A Rational approach to model-
driven development

Models, modeling, and model transformation form the basis for a set of software
development approaches that are known as model-driven development (MDD).
Models are used in reasoning about a problem domain and the corresponding
solution domain for some area of interest. In this paper, we explore model-driven
approaches to the realization of solutions for today’s enterprise systems. In particular,

A. W. Brown
S. Iyengar
S. Johnston

we describe the key elements of MDD as they have emerged from the support of IBM

Rational® for model-driven approaches over more than a decade. We discuss the
importance of creating model-to-model and model-to-code transformations that
guide the development process, and we review the portfolio of IBM Rational tools in
the context of their support for modeling and model-driven development.

INTRODUCTION

The use of models and modeling in the development
of software has a long and rich history. From the
earliest days of writing programs, the quality and
efficiency of the programming task has been closely
related to the ability to develop models of the
problem domain and to refine them into a solution
appropriate to the target environment.' Many kinds
of models can be created, depending upon their
intended use: for establishing a clearer understand-
ing of the problem, for communicating a shared
view of the problem and its solution, for formally or
informally analyzing key aspects of the solution, for
generating lower-level implementation details from
a higher-level programming model, and so on. The
models are also highly dependent on the character-
istics of the problem or solution domain that are of
greatest interest, such as static relationships among
domain elements, dynamic behavior of key actors in
the system, operational aspects of a deployed

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

system, expected performance parameters of a
specific logical design, and so on.

Models, modeling, and model transformation form
the basis for a set of software development
approaches that are known as model-driven devel-
opment (MDD). Models are used in reasoning about
the problem domain and the solution domain for
some area of interest. Relationships between these
models provide a web of dependencies that record
the process by which a solution was created and
help to understand the implications of changes at
any point in that process.

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

BROWN, IYENGAR, AND JOHNSTON

463

Although models can be used in many ways in the
development process, a particular style of MDD
relies on being quite prescriptive in the kinds of
models produced, the richness of the semantics they
capture, and the relationships among elements in
different model types. If precise semantics are
carefully adhered to for these models, one may be
able to define rules for automating many of the steps
needed to convert one model representation to
another, tracing between model elements, and
analyzing important characteristics of the models.

This prescriptive style of development is called
Model Driven Architecture** (MDA**). It involves
describing a solution at an abstract level in a model
with well-understood semantics and using a series
of explicit (often automated) steps to refine that
model into more concrete models, eventually
producing an executable solution for a specific
runtime platform. Standards are emerging to sup-
port this architecture. The primary driving force
behind MDA approaches based on a standardized
set of models, notations, and transformation rules is
the Object Management Group, Inc. (OMG**). OMG
provides an open, vendor-neutral basis for system
interoperability through established modeling
standards: the Unified Modeling Language**
(UML**), the Meta-Object Facility (MOF**), and the
Common Warehouse Metamodel (CWM). Platform-
independent descriptions of enterprise solutions can
be built using these modeling standards and can be
transformed for open or proprietary platforms,
including CORBA**, J2EE**, .NET, XMI**/XML,
and Web-based platforms.2

In the past few years, there have been a number of
important advances in how enterprise applications
are designed, implemented, deployed, and made to
evolve. Hence, it is appropriate to examine the
relevance of MDD in the current environment,
which is characterized by the ubiquity of distributed
systems, extensive use of packaged applications,
and the assembly of composite solutions largely
from preexisting components. This paper reviews
the role of MDD in creating flexible, service-oriented
architectures (SOAs) and discusses how model-
driven approaches fit into today’s development
context. It describes the role that MDD plays in
creating flexible, on-demand solutions and how the
tools and processes provided by IBM Rational* are
evolving to make MDD more accessible to a wider
audience of practicing software engineers. Although

464 BROWN, IYENGAR, AND JOHNSTON

MDD can be applied successfully to a variety of
application domains, in this paper we focus on the
role of MDD for enterprise solutions in typical
business domains such as financial services, retail,
and health care.

CHARACTERIZING TODAY’S ENTERPRISE
SOLUTIONS

As in years past, today’s business leaders are
striving to drive revenue growth, contain costs, and
improve the effectiveness of people and processes,
at the same time looking for opportunities to
innovate and create new business opportunities.
This balance has been at the heart of many software
engineering initiatives and debates over the past 20
years. On the one hand, organizations are required
to focus on containing risk through controlled,
repeatable practices with incremental improvements
in the context of frameworks and standards such as
the Capability Maturity Model (CMM3), the ISO 9000
series of standards,” Six Sigmal,5 and the IT Infra-
structure Library (ITIL**6). On the other hand, they
must innovate and revolutionize practices to differ-
entiate their offerings with techniques such as agile
development,7 adopting open-source technologies
and practices,8 and dynamically reconfiguring IT
(information technology) solutions to optimized
business processes.9

What sets the current business climate apart from
the past is rapid, continuous change. Increasingly,
organizations that can respond to change with
agility and flexibility are distinguishing themselves
from those saddled with complex, brittle processes
and systems. Flexible businesses readily adapt to
changes that result from mergers and acquisitions,
compliance and regulatory mandates, increased
competition, evolving technology, and shifting
opportunities in outsourcing and insourcing. These
businesses often share four guiding principles:

1. Business-driven development—The collection of
capabilities offered throughout an IT infrastruc-
ture is viewed as a set of services that are
assembled to meet specific business needs. This
provides better insight into how business pro-
cesses can be realized in IT solutions.

2. Composite application assembly—Components
are assembled and reassembled into solutions as
business and market conditions demand. Solu-
tions typically consist of a heterogeneous mix of
components developed by different teams or

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

acquired from various sources over an extended
period of time.

3. Efficiency through systematic reuse—Asset man-
agement and reuse are exploited to achieve
greater business efficiency. The components of a
system are managed as key assets of the business
and used as a basis for driving consistency and
efficiency across a portfolio of solutions.

4. Explicit support for governance to aid compli-
ance—The end-to-end life cycle of a system is
considered to clarify the development process
and to maintain traceability among its artifacts.
This supports governance practices that assist in
demonstrating conformance to industry stan-
dards and best practices for software develop-
ment by focusing on the artifacts created
throughout the development life cycle and the
relationships between model elements and be-
tween models.

These principles are described in greater detail in the
following subsections.

Business-driven development

In an on demand world, success depends on the
ability to rapidly respond to new challenges and
opportunities. An on demand business is able to
effectively transform business models and processes
as needed. Business and technology teams cooper-
ate on a shared view of the organization’s needs and
priorities for increased flexibility and responsive-
ness. Organizations that close the gap between the
business view of activities and processes on the one
hand and the technology that is used to realize these
activities on the other can create business models in
step with IT solutions. To close this gap and achieve
business goals, it is vital that business goals and
requirements drive IT development projects. With a
flexible technology infrastructure, IT becomes an
enabler of responsiveness and adaptability rather
than an obstacle to them.

Closing the gap between business and IT depends on
improved communication between business ana-
lysts and software architects. Solutions are built
based on the needs of the business, but are flexible,
enabling the business to rapidly understand the
impact of changing business needs and to respond to
them appropriately. Successfully connecting the
business and IT parts of an organization also
requires a common conceptual framework for
discussing business needs and technology solutions,

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

with a relevance both to business analysts focused
on implementing business needs and IT architects
focused on implementing a technology solution.

