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Model-driven engineering (MDE) aims to raise the level of abstraction in program

specification and increase automation in program development. These are also the

goals of product lines (a family of related programs) and metaprogramming

(programming as computation). We show that the confluence of MDE, product lines,

and metaprogramming exposes a multilevel paradigm of program development, and

further, we can use object-oriented design techniques to represent programs, the

metaprograms that produced these programs, and the meta-metaprograms that

produced these metaprograms, recursively. The paradigm is based on a small number

of simple and well-known ideas, scales to the synthesis of applications of substantial

size, and helps clarify concepts of MDE.

INTRODUCTION

Over the last decade, there has been an increasing

desire in both research and practice to abandon the

manual development of programs in favor of more

automation.
1

Work on software product lines is an

example.
2,3

A product line is a family of similar

programs. Individual programs differ by the features

that they support, where a feature is an increment in

program functionality. By modularizing features,

programs in a product line are produced by

composing features
4
; that is, the process of devel-

oping a complex program can be reduced to the

comparatively simple activities of feature selection

and composition. Software tools automate the

composition process.

More broadly, research on product lines and

generative, transformational, and component-based

programming
5

are progressing toward the goal of

making programming a computation. This requires a

fundamental shift in perspective on program design

and development. Programs themselves become

objects, and operations on programs are methods of

such objects. Metaprogramming is the concept that

programming is a computation.

Model-driven engineering (MDE) is an emerging

approach to software development that centers on

higher-level specifications of programs in domain-

specific languages (DSLs), greater degrees of auto-
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mation in software development, and the increased

use of standards.
6

Among the tenets of MDE is the

use of models to represent a program. A model is a

specification written in a DSL that captures partic-

ular details of a program. As an individual model

represents a limited range of information, a program

specification is often defined by several models. A

model can be computed from other models, and the

process of building programs is one of transforming

high-level models into executables (considered as

yet other models).

Although MDE and metaprogramming are not

identical, they do share concepts and goals; namely,

that programs are first class (i.e., as objects or

models), operations can be performed on them (i.e.,

as methods or transformations), program develop-

ment can be a computation, and programs have

multiple representations.

In this paper, it is argued that product lines enable

both MDE and metaprogramming to converge on a

multilevel paradigm of program design. This para-

digm not only uses object oriented (OO) design

techniques to represent programs that manipulate

everyday objects (e.g., employees, books, ledger

sheets), but also uses OO techniques to represent the

metaprograms that produced these programs, and

the meta-metaprograms that produced these meta-

programs, recursively. The paradigm is based on a

small number of simple and well-known ideas,

scales to the synthesis of applications of substantial

size, and helps clarify concepts of MDE.

MULTILEVEL DESIGNS

Long before MDE, software engineers realized that a

program has many different representations, a

simple Java** application, .class files, and .html

files (produced by the javadoc tool).
7

A more

elaborate application might have performance

models (represented as Mathematica files), make-

files (in Extensible Markup Language [XML] for-

mat), formal models (as a state machine in an XML

Metadata Interchange [XMI] file), and so on. Each

representation is written in a language specific for its

purpose—Java is good for source code, HyperText

Markup Language (HTML) is good for documenta-

tion, and so forth.

Representations can be derived from other repre-

sentations (e.g., a .class file is derived from its

corresponding .java file by javac), or a represen-

tation may express unique information about a

program (e.g., Mathematica files define a perfor-

mance model that is not automatically derivable

from source files). From this perspective, the

software engineering community has been practic-

ing a primitive form of MDE for years.

If we treat files (i.e., representations) as objects that

are instances of file types, an OO design emerges.

Figure 1 identifies the file types that are encountered

in the development of a Java program. File methods

are implemented by Java tools that either transform

a file into another representation (e.g., .javac is a

method that maps a .java file to a .class file) or

that modifies the file (e.g., reform is a pretty

printing tool that transforms unruly .java files into

beautifully formatted files
4
). Even inheritance rela-

tionships exist: operating systems provide a stand-

ard set of operations (move, copy, delete) on files of

all types. Specialized file types are distinguished by

different file extensions, and have their own

methods (tools).

