Technical Forum

USING LOGICAL DATA MODELS FOR
UNDERSTANDING AND TRANSFORMING LEGACY
BUSINESS APPLICATIONS

Show me your flowchart and conceal your tables, and
I shall continue to be mystified. Show me your tables,
and I won’t usually need your flowchart; it’ll be
obvious.

Frederick Brooks, The Mythical Man-Month

Modifying a legacy application is typically an
expensive and time-consuming process, even when
the required modifications are conceptually very
simple. We argue that this problem can be amelio-

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

rated by adopting an approach in which logical data
models of a legacy application are used by software
developers to understand, maintain, and transform
the software. In addition, we outline the goals and
status of the Mastery project at IBM Research, which
aims to build a suite of tools for automatically
extracting logical models from legacy applications,
focusing initially on logical data models.

THE PROBLEM

For the past few years, our group at IBM Research
has been investigating tools and techniques for
analyzing and transforming legacy business appli-
cations, focusing on mainframe-based applications
written in COBOL." Such applications are often
decades old and implement core business function-
ality. Yet they are difficult to update in a timely
manner in response to new business requirements
due to a number of factors that include the
following:

e Volume of code in a typical application

* Logical structure of code has deteriorated as
updates have accumulated over time

e Functional redundancy

e Structure of code reflects the dated technology on
which it was built

e Scarce technical skills

Size

Legacy application portfolios, that is, complete
collections of programs and related components,

0018-8670/06/$5.00 © 2006 IBM

TECHNICAL FORUM 647

can be very large. For example, one IBM customer
had a portfolio consisting of 700 interdependent
applications, 3000 online data sets, 27,000 batch
jobs, and 31,000 compilation units. The sheer
volume of information contained in an application
of this size makes it impossible for an individual to
understand the relationships between all parts of the
application.

Deterioration

The logical structure of code and data tends to
deteriorate over time as a result of a continuous
stream of modifications and enhancements. For
large legacy applications, persistent data is the
principal coupling mechanism between components
of an application portfolio. Yet, as an application
evolves to meet new business requirements, the
structure and coherence of the data models under-
lying the code decays faster than the structure and
coherence of the basic control and process flow
through the application. Perhaps this is because it is
relatively easy to add new functionality to an
existing application by creating modules that ma-
nipulate new data items stored separately from the
original application data. The alternative of refac-
toring the basic process flow through the application
to accommodate new requirements typically re-
duires much more intrusive changes.

Redundancy

Over time, applications frequently accumulate a
great deal of redundant code (multiple code frag-
ments that perform the same logical function) and
redundant data (data structures that represent the
same information, perhaps with slight differences,
and are scattered throughout the code). Reasons for
this redundancy include incomplete integration of
information systems following business mergers,
performance-driven enhancements to the code, and
quick “hacks” when adding new functionality under
tight schedules.

Technology

The code structure of legacy applications often
reflects the limitations of the programming lan-
guages used and the middleware on which it was
originally designed to run. In many cases, the code
structure dictated by the constraints of legacy
languages and middleware renders such systems
more difficult to understand and evolve than they
would be if they had been implemented on modern
platforms.

648 TECHNICAL FORUM

Skills

As new languages and software systems become
popular, it becomes more difficult to find people
with skills in legacy languages and systems.

Interest in the use of automated and semiautomated
tools to analyze and transform legacy code is
increasing. Such tools include program-understand-
ing tools, tools for identifying and extracting
semantically related code statements (through
techniques such as program slicingz), tools for
migrating from one library or middleware base to
another, tools for integrating legacy code with
modern middleware, and so on.

In the remainder of the paper, we first explain the
value of logical data models and describe a number
of applications of logical models to program-under-
standing and transformation tasks. Then we de-
scribe the Mastery project, which is concerned with
developing algorithms and tools for extracting and
manipulating logical data and the source code from
which they are derived. We conclude with a brief
review of related work and some final comments.

