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USING LOGICAL DATA MODELS FOR

UNDERSTANDING AND TRANSFORMING LEGACY

BUSINESS APPLICATIONS

Show me your flowchart and conceal your tables, and

I shall continue to be mystified. Show me your tables,

and I won’t usually need your flowchart; it’ll be

obvious.

Frederick Brooks, The Mythical Man-Month

Modifying a legacy application is typically an

expensive and time-consuming process, even when

the required modifications are conceptually very

simple. We argue that this problem can be amelio-

rated by adopting an approach in which logical data

models of a legacy application are used by software

developers to understand, maintain, and transform

the software. In addition, we outline the goals and

status of the Mastery project at IBM Research, which

aims to build a suite of tools for automatically

extracting logical models from legacy applications,

focusing initially on logical data models.

THE PROBLEM

For the past few years, our group at IBM Research

has been investigating tools and techniques for

analyzing and transforming legacy business appli-

cations, focusing on mainframe-based applications

written in COBOL.
1

Such applications are often

decades old and implement core business function-

ality. Yet they are difficult to update in a timely

manner in response to new business requirements

due to a number of factors that include the

following:

� Volume of code in a typical application
� Logical structure of code has deteriorated as

updates have accumulated over time
� Functional redundancy
� Structure of code reflects the dated technology on

which it was built
� Scarce technical skills

Size

Legacy application portfolios, that is, complete

collections of programs and related components,
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can be very large. For example, one IBM customer

had a portfolio consisting of 700 interdependent

applications, 3000 online data sets, 27,000 batch

jobs, and 31,000 compilation units. The sheer

volume of information contained in an application

of this size makes it impossible for an individual to

understand the relationships between all parts of the

application.

Deterioration

The logical structure of code and data tends to

deteriorate over time as a result of a continuous

stream of modifications and enhancements. For

large legacy applications, persistent data is the

principal coupling mechanism between components

of an application portfolio. Yet, as an application

evolves to meet new business requirements, the

structure and coherence of the data models under-

lying the code decays faster than the structure and

coherence of the basic control and process flow

through the application. Perhaps this is because it is

relatively easy to add new functionality to an

existing application by creating modules that ma-

nipulate new data items stored separately from the

original application data. The alternative of refac-

toring the basic process flow through the application

to accommodate new requirements typically re-

quires much more intrusive changes.

Redundancy

Over time, applications frequently accumulate a

great deal of redundant code (multiple code frag-

ments that perform the same logical function) and

redundant data (data structures that represent the

same information, perhaps with slight differences,

and are scattered throughout the code). Reasons for

this redundancy include incomplete integration of

information systems following business mergers,

performance-driven enhancements to the code, and

quick ‘‘hacks’’ when adding new functionality under

tight schedules.

Technology

The code structure of legacy applications often

reflects the limitations of the programming lan-

guages used and the middleware on which it was

originally designed to run. In many cases, the code

structure dictated by the constraints of legacy

languages and middleware renders such systems

more difficult to understand and evolve than they

would be if they had been implemented on modern

platforms.

Skills

As new languages and software systems become

popular, it becomes more difficult to find people

with skills in legacy languages and systems.

Interest in the use of automated and semiautomated

tools to analyze and transform legacy code is

increasing. Such tools include program-understand-

ing tools, tools for identifying and extracting

semantically related code statements (through

techniques such as program slicing
2
), tools for

migrating from one library or middleware base to

another, tools for integrating legacy code with

modern middleware, and so on.

In the remainder of the paper, we first explain the

value of logical data models and describe a number

of applications of logical models to program-under-

standing and transformation tasks. Then we de-

scribe the Mastery project, which is concerned with

developing algorithms and tools for extracting and

manipulating logical data and the source code from

which they are derived. We conclude with a brief

review of related work and some final comments.

VALUE OF LOGICAL DATA MODELS

The Mastery project is concerned with extracting

logical models from legacy applications. These

logical models, which are high-level abstractions of

business processes and data relationships, are used

together with human- and machine-readable links

from these logical models back to their physical

realizations in code as the foundation for a variety of

program-understanding and transformation tasks

(we use ‘‘physical’’ to mean ‘‘implementation-

related’’). The initial focus of the Mastery project is

on logical data models: abstractions encoding

essential data relationships. In this paper we focus

on applications of data models because we believe

that their utility (relative to process- and control-

oriented program abstractions) in program under-

standing and transformation has been underappre-

ciated. Nonetheless, other concepts of logical

models not covered in this paper are also valuable;

the information they provide can complement

logical data models for many of the applications we

consider.

