requirements.

We learned that MDD for BPM is an evolutionary

technology and that application requirements often

drive the expansion of BPM tools. This also became

evident when we determined that there was a need

to access external data sources within the OM and,

as a result, the BPM tools and transformation logic

had to evolve.

A right model cannot be created the first time. It

takes a few iterations before a model is deemed

suitable for the solution. This was a very important

lesson as we had several components, such as the

data warehouse and action components, that re-

quired extensive resources to develop. Hence, we

identified the need to autogenerate the data ware-

house and action components. This automation was

completed soon after. (The details are in the earlier

section on the BPM data warehouse metamodel. A

discussion of the autogeneration of the action

components is beyond the scope of this paper.)

The function of the BPM runtime components to

execute the OM and data warehouse components

depends upon how well the BPM problem is

modeled. Hence, it is very important that the

solution is modeled correctly. In the initial DES

models, the business analyst had left a few artifacts

in the model that were unused, and the ETL

component failed to load the data into the data

warehouse as it was not getting propagated for such

orphaned artifacts.

Another important issue we encountered in devel-

oping the DES solution was model validation. Before

platform-independent models are to be transformed

into platform-specific models, they need to be

verified and validated. We can use the model

validation component to help users locate potential

problems in their models. However, there are still

areas where the models defined by users seem

correct, but cannot be processed by the trans-

formation engine due to the fact that openness is

deliberately engineered into the platform-indepen-

dent models for the sake of modeling flexibility at

the business level. Increasing the precision of the

platform-independent model tends to limit flexibility

for business users. Hence, there is a trade-off

between flexibility and precision at the levels close

to business semantics. The decision about the

degree of flexibility and precision will imply the

degree of difficulty of validating models before

transforming them into platform-specific models.

BPM models can become complex, as can runtime

components. This could lead to a solution that may

not perform optimally. We continue to research new

ways of improving the performance of the BPM

runtime system, and one such solution, adaptive

data purging, is currently under development.

Adaptive data purging is one step in increasing the

scalability of a BPM solution. The current imple-

mentation uses knowledge derived from the OM at

design time. The processing of an OM, however, has

a dynamic aspect, which is the creation of mon-

itoring contexts. This limits the scope of our event-

filtering techniques. In extending our solution, it is

important to consider the dynamic knowledge

extraction from the monitor runtime.

The UML2 profile was not the first approach to

representing the OM in a modeling tool. We started

with an XML metamodel to represent the OM for the

BPM solution. Because XML is human-readable, it

was suitable for the smaller BPM solution. Figure 2

shows the model flow for both XML and UML2

approaches.

As this paper was being prepared, BPM models were

used by other projects such as ODCS and Telesales

World Wide Dashboard. We learned from user

experience that BPM models are quite engaging and

that there is a definite learning curve. Because the

solution is model-driven, the success of the appli-

cation is as good as the model created by the

business users; hence, one should be prepared to

invest time to understand how to design a BPM

solution using UML2 BPM profiles.

CONCLUSION

In general, MDD provides flexibility in adapting to

changes as business processes evolve, and its use

results in considerable time and cost savings. BPM

solutions are usually complex in nature and take

CHOWDHARY ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006602

considerable time and money to develop. With the

autogeneration of runtime components, one can

experiment with creating models and see the results

very quickly by deploying the generated compo-

nents. In our DES prototype, it was very helpful to

use this feature, as the monitoring requirements

were in constant flux before the system started to

stabilize. In general, monitoring requirements in the

real world are never stable. The benefit of the BPM

MDD approach was realized with the adoption of

this technology on the projects we have conducted.

As adoption of this technology spreads within and

outside IBM, the modeling requirements become

more complex, and the BPM models and runtime

components evolve. Presently, if a model is

changed, then the runtime components need to be

completely redeployed. We are working on the

model to develop components that can take incre-

mental changes during runtime and maintain the

existing runtime environment. We are also working

to identify new models, such as report models, that

could interact with our BPM models so that

customized reports can be generated automatically.