A makefile is a program that operates at this level of

abstraction. It consists of one or more scripts that

create objects (i.e., files) by invoking methods (i.e.,

tools) in a particular order, and whose goal is to

maintain the consistency of these objects whenever

an object is modified. (In effect, a makefile is a

metaprogram—a program that produces a program.)

Makefiles are written in a special language that is not

object-oriented, but that could be given a class

structure. Figure 2A shows the skeleton of an ant

build script, and Figure 2B shows its corresponding

Figure 1
File types and tools

move()  : void
copy()  : File 
delete(): void

File

Classfile

HTMLfile

javac()   : Classfile
javadoc() : HTMLfile
reform()  : void

JavaFile java()  : void
javap() : void
jdb()   : void

explorer()  : void
frontPage() : void
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class structure (i.e., an ant project is a class, ant

tasks are methods, and property definitions are

members). Although this correspondence is loose, it

is not difficult to recognize an OO class structure in

other non-Java artifacts as well. We will return to this

observation later in the section entitled ‘‘AHEAD.’’

Given the above, there are clearly two different levels

of abstraction in program design. The meta-applica-

tion level deals with the construction, manipulation,

and synthesis of application level artifacts (files, etc.).

Although there are OO languages to express programs

at the application level, there is no language that

unifies the concepts of files with objects, file instances

with file types, tools with methods, and execution

scripts (e.g., makefiles) as bodies of methods.

(Perhaps Smalltalk and Lisp are exceptions, as they

were both programming languages and programming

environments.) Not surprisingly, programs at the

meta-application level are developed by using tools

and design techniques that are reminiscent of those

used at the application level in the 1960s. The primary

reason that OO techniques now dominate program-

ming is that they impose more structure on programs.

More structure means program complexity is better

controlled, accidental complexity is reduced, and

greater opportunities for automation and analysis

arise (e.g., tools that restructure programs using

design patterns). On the other hand, programs at the

meta-application level are very simple—almost triv-

ially so—compared to their counterparts at the

application level. Perhaps this, for no other reason,

explains why tools and design techniques at the meta-

application level have not progressed.

MDE may be a driving force to change this. MDE

explicitly embraces the idea that programs have

multiple representations, thus complicating activities

at the meta-application level. There are potentially

many more program representations, called models,

to keep track of; there are many more operations that

can be performed on models to modify them or to

derive other models. Keeping track of all these

representations and relationships itself demands a

modeling and programming language. Instead of

inventing yet another set of concepts and terminol-

ogy for this purpose—which itself would be enor-

mously time consuming—why not consider OO as a

starting point? The benefits seem clear.

First, OO provides a standard vocabulary and

concepts for expressing program designs at any level

of abstraction. Enabling researchers and developers

to communicate with an established terminology

would be extraordinarily beneficial, potentially

saving the MDE community years of work.
8,9

Second, OO provides a reasonable way to think

about programs. It formats our thinking so that

abstractions are more clearly distinguishable from

their possible implementations. For example, today

there is an increased interest in graph transforma-

tions to manipulate MDE models that are encoded as

graphs.
10

While this is fine, let us not forget that

there are many program representations that are

graphs whose operations are not implemented by

graph transformations. A Java program is clearly a

graph of classes, yet no javac compiler that I know

of is implemented by graph transformations.

These points are elaborated in the following sections

by briefly describing projects whose authors un-

knowingly have used multilevel models to blend

model-driven, metaprogramming, and product-line

development. The purpose of this paper is to make

explicit the notion and value of multilevel models

and how to express them.

Let us begin by focusing on product lines whose

programs have only one representation, namely

source code. This requires the use of an elementary

idea, called mixins, which was my first introduction

to the idea of programs as objects and operations that

map such objects. Once the power of mixins is

appreciated, changing to the synthesis of programs

with multiple representations is easier to understand.