Logical data models are critical for understanding

and transforming legacy applications. Consider the

UML**-style
3

logical data model depicted in

Figure 1 (UML stands for Unified Modeling Lan-
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guage**.) This model describes key data structures

and their interrelationships for a typical order-

processing application. In this case, a batch appli-

cation processes transaction records pertaining to

orders for parts; the processing of a transaction may

result in the creation of a new order for a part (New

Order), in the correction of an error in an existing

unfulfilled order (Correct), or in the cancelation of

an unfulfilled order (Delete), and so on.

The application represented by the model in Figure 1

is large (around 60,000 lines of COBOL) and

complex. The complexity of the code obscures its

essential functionality, which is to process different

kinds of transactions pertaining to orders for parts.

This functionality is expressed succinctly and at a

high level of abstraction by the data model. In other

words, the ‘‘business logic’’ of the application is

concerned primarily with maintaining and updating

certain relationships among persistent and transient

data items; therefore, the data model embodies

much of the interesting functionality of the appli-

cation, even though the model contains no repre-

sentation of code.

It is notable that the logical data model shown in

Figure 1 differs greatly from the data declarations in

the source code of the application. Figure 2 shows

an outline of these data declarations, with the data

items linked (links shown using dashed arrows) to

the corresponding logical-data-model entities (this

figure contains a relevant subset of the logical model

in Figure 1). The data declarations are spread over

several source files; furthermore, they reveal little

about the structure of and relationships between the

logical entities manipulated by the application,

which is obtainable only by an analysis of the code

that uses the data. As illustrated in Figure 2, the

logical data model adds value by making informa-

tion that is hidden in the code explicit, such as the

following:

� Logical entities—The logical entities manipulated

by the program include Transactions (i.e.,

requests to the system of various types) Orders,

Parts, and so forth. Physical data items (variables)

correspond to these entities; such as ORDER-BUF

and ORDER-REC store Orders (as indicated by the

links).
� Logical subtypes—Transactions are of several

kinds (have several subtypes), such as Delete,

Correct, and New Order.
� Associations—Entities are associated with (or

pertain to) other entities, as indicated by the red

arrows in Figure 1. Associations have

multiplicities; for example, the labels on the

association from Transaction to Order indicate

that each Transaction pertains to zero or one

(existing) Orders and that each Order has zero or

more Transactions pertaining to it on any given

day.
� Aggregation—The information corresponding to a

single part is stored in two physical records,

PR1-PART-REC and PR2-PART-REC, which are tied

together by their PART-KEY attribute. This

Figure 1
A logical data model for a typical order-processing application

Transaction

Order key

  Supplier

supplier
   code

          Part

Part key
• supplier code
• part number
Info:
• price table, ...
Statistics:
• prev. day sales
• prev. month sales

        Order

Order key
• part key
• order number
Info:
• order amount
• current status, ...

. . . . . . 

*
* 0..1 1 1*

1

*

Delete

. . . 

Correct

. . . 

New Order

. . . 
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(perhaps historical) artifact is elided in the logical

model, and both records are linked to a single

‘‘Part’’ entity.
� Integrity constraints—Although our example does

not illustrate it, a logical data model can also

include semantic integrity constraints and data

invariants (beyond those implied by multiplicities

on associations), such as the constraint that the

Order Amount must be positive.

APPLICATIONS OF LOGICAL DATA MODELS

A logical data model linked back to the physical

constructs that realize it can serve as the foundation

for a variety of program transformations, either

implemented by hand or automated by tools.

Examples of such transformations are described in

the following subsections.

Data representation changes

In business applications, it is often necessary to

update the physical representations of a single

logical entity, say, to accommodate an expanded

range of values. For example, a 2-digit date field

might be expanded to 4 digits to allow for dates after

the year 2000, or a serial-number product field,

represented using numeric values, might be updated

to an alphanumeric type to accommodate additional

products. A logical data model and an accompany-

ing logical-to-physical mapping can be used to

distinguish unrelated instances of the same physical

type (e.g., one 10-digit variable in a program may

represent a part number, and another variable of

exactly the same physical type might represent a

customer number), or logically related instances of

distinct physical types (e.g., character string and

integer representations of a value representing an

invoice number). The logical-to-physical mapping

can allow for automatic or semiautomatic type

transformations, which would otherwise require

tedious and error-prone manual code searches.

