
A Rational approach to model-
driven development

&

A. W. Brown

S. Iyengar

S. Johnston

Models, modeling, and model transformation form the basis for a set of software

development approaches that are known as model-driven development (MDD).

Models are used in reasoning about a problem domain and the corresponding

solution domain for some area of interest. In this paper, we explore model-driven

approaches to the realization of solutions for today’s enterprise systems. In particular,

we describe the key elements of MDD as they have emerged from the support of IBM

Rationalt for model-driven approaches over more than a decade. We discuss the

importance of creating model-to-model and model-to-code transformations that

guide the development process, and we review the portfolio of IBM Rational tools in

the context of their support for modeling and model-driven development.

INTRODUCTION

The use of models and modeling in the development

of software has a long and rich history. From the

earliest days of writing programs, the quality and

efficiency of the programming task has been closely

related to the ability to develop models of the

problem domain and to refine them into a solution

appropriate to the target environment.
1

Many kinds

of models can be created, depending upon their

intended use: for establishing a clearer understand-

ing of the problem, for communicating a shared

view of the problem and its solution, for formally or

informally analyzing key aspects of the solution, for

generating lower-level implementation details from

a higher-level programming model, and so on. The

models are also highly dependent on the character-

istics of the problem or solution domain that are of

greatest interest, such as static relationships among

domain elements, dynamic behavior of key actors in

the system, operational aspects of a deployed

system, expected performance parameters of a

specific logical design, and so on.

Models, modeling, and model transformation form

the basis for a set of software development

approaches that are known as model-driven devel-

opment (MDD). Models are used in reasoning about

the problem domain and the solution domain for

some area of interest. Relationships between these

models provide a web of dependencies that record

the process by which a solution was created and

help to understand the implications of changes at

any point in that process.

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 BROWN, IYENGAR, AND JOHNSTON 463

Although models can be used in many ways in the

development process, a particular style of MDD

relies on being quite prescriptive in the kinds of

models produced, the richness of the semantics they

capture, and the relationships among elements in

different model types. If precise semantics are

carefully adhered to for these models, one may be

able to define rules for automating many of the steps

needed to convert one model representation to

another, tracing between model elements, and

analyzing important characteristics of the models.

This prescriptive style of development is called

Model Driven Architecture** (MDA**). It involves

describing a solution at an abstract level in a model

with well-understood semantics and using a series

of explicit (often automated) steps to refine that

model into more concrete models, eventually

producing an executable solution for a specific

runtime platform. Standards are emerging to sup-

port this architecture. The primary driving force

behind MDA approaches based on a standardized

set of models, notations, and transformation rules is

the Object Management Group, Inc. (OMG**). OMG

provides an open, vendor-neutral basis for system

interoperability through established modeling

standards: the Unified Modeling Language**

(UML**), the Meta-Object Facility (MOF**), and the

Common Warehouse Metamodel (CWM). Platform-

independent descriptions of enterprise solutions can

be built using these modeling standards and can be

transformed for open or proprietary platforms,

including CORBA**, J2EE**, .NET, XMI**/XML,

and Web-based platforms.
2

In the past few years, there have been a number of

important advances in how enterprise applications

are designed, implemented, deployed, and made to

evolve. Hence, it is appropriate to examine the

relevance of MDD in the current environment,

which is characterized by the ubiquity of distributed

systems, extensive use of packaged applications,

and the assembly of composite solutions largely

from preexisting components. This paper reviews

the role of MDD in creating flexible, service-oriented

architectures (SOAs) and discusses how model-

driven approaches fit into today’s development

context. It describes the role that MDD plays in

creating flexible, on-demand solutions and how the

tools and processes provided by IBM Rational* are

evolving to make MDD more accessible to a wider

audience of practicing software engineers. Although

MDD can be applied successfully to a variety of

application domains, in this paper we focus on the

role of MDD for enterprise solutions in typical

business domains such as financial services, retail,

and health care.

CHARACTERIZING TODAY’S ENTERPRISE
SOLUTIONS

As in years past, today’s business leaders are

striving to drive revenue growth, contain costs, and

improve the effectiveness of people and processes,

at the same time looking for opportunities to

innovate and create new business opportunities.

This balance has been at the heart of many software

engineering initiatives and debates over the past 20

years. On the one hand, organizations are required

to focus on containing risk through controlled,

repeatable practices with incremental improvements

in the context of frameworks and standards such as

the Capability Maturity Model (CMM
3
), the ISO 9000

series of standards,
4

Six Sigma,
5

and the IT Infra-

structure Library (ITIL**
6
). On the other hand, they

must innovate and revolutionize practices to differ-

entiate their offerings with techniques such as agile

development,
7

adopting open-source technologies

and practices,
8

and dynamically reconfiguring IT

(information technology) solutions to optimized

business processes.
9

What sets the current business climate apart from

the past is rapid, continuous change. Increasingly,

organizations that can respond to change with

agility and flexibility are distinguishing themselves

from those saddled with complex, brittle processes

and systems. Flexible businesses readily adapt to

changes that result from mergers and acquisitions,

compliance and regulatory mandates, increased

competition, evolving technology, and shifting

opportunities in outsourcing and insourcing. These

businesses often share four guiding principles:

1. Business-driven development—The collection of

capabilities offered throughout an IT infrastruc-

ture is viewed as a set of services that are

assembled to meet specific business needs. This

provides better insight into how business pro-

cesses can be realized in IT solutions.

2. Composite application assembly—Components

are assembled and reassembled into solutions as

business and market conditions demand. Solu-

tions typically consist of a heterogeneous mix of

components developed by different teams or

BROWN, IYENGAR, AND JOHNSTON IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006464

acquired from various sources over an extended

period of time.

3. Efficiency through systematic reuse—Asset man-

agement and reuse are exploited to achieve

greater business efficiency. The components of a

system are managed as key assets of the business

and used as a basis for driving consistency and

efficiency across a portfolio of solutions.

4. Explicit support for governance to aid compli-

ance—The end-to-end life cycle of a system is

considered to clarify the development process

and to maintain traceability among its artifacts.

This supports governance practices that assist in

demonstrating conformance to industry stan-

dards and best practices for software develop-

ment by focusing on the artifacts created

throughout the development life cycle and the

relationships between model elements and be-

tween models.

These principles are described in greater detail in the

following subsections.

Business-driven development

In an on demand world, success depends on the

ability to rapidly respond to new challenges and

opportunities. An on demand business is able to

effectively transform business models and processes

as needed. Business and technology teams cooper-

ate on a shared view of the organization’s needs and

priorities for increased flexibility and responsive-

ness. Organizations that close the gap between the

business view of activities and processes on the one

hand and the technology that is used to realize these

activities on the other can create business models in

step with IT solutions. To close this gap and achieve

business goals, it is vital that business goals and

requirements drive IT development projects. With a

flexible technology infrastructure, IT becomes an

enabler of responsiveness and adaptability rather

than an obstacle to them.

Closing the gap between business and IT depends on

improved communication between business ana-

lysts and software architects. Solutions are built

based on the needs of the business, but are flexible,

enabling the business to rapidly understand the

impact of changing business needs and to respond to

them appropriately. Successfully connecting the

business and IT parts of an organization also

requires a common conceptual framework for

discussing business needs and technology solutions,

with a relevance both to business analysts focused

on implementing business needs and IT architects

focused on implementing a technology solution.