We remain enthusiastic that MDD techniques

provide enough benefit that they will be widely

adopted in the BPM area.

ACKNOWLEDGMENTS
We thank Santhosh Kumaran, Prabir Nandi, Terry

Heath, Kalyani Deshpande, and Kamal Bhattacharya

for their work on artifacts-based operational

modeling work for DES. We also thank our colleagues

who are involved in the development of the MDBT

toolkit and our colleagues at the IBM Software

Development Laboratory, Taiwan, especially Jimmy

Tan and Sam Wang, for their work in developing the

DES BPM dashboard.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of the
Object Management Group, Inc., Sun Microsystems Inc. or
Hyperion Solutions Corportation in the United States, other
countries, or both.

CITED REFERENCES
1. IBM Software Group, Establishing a Business Perfor-

mance Management Ecosystem, White Paper, IBM
Corporation, Somers, NY, ftp://ftp.software.ibm.com/
software/integration/pdf/bpm_whitepaper_0301.pdf.

2. C. Ballard, C. White, S. McDonald, J. Myllymaki, S.
McDowell, O. Goerlich, and A. Neroda, Business Per-
formance Management . . . Meets Business Intelligence,
IBM Redbooks, IBM Corporation (August 8, 2005),
http://www.redbooks.ibm.com/redbooks/pdfs/
sg246340.pdf.

3. H. Dresner, ‘‘Business Activity Monitoring: BAM Archi-
tecture,’’ Gartner Symposium ITXPO, Cannes, France
(2003), http://www.pikos.net/documents/german/
Gartner.pdf.

4. S. H. Haeckel, ‘‘Leading On Demand Businesses—
Executives as Architects,’’ IBM Systems Journal 42, No. 3,
405–413 (August 2003).

5. S. H. Haeckel, Adaptive Enterprise: Creating and Leading
Sense-and-Respond Organizations, Harvard Business
School Press, Cambridge, MA (July 1999).

6. P. Chowdhary, L. An, J.-J. Jeng, and S.-K. Chen,
‘‘Enterprise Integration and Monitoring Solution Using
Active Shared Space,’’ Proceeding of the IEEE Interna-
tional Conference on e-Business Engineering, Beijing,
China (2005), pp. 665–672.

7. S. Kapoor, K. Bhattacharya, S. Buckley, P. Chowdhary,
M. Ettl, K. Katircioglu, E. Mauch, and L. Phillips, ‘‘A
Technical Framework for Sense-and-Respond Business
Management,’’ IBM Systems Journal 44, No. 1, 5–24
(2005).

8. IBM Rational Software Development Platform, IBM
Corporation, http://www-306.ibm.com/software/info/
developer/busvalue.jsp.

9. Borlandt Togethere technologies, Borland Software
Corporation, http://www.borland.com/us/products/
together/index.html#architect.

10. A. Kleppe, J. Warmer, and W. Bast, MDA Explained, The
Model Driven Architecture: Practice and Promise, Addi-
son-Wesley, Boston, MA (2003).

11. S. Kumaran, ‘‘Model-Driven Enterprise,’’ Proceedings of
the Global Enterprise Application Integration Summit,
Banf, Canada (2004), pp. 166–180.

12. UML2 Profiles, The Eclipse Foundation, http://www.
uml2.org/.

13. S.-K. Chen, H. Lei, M. Wahler, H. Chang, K. Bhaskaran,
and J. Frank, ‘‘A Model Driven XML Transformation
Framework for Business Performance Management,’’
Proceedings of the IEEE International Conference on e-
Business Engineering, Beijing, China (2005), pp. 71–78.

14. XML Metadata Interchange (XMI) Specification, Version
2.0, Object Management Group Inc., http://www.omg.
org/docs/formal/03-05-02.pdf.