From the initial statistical and analytical models that
inform business decisions to system and perfor-
mance models used in defining IT policies and
guiding IT projects, both business analysts and IT
architects rely on various kinds of models to
understand and communicate their needs. What is
often missing, however, is a planned approach to
coordinating the integration and use of those models
across the entire system life cycle. Business-driven
development focuses on this need and places
attention on the creation, integration, and use of
models across the business and IT domains with the
goal of increasing visibility, traceability, and flexi-
bility within the software development process.

One particular approach to software development
where business-driven development is particularly
relevant is in service-oriented architectures (SOAs).
These architectures are gaining much support in the
industry today and view enterprise solutions as
federations of services connected by well-specified
contracts that define their service interfaces. Sys-
tems are composed of collections of services
invoking operations defined through their service
interfaces. Many organizations now express their
solutions in terms of services and their intercon-
nections. The ultimate goal of adopting an SOA is to
achieve flexibility for the business and IT domains.

Service-oriented development of applications
(SODA) incorporates a broad range of capabilities,
technologies, tools, and skill sets, including man-
aging the service life cycle (including finding,
applying, evolving, and maintaining services),
modeling business processes to gain insight into
current processes and the potential benefits of
process improvements, establishing a platform and
programming model (including connecting, deploy-
ing, and managing services within a specific runtime
platform), and adopting practices and tools that
enable teams to effectively create and assemble
services in the context of meeting changing business
needs. This includes mining existing applications to
discover potential services, wrapping existing func-
tionality to make those capabilities accessible as
services, creation of new services, and “wiring”
services together by connections using their inter-
faces. Fundamental to these capabilities is the

BROWN, IYENGAR, AND JOHNSTON

465

get ApplicationInfo
get Amount

get InterestRate

— _——

Java Application |—

@ Loan System

%) Get Customer Information]]

9 Loan Proces

—
% Fraud Check

get
Approved

Approved/

f 0

4 [Personal Loan Request]

[

[4- Get Customer Information]

|

« Approval

[.. Not Approved]

[.. Approved]

v
[4- Additional Services]

(é E=Additional Services]]

@) (= Credit Rating |
& roproal

. If approved, then

send letter offering gold

If NOT approved, then
send letter offering
credit counseling service

Business Rules

PeopleSoft Inc. system
with customer
credit ratings

/_7/

8 Web

—| Imported System I—

!

\ = Reply /
\—| WS-BPEL Business Process |—/

Figure 1
Example of a composite application

Send letter to applicant

[LetterSent]

Start monthly payments
[PaymentsSta rted]

4| Business State Machine Ii

availability of clear guidance and best practices for
designing services-oriented solutions in repeatable,
predictable ways.

Composite application assembly

Traditional enterprise applications were large,
monolithic systems targeted at addressing a specific
business function. Design techniques, tools, and
processes were optimized around the development
of these kinds of systems. Today’s business systems,
in contrast, increasingly involve composite applica-
tions. These “n-tiered” applications are collections
of integrated capabilities and use information and
logic from multiple sources. To integrate these

466 BROWN, IYENGAR, AND JOHNSTON

capabilities and sources, a composite application
invokes multiple transactions and subtransactions
across a variety of runtime platforms and systems.

For example, in Figure 1 we illustrate a composite
application in which the end user is interacting with
a complex system that realizes a complex business
process. This process is an assembly of components
deployed across Web servers, J2EE (Java** 2
Enterprise Edition) application servers, integration
middleware, and legacy systems. The business
process, in this case a loan application process, is
realized through a combination of automated and
manual activities, and delivered through a variety of

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

technologies. This kind of architecture is typical of
enterprise systems today.

In such a complex environment, it becomes in-
creasingly difficult to build, run, and manage
applications. There are many challenges, and the
current data suggests that software development
tools and techniques are not meeting these chal-
lenges. For example, according to survey results,
only 28 percent of projects were found to have been
successful (delivering expected results on time and
within budget),10 and the average J2EE application
is unavailable nearly one day per week. ' Clearly,
some new approaches to developing and managing
composite applications are required to help orga-
nizations create solutions that support these kinds of
complex interactions.

Systematic reuse

When organizations think of services as key assets
in the design of systems, the value of reusing these
services becomes apparent. As a result, technologies
and techniques are developed for the management
and governance of assets and for repeatable ways to
capture patterns for combining assets. These assets
hold critical value for the organization and must be
carefully managed. The team infrastructure for
managing assets in a consistent way across projects
and throughout the enterprise takes on a key role in
this approach.

Like any asset, the life cycle of a service includes
multiple phases in which the service is identified
and discovered, harvested and created, certified and
published, reused and measured, and ultimately
retired. As illustrated in Figure 2, this asset life cycle
is described through a set of workflows referred to
as asset identification, asset production, asset
management, and asset consumption. Services may
be consumed or reused at various points in the life
cycle, including during development and at runtime.

Many different kinds of artifacts are reused
throughout the software development life cycle.
Much of the value of any reuse depends on the
reused artifact being well-understood by both the
producers and consumers of the asset. Detailed
knowledge and insight into the artifact becomes
essential and enables the reused artifact to play a
strategic role in providing consistency and quality in
delivered solutions. Hence, models are obviously
important in understanding reused artifacts and as

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Program Management

Asset Identification

Candidate
Asset Production ‘ Asset |
|
Feedback
Asset Management
Asset Consumption ‘ |
Feedback

Figure 2
A typical reuse life cycle

primary reusable artifacts themselves in any MDD
approach.

The key to successful reuse within most large-scale
enterprises is the extent to which ad hoc approaches
are augmented with supporting technologies and
practices to facilitate reuse as part of a systematic
approach. Typically, issues that need to be ad-
dressed in any successful approach to reuse include
providing adequate asset-repository and searching
technology, training in architectural approaches that
support greater reuse, defining metrics and mea-
sures that assess progress in reuse efforts through-
out the organization, and introducing reward
schemes for creating reusable assets.

Governance and compliance

As a project is executed, it is essential to ensure that
appropriate practices and controls are in place to
help it to deliver its promised value. Alignment
between business strategy and implementation must
be continually monitored, with clear oversight and
control during the project’s execution. To achieve
this, a project must institute effective governance,
namely, a clear set of tasks and roles aimed at
providing the structures and policies to support
management practices and decision making.

The distributed nature of today’s enterprise solu-
tions increases the difficulty of managing large
projects, projects that typically cross several lines of
business (LOBs). The composite nature of such
distributed systems requires new techniques and
approaches to provide visibility and control for the
different organizations both within and outside the
enterprise. This leads to much greater focus on how
the different parts of a system interact, with each
part of the system effectively governed for compli-

BROWN, IYENGAR, AND JOHNSTON

467

ance to requirements dictated by a service-level
agreement (SLA) for factors such as security,
reliability, performance, and so on. Hence, gover-
nance issues have become a very important area for
organizations creating enterprise solutions today,
requiring a well-defined approach to the entire life
cycle of the solutions portfolio of an enterprise.

Adding to this pressure for visibility and account-
ability is the growing need for compliance to
regulatory standards such as HIPAA (Health Insur-
ance Portability and Accountability Act), Sarbanes-
Oxley (SOX), and Basel 1II, fueled by intense public
scrutiny of both government organizations and
private companies in many industries. For example,
the basis of the SOX legislation is to make officers of
public companies personally responsible not only
for the company’s financial statements, but also for
ensuring that proper controls are in place to assist in
verifying the accuracy of the statements. Such
regulations stress the importance of establishing and
maintaining corporate accountability and periodi-
cally testing its effectiveness through audits.