From the initial statistical and analytical models that

inform business decisions to system and perfor-

mance models used in defining IT policies and

guiding IT projects, both business analysts and IT

architects rely on various kinds of models to

understand and communicate their needs. What is

often missing, however, is a planned approach to

coordinating the integration and use of those models

across the entire system life cycle. Business-driven

development focuses on this need and places

attention on the creation, integration, and use of

models across the business and IT domains with the

goal of increasing visibility, traceability, and flexi-

bility within the software development process.

One particular approach to software development

where business-driven development is particularly

relevant is in service-oriented architectures (SOAs).

These architectures are gaining much support in the

industry today and view enterprise solutions as

federations of services connected by well-specified

contracts that define their service interfaces. Sys-

tems are composed of collections of services

invoking operations defined through their service

interfaces. Many organizations now express their

solutions in terms of services and their intercon-

nections. The ultimate goal of adopting an SOA is to

achieve flexibility for the business and IT domains.

Service-oriented development of applications

(SODA) incorporates a broad range of capabilities,

technologies, tools, and skill sets, including man-

aging the service life cycle (including finding,

applying, evolving, and maintaining services),

modeling business processes to gain insight into

current processes and the potential benefits of

process improvements, establishing a platform and

programming model (including connecting, deploy-

ing, and managing services within a specific runtime

platform), and adopting practices and tools that

enable teams to effectively create and assemble

services in the context of meeting changing business

needs. This includes mining existing applications to

discover potential services, wrapping existing func-

tionality to make those capabilities accessible as

services, creation of new services, and ‘‘wiring’’

services together by connections using their inter-

faces. Fundamental to these capabilities is the

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 BROWN, IYENGAR, AND JOHNSTON 465

availability of clear guidance and best practices for

designing services-oriented solutions in repeatable,

predictable ways.

Composite application assembly

Traditional enterprise applications were large,

monolithic systems targeted at addressing a specific

business function. Design techniques, tools, and

processes were optimized around the development

of these kinds of systems. Today’s business systems,

in contrast, increasingly involve composite applica-

tions. These ‘‘n-tiered’’ applications are collections

of integrated capabilities and use information and

logic from multiple sources. To integrate these

capabilities and sources, a composite application

invokes multiple transactions and subtransactions

across a variety of runtime platforms and systems.

For example, in Figure 1 we illustrate a composite

application in which the end user is interacting with

a complex system that realizes a complex business

process. This process is an assembly of components

deployed across Web servers, J2EE (Java** 2

Enterprise Edition) application servers, integration

middleware, and legacy systems. The business

process, in this case a loan application process, is

realized through a combination of automated and

manual activities, and delivered through a variety of

Figure 1
Example of a composite application

Approved/
Denied

get
Approved

Java application

get ApplicationInfo
.
.
get Amount
.
.
get InterestRate

Java Application

If approved, then
send letter offering gold

If NOT approved, then
send letter offering
credit counseling service

Business Rules

Personal Loan Request

Get Customer Information

Approval

Credit Rating

Additional Services

Not Approved Approved

Reply

WS-BPEL Business Process

Send letter to applicant Start monthly payments

Approved

LetterSent PaymentsStarted

Business State Machine

Imported System

PeopleSoft Inc. system
with customer
credit ratings

Web

Human Task

Loan SystemI

Loan Process

1..1

1..1

1..1

1..1

1..1

1..1

I

Additional ServicesI
!

I
!

Get Customer Information

I
!

Fraud Check

I Credit Rating

I
!

Approval

BROWN, IYENGAR, AND JOHNSTON IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006466

technologies. This kind of architecture is typical of

enterprise systems today.

In such a complex environment, it becomes in-

creasingly difficult to build, run, and manage

applications. There are many challenges, and the

current data suggests that software development

tools and techniques are not meeting these chal-

lenges. For example, according to survey results,

only 28 percent of projects were found to have been

successful (delivering expected results on time and

within budget),
10

and the average J2EE application

is unavailable nearly one day per week.
11

Clearly,

some new approaches to developing and managing

composite applications are required to help orga-

nizations create solutions that support these kinds of

complex interactions.

Systematic reuse

When organizations think of services as key assets

in the design of systems, the value of reusing these

services becomes apparent. As a result, technologies

and techniques are developed for the management

and governance of assets and for repeatable ways to

capture patterns for combining assets. These assets

hold critical value for the organization and must be

carefully managed. The team infrastructure for

managing assets in a consistent way across projects

and throughout the enterprise takes on a key role in

this approach.

Like any asset, the life cycle of a service includes

multiple phases in which the service is identified

and discovered, harvested and created, certified and

published, reused and measured, and ultimately

retired. As illustrated in Figure 2, this asset life cycle

is described through a set of workflows referred to

as asset identification, asset production, asset

management, and asset consumption. Services may

be consumed or reused at various points in the life

cycle, including during development and at runtime.

Many different kinds of artifacts are reused

throughout the software development life cycle.

Much of the value of any reuse depends on the

reused artifact being well-understood by both the

producers and consumers of the asset. Detailed

knowledge and insight into the artifact becomes

essential and enables the reused artifact to play a

strategic role in providing consistency and quality in

delivered solutions. Hence, models are obviously

important in understanding reused artifacts and as

primary reusable artifacts themselves in any MDD

approach.

The key to successful reuse within most large-scale

enterprises is the extent to which ad hoc approaches

are augmented with supporting technologies and

practices to facilitate reuse as part of a systematic

approach. Typically, issues that need to be ad-

dressed in any successful approach to reuse include

providing adequate asset-repository and searching

technology, training in architectural approaches that

support greater reuse, defining metrics and mea-

sures that assess progress in reuse efforts through-

out the organization, and introducing reward

schemes for creating reusable assets.

Governance and compliance
As a project is executed, it is essential to ensure that

appropriate practices and controls are in place to

help it to deliver its promised value. Alignment

between business strategy and implementation must

be continually monitored, with clear oversight and

control during the project’s execution. To achieve

this, a project must institute effective governance,

namely, a clear set of tasks and roles aimed at

providing the structures and policies to support

management practices and decision making.

The distributed nature of today’s enterprise solu-

tions increases the difficulty of managing large

projects, projects that typically cross several lines of

business (LOBs). The composite nature of such

distributed systems requires new techniques and

approaches to provide visibility and control for the

different organizations both within and outside the

enterprise. This leads to much greater focus on how

the different parts of a system interact, with each

part of the system effectively governed for compli-

Feedback

Candidate
Asset

Program Management

Figure 2
A typical reuse life cycle

Feedback

Asset Production

Asset Identification

Asset Management

Asset Consumption

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 BROWN, IYENGAR, AND JOHNSTON 467

ance to requirements dictated by a service-level

agreement (SLA) for factors such as security,

reliability, performance, and so on. Hence, gover-

nance issues have become a very important area for

organizations creating enterprise solutions today,

requiring a well-defined approach to the entire life

cycle of the solutions portfolio of an enterprise.

Adding to this pressure for visibility and account-

ability is the growing need for compliance to

regulatory standards such as HIPAA (Health Insur-

ance Portability and Accountability Act), Sarbanes-

Oxley (SOX), and Basel II, fueled by intense public

scrutiny of both government organizations and

private companies in many industries. For example,

the basis of the SOX legislation is to make officers of

public companies personally responsible not only

for the company’s financial statements, but also for

ensuring that proper controls are in place to assist in

verifying the accuracy of the statements. Such

regulations stress the importance of establishing and

maintaining corporate accountability and periodi-

cally testing its effectiveness through audits.