VALUE OF LOGICAL DATA MODELS

The Mastery project is concerned with extracting
logical models from legacy applications. These
logical models, which are high-level abstractions of
business processes and data relationships, are used
together with human- and machine-readable links
from these logical models back to their physical
realizations in code as the foundation for a variety of
program-understanding and transformation tasks
(we use “physical” to mean “implementation-
related”). The initial focus of the Mastery project is
on logical data models: abstractions encoding
essential data relationships. In this paper we focus
on applications of data models because we believe
that their utility (relative to process- and control-
oriented program abstractions) in program under-
standing and transformation has been underappre-
ciated. Nonetheless, other concepts of logical
models not covered in this paper are also valuable;
the information they provide can complement
logical data models for many of the applications we
consider.

Logical data models are critical for understanding
and transforming legacy applications. Consider the
UML*"‘—style3 logical data model depicted in
Figure 1 (UML stands for Unified Modeling Lan-

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Q1 ———
Transaction Order Part Supplier
Order key Order key Part key supplier
* part key « supplier code code
« order number » part number
Info: Info:
« order amount « price table, ...
* current status, ... Statistics:

77t

Correct

[
Delete

|
New Order

Figure 1
A logical data model for a typical order-processing applicat

- prev. day sales
« prev. month sales

ion

guage**.) This model describes key data structures
and their interrelationships for a typical order-
processing application. In this case, a batch appli-
cation processes transaction records pertaining to
orders for parts; the processing of a transaction may
result in the creation of a new order for a part (New
Order), in the correction of an error in an existing
unfulfilled order (Correct), or in the cancelation of
an unfulfilled order (Delete), and so on.

The application represented by the model in Figure 1
is large (around 60,000 lines of COBOL) and
complex. The complexity of the code obscures its
essential functionality, which is to process different
kinds of transactions pertaining to orders for parts.
This functionality is expressed succinctly and at a
high level of abstraction by the data model. In other
words, the “business logic” of the application is
concerned primarily with maintaining and updating
certain relationships among persistent and transient
data items; therefore, the data model embodies
much of the interesting functionality of the appli-
cation, even though the model contains no repre-
sentation of code.

It is notable that the logical data model shown in

Figure 1 differs greatly from the data declarations in
the source code of the application. Figure 2 shows
an outline of these data declarations, with the data
items linked (links shown using dashed arrows) to
the corresponding logical-data-model entities (this

figure contains a relevant subset of the logical model

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

in Figure 1). The data declarations are spread over
several source files; furthermore, they reveal little
about the structure of and relationships between the
logical entities manipulated by the application,
which is obtainable only by an analysis of the code
that uses the data. As illustrated in Figure 2, the
logical data model adds value by making informa-
tion that is hidden in the code explicit, such as the
following:

e Logical entities—The logical entities manipulated
by the program include Transactions (i.e.,
requests to the system of various types) Orders,
Parts, and so forth. Physical data items (variables)
correspond to these entities; such as ORDER-BUF
and ORDER-REC store Orders (as indicated by the
links).

e Logical subtypes—Transactions are of several
kinds (have several subtypes), such as Delete,
Correct, and New Order.

e Associations—Entities are associated with (or
pertain to) other entities, as indicated by the red
arrows in Figure 1. Associations have
maultiplicities; for example, the labels on the
association from Transaction to Order indicate
that each Transaction pertains to zero or one
(existing) Orders and that each Order has zero or
more Transactions pertaining to it on any given
day.

* Aggregation—The information corresponding to a
single part is stored in two physical records,
PR1-PART-REC and PR2-PART-REC, which are tied
together by their PART-KEY attribute. This

TECHNICAL FORUM 649

01 TRANSACTION-REC. <—————————————
05 TRANS-DET-KEY_.. 39 bytes ..
05 GENERAL-INFO. ™ =~—_
10 REC-TYPE PIC X(3).
05 FILLER PIC X(154).