This focus on accountability has profound impacts
at many levels. Most notably, software and software
development practices have increasingly become a
target of concern because all organizations rely on
software as the basis for their operation, and a
growing number of them include software as a
primary component of their delivered products. IT
organizations have an obligation to demonstrate
that (1) they are following best industry practices for
software development, (2) the software designed is
fit for its purpose, (3) the quality of the software
being produced has been verified, and (4) effective
controls are maintained throughout the software
development life cycle to prove that processes are
being followed. In all these aspects, models,
modeling, and MDD have an important role to play
as the basis for the design, construction, and quality
of delivered systems. A model-driven approach
enhances the visibility of design decisions through-
out the project, provides a basis for analysis using
different rule bases or bodies of knowledge, and
explicitly represents evolutionary changes as re-
finement dependencies (i.e., relationships that
reflect a dependency between elements, where the
nature of the dependency is that one or more
elements are a refinement of another element)
within and across models.

468 BROWN, IYENGAR, AND JOHNSTON

MODELS, MODELING, AND MDD

Modeling has had a major impact on software
engineering and is critical to the success of every
enterprise-scale solution. However, there is great
variety in what the models represent and how those
models are used. MDD refers to a set of approaches
in which code is automatically or semiautomatically
generated from more abstract models, and which
employs standard specification languages for de-
scribing those models and the transformations
between them. It also supports model-to-model
transformations.'”

Models are the stepping stones on the path between
a description of a business need and the deployable
runtime components of its solution. As under-
standing of the business need and the system under
development evolve, the models themselves become
more complete, accurate, and consistent with each
other. The focus of effort also shifts from the models
at higher levels of abstraction to those at lower
levels. Ultimately, these models are used to directly
create the deployable components.

Models and transformations

The role of models in a model-driven approach is
important, but of equal importance are the trans-
formations that relate different models."” It is this
ability to transform different model representations
that differentiates the use of models for “sketching
out” a design from a more extensive model-driven
software engineering process. For example, in
developing service-oriented solutions, high-level
models representing business concepts can be
transformed into logical models of a service-oriented
solution, which in turn are transformed into
implementations of services and service assemblies
that realize the solution.

The process of MDD can be explored from three
perspectives, as described in the following subsec-
tions: how models evolve and are related, how
model transformations are defined and applied, and
how automation of these transformations can
increase efficiency in a software project.

How models evolve

There are two main processes that models undergo:
refinement and transformation. Model refinement is
the gradual change of a model to better match the
desired system. A model is refined as more
information is collected and the system is better

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

understood. As a model evolves, models that are
dependent on it need to change in response. By the
end of each iteration of the development cycle,
however, all of the system’s models should be
consistent with each other.

Models are refined either manually or through some
form of automation or assisted automation. Auto-
mation can be in the form of execution paths
through rules for model refinement. These paths can
be expressed as patterns and reused as assets. When
a pattern is applied to a model, it modifies or
rearranges the model elements to resemble the
pattern. The application of a pattern adds new
elements or properties to the model. Some user
assistance may be involved in applying a pattern—
for example, the developer may be prompted to
supply an existing model element to bind to a
pattern parameter. Other decisions may need to be
resolved before the pattern can be executed. In the
design of service-oriented solutions, for example,
model refinements may include patterns for creating
facades and gateways to multiple service providers
and refactoring of service interfaces to meet
corporate guidelines for quality-of-service criteria,
such as security and availability.

Model transformations involve two or more models.
The most typical example is a high-level abstraction
model being transformed into a low-level abstracted
and technology-dependent one. The former is
referred to as a Platform-Independent Model (PIM),
the latter a Platform-Specific Model (PSM). For
example, a UML PIM could represent a logical data
model and consist of a number of entity classes,
each with a number of persistent attributes. This
model could be transformed through automation
into a UML data model that captures the same
underlying entities, but in the form of database
tables. The data model could in turn be used to
directly generate SQL scripts that define the data-
base, and these scripts could be directly executed on
a specific database management system (DBMS).
Another example is that of a logical services model
describing a business process in terms of the
interactions among a set of service providers and
consumers. This model can be transformed into a
set of instructions in an executable language, such
as a Business Process Execution Language for Web
Services (BPEL4WS or BPEL for short) workflow,
describing that particular choreography of services.
A model may also be transformed for purely internal

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

reasons (i.e., refactoring), in which the output
model is a refactored version of the input model.

Model transformations are not necessarily unidirec-
tional. An example of a bidirectional transformation
is that of a UML PSM of several Enterprise
JavaBeans** (EJB**) classes, which is synchronized
with the source code implementing these EJBs. New
elements (i.e. methods, attributes, associations)
defined in the model would generate appropriate
elements in the source, and any new elements
created in (or removed from) the source would
generate appropriate elements in (or be removed
from) the model. While UML has been mentioned as
a source or destination for many of these trans-
formations, there are many examples where model
transformations occur directly without the use of
UML as an intermediate representation. Common
examples include transformations of relational data
to XML data.

Understanding model transformation

Defining and applying model transformations are
critical techniques within any model-driven style of
development. The input to the transformation is a
model; the outputs can include another model or
varying levels of executable code. There are three
common model transformations: refactoring trans-
formations, model-to-model transformations, and
model-to-code transformations.

Refactoring transformations reorganize a model
based on some well-defined criteria. In this case, the
output is a revision of the original model, called the
refactored model. An example is the renaming of all
the instances where a UML entity name is used, or
replacing a class with a set of classes and relation-
ships both in the metamodel and in all diagrams
displaying those model elements.

Model-to-model transformations convert information
from a model or models to another model or set of
models, typically where the flow of information is
across abstraction boundaries, or between notations
that emphasize different system characteristics (e.g.,
a process view vs a data view). An example is the
conversion of one type of model into another, such
as the transformation of a set of entity classes into a
matched set of database schema, Plain Old Java
Objects (POJOs), and XML-formatted mapping
descriptor files.

BROWN, IYENGAR, AND JOHNSTON 469

Model-to-code transformations are familiar to any-
one who has used the code generation capability of a
UML modeling tool. These transformations convert
a model element into a code fragment. Examples
include generation of code in object-oriented lan-
guages such as Java and C++, but these trans-
formations are not limited to output in the form of
programming languages. Configuration, deploy-
ment, data definitions, message schemas, and other
kinds of files can also be generated from models
expressed in notations such as UML. Model-to-code
transformations can be developed for nearly any
form of programming language or declarative
specification, such as generating Data Definition
Language (DDL) code from a logical data model
expressed as a UML class diagram.

Applying model transformations

There are several ways in which model trans-
formations can be applied. In model-driven ap-
proaches, model transformations can be applied
manually, with a prepared profile, and by use of
patterns.

In manually applying a transformation, the devel-
oper examines the input model and manually
creates or edits the elements in the transformed
model. The developer interprets the information in
the model and makes modifications accordingly.
The ability to use models manually may facilitate
incremental adoption of models and perhaps there-
by facilitate the adoption of MDD. A prepared profile
is an extension of the UML semantics in which a
model type is derived. Applying a profile defines
rules by which a model is transformed. A pattern is a
particular arrangement of model elements. Patterns
can be applied to a model, and this process results in
the creation of new model elements in the trans-
formed model.