This focus on accountability has profound impacts

at many levels. Most notably, software and software

development practices have increasingly become a

target of concern because all organizations rely on

software as the basis for their operation, and a

growing number of them include software as a

primary component of their delivered products. IT

organizations have an obligation to demonstrate

that (1) they are following best industry practices for

software development, (2) the software designed is

fit for its purpose, (3) the quality of the software

being produced has been verified, and (4) effective

controls are maintained throughout the software

development life cycle to prove that processes are

being followed. In all these aspects, models,

modeling, and MDD have an important role to play

as the basis for the design, construction, and quality

of delivered systems. A model-driven approach

enhances the visibility of design decisions through-

out the project, provides a basis for analysis using

different rule bases or bodies of knowledge, and

explicitly represents evolutionary changes as re-

finement dependencies (i.e., relationships that

reflect a dependency between elements, where the

nature of the dependency is that one or more

elements are a refinement of another element)

within and across models.

MODELS, MODELING, AND MDD

Modeling has had a major impact on software

engineering and is critical to the success of every

enterprise-scale solution. However, there is great

variety in what the models represent and how those

models are used. MDD refers to a set of approaches

in which code is automatically or semiautomatically

generated from more abstract models, and which

employs standard specification languages for de-

scribing those models and the transformations

between them. It also supports model-to-model

transformations.
12

Models are the stepping stones on the path between

a description of a business need and the deployable

runtime components of its solution. As under-

standing of the business need and the system under

development evolve, the models themselves become

more complete, accurate, and consistent with each

other. The focus of effort also shifts from the models

at higher levels of abstraction to those at lower

levels. Ultimately, these models are used to directly

create the deployable components.

Models and transformations
The role of models in a model-driven approach is

important, but of equal importance are the trans-

formations that relate different models.
13

It is this

ability to transform different model representations

that differentiates the use of models for ‘‘sketching

out’’ a design from a more extensive model-driven

software engineering process. For example, in

developing service-oriented solutions, high-level

models representing business concepts can be

transformed into logical models of a service-oriented

solution, which in turn are transformed into

implementations of services and service assemblies

that realize the solution.

The process of MDD can be explored from three

perspectives, as described in the following subsec-

tions: how models evolve and are related, how

model transformations are defined and applied, and

how automation of these transformations can

increase efficiency in a software project.

How models evolve

There are two main processes that models undergo:

refinement and transformation. Model refinement is

the gradual change of a model to better match the

desired system. A model is refined as more

information is collected and the system is better

BROWN, IYENGAR, AND JOHNSTON IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006468

understood. As a model evolves, models that are

dependent on it need to change in response. By the

end of each iteration of the development cycle,

however, all of the system’s models should be

consistent with each other.

Models are refined either manually or through some

form of automation or assisted automation. Auto-

mation can be in the form of execution paths

through rules for model refinement. These paths can

be expressed as patterns and reused as assets. When

a pattern is applied to a model, it modifies or

rearranges the model elements to resemble the

pattern. The application of a pattern adds new

elements or properties to the model. Some user

assistance may be involved in applying a pattern—

for example, the developer may be prompted to

supply an existing model element to bind to a

pattern parameter. Other decisions may need to be

resolved before the pattern can be executed. In the

design of service-oriented solutions, for example,

model refinements may include patterns for creating

facades and gateways to multiple service providers

and refactoring of service interfaces to meet

corporate guidelines for quality-of-service criteria,

such as security and availability.

Model transformations involve two or more models.

The most typical example is a high-level abstraction

model being transformed into a low-level abstracted

and technology-dependent one. The former is

referred to as a Platform-Independent Model (PIM),

the latter a Platform-Specific Model (PSM). For

example, a UML PIM could represent a logical data

model and consist of a number of entity classes,

each with a number of persistent attributes. This

model could be transformed through automation

into a UML data model that captures the same

underlying entities, but in the form of database

tables. The data model could in turn be used to

directly generate SQL scripts that define the data-

base, and these scripts could be directly executed on

a specific database management system (DBMS).

Another example is that of a logical services model

describing a business process in terms of the

interactions among a set of service providers and

consumers. This model can be transformed into a

set of instructions in an executable language, such

as a Business Process Execution Language for Web

Services (BPEL4WS or BPEL for short) workflow,

describing that particular choreography of services.

A model may also be transformed for purely internal

reasons (i.e., refactoring), in which the output

model is a refactored version of the input model.

Model transformations are not necessarily unidirec-

tional. An example of a bidirectional transformation

is that of a UML PSM of several Enterprise

JavaBeans** (EJB**) classes, which is synchronized

with the source code implementing these EJBs. New

elements (i.e. methods, attributes, associations)

defined in the model would generate appropriate

elements in the source, and any new elements

created in (or removed from) the source would

generate appropriate elements in (or be removed

from) the model. While UML has been mentioned as

a source or destination for many of these trans-

formations, there are many examples where model

transformations occur directly without the use of

UML as an intermediate representation. Common

examples include transformations of relational data

to XML data.

Understanding model transformation

Defining and applying model transformations are

critical techniques within any model-driven style of

development. The input to the transformation is a

model; the outputs can include another model or

varying levels of executable code. There are three

common model transformations: refactoring trans-

formations, model-to-model transformations, and

model-to-code transformations.

Refactoring transformations reorganize a model

based on some well-defined criteria. In this case, the

output is a revision of the original model, called the

refactored model. An example is the renaming of all

the instances where a UML entity name is used, or

replacing a class with a set of classes and relation-

ships both in the metamodel and in all diagrams

displaying those model elements.

Model-to-model transformations convert information

from a model or models to another model or set of

models, typically where the flow of information is

across abstraction boundaries, or between notations

that emphasize different system characteristics (e.g.,

a process view vs a data view). An example is the

conversion of one type of model into another, such

as the transformation of a set of entity classes into a

matched set of database schema, Plain Old Java

Objects (POJOs), and XML-formatted mapping

descriptor files.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 BROWN, IYENGAR, AND JOHNSTON 469

Model-to-code transformations are familiar to any-

one who has used the code generation capability of a

UML modeling tool. These transformations convert

a model element into a code fragment. Examples

include generation of code in object-oriented lan-

guages such as Java and Cþþ, but these trans-

formations are not limited to output in the form of

programming languages. Configuration, deploy-

ment, data definitions, message schemas, and other

kinds of files can also be generated from models

expressed in notations such as UML. Model-to-code

transformations can be developed for nearly any

form of programming language or declarative

specification, such as generating Data Definition

Language (DDL) code from a logical data model

expressed as a UML class diagram.

Applying model transformations

There are several ways in which model trans-

formations can be applied. In model-driven ap-

proaches, model transformations can be applied

manually, with a prepared profile, and by use of

patterns.

In manually applying a transformation, the devel-

oper examines the input model and manually

creates or edits the elements in the transformed

model. The developer interprets the information in

the model and makes modifications accordingly.

The ability to use models manually may facilitate

incremental adoption of models and perhaps there-

by facilitate the adoption of MDD. A prepared profile

is an extension of the UML semantics in which a

model type is derived. Applying a profile defines

rules by which a model is transformed. A pattern is a

particular arrangement of model elements. Patterns

can be applied to a model, and this process results in

the creation of new model elements in the trans-

formed model.