01 LOCAL-VARS.
05 ORDER-BUF". .

<«

01 ORDER-REC.

01 HTR-TRANSACTION-REC. <

05 HTR-KEY .. 39 bytes .. \\\
05 .. other New Order fields .. \
\

01 PR1-PART-REC. N
05 PART-KEY .. 18 bytes .. PR
.. ~_ 7 P
05 PRICE-TABLE ..m~<_ _-——"_ 47

N— _ e —

01 PR2-PART-REC.
05 PART*KE{X 2 g

05 PREVIOUS-DAY-SALES ..
05 PREVIOUSMONTH-SALES ..

AN

Figure 2

o 0
3

~

—

Transaction Order Part
NOrder key -y Fart key
el Supplier code
ey //° |+ Part number
| /) Info:
| /[~ + Price table
77 Statistics:
-7 /) __— «Prev. day sales
S5 * Prev. mon. sales
A
g e S/ 1 |
7 - YA I
e L // / //
-7 - /
-~ e S !
g s // /
~ s, /
= s
7 - // //
- //// /
- /
- /
A /
—— /
- /
X /
/
New Order %
P /
7/
Ve

Order key

Links mapping entities in a logical data model to declarations in the source code

(perhaps historical) artifact is elided in the logical
model, and both records are linked to a single
“Part” entity.

Integrity constraints—Although our example does
not illustrate it, a logical data model can also
include semantic integrity constraints and data
invariants (beyond those implied by multiplicities
on associations), such as the constraint that the
Order Amount must be positive.

APPLICATIONS OF LOGICAL DATA MODELS

A logical data model linked back to the physical
constructs that realize it can serve as the foundation
for a variety of program transformations, either
implemented by hand or automated by tools.
Examples of such transformations are described in
the following subsections.

Data representation changes

In business applications, it is often necessary to
update the physical representations of a single
logical entity, say, to accommodate an expanded
range of values. For example, a 2-digit date field

650 TECHNICAL FORUM

might be expanded to 4 digits to allow for dates after
the year 2000, or a serial-number product field,
represented using numeric values, might be updated
to an alphanumeric type to accommodate additional
products. A logical data model and an accompany-
ing logical-to-physical mapping can be used to
distinguish unrelated instances of the same physical
type (e.g., one 10-digit variable in a program may
represent a part number, and another variable of
exactly the same physical type might represent a
customer number), or logically related instances of
distinct physical types (e.g., character string and
integer representations of a value representing an
invoice number). The logical-to-physical mapping
can allow for automatic or semiautomatic type
transformations, which would otherwise require
tedious and error-prone manual code searches.

Addition of attributes to existing logical entities
In this scenario, the physical representations of a
logical entity must be updated to accommodate a
new logical attribute (e.g., adding an email_addr
attribute to an existing customer entity). This is

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

usually straightforward in the presence of a logical-
to-physical mapping that identifies all physical
realizations of the entity in question. The details of
the code modification required to accommodate the
new attribute may depend on the nature of the
physical representation of the type. For example, if
the logical entity is manifest as a pair of non-
contiguous physical fields, either one of the physical
fields might be updated to hold the new attribute. A
tool that uses logical-to-physical model mappings to
implement attribute update transformations could
examine the contexts in which each physical
manifestation of the same type is used to suggest an
update transformation with the least impact on
other parts of the code.

Application integration

When businesses merge, there is usually a need to
loosely integrate application software from the
premerger businesses, because rewriting applica-
tions from scratch to accommodate the joint needs
of the merged organization is usually impractical (at
least in the short run). In such situations, it is
necessary to identify logically related data entities
that need to flow between premerger applications
(e.g., customer, part). Clearly, it is easier to
determine which entities serve similar roles at the
logical level than at the physical level. Consider, for
example, a procedure parameter that is declared to
be a character string of length one. A logical data
model for the parameter that constrains the value of
the string to be either 'Y’ or ‘N’ provides more useful
information than the type of the parameter alone.
Similarly, a logical data model that breaks the
contents of a 100-character buffer into component
logical types, or which distinguishes logical output
(“write only”) parameters from logical input (“read
only”) parameters, provides vital information for
integrating the two applications. By annotating
logical models with ontological information that
characterizes the canonical “business semantics” of
basic logical entities (as a trivial example, the
character string defined above might be annotated
with the canonical type boolean), automatic or
semiautomatic tools can be used to define mappings
between related logical models in premerger appli-
cations. Annotated logical types can then be used to
define runtime “adapter” code that can manage the
flow of data between applications. For example,
such an adapter might transform the string 'Y’ into
the boolean value true to allow two premerger
applications to be loosely integrated.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Database migration