Figure 2
Makefile-class concept correspondence

A B

class myMake {
  p = 1

  void main() {
    common();
    compile A;
    compile B;
    compile C;
  }
  void common() {
    compile X;
    compile Y:
  }
}

<project myMake>
  <property name=”p”
     value=”1”/>
  <target main 
    depends=”common”>
    <compile A />
    <compile B />
    <compile C />
  </target>
  <target common>
    <compile X>
    <compile Y>
  </target>
</project>
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MIXINS: FUNCTIONS THAT MAP CLASSES
A mixin is a class whose superclass is specified by a

parameter. An elementary mixin (where I take

liberties on syntax) that adds a color attribute with

set and get methods to its input class is:

class addColor,class base. extends base f
int color ¼ 0;
int getColor() f return color; g
void setColor(int c) f color ¼ c; g

g

With the above, colors could be added to sky-

scrapers, T-shirts, vertices, or any other classes

whose objects need color:

cSkyscraper extends addColor,Skyscraper.;

cTShirt extends addColor,TShirt.;

cVertex extends addColor,Vertex.;

The motivation for mixins is code reuse: mixins

encapsulate stereotypical extensions of classes that

can be reused many times. From a design perspec-

tive, a mixin is a function that takes a class as input

and produces an extended class as output. The

addColor mixin places virtually no constraints on

the classes that it extends. Although this is typical

for classical mixins,
11,12

experience suggests this is

uncommon.

A more typical example shows that a mixin not only

can add new data members and methods to a class,

but also it can extend existing methods. The

following mixin can be applied to stack classes to

count the number of times the pop() method has

been invoked:

class countPop,class aStack.

extends aStack f
int cntr¼ 0;

void resetCntr() f cntr¼ 0; g
int getCntr() f return cntr; g
Object pop() f
cntrþþ;
return super.pop();

g
g

Note that countPop cannot be applied to just any

stack, but only stacks that implement the Object

pop() method. Additionally, countPop should only

be applied to stacks that do not already have cntr,

resetCntr(), or getCntr() members, as overriding

them may break methods that depend on the

overridden semantics.
13

This example is more

revealing about the nature of mixins (or more

generally, about the nature of functions that map

programs). Mixins are not conceived in isolation,

but rather are carefully designed with other mixins

and base classes so that they are compatible. Mixins

that invoke or extend base class methods, which is

the norm, demand coordinated designs. This in-

timacy is further amplified by the fact that mixins

should be designed to extend a particular family of

classes, so that the result of applying a mixin to a

class yields another class within the same family.

This latter point is crucial, as it is the key to

synthesizing a family of classes by mixin composi-

tion. This family is a product line.

As an example, Berger created a mixin library, called

Heap Layers, to define a product line of memory

allocators.
14

It had a few base allocators (mallocHeap,

mmapHeap) and a set of over 20 mixins to extend these

allocators (debugHeap, profileHeap, . . .). The design

of a particular allocator starts with a base allocator,

and then, a sequence of mixins is applied to give the

target allocator its desired features. Memory allocator

a1 allocates space from a memory-mapped heap and

includes checks for a variety of allocation errors:

class a1 extends debugHeap,mmapHeap.;

class a2 extends profileHeap,a1.; (1)

whereas allocator a2 additionally collects and out-

puts fragmentation statistics. Of course, the exam-

ples in Reference 14 are much more elaborate, but I

hope that the idea is clear. The reported benefits of

this design are that sophisticated allocator imple-

mentations can be developed quickly and cheaply,

and performance is comparable to hand-coded

allocators. These benefits are typical of this genre of

work.