Apart from raw speed, the significant difference

between manual and automated transformations is

that automation is ensured to be consistent, while a

manual approach is not. Automation ensures con-

sistency when applying transformations using pro-

files, patterns, or other rules (where profiles and

patterns can be considered to embody particular

types of rules). Automatic transformations apply a

set of changes to one or more models based on

predefined transformation rules. These rules may be

implicit to the tools being used or may be explicitly

defined based on domain-specific knowledge. This

type of transformation requires that the input model

be sufficiently complete both syntactically and

semantically and may require models to be marked

with information specific to the transformations

being applied.

The use of these transformation approaches usually

involves developer input at the time of trans-

formation or requires the input model to be marked.

A marked model contains extra information not

necessarily relevant to the model’s viewpoint or

level of abstraction. This information is relevant

only to the tools or processes that transform the

model. For example, a UML analysis model con-

taining entities of the data type ‘‘String’’ may be

marked to indicate it is of variable or fixed length, or

it may be marked to specify its maximum length.

From an analysis viewpoint, just the identification of

the String data type is usually sufficient. However,

when transforming a String-typed attribute into a

database column type, for example, the additional

information is required to complete the definition.

Hence, although models capture information about

the system from specific viewpoints, it is the

transformations between models that drive model-

to-model and model-to-code traceability across

these different viewpoints and between different

levels of abstraction.

Models and visualization

Today, a majority of software developers still take a

code-focused approach to development and do not

use separately defined abstract models at all. They

rely almost entirely on the code they write, and they

express their model of the system they are building

directly in a third-generation programming language

(3GL) such as Java, Cþþ, or C# within an integrated

development environment (IDE) such as IBM

Rational Application Developer, Eclipse**, or Mi-

crosoft Visual Studio**. (For this discussion, we

ignore the fact that the code itself is a realization of a

programming model that abstracts the developer

from the underlying machine code for manipulating

individual bits in memory, registers, etc.) The

modeling most developers perform is in the form of

programming abstractions embedded in the code

(e.g., packages, modules, interfaces, etc.), which are

managed through mechanisms such as program

libraries and object hierarchies. Any separate

modeling of architectural designs is informal and

intuitive and is sketched out on whiteboards, in

Microsoft PowerPoint** slides, or not at all.

BROWN, IYENGAR, AND JOHNSTON IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006470

Although this may be adequate for individuals and

very small teams, in this approach many of the key

characteristics of the system are obscured by the

details of the business logic implementation. Fur-

thermore, it becomes much more difficult to manage

the evolution of these solutions as their scale and

complexity increases, as the system evolves over

time, or when the original members of the design

team are not directly accessible to the team

maintaining the system.

Developers can frequently gain additional insights

when provided with code visualizations in some

appropriate modeling notation. As developers create

or analyze an application, they visualize the code

through some graphical notation that aids their

understanding of the code’s structure or behavior. It

may also be possible to manipulate the graphical

notation as an alternative to editing the text-based

code, so that the visual rendering becomes a direct

representation of the code. Such rendering is

sometimes called a code model, or an implementa-

tion model, although many feel it more appropriate

to call these artifact diagrams and reserve the use of

the term ‘‘model’’ for higher levels of abstraction. In

tools that allow such diagrams (e.g., IBM Rational

Application Developer and Borland Together**), the

code view and the model view can be displayed

simultaneously; as the developer manipulates either

view, the other is immediately synchronized with it.

In this approach, the diagrams are tightly coupled

representations of the code and provide an alter-

native way to view and possibly edit at the code

level.

UML is the most frequently used notation for

visualizing static and dynamic aspects of software-

intensive systems.
14,15

Originally conceived over a

decade ago as an integration of the most successful

modeling ideas of the time, UML is widely used by

organizations and supported by more than a dozen

different product offerings. Its evolution is managed

through a standards process governed by the Object

Management Group, Inc. The standardization of the

UML notation has helped the software industry to

communicate understanding of software designs by

using a commonly understood visual language.

Many developers use the UML notation informally

as a way to describe new and existing systems. In

addition, many tools automate the process of

visualizing key aspects of a software solution with

the UML notation. In the Rational Application

Developer product, for example, an existing Java

application can be executed and elements of runtime

behavior captured and displayed as a UML sequence

diagram. This greatly aids understanding and

debugging activities.

Models and domain-specific languages
Models are only useful to the extent that they are

clearly mapped to the concepts and characteristics

that are essential to the domain of interest and the

viewpoint on that domain that is of concern. When

someone creates a model, whether using a graphical

notation or a textual one, he or she is communicat-

ing a set of ideas about a domain of interest. It is

much easier to define and share that view of the

domain if it is expressed in a language that is

customized for that purpose. For example, one

would expect that a model that explores the

efficiency of human-computer interactions with a

Web-based banking system would support descrip-

tions of the flow of interactions in a user session,

and a model of a real-time telephone-switching

system that is developed to assess timing would

support direct representation of various kinds of

synchronous and asynchronous events. This leads

to a need for domain-specific languages (DSLs)

specialized for such situations. To create models

that are clearly meaningful requires techniques for

creating DSLs.

One of the reasons for the success of UML is its

flexibility. It supports the creation of a set of models

representing both problem and solution domains.

UML can capture and relate multiple perspectives

highlighting different viewpoints on these domains,

can enable modeling of the system at different levels

of abstraction, and can encourage the partitioning of

models into manageable pieces as required for

shared and iterative development approaches. In

addition, the relationships between model elements

can be maintained across modeling perspectives and

levels of abstraction, and specialized semantics can

be created for model elements through built-in UML

extension mechanisms (i.e., stereotypes and tagged

values bundled into UML profiles). These mecha-

nisms can be seen as a way to create a wide variety

of DSLs. Through these mechanisms, UML can

support customization for many different user

communities.

Using profiles to customize UML is an excellent

approach when the domain language can readily be

based on existing UML concepts. It allows reuse of

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 BROWN, IYENGAR, AND JOHNSTON 471

the large base of knowledge, tools, and technologies

devoted to supporting modeling in the UML nota-

tion. It is also possible to go beyond the bounds of

UML when creating DSLs. For example, the IBM

Rational Software Architect product (RSA) supports

creation of DSLs by profiling UML. It also allows one

to visualize and integrate models from different

domain formats without the need to transform them

into UML. This is possible because RSA maintains

all of its internal model representations (i.e., ‘‘meta-

information’’) in a consistent way, as Eclipse

Modeling Framework (EMF) models. These meta-

models (the equivalent of DSLs) leverage EMF and

an extension to EMF for domain-specific modeling

that provides a visualization service. This provides

the ability to create much richer DSLs that extend

UML with other concepts. The work at eclipse.org

on EMF and the latest revision of OMG MOF 2.0

continue to advance the state of the art in bringing

together open-source and open-standards modeling

technologies to our industry.

Models and software evolution
Today’s enterprise software systems are rarely (if

ever) developed from scratch. Rather, they are

created by extending an existing solution framework

with domain-specific business logic, by connecting

to (and manipulating) information from different

sources, and by designing rich user-display and

interaction services. Hence, the development ap-

proach that is followed is not the classical ‘‘water-

fall’’ scenario, where the gathering of requirements

is followed by analysis and design, leading to the

implementation of the system. Instead, it is one of

continual extension and refinement of an existing

partial solution toward a desired goal through a set

of iterations that add value to the solution.

These partial solutions, forming the heart of a new

system, may come from one of several sources:

1. An existing set of applications—An existing

solution can be extended in many ways, as

dictated by the business need.