15. M.-T. Schmidt, B. Hutchison, P. Lambros, and R.
Phippen, ‘‘The Enterprise Service Bus: Making Service-
Oriented Architecture Real,’’ IBM Systems Journal 44, No.
4, 781–797 (2005).

16. Common Event Infrastructure, IBM Corporation, http://
www-306.ibm.com/software/tivoli/features/cei/.

17. DB2 Alphablox, IBM Corporation, http://www-128.ibm.
com/developerworks/db2/roadmaps/
alphablox-roadmap.html.

18. W. B. Frakes and K. Kang, ‘‘Software Reuse Research:
Status and Future,’’ IEEE Transactions on Software
Engineering 31, No. 7, pp. 529–536 (2005).

19. J. Greenfield, K. Short, S. Cook, and S. Kent, ‘‘Software
Factories Assembling Applications with Patterns, Models,
Frameworks and Tools,’’ 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 CHOWDHARY ET AL. 603

Languages, and Applications, Anaheim, CA (2003), pp.
16–27.

20. S. Rugaber and K. Stirewalt, ‘‘Model-Driven Reverse
Engineering,’’ IEEE Software 21, No. 4, pp. 45–53 (2004).

21. N. Sukaviriya, S. Kumaran, P. Nandi, and T. Heath,
‘‘Integrate Model-Driven UI with Business Transforma-
tions: Shifting Focus of Model-Driven UI,’’ Proceedings of
the Workshop on Model Driven Design of Advanced User
Interfaces, Montego Bay, Jamaica (2005), http://sunsite.
informatik.rwth-aachen.de/Publications/CEUR-WS//
Vol-159/paper4.pdf.

22. K. Czarnecki and S. Helsen, ‘‘Classification of Model
Transformation Approaches,’’ OOPSLA Workshop on
Generative Techniques in the Context of Model-Driven
Architecture, Anaheim, CA (2003), http://www.lcc.uma.
es/;av/MDD-MDA/MdaEstandares/
P7_czarnecki_helsen.pdf.

23. W. M. P. van der Aalst, A. H. M. ter Hofstede, and M.
Weske, ‘‘Business Process Management: A Survey,’’
Proceedings of the 1st International Conference on Busi-
ness Process Management, Eindhoven, The Netherlands
(2003), pp. 1–12.

24. G. Piccinelli and S. L. Williams, ‘‘Workflow: A Language
for Composing Web Services,’’ Proceedings of the 1st
International Conference on Business Process Manage-
ment, Eindhoven, The Netherlands (2003), http://www.
cs.iastate.edu/;lumpe/WCL2002/Camera/Piccinelli.pdf.

25. K. M. van Hee, N. Sidorova, L. Somers, and M. Voorhoeve,
‘‘Consistency in Model Integration,’’ Proceedings of the
2nd International Conference on Business Process Man-
agement, Potsdam, Germany (2004), pp. 1–16.

26. R. Anzböck and S. Dustdar, ‘‘Semi-Automatic Generation
of Web Services and BPEL Processes—A Model-Driven
Approach,’’ Proceedings of the 3rd International Confer-
ence on Business Process Management, Nancy, France
(2005), pp. 64–79.

27. A. Gerber, M. Lawley, K. Raymond, J. Steel, and A.
Wood, ‘‘Transformation: The Missing Link of MDA,’’
Proceedings of the 1st International Conference on Graph
Transformation, Barcelona, Spain (2002), pp. 90–105.

28. K. Duddy, A. Gerber, M. Lawley, K. Raymond, and J.
Steel, ‘‘Model Transformation: A Declarative, Reusable
Patterns Approach,’’ Proceedings of the 7th IEEE Interna-
tional Enterprise Distributed Object Computing Confer-
ence, Brisbane, Australia (2003), pp. 174.

29. M. Peltier, ‘‘MTrans, a DSL for Model Transformation,’’
Proceedings of the 6th IEEE International Enterprise
Distributed Object Computing Conference, Lausanne,
Switzerland (2002), pp. 190–199.