Before we proceed, let us reflect on a tenet of OO

design. The methods and internal representation of

state for an object are designed with each other in

mind—they are not created in isolation. Prior to OO,

languages like C allowed programmers to separately

define structs and functions over instances of

structs. The idea of a class as a conceptual module

that integrates both a struct and its functions was

missing. By analogy, if mixins are added to Java,

they are likely to have free-standing definitions in a

program, much like generics have now in Java 1.5;

therefore classes and mixins (functions on classes)
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are defined separately; there is no module concept

that integrates base classes and their mixins. Yet our

experience tells us that the designs of base classes

and mixins are indeed intimately connected; their

connections are no different than members and

methods of an everyday OO class; that is, base

classes and mixins must agree on the names and

semantics of methods, the representation of state,

and so forth. The level of modularity of mixins

needs to be raised from being free-standing func-

tions on classes to methods of a class of classes (or

more generally, a class of programs).

In other words, by adding mixins as stand-alone

entities like class and generic declarations, OO

language researchers are introducing structured-

programming language concepts for the meta-

application level in OO programming languages.

Rather than repeating the structured versus OO

arguments of the 1980s–90s, we should use OO

concepts at the meta-application level immediately.

We can understand the Heap Layers mixin library as

a two-level OO design. The bottom or application

level defines the class structure of memory alloca-

tion programs. Superimposed on this design is a

higher or meta-application level that consists of a

single OO class whose instances are different

memory allocator programs. Basic allocators

(mallocHeap, mmapHeap) are produced by construc-

tors, and mixins are methods (i.e., functions) that

add features to these programs.
15

Thus, the Heap

Layers mixin library has the following meta-appli-

cation-level class structure:

class MemAlloc f
private MemAlloc_Representation state;

static MemAlloc mallocHeap()f. . .g//constructors
static MemAlloc mmapHeap() f. . .g

// optional features

MemAlloc adaptHeap() f. . .g
MemAlloc chunkHeap() f. . .g
. . .

g (2)

That is, all instances of the MemAlloc product-line

share a common internal representation and are

expressions (i.e., metaprograms), such as:

MemAlloc a1,a2;

a1 ¼ MemAlloc.mmapHeap().debugHeap();
a2¼a1.profileHeap(); (3)

Note that MemAlloc program representations could

be abstract syntax trees, and MemAlloc methods

would manipulate these trees. To relate the class

definition a2 of (1) with the metaprogram variable

a2 of (3), we might need to invoke a toSource()

method on the a2 variable to produce its source-

code representation. The use of toSource() is

implied in our discussions. Although there are

earlier examples of two-level designs,
16–18

the Heap

Layers mixin library is ideal for our discussion

because a memory allocation program is just a

single class, and mixins are perfect for extending

programs that can be defined by a single class. But

memory-allocation programs lack scale in two

important ways. First, most programs are rarely

simple enough to be single classes, and the changes

made by most program extensions are rarely limited

to a single class. How can mixins scale to

encapsulate changes to larger programs? Second,

most meta-application-level models of product lines

are also not defined by a single class; they, too, can

have multiple classes. Both questions are addressed

in the next section.

Mixin layers: Functions that map programs
Smaragdakis showed how mixins could scale to

modularize extensions of multiclass programs.
19,20

Instead of storing the classes of a program in a

package, program classes could be listed as inner

classes of a single class. Suppose myProgram is

defined by the set of classes [A. . .Z]. We could

encode myProgram as a single class with A. . .Z as

inner classes:

class myProgram f
class A f . . . g
. . .

class Z f . . . g
g

A mixin myMixin could then be defined to modu-

larize changes to myProgram, such as adding new

classes (e.g., class AA) and extending previously

defined classes (e.g., class Z):

class myMixin,class base. extends base f
class AA f . . . g
class Z extends base.Z f . . . g

g

myMixin is a mixin layer—it is a mixin that

modularizes a program extension, that is, the
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addition of classes and extensions to existing

classes. Semantically, a mixin layer defines a

stereotypical extension that can be applied to a set of

programs. In a product-line context, a mixin layer

implements a feature. A program of a product line

has a particular set of features; it is synthesized to a

base program by applying a sequence of mixin

layers.