2. A proprietary application framework used by the

organization—Having built many kinds of similar

solutions in a particular domain, some organiza-

tions have extracted core application capabilities

as reusable proprietary services to be employed

in future solutions.

3. An acquired application framework—Recogniz-

ing the consistent architectural patterns that are

used in designing certain kinds of applications,

developers have created a number of technolo-

gies to help organizations create solutions

conforming to those patterns. The resulting

application frameworks are available both com-

mercially and in the open-source community and

can be delivered as stand-alone frameworks or

bundled with tools that help create, manage, and

extend those frameworks.

4. A set of extensions and customizations of pack-

aged applications—Many organizations acquire

comprehensive solutions for key business pro-

cesses from packaged-application vendors. These

vendors have structured their solutions to sup-

port different kinds of extension and custom-

ization, offer well-defined APIs (application

programming interfaces) to access the internal

structure of the packaged application, or augment

the packaged applications with detailed design

documents, extension examples, and package-

specific tools.

The primary task faced by many IT project managers

is to create a clear understanding of their domain, to

express that understanding in a PIM supporting

various kinds of analysis ensuring its correctness

and consistency, and to map that domain model to a

PSM realized by extending the application frame-

work. Model-to-model transformations help in

refining the domain, while model-to-code trans-

formations map the domain model to the imple-

mentation.

In model-to-code transformations, the application

framework plays a key role, as it constrains and

guides the kinds of transformations that are mean-

ingful. For example, if the application framework is

based on Struts (an open-source framework for

building Web applications based on servlets or

JavaServer Pages** [JSPs**] by using the Model-

View-Controller design paradigm), the application

being created has a well-understood structure,

including well-known extension points where busi-

ness logic can be realized. A set of transformations

can be created based on that knowledge. Indeed,

‘‘wizard’’ style tools can be created to automate

creation of those transformations for domain models

containing appropriate kinds of information. This is

the way, for example, in which tools such as the

IBM Rational Application Developer use domain-

focused visual design tooling to automate code

generation for Struts or application frameworks

based on JSF (JavaServer** Faces). More generally,

by using an application framework as the basis for a

BROWN, IYENGAR, AND JOHNSTON IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006472

solution, the task of writing model-to-code trans-

formations is significantly facilitated, and greater

efficiency, predictability, repeatability, and man-

ageability of the resulting solutions are the con-

sequence.

New software is always built upon existing software

and transforming models (to other models or to

code) is critical in leveraging existing frameworks.

MDA plays a critical role in automating how we

extend and customize these frameworks. In light of

the constraints inherent in today’s components and

technologies, some experts view this ‘‘custom

automation’’ as the only viable option for creating

systems of increasing complexity.

THE IBM RATIONAL SOFTWARE DEVELOPMENT
PLATFORM

The IBM Rational Software Development Platform

(RSDP) is a complete, open, modular, and proven

solution for developing software.
16

RSDP provides

development teams with a powerful foundation for

the MDD of enterprise solutions and supports many

other styles of development as well. It includes a

broad array of best-of-class tools for every phase of

the development life cycle and offers deep integra-

tion of tools and runtime capabilities across all

different aspects of the business in support of a

service-oriented view of solutions. Tight integration

between tools in RSDP is based, in part, on the

Eclipse platform, which also enables integration

with third-party ISV (independent software vendor)

tools. Eclipse technology enables integration, flexi-

bility, and extensibility in a single, coherent plat-

form for software development and serves as a

foundation for the use of RSDP by a broad

constituency of users.

RSDP supports key capabilities for building enter-

prise applications, including requirements analysis,

design, construction, software quality, process and

portfolio management, and change management

and defect tracking. These capabilities are illustrated

in Figure 3, which shows the RSDP components

used by each design team member. RSDP consists of

technologies that can be applied to many solution

domains for creating a variety of kinds of systems.

The remainder of this section will discuss the IBM

Rational tools relevant to each stage of the software

life cycle, illustrating their use in the context of

developing services and SOAs for enterprise IT

solutions.

Business modeling and requirements
Effective business-driven development starts with

analyzing business requirements, needs, and exist-

ing processes. This analysis is then used to

determine the system’s requirements and to guide

all subsequent stages of development.

IBM WebSphere* Business Modeler enables analysts

to model, simulate, and analyze complex business

processes quickly and effectively. Analysts use

WebSphere Business Modeler to model ‘‘as-is’’ and

‘‘to-be’’ business processes, allocate resources, and

perform ‘‘what-if’’ simulations to optimize and

estimate business benefits. These models can later

be transformed into UML and BPEL to jump-start

design and integration activities.

IBM Rational RequisitePro* is used to define busi-

ness requirements and refine them into software

requirements and use cases. Requirements and their

management are central to any mature software

development process, and business modeling helps

ensure that software requirements and use cases

reflect real business needs. Well-written use cases

provide the foundation for architecture, analysis,

user interface (UI) design, and testing.
17

Require-

ments in Rational RequisitePro can be linked to

process models, as well as test cases and test plans,

providing full traceability and ensuring that busi-

ness requirements drive downstream development.

The result is a system that meets business goals and

requirements and delivers real business value.

Within RSDP, requirements are integrated with

defect tracking, design, development, and testing

tools to jump-start activities, minimize rework, and

provide each team member with a direct window

into end-user needs.

Service-oriented solution design
An effective approach to designing a service-

oriented application requires the modeling and

definition of well-defined, well-documented inter-

faces for all major service components prior to the

construction of the services themselves. RSA is an

integrated design and construction tool for creating

service-oriented applications. By leveraging MDD

with UML and unifying all aspects of software

application architecture, RSA enables software

architects to design flexible service architectures and

automatically apply design patterns for SOA from

analysis and design to implementation.

Integration between IBM WebSphere Business

Modeler and RSA enables the transformation of

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 BROWN, IYENGAR, AND JOHNSTON 473

business models into software models for automat-

ing business activities. The integration automati-

cally maps business notation to software notation

(UML), relieving designers from that conversion

burden.
18

To assist with solution design in a service-oriented

context, RSA can be specialized with domain-

specific notations and DSLs relevant to defining,

assembling, and managing services. General mech-

anisms are available to create customized notations

using built-in product extension mechanisms. An

example of DSLs created with these mechanisms

include the UML Profile for Software Services,

which accelerates the transformation of business

processes into Web services by providing a common

language for describing services that helps software

architects to model, map, and partition services.
15

Another example is the UML Profile for Business

Modeling, which presents a language for capturing

business models in UML and is supported by the

Business Modeling Discipline in the Rational Unified

Process* (RUP*).
15

(Plug-ins and scripts, including

UML profiles, are available at http://www.ibm.

com/developerworks/rational/library/1376.html.)

Applying profiles in UML results in a ‘‘marked up’’

model that has specific stereotypes and tagged

values applied. Based on these markings, a set of

specific transforms can be created that convert those

models into some other form. For example, asso-

ciated with RSA is a transformation that converts

models marked with the UML Profile for Software

Services into initial service specifications in the Web

Services Description Language (WSDL). Those

service realizations are then further elaborated and

refined within a set of service construction activities.