Addition of attributes to existing logical entities

In this scenario, the physical representations of a

logical entity must be updated to accommodate a

new logical attribute (e.g., adding an email_addr

attribute to an existing customer entity). This is

Figure 2
Links mapping entities in a logical data model to declarations in the source code

Transaction

Order key

01 TRANSACTION-REC.
  05 TRANS-DET-KEY .. 39 bytes ..
  05 GENERAL-INFO.
    10 REC-TYPE PIC X(3).
  05 FILLER PIC X(154).

01 LOCAL-VARS.
  05 ORDER-BUF ..

01 ORDER-REC.
  ..

01 HTR-TRANSACTION-REC.
  05 HTR-KEY .. 39 bytes ..
  05 .. other New Order fields ..

01 PR1-PART-REC.
  05 PART-KEY .. 18 bytes ..
  ..
  05 PRICE-TABLE ..

01 PR2-PART-REC.
  05 PART-KEY .. 18 bytes ..
  ..
  05 PREVIOUS-DAY-SALES ..
  05 PREVIOUS-MONTH-SALES ..
  ..

          Part

Part key
• Supplier code
• Part number
Info:
• Price table
Statistics:
• Prev. day sales
• Prev. mon. sales

Order

...

*

* 0..1 1*

1

New Order

Order key
. . . 
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usually straightforward in the presence of a logical-

to-physical mapping that identifies all physical

realizations of the entity in question. The details of

the code modification required to accommodate the

new attribute may depend on the nature of the

physical representation of the type. For example, if

the logical entity is manifest as a pair of non-

contiguous physical fields, either one of the physical

fields might be updated to hold the new attribute. A

tool that uses logical-to-physical model mappings to

implement attribute update transformations could

examine the contexts in which each physical

manifestation of the same type is used to suggest an

update transformation with the least impact on

other parts of the code.

Application integration

When businesses merge, there is usually a need to

loosely integrate application software from the

premerger businesses, because rewriting applica-

tions from scratch to accommodate the joint needs

of the merged organization is usually impractical (at

least in the short run). In such situations, it is

necessary to identify logically related data entities

that need to flow between premerger applications

(e.g., customer, part). Clearly, it is easier to

determine which entities serve similar roles at the

logical level than at the physical level. Consider, for

example, a procedure parameter that is declared to

be a character string of length one. A logical data

model for the parameter that constrains the value of

the string to be either 0Y0 or 0N0 provides more useful

information than the type of the parameter alone.

Similarly, a logical data model that breaks the

contents of a 100-character buffer into component

logical types, or which distinguishes logical output

(‘‘write only’’) parameters from logical input (‘‘read

only’’) parameters, provides vital information for

integrating the two applications. By annotating

logical models with ontological information that

characterizes the canonical ‘‘business semantics’’ of

basic logical entities (as a trivial example, the

character string defined above might be annotated

with the canonical type boolean), automatic or

semiautomatic tools can be used to define mappings

between related logical models in premerger appli-

cations. Annotated logical types can then be used to

define runtime ‘‘adapter’’ code that can manage the

flow of data between applications. For example,

such an adapter might transform the string 0Y0 into

the boolean value true to allow two premerger

applications to be loosely integrated.

Database migration

Many legacy applications store persistent data in

data stores such as flat files or nonrelational

databases rather than more flexible relational data-

bases. Businesses are often motivated to migrate

data from older data stores to relational databases in

order to consolidate data from multiple applications

more tightly or because they wish to move from the

nightly batch processing of transactions to continu-

ous ‘‘straight through’’ transaction processing. In

such a scenario, a semantically accurate logical

model of persistent data can assist in defining not

only a data schema for the new data store but also

the code transformation required to access the new

data store from existing applications.

Migration to service-oriented architectures

The concept of service-oriented architecture (SOA
4
)

entails decomposing complex enterprise-scale soft-

ware into collections of loosely coupled distributed

components. In order to achieve the flexibility

promised by the SOA approach, it is important to

define natural component interfaces for legacy

applications. In transforming a legacy application to

implement SOA interfaces, it is typically necessary

to address most of the issues that arise in

integration, adaptation, and migration scenarios.