This approach to the design and synthesis of

programs is called GenVoca.
20,21

A GenVoca model M

of a product line has one or more base programs

b1. . .bm (called constants) and one or more mixin

layers (called functions) f1. . .fm. A design for a

program p in the product line of M is an expression,

such as p¼ f2(f4(b1)). When GenVoca models are

viewed from a meta-application-level perspective,

most are single classes. The constants correspond to

constructors, and functions correspond to methods.

The meta-application-level class structure of a

typical GenVoca model M is:

class M f
private_M Representation state;

static M b1()f. . .g// constructor #1

static M b2()f. . .g// constructor #2

. . .

M f1()f. . .g // method or feature #1

M f2()f. . .g // method or feature #2

. . .

g

That is, all instances of M’s product line share a

common internal representation and are expressions

(i.e., metaprograms), such as:

M p ¼ M.b1().f4().f2();

The Heap Layers mixin library is an example of a

GenVoca design.

Genesis was a product line of relational database

systems; it was also the first example of a GenVoca

design.
21,22

Genesis could synthesize a product line

of file management systems, relational storage

systems, and relational database systems through

feature (mixin-layer) composition. Unlike memory

allocation programs, each Genesis system contained

many different classes, and its meta-application

model also had multiple classes. Genesis is only

sketched in the following paragraphs; the actual

design is more complicated.

A file management system (FMS) is a program that

performs low-level activities to store and retrieve

tuples of individual relations. Tuples are stored in

primitive file structures, such as BTree, Hash, and

Heaps. Alternatively, inverted files could be used,

where tuples are stored in one structure (such as

Heap) and index records are stored in another (such

as Hash). Optionally, tuples could be compressed.

An FMS has a single meta-application-level class

structure:

class FMS f
private FMS_Representation state;

static FMS BTree () f. . .g // constructors

static FMS Hash () f. . .g
static FMS Heap () f. . .g

f. . .g // optional features

FMS indexed( FMS indexfile )

FMS compress () f. . .g
g

Particular FMS designs are instances of class FMS.

For example, fs1 defines an FMS that stores

compressed tuples on a heap, and fs2 is an inverted

file where tuples are stored on a heap and index

records are stored in Btree structures:

FMS fs1. fs2;

fs1 ¼ FMS.Heap().compress();
fs2 ¼ FMS.Heap().indexed( FMS.BTree() );

A relational storage system (RSS) differs from an

FMS in that it supports relational join operations in

addition to relation retrievals. The features of RSS

include different join algorithms (mergejoin,

hashjoin, nestedloops) and an adapter to translate

RSS interface calls into FMS calls (adaptfms). An

RSS has a meta-application-level class structure:

class RSS

private RSS_Representation state;

static RSS adaptfms ( FMS f ) f. . .g // constructor

// optional features

RSS mergejoin() f. . .g
RSS hashjoin() f. . .g
RSS nestedloops() f. . .g

g

As an example, r1 is a relational storage system that

uses nested loops and hash joins to process rela-
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tional joins, and stores relations in an fs1 file

system:

RSS r1¼ RSS.adaptfms( fs1 )

.nestedloops().hashjoin();

Finally, a relational database system (RDS) layers a

query language on top of an RSS. Genesis provides

two different languages, Quel and SQL (Structured

Query Language). An RDS has the meta-application-

level class structure:

class RDS f
private RDS_Representation state;

static RDS Quel ( RSS r ) f. . .g // constructors

static RDS SQL ( RSS r ) f. . .g
g

Relational system s1 presents an SQL front end to

relational storage system r1:

RDS s1¼ RDS.SQL ( r1 );

Using the FMS, RSS, and RDS classes, architects could

synthesize different file management systems, rela-

tional storage systems, and database systems.

Although three meta-application-level classes have

been sketched, Genesis has many more.

There is nothing magical about mixin-based tech-

nologies. They reduce to a simple development

concept: when a feature is added to a program, new

packages, classes, data members, and methods can

be added, and existing methods can be extended.

I no longer use the traditional programming

language concept of a mixin as it has, among other

problems, complications with fix-points, the inabil-

ity to add new constructors, and the inability to

rename variables. I have since replaced it with a

mixin-like technology that provides more general

capabilities.
4

Other technologies, such as aspects,

could be used to achieve these and even greater

effects.