Service-oriented solution construction

Java, J2EE, and Web developers are often required

to create the core elements supporting an SOA,

typically Web services. Manually creating Web

services—or even developing systems that use

existing Web services—requires a substantial

WebSphere
Business
Modeler
and Monitor

Rational
Software
Modeler

Rational
Software
Architect

Customer Extensions

Project Manager

Executive

Analyst Architect Developer Tester

Rational
Web/App
Developer

WebSphere
Integration
Developer

Rational
Functional
and Manual
Tester

Rational
Performance
Tester

Tivoli
Configuration
Manager

Tivoli
Monitoring

3rd Party ISV ToolsECLIPSE

Rational Team Unifying Platform

Deployment
Manager

Figure 3
The IBM Rational Software Development Platform

Rational Portfolio Manager

BROWN, IYENGAR, AND JOHNSTON IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006474

amount of tedious and error-prone work. Much of

this burden can be relieved through appropriate

tooling.

IBM Rational Application Developer (RAD) is a

comprehensive integrated development environ-

ment for service-oriented development that auto-

mates many of the tasks commonly performed in the

construction and consumption of Web services so

that developers can focus on writing the business

logic code. RAD can automate everything from

WSDL file and code generation to test proxy

generation and Web Service Interoperability (WS-I)

conformance verification. Developers use RAD to

create, build, consume, test, deploy, and publish

Web services, either from scratch or by enabling

existing applications to achieve WS-I compliance.

RAD greatly simplifies the process of creating a Web

service in a top-down manner based on require-

ments specifications and UML models. Developers

save time and reduce errors by using RAD to

automatically generate WSDL files that contain an

XML schema to describe Web services as well as

skeleton JavaBeans** or EJB files. RAD also

includes an XML schema definition (XSD) editor for

specifying the format of messages.

When working in a bottom-up manner from an

existing set of Java classes or EJBs, RAD can also

automate much of the process of turning those

components into a Web service. After developers

use a wizard to specify information about the

component, RAD generates the WSDL files describ-

ing the Web service, a Simple Object Access

Protocol (SOAP) deployment descriptor, and a proxy

that a client can use to access the Web service.

The support of RAD’s Enterprise Generation Lan-

guage (EGL) enables business-oriented and proce-

dural developers who may not know Java to use it

for developing, testing, and debugging data-driven

Web applications, Web services, and business logic

by using procedural programming constructs. EGL

supports an MDA style of development in which

developers create PIMs of aspects of the system to be

built and use the predefined transformations to

convert those models into a PSM for a choice of

different target runtime platforms. EGL’s compre-

hensive support of Web services handles most of the

hard work in developing or using Web services.

Very little coding is required to use existing Web

services or existing assets, leading to a shorter

learning curve and high productivity for business-

oriented developers.

To enable developers to exercise quality control

early in the development cycle, RAD includes

automated code review tools to validate coding best

practices, component test tools to automate the

creation of test stubs, and test harnesses and test

input data (based on WSDL file analysis and

information from performance profiling tools) to

detect and diagnose bottlenecks and deadlock and

race conditions.

Service composition and assembly

Integration developers create and deploy composite

applications by refining the business process models

created in WebSphere Business Modeler into an

executable set of choreographed services. Web-

Sphere Integration Developer is an IDE used by

developers to assemble composite applications that

deploy to the IBM WebSphere Process Server. Using

the visual BPEL editor, integration developers can

view the business processes designed by business

analysts. They then use WebSphere Integration

Developer to choreograph the services, join them

into a composite application, optionally test them

with a built-in test environment, and deploy them

directly to a runtime environment.

At the center of WebSphere Integration Developer is

the Service Component Architecture, a program-

ming model that focuses on connecting service

components to realize composite applications.

WebSphere Integration Developer treats everything

as a component. Each component has an interface

and can be ‘‘wired together’’ with other components

to form a module (with its own interface). This

enables changing any part of a composite solution

without affecting the other parts. For example, a

human task can be replaced with a business rule

without the need to update the business process.

As illustrated in Figure 4, there are a number of key

elements to WebSphere Integration Developer that

support composite application assembly:

� Business objects—Business objects can be de-

signed and used in a composite application and

are used as input or output parameters for all

integrated components in a solution.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 BROWN, IYENGAR, AND JOHNSTON 475

� Business process choreography—Direct execution

of processes expressed in WS-BPEL is possible by

use of a specific runtime platform. The platform

has built-in capabilities for monitoring and man-

aging the execution of business processes, in-

cluding support for compensation and rollback.
� Human tasks—The process execution engine is

augmented with a human task manager that

supports modeling and execution of manual

activities in a workflow.
� Mediation—To assist with wiring services, Web-

Sphere Integration Developer provides common

services for data mapping, relationship manage-

ment, and interface mediation.
� Adaptive entities—A state-machine implementa-

tion is included for modeling business processes

that are more amenable to state machine repre-

sentation than to a traditional procedural flow

representation.
� Business rules—Many business decisions can be

modeled with decision tables and rule sets

supporting simple rule-based logic for process

interaction.
� Common event infrastructure—Supporting moni-

toring and management of processes is a founda-

tional set of services for common event reporting

and monitoring across a set of components.

WebSphere Integration Developer provides the

visual software development tools needed to spec-

ify, test, and deploy executable business processes

that integrate Web services, enterprise applications,

human tasks, and other service components into

effective SOA-based business solutions.

Process and portfolio management

In addition to a comprehensive set of tools for

service-oriented development of applications, RSDP

also incorporates practical process guidance. In

particular, RUP is well-suited to the needs of many

styles of development initiative because it is

founded upon software-engineering best practices,

offers a configurable process framework, and is

scalable to support enterprise initiatives. RUP has a

long history as the leading commercial process-

framework product in the market, providing flexi-

bility through its architecture and tool support for

the tailoring, extension, and deployment of pro-

cesses. Underlying RUP is a sophisticated model of

the software development process and its roles and

activities. This model is used as the basis for an

MDD approach to generate a specific RUP instance,

a ‘‘RUP configuration,’’ from a collection of core

contents and an extensible set of RUP plug-ins

specific to particular development approaches and

styles. The IBM Rational Method Composer (RMC)

is a process management tool platform and con-

ceptual framework. It consists of tools for authoring,

configuring, and viewing method content and

processes. The kernel RUP framework used by RMC

for authoring and extending RUP has been donated

to the Eclipse Foundation as part of the Eclipse

Process Framework.
19

This framework is influenc-

ing a key OMG standard, the Software Process

Engineering Metamodel (SPEM).

RUP plug-ins contain a variety of process compo-

nents customized for specific tools, technologies, or

domains. The plug-ins include those tailored to a

business-driven reuse-based SOA approach, namely:

� The RUP plug-in for SOA integrates support for

SOA and service-oriented solutions into the RUP

framework, with SOA-specific concepts, guide-

lines, activities, artifacts, and tool mentors.
� The RUP plug-in for WebSphere Business Modeler

augments the business modeling capabilities of

RUP to leverage WebSphere Business Integration

solutions and provide a unified approach for

business modeling based on the essential capa-

bilities of RSDP.
� The RUP plug-in for asset-based development

provides a set of best practices for reuse of

software within an organization. It focuses on

asset identification, asset production, and asset

consumption.

Figure 4
Key aspects of WebSphere Integration Developer

Business
Objects and
Interfaces

Business Process
Choreography
(WS-BPEL) Human Tasks

Common Event
Infrastructure Transformations

Mediations Business Rules Business State
Machines

Composite
Application
Assembly

BROWN, IYENGAR, AND JOHNSTON IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006476

Today’s enterprise solutions are increasingly com-

posed of services from many sources. As a result,

applications are best viewed as dynamic entities—

combinations of services to meet a particular set of

business requirements. One effect of taking this

view is a need for enterprises to explicitly design,

implement, and manage the set of services in the

organization as a portfolio of available capabilities.