Facilitation of program understanding,
documentation, and planning
Many large-scale application integration, migration,

and transformation projects go awry due to lack of

adequate information about the behavior of existing

applications and the impact of proposed code

changes. Accurate logical models, linked to their

physical counterparts, can serve as semantically

well-founded program documentation to allow

better planning for proposed changes. Like textual

documentation, good data (and process models) can

help application architects and programmers

understand the behavior of an application. Unlike

text, however, models can be queried by software to

help understand the impact of proposed changes. A

simple example might be determining how many

distinct applications access data from a particular

logical entity for which a change is being consid-

ered. A more detailed query might determine the

number of different physical types used to imple-

ment the logical type as a measure of the difficulty of

carrying out a transformation. Yet more sophisti-

cated tools might compute estimated transformation

costs or define a candidate transformation plan by
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mapping a proposed transformation at the logical

model level back to code.

For all the reasons enumerated above, we believe

that logical models in general, and logical data

models in particular, should serve as the foundation

for legacy analysis, understanding, and transforma-

tion tools.

THE MASTERY PROJECT

In this section, we give a brief overview of the

Mastery project at IBM Research, whose aim is to

create data-centered modeling tools and to develop

the algorithmic foundations for model extraction.

Our long-term goal is also to address process-model

and business-rule extraction, in addition to data-

model extraction.

Mastery currently consists of two distinct threads:

first, research on novel algorithms for extracting

logical data models, and second, development of an

interactive tool, the Mastery Modeling Tool (MMT),

for extracting logical models from COBOL applica-

tions and for querying and manipulating these

models.

Research on algorithms for extracting logical

data models

The goal of the Mastery model extraction work is to

algorithmically recover data abstractions from leg-

acy applications that accurately reflect the ‘‘natural’’

business semantics of the application. The level of

abstraction that we are aiming for is roughly similar

to that found in UML class diagrams, OCL (Object

Constraint Language)
5

or Alloy.
6

In general, it can be quite challenging to construct

semantically well-founded logical data models from

legacy applications. For example, COBOL program-

mers frequently overlay differing data declarations

on the same storage (using the REDEFINE construct).

Sometimes overlays represent disjoint unions, that

is, situations in which the same storage is used for

distinct unrelated types, typically depending on

some ‘‘tag’’ variable. However, overlays are also

used to reinterpret the same underlying type in

different ways; for example, to split an account

number into distinct subfields representing various

attributes of the account. The disjoint and non-

disjoint (reinterpreting) use of overlays can be

distinguished in general only by examining the way

the data are used in code, and not just by examining

the data declarations.

Examples of other challenging problems related to

extracting logical data models from applications

include:

� Identifying logical entities and the correspon-

dences between program variables and logical

entities.
� Identifying distinct variables that aggregate to a

single logical entity because they are always used

together.
� Identifying associations (with multiplicities)

between entities based on implicit and explicit

primary/foreign key relationships. For example, a

PartNumber field in an Order record may contain

a value that implicitly refers to a corresponding

Part record containing the same value in its

Number field. PartNumber may be considered a

foreign key and Number a primary key, which

together define an association between Orders

and Parts.
� Identifying integrity (i.e., consistency) constraints

on logical entities and their attribute values (e.g.,

a particular attribute of a particular entity might

be an enumeration type and allowed to take on a

value only from a given set of values).
� Identifying uses of generic polymorphism, that is,

data types designed to be parameterized by other

data types. An example would be a Log file type

that is parameterized by the class of the

transaction being logged.

Our basic algorithmic idea is to use data-flow

information to infer information about logical types;

for example, given a statement assigning A to B, we

can infer that at that point in the code, A and B have

the same type (i.e., correspond to the same logical

entity). Further, if we know that K is a variable

containing a key value for a logical type T, and K is

assigned to a field F of record R, then we can infer

that there is a logical association between the type of

R and T. We regard reads from external or persistent

data sources as defining ‘‘basic entities’’ from which

more elaborate relations can be inferred. The simple

ideas outlined above are greatly complicated by

various COBOL language features and programming

idioms, particularly relating to the use of overlays.