DESIGNS WITH THREE OR MORE LEVELS

Both Heap Layers and Genesis are examples of a two-

level design. Three and higher-level designs are

indeed possible and are modeled no differently than

the application and meta-application levels; that is,

we leverage OO’s contribution to scale invariance to

describe more abstract levels of program description.

Suppose we want to synthesize the MemAlloc class

of Heap Layers, to customize it with a particular set

of constructors and methods. Conceptually, this is

the process of creating a product line of product lines

(PLoPL). A PLoPL is modeled by a class on a third or

meta-meta-application level.

The idea is simple: create a class MAPL (memory

allocation product line). We have a constructor

(base) that generates a MemAlloc class that has only

a program-representation data member. We then

define methods (i.e., mixins) of this class to add

specific constructors and methods to the target

MemAlloc class:

class MAPL f
primitive MAPL_Representation state;

static MAPL base(); // constructor

// features that add constructors

// and methods to a MAPL object

MAPL addConstructorMallocHeap();

MAPL addConstructorMmapHeap();

MAPL addMethodAdaptHeap();

MAPL addMethodChunkHeap();

. . .

g

Thus, the MemAlloc class (2) that we considered

earlier would be synthesized by a meta-meta-

application-level expression:

MAPL MemAlloc ¼
MAPL.base().addConstructorMallocHeap()

.addConstructorMmapHeap()

.addMethodAdaptHeap()

.addMethodChunkHeap(). . . .;

For details on how such models are implemented,

see Reference 23. Interestingly, PLoPLs arise natu-

rally in another form, called staged configuration

models, where a product line is progressively

simplified in different stages for different sets of

customers.
24

In principle, levels higher than three

may exist; they, too, would be described as other

levels. In summary, multilevel models allow us to

define a hierarchy of product lines. An individual

application is defined at the bottom level. A product

line of applications is defined at the meta-applica-
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tion level. A PLoPL is defined at the meta-meta-

application level, and so on. So far, we have

considered the synthesis of programs that have only

a single representation (e.g., source code). We

remove this restriction in the next section.

AHEAD

Consider a parser. It is specified by at least two

different program representations at the application

level. There is a grammar representation that

defines the grammar of the language and a source-

code representation that defines the semantic

actions that are to be performed when a rule of the

grammar is matched. Although both representations

can reference each other, neither is fully derivable

from the other. (In the language of MDE, our

application is specified by two different models,

each written in its own DSL.)

When a feature is added to a language, its parser

must be updated. This means that the grammar

must be extended (with new tokens and rules that

define the language extension), and the source code

must be extended (with the semantic actions for

these new rules). From previous sections, we know

how to extend the source-code representation of a

program—use a mixin-like technology to add new

members and new methods to existing classes, add

new classes, and extend existing methods. But how

are grammars extended?

In the section ‘‘Multilevel designs,’’ we noted that a

class structure could be imposed on non-Java

artifacts. With a class structure, we could use mixin-

like technologies to extend these artifacts as well.

This idea is called the Principle of Uniformity—give

all artifacts (program representations) a class

structure, and extend them analogously to code.
4

Let us illustrate this with a simple grammar. Figure

3A shows the Backus Naur Form (BNF) of a list of

integers. We can impose a class structure: a

grammar is a class, tokens are data members, and

rules are methods. A grammar can be extended by

adding new tokens, new rules, and extending

existing rules.

Figure 3B shows an extension of this grammar that

generalizes a list to include identifiers. The value :

super construct means extend the righthand side of

the previously defined value production. Readers

may recognize that this extension is a mixin for a

grammar. The expected result of composing the

base grammar (Figure 3A) with its mixin extension

(Figure 3B) is shown in Figure 3C.

The big picture is simple. Programs have many

different representations. When a feature is added to

a program, any or all of its representations may

change. For example, the source code of a program

changes (to implement that feature), its perfor-

mance model changes (to profile that feature), its

documentation changes (to document that feature),

and so on.