Apart from raw speed, the significant difference
between manual and automated transformations is
that automation is ensured to be consistent, while a
manual approach is not. Automation ensures con-
sistency when applying transformations using pro-
files, patterns, or other rules (where profiles and
patterns can be considered to embody particular
types of rules). Automatic transformations apply a
set of changes to one or more models based on
predefined transformation rules. These rules may be
implicit to the tools being used or may be explicitly
defined based on domain-specific knowledge. This

470 BROWN, IYENGAR, AND JOHNSTON

type of transformation requires that the input model
be sufficiently complete both syntactically and
semantically and may require models to be marked
with information specific to the transformations
being applied.

The use of these transformation approaches usually
involves developer input at the time of trans-
formation or requires the input model to be marked.
A marked model contains extra information not
necessarily relevant to the model’s viewpoint or
level of abstraction. This information is relevant
only to the tools or processes that transform the
model. For example, a UML analysis model con-
taining entities of the data type “String” may be
marked to indicate it is of variable or fixed length, or
it may be marked to specify its maximum length.
From an analysis viewpoint, just the identification of
the String data type is usually sufficient. However,
when transforming a String-typed attribute into a
database column type, for example, the additional
information is required to complete the definition.
Hence, although models capture information about
the system from specific viewpoints, it is the
transformations between models that drive model-
to-model and model-to-code traceability across
these different viewpoints and between different
levels of abstraction.

Models and visualization

Today, a majority of software developers still take a
code-focused approach to development and do not
use separately defined abstract models at all. They
rely almost entirely on the code they write, and they
express their model of the system they are building
directly in a third-generation programming language
(3GL) such as Java, C++, or C# within an integrated
development environment (IDE) such as IBM
Rational Application Developer, Eclipse**, or Mi-
crosoft Visual Studio**. (For this discussion, we
ignore the fact that the code itself is a realization of a
programming model that abstracts the developer
from the underlying machine code for manipulating
individual bits in memory, registers, etc.) The
modeling most developers perform is in the form of
programming abstractions embedded in the code
(e.g., packages, modules, interfaces, etc.), which are
managed through mechanisms such as program
libraries and object hierarchies. Any separate
modeling of architectural designs is informal and
intuitive and is sketched out on whiteboards, in
Microsoft PowerPoint** slides, or not at all.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Although this may be adequate for individuals and
very small teams, in this approach many of the key
characteristics of the system are obscured by the
details of the business logic implementation. Fur-
thermore, it becomes much more difficult to manage
the evolution of these solutions as their scale and
complexity increases, as the system evolves over
time, or when the original members of the design
team are not directly accessible to the team
maintaining the system.

Developers can frequently gain additional insights
when provided with code visualizations in some
appropriate modeling notation. As developers create
or analyze an application, they visualize the code
through some graphical notation that aids their
understanding of the code’s structure or behavior. It
may also be possible to manipulate the graphical
notation as an alternative to editing the text-based
code, so that the visual rendering becomes a direct
representation of the code. Such rendering is
sometimes called a code model, or an implementa-
tion model, although many feel it more appropriate
to call these artifact diagrams and reserve the use of
the term “model” for higher levels of abstraction. In
tools that allow such diagrams (e.g., IBM Rational
Application Developer and Borland Together**), the
code view and the model view can be displayed
simultaneously; as the developer manipulates either
view, the other is immediately synchronized with it.
In this approach, the diagrams are tightly coupled
representations of the code and provide an alter-
native way to view and possibly edit at the code
level.

UML is the most frequently used notation for
visualizing static and dynamic aspects of software-
intensive systerrls.14’15 Originally conceived over a
decade ago as an integration of the most successful
modeling ideas of the time, UML is widely used by
organizations and supported by more than a dozen
different product offerings. Its evolution is managed
through a standards process governed by the Object
Management Group, Inc. The standardization of the
UML notation has helped the software industry to
communicate understanding of software designs by
using a commonly understood visual language.

Many developers use the UML notation informally
as a way to describe new and existing systems. In
addition, many tools automate the process of
visualizing key aspects of a software solution with
the UML notation. In the Rational Application

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Developer product, for example, an existing Java
application can be executed and elements of runtime
behavior captured and displayed as a UML sequence
diagram. This greatly aids understanding and
debugging activities.

Models and domain-specific languages

Models are only useful to the extent that they are
clearly mapped to the concepts and characteristics
that are essential to the domain of interest and the
viewpoint on that domain that is of concern. When
someone creates a model, whether using a graphical
notation or a textual one, he or she is communicat-
ing a set of ideas about a domain of interest. It is
much easier to define and share that view of the
domain if it is expressed in a language that is
customized for that purpose. For example, one
would expect that a model that explores the
efficiency of human-computer interactions with a
Web-based banking system would support descrip-
tions of the flow of interactions in a user session,
and a model of a real-time telephone-switching
system that is developed to assess timing would
support direct representation of various kinds of
synchronous and asynchronous events. This leads
to a need for domain-specific languages (DSLs)
specialized for such situations. To create models
that are clearly meaningful requires techniques for
creating DSLs.

One of the reasons for the success of UML is its
flexibility. It supports the creation of a set of models
representing both problem and solution domains.
UML can capture and relate multiple perspectives
highlighting different viewpoints on these domains,
can enable modeling of the system at different levels
of abstraction, and can encourage the partitioning of
models into manageable pieces as required for
shared and iterative development approaches. In
addition, the relationships between model elements
can be maintained across modeling perspectives and
levels of abstraction, and specialized semantics can
be created for model elements through built-in UML
extension mechanisms (i.e., stereotypes and tagged
values bundled into UML profiles). These mecha-
nisms can be seen as a way to create a wide variety
of DSLs. Through these mechanisms, UML can
support customization for many different user
communities.

Using profiles to customize UML is an excellent
approach when the domain language can readily be
based on existing UML concepts. It allows reuse of

BROWN, IYENGAR, AND JOHNSTON

471

the large base of knowledge, tools, and technologies
devoted to supporting modeling in the UML nota-
tion. It is also possible to go beyond the bounds of
UML when creating DSLs. For example, the IBM
Rational Software Architect product (RSA) supports
creation of DSLs by profiling UML. It also allows one
to visualize and integrate models from different
domain formats without the need to transform them
into UML. This is possible because RSA maintains
all of its internal model representations (i.e., “meta-
information) in a consistent way, as Eclipse
Modeling Framework (EMF) models. These meta-
models (the equivalent of DSLs) leverage EMF and
an extension to EMF for domain-specific modeling
that provides a visualization service. This provides
the ability to create much richer DSLs that extend
UML with other concepts. The work at eclipse.org
on EMF and the latest revision of OMG MOF 2.0
continue to advance the state of the art in bringing
together open-source and open-standards modeling
technologies to our industry.

Models and software evolution

Today’s enterprise software systems are rarely (if
ever) developed from scratch. Rather, they are
created by extending an existing solution framework
with domain-specific business logic, by connecting
to (and manipulating) information from different
sources, and by designing rich user-display and
interaction services. Hence, the development ap-
proach that is followed is not the classical “water-
fall” scenario, where the gathering of requirements
is followed by analysis and design, leading to the
implementation of the system. Instead, it is one of
continual extension and refinement of an existing
partial solution toward a desired goal through a set
of iterations that add value to the solution.