Many legacy applications store persistent data in
data stores such as flat files or nonrelational
databases rather than more flexible relational data-
bases. Businesses are often motivated to migrate
data from older data stores to relational databases in
order to consolidate data from multiple applications
more tightly or because they wish to move from the
nightly batch processing of transactions to continu-
ous “straight through” transaction processing. In
such a scenario, a semantically accurate logical
model of persistent data can assist in defining not
only a data schema for the new data store but also
the code transformation required to access the new
data store from existing applications.

Migration to service-oriented architectures

The concept of service-oriented architecture (SOA4)
entails decomposing complex enterprise-scale soft-
ware into collections of loosely coupled distributed
components. In order to achieve the flexibility
promised by the SOA approach, it is important to
define natural component interfaces for legacy
applications. In transforming a legacy application to
implement SOA interfaces, it is typically necessary
to address most of the issues that arise in
integration, adaptation, and migration scenarios.

Facilitation of program understanding,
documentation, and planning

Many large-scale application integration, migration,
and transformation projects go awry due to lack of
adequate information about the behavior of existing
applications and the impact of proposed code
changes. Accurate logical models, linked to their
physical counterparts, can serve as semantically
well-founded program documentation to allow
better planning for proposed changes. Like textual
documentation, good data (and process models) can
help application architects and programmers
understand the behavior of an application. Unlike
text, however, models can be queried by software to
help understand the impact of proposed changes. A
simple example might be determining how many
distinct applications access data from a particular
logical entity for which a change is being consid-
ered. A more detailed query might determine the
number of different physical types used to imple-
ment the logical type as a measure of the difficulty of
carrying out a transformation. Yet more sophisti-
cated tools might compute estimated transformation
costs or define a candidate transformation plan by

TECHNICAL FORUM

651

mapping a proposed transformation at the logical
model level back to code.

For all the reasons enumerated above, we believe
that logical models in general, and logical data
models in particular, should serve as the foundation
for legacy analysis, understanding, and transforma-
tion tools.

THE MASTERY PROJECT

In this section, we give a brief overview of the
Mastery project at IBM Research, whose aim is to
create data-centered modeling tools and to develop
the algorithmic foundations for model extraction.
Our long-term goal is also to address process-model
and business-rule extraction, in addition to data-
model extraction.

Mastery currently consists of two distinct threads:
first, research on novel algorithms for extracting
logical data models, and second, development of an
interactive tool, the Mastery Modeling Tool (MMT),
for extracting logical models from COBOL applica-
tions and for querying and manipulating these
models.

Research on algorithms for extracting logical
data models

The goal of the Mastery model extraction work is to
algorithmically recover data abstractions from leg-
acy applications that accurately reflect the “natural”
business semantics of the application. The level of
abstraction that we are aiming for is roughly similar
to that found in UML class diagrams, OCL (Object
Constraint Language)5 or Alloy.6

In general, it can be quite challenging to construct
semantically well-founded logical data models from
legacy applications. For example, COBOL program-
mers frequently overlay differing data declarations
on the same storage (using the REDEFINE construct).
Sometimes overlays represent disjoint unions, that
is, situations in which the same storage is used for
distinct unrelated types, typically depending on
some “tag” variable. However, overlays are also
used to reinterpret the same underlying type in
different ways; for example, to split an account
number into distinct subfields representing various
attributes of the account. The disjoint and non-
disjoint (reinterpreting) use of overlays can be
distinguished in general only by examining the way

652 TECHNICAL FORUM

the data are used in code, and not just by examining
the data declarations.

Examples of other challenging problems related to
extracting logical data models from applications
include:

* Identifying logical entities and the correspon-
dences between program variables and logical
entities.

¢ Identifying distinct variables that aggregate to a
single logical entity because they are always used
together.