The relationships between program representations

have a simple OO description. Suppose a program

has two representations: C (for code) and G (for

grammar). A GenVoca product line of such pro-

grams is described by one or more base programs

b1, b2, . . . and one or more optional features f1,

f2, . . . . We can define a meta-application class for

each representation:

class C f
private C_Representation state;

static C b1_C() f. . .g; // constructors

Figure 3
Grammars and an extension

// tokens
INT {0-9}*;

// rules
list : value
     | list ‘,’ value
     ;

value : INT ;

A // tokens
ID {a-Z}{a-Z0-9}*;

// rules

value : super
      | ID
      ;

B // tokens
INT {0-9}*;
ID {a-Z}{a-Z0-9}*;

// rules
list : value
     | list ‘,’ value
     ;
value : INT
      | ID
      ;

C
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static C b2_C() f. . .g;
C f1_C() f. . .g; // optional features

C f2_C() f. . .g;
. . .

g
class G f

private G_Representation state;

static G b1_G() f. . .g; // constructors

static G b2_G() f. . .g;
G f1_G() f. . .g; // optional features

G f2_G() f. . .g;
. . .

g

A product line of programs that have consistent G

and C representations is a class whose objects

maintain a G and C state, and when a method is

invoked (i.e., a feature is added), both representa-

tions are updated. This is expressed by another

meta-application-level class P:

class P f
private G g;

private C c;

static P b1() f // constructors

P p¼ new P();

p.g¼ G.b1_G();

p.c¼ C.b1_C();

return p;

g
. . .

P f1() f // optional features

P p ¼ this.clone(); // copy

p.g ¼ g.f1_G();
p.c ¼ c.f1_C();
return p;

g
. . .

g

Note that the code of class P above is so predictable

that it could be produced automatically. Thus,

program p, which is base program b1 extended with

feature f1, is the expression (metaprogram):

P p ¼ P.b1 ().f1();

Internally, p maintains two consistent representa-

tions: a C representation and a G representation, the

values of which are:

p.c ¼ C.b1_C().f1_C();
p.g ¼ G.b1_G().f1_G();

These ideas extend to an arbitrary number of

program representations and have been imple-

mented in the AHEAD Tool Suite.
4

See Reference 25

for an example of these ideas. Although the

emphasis of AHEAD is more on a mathematical

description of meta-level models and their compo-

sition, it is not difficult to recognize this

correspondence.

AN MDE CASE STUDY

Bold Stroke is a product line written in several

million lines of Cþþ that supports a family of

mission-computing avionics for a variety of military

aircraft.
26

Recent work by Gray et al. used Model-

Integrated Computing (MIC) by Sztipanovits and

Karsai at Vanderbilt University,
27

which is a specific

platform for MDE, to demonstrate how models

could capture the design of the Bold Stroke code

base and how simple model edits could be auto-

matically translated into substantial code-base ed-

its.
28

The manner in which artifacts of a MIC design

process are related and manipulated is ad hoc,

requiring manual adaptations due to the lack of an

OO design (i.e., objects and methods) at the meta-

application level.
29

Consequently, the elegance of

MIC designs is obscured. We use Bold Stroke as a

case study, and we invite readers to compare our

explanation with Reference 28 to judge the

difference.

Briefly, Gray et al. use three different representa-

tions of Bold Stroke: the Cþþ code base, its

Embedded-Systems Modeling Language (ESML)

model representation,
30

and an XML representation

for configuring the start-up of Bold Stroke. The XML

representation is derived directly from the ESML

model by the ConfigurationInterface model inter-

preter (i.e., transformation). Features can be added

to Bold Stroke: among them are different kinds of

locks for supporting concurrency (e.g.,

externalLock, internalLock, and noLock) and

logging a ‘‘black box’’ data recorder (logging). Each

feature is specified by a separate transformation. We

capture this meta-application design by a single

class:

class BoldStrokeApp f
private CppCode C; // code repr

private ESML M; // model repr

BoldStrokeApp () f. . .g // constructor

XML ConfigurationInterface () f
return M.deriveXMLconfiguration();
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g
BoldStrokeApp externalLock() f. . .g // features