These partial solutions, forming the heart of a new
system, may come from one of several sources:

1. An existing set of applications—An existing
solution can be extended in many ways, as
dictated by the business need.

2. A proprietary application framework used by the
organization—Having built many kinds of similar
solutions in a particular domain, some organiza-
tions have extracted core application capabilities
as reusable proprietary services to be employed
in future solutions.

3. An acquired application framework—Recogniz-
ing the consistent architectural patterns that are
used in designing certain kinds of applications,

472 BROWN, IYENGAR, AND JOHNSTON

developers have created a number of technolo-
gies to help organizations create solutions
conforming to those patterns. The resulting
application frameworks are available both com-
mercially and in the open-source community and
can be delivered as stand-alone frameworks or
bundled with tools that help create, manage, and
extend those frameworks.

4. A set of extensions and customizations of pack-
aged applications—Many organizations acquire
comprehensive solutions for key business pro-
cesses from packaged-application vendors. These
vendors have structured their solutions to sup-
port different kinds of extension and custom-
ization, offer well-defined APIs (application
programming interfaces) to access the internal
structure of the packaged application, or augment
the packaged applications with detailed design
documents, extension examples, and package-
specific tools.

The primary task faced by many IT project managers
is to create a clear understanding of their domain, to
express that understanding in a PIM supporting
various kinds of analysis ensuring its correctness
and consistency, and to map that domain model to a
PSM realized by extending the application frame-
work. Model-to-model transformations help in
refining the domain, while model-to-code trans-
formations map the domain model to the imple-
mentation.

In model-to-code transformations, the application
framework plays a key role, as it constrains and
guides the kinds of transformations that are mean-
ingful. For example, if the application framework is
based on Struts (an open-source framework for
building Web applications based on servlets or
JavaServer Pages** [JSPs**] by using the Model-
View-Controller design paradigm), the application
being created has a well-understood structure,
including well-known extension points where busi-
ness logic can be realized. A set of transformations
can be created based on that knowledge. Indeed,
“wizard” style tools can be created to automate
creation of those transformations for domain models
containing appropriate kinds of information. This is
the way, for example, in which tools such as the
IBM Rational Application Developer use domain-
focused visual design tooling to automate code
generation for Struts or application frameworks
based on JSF (JavaServer** Faces). More generally,
by using an application framework as the basis for a

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

solution, the task of writing model-to-code trans-
formations is significantly facilitated, and greater
efficiency, predictability, repeatability, and man-
ageability of the resulting solutions are the con-

sequence.

New software is always built upon existing software
and transforming models (to other models or to
code) is critical in leveraging existing frameworks.
MDA plays a critical role in automating how we
extend and customize these frameworks. In light of
the constraints inherent in today’s components and
technologies, some experts view this “custom
automation” as the only viable option for creating
systems of increasing complexity.

THE IBM RATIONAL SOFTWARE DEVELOPMENT
PLATFORM

The IBM Rational Software Development Platform
(RSDP) is a complete, open, modular, and proven
solution for developing software.'® RSDP provides
development teams with a powerful foundation for
the MDD of enterprise solutions and supports many
other styles of development as well. It includes a
broad array of best-of-class tools for every phase of
the development life cycle and offers deep integra-
tion of tools and runtime capabilities across all
different aspects of the business in support of a
service-oriented view of solutions. Tight integration
between tools in RSDP is based, in part, on the
Eclipse platform, which also enables integration
with third-party ISV (independent software vendor)
tools. Eclipse technology enables integration, flexi-
bility, and extensibility in a single, coherent plat-
form for software development and serves as a
foundation for the use of RSDP by a broad
constituency of users.

RSDP supports key capabilities for building enter-
prise applications, including requirements analysis,
design, construction, software quality, process and
portfolio management, and change management
and defect tracking. These capabilities are illustrated
in Figure 3, which shows the RSDP components
used by each design team member. RSDP consists of
technologies that can be applied to many solution
domains for creating a variety of kinds of systems.
The remainder of this section will discuss the IBM
Rational tools relevant to each stage of the software
life cycle, illustrating their use in the context of
developing services and SOAs for enterprise IT
solutions.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Business modeling and requirements

Effective business-driven development starts with
analyzing business requirements, needs, and exist-
ing processes. This analysis is then used to
determine the system’s requirements and to guide
all subsequent stages of development.

IBM WebSphere* Business Modeler enables analysts
to model, simulate, and analyze complex business
processes quickly and effectively. Analysts use
WebSphere Business Modeler to model “as-is” and
“to-be” business processes, allocate resources, and
perform “what-if” simulations to optimize and
estimate business benefits. These models can later
be transformed into UML and BPEL to jump-start
design and integration activities.

IBM Rational RequisitePro* is used to define busi-
ness requirements and refine them into software
requirements and use cases. Requirements and their
management are central to any mature software
development process, and business modeling helps
ensure that software requirements and use cases
reflect real business needs. Well-written use cases
provide the foundation for architecture, analysis,
user interface (UI) design, and testing.17 Require-
ments in Rational RequisitePro can be linked to
process models, as well as test cases and test plans,
providing full traceability and ensuring that busi-
ness requirements drive downstream development.
The result is a system that meets business goals and
requirements and delivers real business value.
Within RSDP, requirements are integrated with
defect tracking, design, development, and testing
tools to jump-start activities, minimize rework, and
provide each team member with a direct window
into end-user needs.

Service-oriented solution design

An effective approach to designing a service-
oriented application requires the modeling and
definition of well-defined, well-documented inter-
faces for all major service components prior to the
construction of the services themselves. RSA is an
integrated design and construction tool for creating
service-oriented applications. By leveraging MDD
with UML and unifying all aspects of software
application architecture, RSA enables software
architects to design flexible service architectures and
automatically apply design patterns for SOA from
analysis and design to implementation.

Integration between IBM WebSphere Business
Modeler and RSA enables the transformation of

BROWN, IYENGAR, AND JOHNSTON

473

Analyst Architect

Developer

Tester

Deployment
Manager

- -
L
WebSphere Rational Rational Rational Tivoli
Business Software Web/App Functional Configuration
Modeler Architect Developer and Manual Manager
and Monitor Tester
Rational WebSphere Rational Tivoli
Software Integration Performance Monitoring
Modeler Developer Tester
Customer Extensions ECLIPSE 3rd Party ISV Tools

Rational Team Unifying Platform

Project Manager

Executive

Figure 3
The IBM Rational Software Development Platform

Rational Portfolio Manager

business models into software models for automat-
ing business activities. The integration automati-
cally maps business notation to software notation
(UML), relieving designers from that conversion
burden.

To assist with solution design in a service-oriented
context, RSA can be specialized with domain-
specific notations and DSLs relevant to defining,
assembling, and managing services. General mech-
anisms are available to create customized notations
using built-in product extension mechanisms. An
example of DSLs created with these mechanisms
include the UML Profile for Software Services,
which accelerates the transformation of business
processes into Web services by providing a common
language for describing services that helps software
architects to model, map, and partition services."
Another example is the UML Profile for Business
Modeling, which presents a language for capturing
business models in UML and is supported by the
Business Modeling Discipline in the Rational Unified

474 BROWN, IYENGAR, AND JOHNSTON

Process* (RUP*).15 (Plug-ins and scripts, including
UML profiles, are available at http://www.ibm.
com/developerworks/rational/library/1376.html.)