¢ Identifying associations (with multiplicities)
between entities based on implicit and explicit
primary/foreign key relationships. For example, a
PartNumber field in an Order record may contain
a value that implicitly refers to a corresponding
Part record containing the same value in its
Number field. PartNumber may be considered a
foreign key and Number a primary key, which
together define an association between Orders
and Parts.

* Identifying integrity (i.e., consistency) constraints
on logical entities and their attribute values (e.g.,
a particular attribute of a particular entity might
be an enumeration type and allowed to take on a
value only from a given set of values).

¢ Identifying uses of generic polymorphism, that is,
data types designed to be parameterized by other
data types. An example would be a Log file type
that is parameterized by the class of the
transaction being logged.

Our basic algorithmic idea is to use data-flow
information to infer information about logical types;
for example, given a statement assigning A to B, we
can infer that at that point in the code, A and B have
the same type (i.e., correspond to the same logical
entity). Further, if we know that K is a variable
containing a key value for a logical type T, and K is
assigned to a field F of record R, then we can infer
that there is a logical association between the type of
R and T. We regard reads from external or persistent
data sources as defining “basic entities” from which
more elaborate relations can be inferred. The simple
ideas outlined above are greatly complicated by
various COBOL language features and programming
idioms, particularly relating to the use of overlays.
These aspects lead to the same memory locations
(variables) being used to store values of different
logical types (different logical entities) under differ-

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

ent conditions. We have developed an efficient,
flow-insensitive, heuristics-based algorithm for in-
ferring subtype relationships to model such situa-
tions. Details of this algorithm are beyond the scope
of this paper. We have also developed path-sensitive
type inference algorithms, described in References 7
and 8, which deal with these language features and
programming idioms precisely and in a semantically
well-founded way. We hope to implement efficient
versions of these path-sensitive type inference
algorithms in the future.

Mastery Modeling Tool

MMT is built on the Eclipse**9 open-source frame-
work. The tool contains several components. An
importer processes COBOL source files and COBOL
copybooks to build a physical model that can be
browsed inside the tool. A model extractor builds a
logical model at the level of a UML class diagram (as
described earlier), and links that model to the
physical data model. Currently, the model extractor
identifies basic logical types, subtypes, and associ-
ation relations. Extensive model view facilities allow
logical models and their links to physical data items
to be browsed and filtered from many perspectives.
A query facility allows expressive queries on the
properties of models and links. Such queries can be
used, for example, to understand the impact of
various proposed updates to the application from a
data perspective. The tool also allows users to edit
the logical model, permitting manual refinement of
automatically inferred models. A report generation
capability generates HTML-based reports depicting
the logical and physical models for easy browsing
outside the MMT tool.

Because the UML 2.0 specification was still evolving
when we began work on Mastery, we opted to use a
simplified class model as the metamodel for the
Mastery logical model. With the availability of tools
such as Rational* Software Architect,10 based on the
UML 2.0 specification, we have supported integra-
tion by converting the Mastery logical model to UML
2.0 through a simple converter, using the Eclipse
UML 2.0 implementation.11

RELATED WORK

There are commercially available tools that assist
with data modeling, such as AllFusion** ERWin**
Data Modeler'” from Computer Associates Interna-
tional, Inc., Rational Rose"‘13 from IBM, Modern-
ization Workbench**'* from Relativity

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Technologies, Inc., and Enterprise Repository15 from
SEEC, Inc. In general, these tools may support
forward engineering of applications from data
models (e.g., ERWin and Rose), or infer physical
data models from data declarations alone (e.g.,
Modernization Workbench, Enterprise Repository,
and Rose). We believe Mastery is unique in its
ability to infer a logical data model for an existing
application by analyzing how data is used in the
code.

The Object Management Group** (OMG**) has an
Architecture-Driven Modernization (ADM) Task
Force,16 which is creating standards to support the
analysis and transformation of existing applications.
The ADM Task Force has defined a road map
containing seven standards. The work on Mastery
corresponds to the first three standards in that road
map as follows:

1. Mastery’s physical model of COBOL programs
corresponds to the information covered by the
Abstract Syntax Tree Metamodel (ASTM)

2. Mastery’s model of the batch jobs and
transactions that invoke COBOL programs
corresponds to the information covered by the
Knowledge Discovery Metamodel (KDM)

3. The linkage between Mastery’s physical model of
COBOL programs and its inferred logical model
corresponds to the Analysis Package (AP).