Executives and project managers can use the IBM

Rational Portfolio Manager to gain insight into the

business benefits, costs, and risks of the portfolio of

SOA services. With Rational Portfolio Manager, they

can prioritize proposed, existing, and ‘‘under-con-

struction’’ services; track service level financial

statistics; manage SOA project-team dependencies;

forecast demand for service creation; and better

understand the cost of SOA creation, operations, and

maintenance.

Software quality
In addition to tools to assist the developer in testing

capabilities in Rational Application Developer and

WebSphere Integration Developer, RSDP includes

tools to help testers continuously assess the quality

of services and composite applications. Test plans

and individual test cases can be linked to project

requirements in Rational RequisitePro to ensure

complete requirements-based test coverage and

support traceability across the project life cycle.

With Rational Manual Tester, each sequence of

steps defined for a manual task is captured as a test

script. These elementary test scripts are then easily

combined into longer test scenarios (including entire

business processes) without any duplication of

content. Test scripts maintain references to other

scripts, thus greatly simplifying the maintenance of

the test scenarios. The only update required when a

manual task changes consists in updating its

associated script—all the test scenarios are auto-

matically updated to reflect the change.

Rational Functional Tester strikes a very good

balance of UI technology coverage and openness. In

particular, it offers scripting using nonproprietary

languages (Java or VB.NET), making it flexible

enough to accommodate most conditions. In addi-

tion, test scripts can be easily recorded on a

combination of different user interfaces, potentially

built with different technologies. This makes the

orchestrated verification of an end-to-end business

process virtually seamless. Furthermore, test exe-

cution can be triggered automatically from the

command line, making it easy to integrate as part of

an end-to-end ‘‘build-deploy-test’’ process.

IBM Rational Performance Tester is a test creation,

execution, and analysis tool that validates the

scalability and reliability of applications under

multiple user loads. Performance Tester enables

teams to pinpoint system bottlenecks before appli-

cation deployment. Tests are created by recording a

user’s activity within a Web browser; teams need

little to no programming knowledge to understand

and modify these tests. A simple interface initiates a

data-pooling capability that ensures unique data for

each emulated user. Using an intuitive graphical test

scheduler, teams can then organize their tests to

accurately simulate the different types of users and

user activities the application under test will

support.

During test execution, while emulating the desired

number of concurrent users, Rational Performance

Tester generates reports that clearly highlight poorly

performing Web pages, URLs, and transactions.

Teams are thus able to discover performance

problems in even the most complex systems,

increasing the opportunity for problem capture and

repair before the system goes live.

ASSET LIFE-CYCLE MANAGEMENT
With the focus on asset management and reuse, a

new emphasis has been placed on creating,

harvesting, applying, and managing assets

throughout the life cycle. For practical reasons, this

is accompanied by strong governance practices for

reusable assets, tied to a flexible asset life-cycle

management system.

As organizations create solutions that leverage

existing assets, the ability to accelerate and manage

change becomes more critical. Using IBM Rational

ClearCase* and ClearQuest* for change manage-

ment and defect tracking, teams can automate the

software life cycle and establish a consistent process

across distributed environments. IBM Rational soft-

ware configuration management products help

teams improve project collaboration and release

coordination, increase development responsiveness

and agility, and enhance operational efficiency.

In addition, reusable SOA-related development

assets can be packaged and used (or ‘‘consumed’’)

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 BROWN, IYENGAR, AND JOHNSTON 477

within RSDP through direct support of the OMG

Reusable Asset Specification (RAS) standard.
20

This

is illustrated in Figure 5. As shown in the figure,

assets created in the Rational Software Modeler

(RSM) are submitted in RAS format to the RAS

Repository Service for storage in a ClearCase

repository. The governance of the assets, including

certification, is managed by customized templates

that drive the workflow engine provided by Clear-

Quest. Other users of RSA/RSM can then search and

reuse these RAS-based assets by making queries into

the asset repository by using the RAS Repository

Service.

RSDP includes several other tools that enable a team

to more effectively manage asset workflow. Web-

Sphere Studio Asset Analyzer provides support for

the asset identification workflow. RSA provides a

RAS client for asset production. This tool also

includes a RAS client, called the Asset Explorer, to

facilitate asset consumption. Developers and archi-

tects use the Asset Explorer to connect to one or

more RAS repositories and issue searches, which

examine the RAS XML manifest in each of the RAS

assets.

The assets and services can be measured in several

ways, quantitative and qualitative. Teams can use

the RAS repository for work groups to track metrics,

such as how many times an asset is searched for,

how often its documentation is browsed, and how

many times it is imported and reused. Developers

can also rate the asset or service and provide textual

feedback. These kinds of measurements are critical

for the health and functioning of the asset reposi-

tory.

SUMMARY

Flexibility is essential to organizations today as they

seek to react more quickly to the changing demands

of their customers and competitors and the evolving

business environment. The role of software in many

businesses is now seen as central to their ability to

compete effectively and efficiently. A service-based

orientation to the systems being developed helps

businesses focus on what is essential—the services

they offer to customers. It also helps IT professionals

to look at the systems that support the business in a

different way—as composable solution fragments

that must be assembled to meet evolving business

needs. This view is an important cornerstone of

today’s highly reactive business environment.

In this paper, we have focused on the importance of

models, modeling, and MDD in creating service-

oriented enterprise solutions and on the way in

which Rational tools support these concepts. To

illustrate these qualities, we reviewed RSDP with

particular focus on its support for MDD across the

software development life cycle. Further details and

discussion of Rational’s support for MDD can be

found elsewhere.
12,13,21

We have also highlighted

Figure 5
An example of the asset management life cycle using IBM Rational tools

Asset Production Asset Management Asset Consumption

search

apply/
customize

modify/
refine

submit
RAS Repository For Workgroups

promotecertify

IBM
Rational
Software
Architect

IBM
Rational
Software
Architect

Asset
Certification

Asset Identification

= Service or other asset

reference

harvest search

UDDI
Registry

developerWorks
RAS Repository

IBM Rational
ClearQuest

IBM Rational
ClearCase
Repository

IBM WebSphere Studio Asset Analyzer

BROWN, IYENGAR, AND JOHNSTON IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006478

how Rational tools build on a combination of open

standards (from OMG, OASIS and W3C**) and

open-source technologies (from Eclipse and Apache

projects) to create an extensible application life-

cycle platform for the industry.

RSDP plays an important role in helping organiza-

tions create models of their domain of interest and

use those models in a well-defined process that

supports traceability and visibility across the life

cycle. It combines market-leading products to create

a rich, integrated environment for solution devel-

opment. Furthermore, through support for MDD

techniques, RSDP helps to ensure that customers

can efficiently deliver service-oriented solutions that

meet their business needs.

ACKNOWLEDGMENTS
This paper draws on the insight and energy of many
people at IBM, notably Jim Amsden, Grady Booch,

Gary Cernosek, Jim Conallen, Grant Larsen, Sky
Matthews, Martin Nally, Jim Palistrant, Jim

Rumbaugh, Bran Selic, and Rick Weaver. We also
recognize the input and support from all those in the

IBM Rational Communities of Practice.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Incorporated, Sun Microsystems, Inc.,
Office of Government Commerce, H. M. Treasury, United
Kingdom; Borland Software Corporation, Microsoft Corpora-
tion, the Eclipse Foundation, Inc., or Massachusetts Institute
of Technology in the United States, other countries, or both.