Applying profiles in UML results in a “marked up”
model that has specific stereotypes and tagged
values applied. Based on these markings, a set of
specific transforms can be created that convert those
models into some other form. For example, asso-
ciated with RSA is a transformation that converts
models marked with the UML Profile for Software
Services into initial service specifications in the Web
Services Description Language (WSDL). Those
service realizations are then further elaborated and
refined within a set of service construction activities.

Service-oriented solution construction

Java, J2EE, and Web developers are often required
to create the core elements supporting an SOA,
typically Web services. Manually creating Web
services—or even developing systems that use
existing Web services—requires a substantial

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

amount of tedious and error-prone work. Much of
this burden can be relieved through appropriate
tooling.

IBM Rational Application Developer (RAD) is a
comprehensive integrated development environ-
ment for service-oriented development that auto-
mates many of the tasks commonly performed in the
construction and consumption of Web services so
that developers can focus on writing the business
logic code. RAD can automate everything from
WSDL file and code generation to test proxy
generation and Web Service Interoperability (WS-I)
conformance verification. Developers use RAD to
create, build, consume, test, deploy, and publish
Web services, either from scratch or by enabling
existing applications to achieve WS-I compliance.

RAD greatly simplifies the process of creating a Web
service in a top-down manner based on require-
ments specifications and UML models. Developers
save time and reduce errors by using RAD to
automatically generate WSDL files that contain an
XML schema to describe Web services as well as
skeleton JavaBeans** or EJB files. RAD also
includes an XML schema definition (XSD) editor for
specifying the format of messages.

When working in a bottom-up manner from an
existing set of Java classes or EJBs, RAD can also
automate much of the process of turning those
components into a Web service. After developers
use a wizard to specify information about the
component, RAD generates the WSDL files describ-
ing the Web service, a Simple Object Access
Protocol (SOAP) deployment descriptor, and a proxy
that a client can use to access the Web service.

The support of RAD’s Enterprise Generation Lan-
guage (EGL) enables business-oriented and proce-
dural developers who may not know Java to use it
for developing, testing, and debugging data-driven
Web applications, Web services, and business logic
by using procedural programming constructs. EGL
supports an MDA style of development in which
developers create PIMs of aspects of the system to be
built and use the predefined transformations to
convert those models into a PSM for a choice of
different target runtime platforms. EGL’s compre-
hensive support of Web services handles most of the
hard work in developing or using Web services.
Very little coding is required to use existing Web

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

services or existing assets, leading to a shorter
learning curve and high productivity for business-
oriented developers.

To enable developers to exercise quality control
early in the development cycle, RAD includes
automated code review tools to validate coding best
practices, component test tools to automate the
creation of test stubs, and test harnesses and test
input data (based on WSDL file analysis and
information from performance profiling tools) to
detect and diagnose bottlenecks and deadlock and
race conditions.

Service composition and assembly

Integration developers create and deploy composite
applications by refining the business process models
created in WebSphere Business Modeler into an
executable set of choreographed services. Web-
Sphere Integration Developer is an IDE used by
developers to assemble composite applications that
deploy to the IBM WebSphere Process Server. Using
the visual BPEL editor, integration developers can
view the business processes designed by business
analysts. They then use WebSphere Integration
Developer to choreograph the services, join them
into a composite application, optionally test them
with a built-in test environment, and deploy them
directly to a runtime environment.

At the center of WebSphere Integration Developer is
the Service Component Architecture, a program-
ming model that focuses on connecting service
components to realize composite applications.
WebSphere Integration Developer treats everything
as a component. Each component has an interface
and can be “wired together” with other components
to form a module (with its own interface). This
enables changing any part of a composite solution
without affecting the other parts. For example, a
human task can be replaced with a business rule
without the need to update the business process.

As illustrated in Figure 4, there are a number of key
elements to WebSphere Integration Developer that
support composite application assembly:

® Business objects—Business objects can be de-
signed and used in a composite application and
are used as input or output parameters for all
integrated components in a solution.

BROWN, IYENGAR, AND JOHNSTON

475

Business Business Process
Objects and Choreography
Interfaces (WS-BPEL) Human Tasks
Common Event gorr?pots‘lte .
Infrastructure PRlcaliEl ransformations
Assembly
Mediations ‘ Business Rules Business State ‘

Machines

Figure 4
Key aspects of WebSphere Integration Developer

e Business process choreography—Direct execution
of processes expressed in WS-BPEL is possible by
use of a specific runtime platform. The platform
has built-in capabilities for monitoring and man-
aging the execution of business processes, in-
cluding support for compensation and rollback.

® Human tasks—The process execution engine is
augmented with a human task manager that
supports modeling and execution of manual
activities in a workflow.

® Mediation—To assist with wiring services, Web-
Sphere Integration Developer provides common
services for data mapping, relationship manage-
ment, and interface mediation.

* Adaptive entities—A state-machine implementa-
tion is included for modeling business processes
that are more amenable to state machine repre-
sentation than to a traditional procedural flow
representation.

® Business rules—Many business decisions can be
modeled with decision tables and rule sets
supporting simple rule-based logic for process
interaction.

* Common event infrastructure—Supporting moni-
toring and management of processes is a founda-
tional set of services for common event reporting
and monitoring across a set of components.

WebSphere Integration Developer provides the
visual software development tools needed to spec-
ify, test, and deploy executable business processes
that integrate Web services, enterprise applications,
human tasks, and other service components into
effective SOA-based business solutions.

476 BROWN, IYENGAR, AND JOHNSTON

Process and portfolio management

In addition to a comprehensive set of tools for
service-oriented development of applications, RSDP
also incorporates practical process guidance. In
particular, RUP is well-suited to the needs of many
styles of development initiative because it is
founded upon software-engineering best practices,
offers a configurable process framework, and is
scalable to support enterprise initiatives. RUP has a
long history as the leading commercial process-
framework product in the market, providing flexi-
bility through its architecture and tool support for
the tailoring, extension, and deployment of pro-
cesses. Underlying RUP is a sophisticated model of
the software development process and its roles and
activities. This model is used as the basis for an
MDD approach to generate a specific RUP instance,
a “RUP configuration,” from a collection of core
contents and an extensible set of RUP plug-ins
specific to particular development approaches and
styles. The IBM Rational Method Composer (RMC)
is a process management tool platform and con-
ceptual framework. It consists of tools for authoring,
configuring, and viewing method content and
processes. The kernel RUP framework used by RMC
for authoring and extending RUP has been donated
to the Eclipse Foundation as part of the Eclipse
Process Framework.'~ This framework is influenc-
ing a key OMG standard, the Software Process
Engineering Metamodel (SPEM).

RUP plug-ins contain a variety of process compo-
nents customized for specific tools, technologies, or
domains. The plug-ins include those tailored to a
business-driven reuse-based SOA approach, namely:

* The RUP plug-in for SOA integrates support for
SOA and service-oriented solutions into the RUP
framework, with SOA-specific concepts, guide-
lines, activities, artifacts, and tool mentors.

® The RUP plug-in for WebSphere Business Modeler
augments the business modeling capabilities of
RUP to leverage WebSphere Business Integration
solutions and provide a unified approach for
business modeling based on the essential capa-
bilities of RSDP.