Previously reported academic work in using type
inference for program understanding includes
References 17-22. Of these, the approaches in
References 19-22 are close in spirit to the type
inference component of our model extractor. How-
ever, our approach has certain distinctions, such as
the use of a heuristic to distinguish disjoint uses of
redefined variables from non-disjoint (reinterpret-
ing) uses; this distinction is important because the
program transformations required to implement a
functional change related to a redefined variable are
very different in the two cases. Van Deursen et al.”!
describe a system for exploring information pro-
duced by type inference that is similar to MMT.

Approaches that do not use type information for
inferring logical data models (or certain aspects of
logical data models) include References 23-26.
Examples of approaches for inferring business rules
(as opposed to data models) are found in References
27 and 28.

TECHNICAL FORUM

653

CONCLUSIONS

Many legacy applications perform essential business
functions; yet, due to a number of factors, modifying
such applications in order to accommodate new
business requirements can be troublesome. Such
factors include: the volume of code in a typical
application, logical code structure that has deterio-
rated as updates have accumulated over time,
functional redundancy, code structure that reflects
the dated technology on which it was built, and
scarce technical skills. We have argued that the
consequent difficulty of understanding and modify-
ing legacy code can be ameliorated through the use
of logical data models. In the Mastery project, we
are developing both algorithms for extracting logical
data models from legacy COBOL applications and
software tools that use the generated models to
query and transform the code from which the
models are derived.

ACKNOWLEDGMENTS

We thank an anonymous referee for bringing some
related work, as well as Fred Brooks’ quotation at the
beginning of the article, to our attention.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Computer Associates International, Inc., Object Management
Group, Inc., Eclipse Foundation, Inc., or Relativity Technol-
ogies, Inc. in the United States, other countries, or both.

CITED REFERENCES
1. Mastery, IBM Research Division, IBM Corporation,
http://domino.research.ibm.com/comm/research_
projects.nsf/pages/mastery.index.html.

2. F. Tip, A Survey of Program Slicing Techniques, Journal
of Programming Languages 3, 121-189 (1995).

3. M. Fowler, UML Distilled: A Brief Guide to the Standard
Object Modeling Language, 3rd Edition, Addison-Wesley,
Reading, MA, (2003).

4. Service-Oriented Architecture, IBM Systems Journal 44,
No. 4 (2005).

5. UML 2.0 OCL Specification, Object Management Group,
Inc. (October 2003), http://www.omg.org/docs/ptc/
03-10-14.pdf.

6. D. Jackson, “Alloy: A Lightweight Object Modeling
Notation,” ACM Transactions on Software Engineering
and Methodology 11, No. 2, 256-290 (2002).

7. R. Komondoor, G. Ramalingam, S. Chandra, and J. Field,
“Dependent Types for Program Understanding,” Pro-
ceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
Edinburgh, 2005, in Lecture Notes in Computer Science
3440, Springer, Berlin (2005), pp. 157-173.

654 TECHNICAL FORUM

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

G. Ramalingam, R. Komondoor, J. Field, and S. Sinha,
“Semantics-Based Reverse Engineering of Logical Data
Models,” To appear in the Proceedings of the Interna-
tional Conference on Software Engineering (ICSE’06), May
2006, ACM Press (2006).

Eclipse, Eclipse Foundation, http://www.eclipse.org.

Rational Software Architect, IBM Corporation, http://
www.ibm.com/software/awdtools/architect/
swarchitect/index.html.

The Eclipse UML2 Project, Eclipse Foundation, http://
www.eclipse.org/uml2/.

AllFusion ERWin Data Modeler, Computer Associates
International, http://www3.ca.com/solutions/Product.
aspx?ID=260.

Rational Rose XDE Modeler, IBM Corporation, http://
www.ibm.com/software/awdtools/developer/modeler/.