30. A. Borgida and L. Serafini, ‘‘Distributed Description
Logics: Assimilating Information from Peer Sources,’’
Journal of Data Semantics 2800, No. 1, pp. 153–184
(2003).

31. F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J.
Grose, Eclipse Modeling Framework (The Eclipse Series),
First Edition, Addison-Wesley Professional, Boston, MA
(2003).

32. S. Kumaran and P. Nandi, ‘‘Adaptive Business Objects: A
New Component Model for Business Applications,’’
Proceedings of the 7th International Conference on Enter-
prise Information Systems, Miami, FL (2005), http://
www.research.ibm.com/people/p/prabir/ABO.pdf.

33. A. Nigam and N. S. Caswell, ‘‘Business Artifacts: An
Approach to Operational Specification,’’ IBM Systems
Journal 42, No. 3, 428–445 (2003).

34. E. F. Codd, S. B. Codd, and C. T. Salley, Providing OLAP
(On-Line Analytical Processing) to User-Analysts: An IT
Mandate Technical Report, E. F. Codd & Associates
Sunnyvale, CA 94085 (1993).

35. R. Kimball, L. Reeves, M. Ross, and W. Thornthwaite,
The Data Warehouse Lifecycle Toolkit, John Wiley &
Sons, New York (1998).

36. C. Baragoin, G. Balasubramaniam, B. Chandrasekharan,
L. DelSordo, J. B. Lillelund, J. Maw, A. Neroda, P.
Pereira, and J. A. Ramos, DB2 Cube Views: A Primer, IBM
Redbooks (2003), http://www.redbooks.ibm.com/
redbooks/pdfs/sg247002.pdf.

37. L. Zeng, H. Lei, M. Dikun, H. Chang, K. Bhaskaran, and J.
Frank, ‘‘Model-Driven Business Performance Manage-
ment,’’ Proceedings of the IEEE International Conference
on e-Business Engineering, Beijing, China (2005), pp.
295–304.

Accepted for publication December 14, 2004.

Pawan Chowdhary
IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(chowdhar@us.ibm.com). Mr. Chowdhary is an advisory
software engineer in the Analytic Models and Architecture
department. He is working on the sense-and-respond/BPM
architecture framework. He received a B.S. degree in
electronics engineering from Nagpur University, India. Mr.
Chowdhary is actively involved in the area of the MDD
warehouse.

Kumar Bhaskaran
IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(bha@us.ibm.com). Dr. Bhaskaran is a senior manager
leading research in the area of service-oriented computing
technologies applied to business transformation, business
integration, and BPM solutions. He has a Ph.D. degree in
engineering science from the Rensselaer Polytechnic Institute.

Nathan S. Caswell
IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(ncaswell@us.ibm.com). Dr. Caswell is a research staff
member in the Business Informatics department. He joined
IBM Research after earning a Ph.D. in physics from the
University of Chicago and holds an IBM Fellowship at the
University of California-Berkeley. His recent work has
involved developing formal models of business operational
behavior. Dr. Caswell holds several patents, has received
project-related awards, and has authored a variety of journal
articles.

Henry Chang
IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(hychang@us.ibm.com). Dr. Chang is a Senior Technical Staff
Member and a research manager in the Business Informatics
department. He leads the research effort in the business
performance monitoring and management framework with
impact on IBM business integration products. He received a
B.S. degree in electrical engineering from National Taiwan
University, and M.S. and Ph.D. degrees in computer science
from the University of Wisconsin at Madison. He received an
IBM Innovation Award for his work on business-to-business
collaboration solutions. Dr. Chang is a member of the ACM
and IEEE.

CHOWDHARY ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006604

Published online July 25, 2006.