® The RUP plug-in for asset-based development
provides a set of best practices for reuse of
software within an organization. It focuses on
asset identification, asset production, and asset
consumption.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Today’s enterprise solutions are increasingly com-
posed of services from many sources. As a result,
applications are best viewed as dynamic entities—
combinations of services to meet a particular set of
business requirements. One effect of taking this
view is a need for enterprises to explicitly design,
implement, and manage the set of services in the
organization as a portfolio of available capabilities.
Executives and project managers can use the IBM
Rational Portfolio Manager to gain insight into the
business benefits, costs, and risks of the portfolio of
SOA services. With Rational Portfolio Manager, they
can prioritize proposed, existing, and “under-con-
struction” services; track service level financial
statistics; manage SOA project-team dependencies;
forecast demand for service creation; and better
understand the cost of SOA creation, operations, and
maintenance.

Software quality

In addition to tools to assist the developer in testing
capabilities in Rational Application Developer and
WebSphere Integration Developer, RSDP includes
tools to help testers continuously assess the quality
of services and composite applications. Test plans
and individual test cases can be linked to project
requirements in Rational RequisitePro to ensure
complete requirements-based test coverage and
support traceability across the project life cycle.

With Rational Manual Tester, each sequence of
steps defined for a manual task is captured as a test
script. These elementary test scripts are then easily
combined into longer test scenarios (including entire
business processes) without any duplication of
content. Test scripts maintain references to other
scripts, thus greatly simplifying the maintenance of
the test scenarios. The only update required when a
manual task changes consists in updating its
associated script—all the test scenarios are auto-
matically updated to reflect the change.

Rational Functional Tester strikes a very good
balance of UI technology coverage and openness. In
particular, it offers scripting using nonproprietary
languages (Java or VB.NET), making it flexible
enough to accommodate most conditions. In addi-
tion, test scripts can be easily recorded on a
combination of different user interfaces, potentially
built with different technologies. This makes the
orchestrated verification of an end-to-end business
process virtually seamless. Furthermore, test exe-

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

cution can be triggered automatically from the
command line, making it easy to integrate as part of
an end-to-end “build-deploy-test” process.

IBM Rational Performance Tester is a test creation,
execution, and analysis tool that validates the
scalability and reliability of applications under
multiple user loads. Performance Tester enables
teams to pinpoint system bottlenecks before appli-
cation deployment. Tests are created by recording a
user’s activity within a Web browser; teams need
little to no programming knowledge to understand
and modify these tests. A simple interface initiates a
data-pooling capability that ensures unique data for
each emulated user. Using an intuitive graphical test
scheduler, teams can then organize their tests to
accurately simulate the different types of users and
user activities the application under test will
support.

During test execution, while emulating the desired
number of concurrent users, Rational Performance
Tester generates reports that clearly highlight poorly
performing Web pages, URLs, and transactions.
Teams are thus able to discover performance
problems in even the most complex systems,
increasing the opportunity for problem capture and
repair before the system goes live.

ASSET LIFE-CYCLE MANAGEMENT

With the focus on asset management and reuse, a
new emphasis has been placed on creating,
harvesting, applying, and managing assets
throughout the life cycle. For practical reasons, this
is accompanied by strong governance practices for
reusable assets, tied to a flexible asset life-cycle
management system.

As organizations create solutions that leverage
existing assets, the ability to accelerate and manage
change becomes more critical. Using IBM Rational
ClearCase* and ClearQuest* for change manage-
ment and defect tracking, teams can automate the
software life cycle and establish a consistent process
across distributed environments. IBM Rational soft-
ware configuration management products help
teams improve project collaboration and release
coordination, increase development responsiveness
and agility, and enhance operational efficiency.

In addition, reusable SOA-related development
assets can be packaged and used (or “consumed”)

BROWN, IYENGAR, AND JOHNSTON

477

Asset Production

Asset Management

Asset Consumption I

1BM submit search IBM
Rational : RAS Repository For Workgroups Rational
Software modify/ apply/ | Software
Architect refine customize | Architect
st IBM Rational
ClearQuest > search
certify) promote B\ Rational ’ n 1
- ClearCase el uDDI developer\Works
4 Red h
b erificaies Repository egistry RAS Repository
IBM WebSphere Studio Asset Analyzer |
Asset Identification
= Service or other asset
Figure 5

An example of the asset management life cycle using IBM Rational tools

within RSDP through direct support of the OMG
Reusable Asset Specification (RAS) standard.”® This
is illustrated in Figure 5. As shown in the figure,
assets created in the Rational Software Modeler
(RSM) are submitted in RAS format to the RAS
Repository Service for storage in a ClearCase
repository. The governance of the assets, including
certification, is managed by customized templates
that drive the workflow engine provided by Clear-
Quest. Other users of RSA/RSM can then search and
reuse these RAS-based assets by making queries into
the asset repository by using the RAS Repository
Service.

RSDP includes several other tools that enable a team
to more effectively manage asset workflow. Web-
Sphere Studio Asset Analyzer provides support for
the asset identification workflow. RSA provides a
RAS client for asset production. This tool also
includes a RAS client, called the Asset Explorer, to
facilitate asset consumption. Developers and archi-
tects use the Asset Explorer to connect to one or
more RAS repositories and issue searches, which
examine the RAS XML manifest in each of the RAS
assets.

The assets and services can be measured in several
ways, quantitative and qualitative. Teams can use
the RAS repository for work groups to track metrics,
such as how many times an asset is searched for,
how often its documentation is browsed, and how

478 BROWN, IYENGAR, AND JOHNSTON

many times it is imported and reused. Developers
can also rate the asset or service and provide textual
feedback. These kinds of measurements are critical
for the health and functioning of the asset reposi-
tory.

SUMMARY

Flexibility is essential to organizations today as they
seek to react more quickly to the changing demands
of their customers and competitors and the evolving
business environment. The role of software in many
businesses is now seen as central to their ability to
compete effectively and efficiently. A service-based
orientation to the systems being developed helps
businesses focus on what is essential—the services
they offer to customers. It also helps IT professionals
to look at the systems that support the business in a
different way—as composable solution fragments
that must be assembled to meet evolving business
needs. This view is an important cornerstone of
today’s highly reactive business environment.

In this paper, we have focused on the importance of
models, modeling, and MDD in creating service-
oriented enterprise solutions and on the way in
which Rational tools support these concepts. To
illustrate these qualities, we reviewed RSDP with
particular focus on its support for MDD across the
software development life cycle. Further details and
discussion of Rational’s support for MDD can be
found elsewhere.'>'>*! We have also highlighted

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

how Rational tools build on a combination of open
standards (from OMG, OASIS and W3C**) and
open-source technologies (from Eclipse and Apache
projects) to create an extensible application life-
cycle platform for the industry.

RSDP plays an important role in helping organiza-
tions create models of their domain of interest and
use those models in a well-defined process that
supports traceability and visibility across the life
cycle. It combines market-leading products to create
a rich, integrated environment for solution devel-
opment. Furthermore, through support for MDD
techniques, RSDP helps to ensure that customers
can efficiently deliver service-oriented solutions that
meet their business needs.

ACKNOWLEDGMENTS

This paper draws on the insight and energy of many
people at IBM, notably Jim Amsden, Grady Booch,
Gary Cernosek, Jim Conallen, Grant Larsen, Sky
Matthews, Martin Nally, Jim Palistrant, Jim
Rumbaugh, Bran Selic, and Rick Weaver. We also
recognize the input and support from all those in the
IBM Rational Communities of Practice.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Incorporated, Sun Microsystems, Inc.,
Office of Government Commerce, H. M. Treasury, United
Kingdom; Borland Software Corporation, Microsoft Corpora-
tion, the Eclipse Foundation, Inc., or Massachusetts Institute
of Technology in the United States, other countries, or both.