CITED REFERENCES
1. M. S. Mahoney, ‘‘The Roots of Software Engineering,’’

CWI Quarterly 3, No. 4, 325–334 (1990), http://www.
princeton.edu/;mike/articles/sweroots/sweroots.pdf.

2. M. Belaunde, C. Burt, C. Casanave, F. Cummins and
D. DSouza, K. Duddy, W. El Kaim, A. Kennedy,
W. Frank, D. Frankel, R. Hauch, S. Hendryx,
M. Hettinger, R. Hubert, D. Hybertson, S. Iyengar,
J. Jourdan, T. Koch, T. Kurokawa, A. Mallia,
S. Mellor, J. Miller, J. Mischkinsky, J. Mukerji,
C. Mullins, M. Oya, L. Rioux, P. Rivett, E. Seidewitz,
B. Selic, J. Siegel, O. Sims, D. Smith, R. Soley, A. Tanaka,
S. Tyndale-Biscoe, A. Uhl, A. Watson, D. Weiseand, and
B. Wood, MDA Guide Version 1.0.1, Object Management
Group, Inc. (June 12, 2003), http://www.omg.org/docs/
omg/03-06-01.pdf.

3. M. B. Chrissis, M. Conrad, and S. Shrum, CMMI:
Guidelines for Process Integration and Product Improve-
ment, Addison-Wesley, Reading, MA (2003).

4. J. T. Rabbit and P. A. Bergh, The ISO 9000 Book: A Global
Competitor’s Guide to Compliance and Certification,
AMACOM Books, New York (1994).

5. T. Pyzdek, The Six Sigma Handbook, Revised and
Expanded, McGraw-Hill Professional Books, New York
(2003).

6. An Introduction to ITIL, Office of Government Commerce
(August 2005), http://www.ogc.gov.uk/sdtoolkit/
reference/ogc_library/itbusinesschange/
ITILIntroduction.pdf.

7. C. Larman, Agile and Iterative Development: A Manager’s
Guide, Pearson Education, Upper Saddle River, NJ
(2003).

8. C. DiBona, S. Ockman, and M. Stone, Editors, Open
Sources: Voices from the Open Source Revolution, O’Reilly
Media, Sebastopol, CA (1999), http://www.oreilly.com/
catalog/opensources/toc.html.

9. H. Smith and P. Fingar, Business Process Management:
The Third Wave, Meghan-Kiffer Press, Tampa, FL (2002).

10. Extreme Chaos, The Standish Group, Survey report
(2001), http://www.standishgroup.com/
sample_research/PDFpages/extreme_chaos.pdf.

11. N. Ptak, ‘‘The State of J2EE Application Management:
Analysis of 2003 Benchmark Survey,’’ Ptak, Noel &
Associates (November 2003), http://ptaknoelassociates.
com/research.htm.

12. A. W. Brown, J. Conallen, and D. Tropeano, ‘‘Models,
Modeling, and Model Driven Development,’’ in Model-
Driven Software Development, S. Beydeda, M. Book, and
V. Gruhn, Editors, Springer, Berlin (2005), pp. 1–17.

13. A. W. Brown, J. Conallen, and D. Tropeano, ‘‘Practical
Insights into MDA: Lessons from the Design and Use of
an MDA Toolkit,’’ in Model-Driven Software Develop-
ment, S. Beydeda, M. Book, and V. Gruhn, Editors,
Springer, Berlin (2005), pp. 403–432.

14. J. Rumbaugh, G. Booch, and I. Jacobsen, The UML
Reference Manual, Addison-Wesley, Reading, MA (2004).

15. S. Johnston, ‘‘Modeling Service-Oriented Solutions,’’ IBM
developerWorks (July 2005), http://www-128.ibm.com/
developerworks/rational/library/jul05/johnston/.

16. A. W. Brown, M. Delbaere, P. Eeles, S. Johnston, and R.
Weaver, ‘‘Realizing Service-Oriented Solutions with the
IBM Rational Software Development Platform,’’ IBM
Systems Journal 44, No. 4, 727–752 (October 2005).

17. Kurt Bittner and Ian Spence, Use Case Modeling, Addison-
Wesley, Reading, MA (2002).

18. J. Amsden, ‘‘Business Services Modeling,’’ IBM devel-
operWorks (December 2005), http://www.ibm.com/
developerworks/rational/library/05/1227_amsden/
index.html.

19. Eclipse Process Framework Project (EPF), Eclipse.org,
http://www.eclipse.org/epf.

20. Reusable Asset Specification Version 2.2, Object Man-
agement Group, Inc. (November 2005), http://www.
omg.org/cgi-bin/doc?formal/2005-11-02.

21. A. W. Brown, G. Booch, S. Iyengar, J. Rumbaugh, and B.
Selic, ‘‘An MDA Manifesto,’’ in Model Driven Architecture
Straight from the Masters, D. Frankel and J. Parodi,
Editors, Meghan-Kiffer Press, Tampa, FL (2004).

Accepted for publication February 22, 2006.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 BROWN, IYENGAR, AND JOHNSTON 479

Published online July 11, 2006.

Alan W. Brown
IBM Software Group, Rational, 4205 S. Miami Blvd., Durham,
North Carolina 27709 (awbrown@us.ibm.com). Dr. Brown is
an IBM Distinguished Engineer with the IBM Rational
software group. He is responsible for aspects of future product
strategy in IBM Rational’s design and construction products.
He defines technical strategy and evangelizes product
direction with customers, looking to improve software
development efficiency through visual modeling, service-
oriented design, generating code from abstract models, and
systematic reuse. His current focus is on how service-oriented
solutions are created and evolved, with particular interest in
software process improvement, Model Driven Architecture,
software design and development, and component-based
reuse. He received a Ph.D. degree from the University of
Newcastle in the United Kingdom.

Sridhar Iyengar
IBM Software Group, Rational, P.O. Box 12195, 3039
Cornwallis Rd., Research Triangle Park, North Carolina 27709
(siyengar@us.ibm.com). Mr. Iyenghar is an IBM
Distinguished Engineer and leads the technical strategy for
IBM Rational Software. He works with development teams
and architects inside IBM and in the industry to accelerate the
use of industry standard models, patterns, and metadata for
developing, integrating, and managing applications. His work
focuses on the use of models, metadata, and transformation
frameworks to create an integrated software platform built
using industry standards (J2EE, Web Services, MDA, etc.) and
open-source technologies (Eclipse, Apache, etc.). Mr. Iyengar
serves on the IBM Software Group Architecture Board Steering
Committee and the OMG Architecture Board. He works
extensively with customers who are at the forefront of
exploiting emerging technologies. He holds several patents,
has a Master’s degree in computer science, and has been in the
IT industry for 24 years working on databases, design and
development tools, and integration technology.

Simon Johnston
IBM Software Group, Rational, 4205 S. Miami Blvd., Durham,
North Carolina 27709 (skjohn@us.ibm.com). Mr. Johnston is
a member of the IBM Rational strategy team and is responsible
for the business-level tooling strategy. He has undertaken a
number of standards-related activities for both Rational
Software and IBM in the area of XML (W3C Schema working
group), Web Services (RosettaNet architecture team), and
modeling (OMG UML and OCL teams). He was the author of
the UML Profile for Software Services and primary author of
the RUP Update for SOA. &

BROWN, IYENGAR, AND JOHNSTON IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006480