These aspects lead to the same memory locations

(variables) being used to store values of different

logical types (different logical entities) under differ-
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ent conditions. We have developed an efficient,

flow-insensitive, heuristics-based algorithm for in-

ferring subtype relationships to model such situa-

tions. Details of this algorithm are beyond the scope

of this paper. We have also developed path-sensitive

type inference algorithms, described in References 7

and 8, which deal with these language features and

programming idioms precisely and in a semantically

well-founded way. We hope to implement efficient

versions of these path-sensitive type inference

algorithms in the future.

Mastery Modeling Tool

MMT is built on the Eclipse**
9

open-source frame-

work. The tool contains several components. An

importer processes COBOL source files and COBOL

copybooks to build a physical model that can be

browsed inside the tool. A model extractor builds a

logical model at the level of a UML class diagram (as

described earlier), and links that model to the

physical data model. Currently, the model extractor

identifies basic logical types, subtypes, and associ-

ation relations. Extensive model view facilities allow

logical models and their links to physical data items

to be browsed and filtered from many perspectives.

A query facility allows expressive queries on the

properties of models and links. Such queries can be

used, for example, to understand the impact of

various proposed updates to the application from a

data perspective. The tool also allows users to edit

the logical model, permitting manual refinement of

automatically inferred models. A report generation

capability generates HTML-based reports depicting

the logical and physical models for easy browsing

outside the MMT tool.

Because the UML 2.0 specification was still evolving

when we began work on Mastery, we opted to use a

simplified class model as the metamodel for the

Mastery logical model. With the availability of tools

such as Rational* Software Architect,
10

based on the

UML 2.0 specification, we have supported integra-

tion by converting the Mastery logical model to UML

2.0 through a simple converter, using the Eclipse

UML 2.0 implementation.
11

RELATED WORK
There are commercially available tools that assist

with data modeling, such as AllFusion** ERWin**

Data Modeler
12

from Computer Associates Interna-

tional, Inc., Rational Rose*
13

from IBM, Modern-

ization Workbench**
14

from Relativity

Technologies, Inc., and Enterprise Repository
15

from

SEEC, Inc. In general, these tools may support

forward engineering of applications from data

models (e.g., ERWin and Rose), or infer physical

data models from data declarations alone (e.g.,

Modernization Workbench, Enterprise Repository,

and Rose). We believe Mastery is unique in its

ability to infer a logical data model for an existing

application by analyzing how data is used in the

code.

The Object Management Group** (OMG**) has an

Architecture-Driven Modernization (ADM) Task

Force,
16

which is creating standards to support the

analysis and transformation of existing applications.

The ADM Task Force has defined a road map

containing seven standards. The work on Mastery

corresponds to the first three standards in that road

map as follows:

1. Mastery’s physical model of COBOL programs

corresponds to the information covered by the

Abstract Syntax Tree Metamodel (ASTM)

2. Mastery’s model of the batch jobs and

transactions that invoke COBOL programs

corresponds to the information covered by the

Knowledge Discovery Metamodel (KDM)

3. The linkage between Mastery’s physical model of

COBOL programs and its inferred logical model

corresponds to the Analysis Package (AP).

Previously reported academic work in using type

inference for program understanding includes

References 17–22. Of these, the approaches in

References 19–22 are close in spirit to the type

inference component of our model extractor. How-

ever, our approach has certain distinctions, such as

the use of a heuristic to distinguish disjoint uses of

redefined variables from non-disjoint (reinterpret-

ing) uses; this distinction is important because the

program transformations required to implement a

functional change related to a redefined variable are

very different in the two cases. Van Deursen et al.
21

describe a system for exploring information pro-

duced by type inference that is similar to MMT.

Approaches that do not use type information for

inferring logical data models (or certain aspects of

logical data models) include References 23–26.

Examples of approaches for inferring business rules

(as opposed to data models) are found in References

27 and 28.
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CONCLUSIONS
Many legacy applications perform essential business

functions; yet, due to a number of factors, modifying

such applications in order to accommodate new

business requirements can be troublesome. Such

factors include: the volume of code in a typical

application, logical code structure that has deterio-

rated as updates have accumulated over time,

functional redundancy, code structure that reflects

the dated technology on which it was built, and

scarce technical skills. We have argued that the

consequent difficulty of understanding and modify-

ing legacy code can be ameliorated through the use

of logical data models. In the Mastery project, we

are developing both algorithms for extracting logical

data models from legacy COBOL applications and

software tools that use the generated models to

query and transform the code from which the

models are derived.
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