CITED REFERENCES
1. M. S. Mahoney, “The Roots of Software Engineering,”
CWI Quarterly 3, No. 4, 325-334 (1990), http://www.
princeton.edu/~mike/articles/sweroots/sweroots.pdf.

2. M. Belaunde, C. Burt, C. Casanave, F. Cummins and
D. DSouza, K. Duddy, W. El Kaim, A. Kennedy,
W. Frank, D. Frankel, R. Hauch, S. Hendryx,
M. Hettinger, R. Hubert, D. Hybertson, S. Iyengar,
J. Jourdan, T. Koch, T. Kurokawa, A. Mallia,
S. Mellor, J. Miller, J. Mischkinsky, J. Mukerji,
C. Mullins, M. Oya, L. Rioux, P. Rivett, E. Seidewitz,
B. Selic, J. Siegel, O. Sims, D. Smith, R. Soley, A. Tanaka,
S. Tyndale-Biscoe, A. Uhl, A. Watson, D. Weiseand, and
B. Wood, MDA Guide Version 1.0.1, Object Management
Group, Inc. (June 12, 2003), http://www.omg.org/docs/
omg/03-06-01.pdf.

3. M. B. Chrissis, M. Conrad, and S. Shrum, CMMI:
Guidelines for Process Integration and Product Improve-
ment, Addison-Wesley, Reading, MA (2003).

4. J.T.Rabbit and P. A. Bergh, The ISO 9000 Book: A Global
Competitor’s Guide to Compliance and Certification,
AMACOM Books, New York (1994).

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

5. T. Pyzdek, The Six Sigma Handbook, Revised and
Expanded, McGraw-Hill Professional Books, New York
(2003).

6. An Introduction to ITIL, Office of Government Commerce
(August 2005), http://www.ogc.gov.uk/sdtoolkit/
reference/ogc_library/itbusinesschange/
ITILIntroduction.pdf.

7. C. Larman, Agile and Iterative Development: A Manager’s
Guide, Pearson Education, Upper Saddle River, NJ
(2003).

8. C. DiBona, S. Ockman, and M. Stone, Editors, Open
Sources: Voices from the Open Source Revolution, O’Reilly
Media, Sebastopol, CA (1999), http://www.oreilly.com/
catalog/opensources/toc.html.

9. H. Smith and P. Fingar, Business Process Management:
The Third Wave, Meghan-Kiffer Press, Tampa, FL (2002).

10. Extreme Chaos, The Standish Group, Survey report
(2001), http://www.standishgroup.com/
sample_research/PDFpages/extreme_chaos.pdf.

11. N. Ptak, “The State of J2EE Application Management:
Analysis of 2003 Benchmark Survey,” Ptak, Noel &
Associates (November 2003), http://ptaknoelassociates.
com/research.htm.

12. A. W. Brown, J. Conallen, and D. Tropeano, “Models,
Modeling, and Model Driven Development,” in Model-
Driven Software Development, S. Beydeda, M. Book, and
V. Gruhn, Editors, Springer, Berlin (2005), pp. 1-17.

13. A. W. Brown, J. Conallen, and D. Tropeano, “Practical
Insights into MDA: Lessons from the Design and Use of
an MDA Toolkit,” in Model-Driven Software Develop-
ment, S. Beydeda, M. Book, and V. Gruhn, Editors,
Springer, Berlin (2005), pp. 403-432.

14. J. Rumbaugh, G. Booch, and I. Jacobsen, The UML
Reference Manual, Addison-Wesley, Reading, MA (2004).

15. S.Johnston, “Modeling Service-Oriented Solutions,” IBM
developerWorks (July 2005), http://www-128.ibm.com/
developerworks/rational/library/jul05/johnston/.

16. A. W. Brown, M. Delbaere, P. Eeles, S. Johnston, and R.
Weaver, “Realizing Service-Oriented Solutions with the
IBM Rational Software Development Platform,” IBM
Systems Journal 44, No. 4, 727-752 (October 2005).

17. Kurt Bittner and lan Spence, Use Case Modeling, Addison-
Wesley, Reading, MA (2002).

18. J. Amsden, “Business Services Modeling,” IBM devel-
operWorks (December 2005), http://www.ibm.com/
developerworks/rational/library/05/1227_amsden/
index.html.

19. Eclipse Process Framework Project (EPF), Eclipse.org,
http://www.eclipse.org/epf.

20. Reusable Asset Specification Version 2.2, Object Man-
agement Group, Inc. (November 2005), http://www.
omg.org/cgi-bin/doc?formal/2005-11-02.

21. A. W. Brown, G. Booch, S. Iyengar, J. Rumbaugh, and B.
Selic, “An MDA Manifesto,” in Model Driven Architecture
Straight from the Masters, D. Frankel and J. Parodi,
Editors, Meghan-Kiffer Press, Tampa, FL (2004).

Accepted for publication February 22, 2006.
Published online July 11, 2006.

BROWN, IYENGAR, AND JOHNSTON

479

Alan W. Brown

IBM Software Group, Rational, 4205 S. Miami Blvd., Durham,
North Carolina 27709 (awbrown@us.ibm.com). Dr. Brown is
an IBM Distinguished Engineer with the IBM Rational
software group. He is responsible for aspects of future product
strategy in IBM Rational’s design and construction products.
He defines technical strategy and evangelizes product
direction with customers, looking to improve software
development efficiency through visual modeling, service-
oriented design, generating code from abstract models, and
systematic reuse. His current focus is on how service-oriented
solutions are created and evolved, with particular interest in
software process improvement, Model Driven Architecture,
software design and development, and component-based
reuse. He received a Ph.D. degree from the University of
Newcastle in the United Kingdom.

Sridhar lyengar

IBM Software Group, Rational, P.O. Box 12195, 3039
Cornwallis Rd., Research Triangle Park, North Carolina 27709
(siyengar@us.ibm.com). Mr. Iyenghar is an IBM
Distinguished Engineer and leads the technical strategy for
IBM Rational Software. He works with development teams
and architects inside IBM and in the industry to accelerate the
use of industry standard models, patterns, and metadata for
developing, integrating, and managing applications. His work
focuses on the use of models, metadata, and transformation
frameworks to create an integrated software platform built
using industry standards (J2EE, Web Services, MDA, etc.) and
open-source technologies (Eclipse, Apache, etc.). Mr. Iyengar
serves on the IBM Software Group Architecture Board Steering
Committee and the OMG Architecture Board. He works
extensively with customers who are at the forefront of
exploiting emerging technologies. He holds several patents,
has a Master’s degree in computer science, and has been in the
IT industry for 24 years working on databases, design and
development tools, and integration technology.

Simon Johnston

IBM Software Group, Rational, 4205 S. Miami Blvd., Durham,
North Carolina 27709 (skjohn@us.ibm.com). Mr. Johnston is
a member of the IBM Rational strategy team and is responsible
for the business-level tooling strategy. He has undertaken a
number of standards-related activities for both Rational
Software and IBM in the area of XML (W3C Schema working
group), Web Services (RosettaNet architecture team), and
modeling (OMG UML and OCL teams). He was the author of
the UML Profile for Software Services and primary author of
the RUP Update for SOA. &

480 BROWN, IYENGAR, AND JOHNSTON IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