Modernization Workbench, Relativity Technologies,
http://relativity.com/pages/modernizationworkbench.
asp.

Enterprise Repository, SEEC, Inc., http://www.seec.com/
pdf/SEECEnterprise%20Repository.pdf.

Architecture-Driven Modernization, Object Management
Group, Inc., http://www.omg.org/adm.

R. O’Callahan and D. Jackson, “Lackwit: a Program
Understanding Tool Based on Type Inference,” Proceed-
ings of the International Conference on Software Engi-
neering (ICSE 1997), ACM Press (1997), pp. 338-348.

P. H. Eidorff, F. Henglein, C. Mossin, H. Niss, M. H.
Sorensen, and M. Tofte, “Annodomini: From Type
Theory to Year 2000 Conversion Tool,” Proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ACM Press (1999), pp. 1-14.

G. Ramalingam, J. Field, and F. Tip, “Aggregate Structure
Identification and Its Application to Program Analysis,”
Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ACM Press (1999),
pp. 119-132.

A. van Deursen and L. Moonen, “Understanding COBOL
Systems Using Inferred Types,” Proceedings of the
International Workshop on Program Comprehension
(IWPC *99) May 5-7, 1999, Pittsburgh, PA, IEEE
Computer Society (1999), p. 74.

A. van Deursen and L. Moonen, “Exploring Legacy
Systems Using Types,” Proceedings of the Working
Conference on Reverse Engineering (WCRE’00) November
2000, Brisbane, Australia, IEEE Computer Society (2000),
pp. 32-41.

A. van Deursen and L. Moonen, “Documenting Software
Systems Using Types,” Science of Computer Programming
60, No. 2, 205-220 (2006).

G. Canfora, A. Cimitile, and G. A. D. Lucca, “Recovering
a Conceptual Data Model from COBOL Code, Proceedings
of the International Conference on Software Engineering
and Knowledge Engineering (SEKE ’96), June 10-12,
1996, Lake Tahoe, Nevada, Knowledge Systems Institute,
(1996), 277-284.

B. Demsky and M. Rinard, “Role-Based Exploration of
Object-Oriented Programs,” Proceedings of the Interna-
tional Conference on Software Engineering (ICSE 2002),
May 2002, Orlando, Florida, IEEE Computer Society
(2002), pp. 313-324.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically Discovering Likely Program Invariants to
Support Program Evolution,” Proceedings of the Interna-

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

tional Conference on Software Engineering (ICSE *99),
May 16-22, 1999, Los Angeles, CA, IEEE Computer

Society Press, (1999), pp. 213-224.

26. A. van Deursen and T. Kuipers, “Identifying Objects
Using Cluster and Concept Analysis,” Proceedings of the
International Conference on Software Engineering
(ICSE’99), May 16-22, 1999, Los Angeles, CA, IEEE

Computer Society (1999), pp. 246-255.

27. S. Blazy and P. Facon, “Partial Evaluation for the
Understanding of Fortran Programs,” International
Journal of Software Engineering and Knowledge

Engineering 4, No. 4, 535-599 (1994).

28. F. Lanubile and G. Visaggio, “Function Recovery Based
on Program Slicing,” Proceedings of the Conference on
Software Maintenance (ICSM 1993), September 1993,
Montréal, Quebec, Canada, IEEE Computer Society

(1993), pp. 396-404.

Accepted for publication March 23, 2006.

Published online July 11, 2006.

Satish Chandra
IBM Research Division
Hawthorne, New York

Jackie de Vries
IBM Research Division
Hawthorne, New York

John Field
IBM Research Division
Hawthorne, New York

Howard Hess
IBM Research Division
Hawthorne, New York

Manivannan Kalidasan
IBM India Software Laboratory
Bangalore, India

Komondoor V. Raghavan
IBM Research Division
New Delhi, India

Frans Nieuwerth
IBM Sales and Distribution
Amsterdam, Holland

Ganesan Ramalingam
IBM Research Division
Bangalore, India

Justin Xue

Independent consultant
Edison, New Jersey

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

TECHNICAL FORUM 655