Tian Chao
IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(tian@us.ibm.com). Ms. Chao is a senior software engineer in
the Business Informatics department. She has a B.A. degree
from National Taiwan University and an M.S. degree in
computer science from Virginia Polytechnic Institute. Her
research interests include BPM using an MDD approach,
business collaboration, Web services, and security for
business processes. Ms. Chao has received an IBM Invention
Achievement Award, holds several patents, and has published
papers in many journals and conferences.

Shyh-kwei Chen
IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 704, Yorktown Heights, NY 10598
(skchen@us.ibm.com). Dr. Chen is a research staff member.
His current research interests include XML, model
transformation and synchronization, data engineering, and
compilers. He received a B.S. degree in computer science and
information engineering from National Taiwan University, an
M.S. degree in computer science from the University of
Minnesota, and a Ph.D. degree in computer science from the
University of Illinois at Champaign-Urbana. Dr. Chen is a
member of the ACM and IEEE.

Michael Dikun
IBM Business Consulting Services, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(mdikun@us.ibm.com). Mr. Dikun is a software engineer. His
interests include BPM, MDD, server-side enterprise
application development, and Web application development.
Mr. Dikun has B.S. and M.S. degrees in computer science from
Iona College.

Hui Lei
IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(hlei@us.ibm.com). Dr. Lei is a research staff member. He
works in the areas of e-business and pervasive computing,
with a focus on software infrastructure and data management
issues. He has a Ph.D. degree in computer science from
Columbia University. Dr. Lei is a Senior Member of the IEEE.

Jun-Jang (JJ) Jeng
IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(jjjeng@us.ibm.com). Dr. Jeng has a Ph.D. degree in computer
science from Michigan State University. His interests include
BPM, policy-based management, MDD, agent technologies,
and formal disciplines of system and software engineering. Dr.
Jeng is a member of the ACM and the IEEE.

Shubir Kapoor
IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(shubirk@us.ibm.com). Mr. Kapoor is an advisory engineer in
the Analytic Models and Architecture department. He received
an M.S. degree in computer science from Pune University,
India. His technical interests include service-oriented
architectures, server-side enterprise applications, rule-based
expert systems, Web-based application development, and
diagnostic systems for use in supply chain and e-business
applications.

Christian A. Lang
IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 704, Yorktown Heights, NY 10598
(langc@us.ibm.com). Dr. Lang is a research staff member in
the Business Informatics department. He is currently involved
in several projects dealing with the scalability aspects of
database-management and business-process-monitoring

systems. He received an M.S. degree from the Munich
University of Technology and a Ph.D. degree from the
University of California at Santa Barbara, both in computer
science. Dr. Lang is a member of the ACM and the IEEE.

George Mihaila
IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 704, Yorktown Heights, NY 10598
(mihaila@us.ibm.com). Dr. Mihaila is a research staff
member. He has a B.S. degree from the University of
Bucharest and M.S. and Ph.D. degrees from the University of
Toronto, all in computer science. He also holds an adjunct
faculty appointment at Columbia University. Dr. Mihaila’s
research interests include Web query languages, Web-based
information discovery, data integration, data warehousing,
event processing, and XML storage and processing.

Ioana Stanoi
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 704, Yorktown Heights, NY 10598 (irs@us.ibm.com).
Dr. Stanoi is a research staff member in the Intelligent
Information Management department. She received a B.S.
degree in computer science, a B.A. degree in physics, and a
Ph.D. in computer science, all from the University of
California at Santa Barbara. Her patents and publications
cover exact and approximate query processing, index
optimization, XML, publish/subscribe systems, mobile clients,
e-commerce applications, and semantics. She has served on a
number of conference program committees and is one of the
initiators of the Greater New York Area Database/Information
Retrieval Workshop.

Liangzhao Zeng
IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(lzeng@us.ibm.com). Dr. Zeng is a researcher in the Business
Informatics department. He received a Ph.D. degree in
computer science from the University of New South Wales.
His research interests are in the areas of Web services,
business process and performance management, event-driven
systems, and data stream management. &

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 CHOWDHARY ET AL. 605