BoldStrokeApp internalLock() f. . .g
BoldStrokeApp noLock() f. . .g
BoldStrokeApp logging(options) f. . .g

g

A BoldStrokeApp object maintains two different

representations: an ESML model and Cþþ code. Both

are data members. A version v of Bold Stroke that

has external locks and logging is:

BoldStrokeApp v ¼ new BoldStrokeApp().

externalLock().logging(options);

When the externalLock method is invoked, both

representations change. Let UpdLM() be a method

that updates an ESML model by weaving in external-

lock declarations, and let UpdC(ESML x) be a method

that, given an ESML model x, updates the Cþþ code

to conform to x. The externalLock method

becomes:

BoldStrokeApp externalLock() f
BoldStrokeApp e ¼ this.clone();

e.M¼M.UpdLM(); // weave locks into model

e.C¼C.UpdC(e.M); // weave lock code

return e;

g

Gray et al. use the term 2-level weaving to describe

the weaving of the model and then the use of the

woven model to determine how to weave the code

base. This idea is easily captured above. Features

are added to Bold Stroke by sequentially invoking

feature methods. Gray et al. noticed an interesting

optimization: there is no need to incrementally

update the code representation after each model

update. Instead, model updates can be batched, and

the code representation is updated only when it is

needed. We can express this idea by adding a

getCode method to class BoldStrokeApp:

CppCode getCode() f
return C.UpdC(M); // weave code updates here

g

This allows us to simplify the definition of

externalLock (and other feature methods) by

updating only the model representation:

BoldStrokeApp externalLock() f
BoldStrokeApp e ¼ this.clone();

e.M ¼ M.UpdLM();
return e;

g

This optimization does not synchronize the model

and code representations. Model changes are col-

lected, and modifications to the code are made only

when the getCode method is invoked. This is a

common OO coding idiom. Of course, considerable

work is needed to implement these methods; but the

simplicity of design is now evident.

Reference 28 is a good example that demonstrates a

point of this paper: not only is OO good for defining

the structure of models, it is also good for defining

the methods (transformations) on these models as

well. By modeling transformations as methods, the

simplicity and elegance of MDE designs are

revealed. Not doing so makes it difficult for authors

to convey their ideas and for readers to understand

them.

OTHER MDE CONCEPTS

There are many concepts and proposals in MDE that

can be expressed in an OO manner. To illustrate one

particular example, we note that the MDE literature

is steeped in discussions of models, metamodels,

and meta-metamodels.
31,32,33

Briefly, a model is a

representation of a program and is an instance of a

metamodel (that is, a model is an object and the

metamodel is its class). Recursively, a metamodel is

an instance of a meta-metamodel. Generally, recur-

sion stops at the meta-metamodel level, as it is an

instance of itself.
34

Metamodels are paramount to MDE; they are the

definitions of DSLs. The ability to create custom

languages for particular domains and the ability to

write models (specifications) in these languages is

the key to MDE’s success, and naturally is a primary

focus of tool development in MDE platforms.
1,10,27

Given the above, what is the relationship between

our meta-application level and the more established

MDE concept of metamodels? Here is a simple way

to understand their connection. Many people find

the concept of models, metamodels, and meta-

metamodels intimidating, but these really are fancy

names for familiar and well-understood concepts in

databases. A database schema is a metamodel; an

instance of a schema is a database. Every DBMS

(database management system) internally has a
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cast-in-concrete meta-metamodel, called the infor-

mation schema, whose instances are database

schemas.
35,36

If readers think in terms of databases,

the metaconcepts of MDE are easy to appreciate.

To leverage this analogy, think of a database as an

object, where different database instances of the

same schema are different objects. The state of a

database object is defined by its tuples. Transactions

are methods on database objects that update its state

or that create new databases.

Now, revise the preceding paragraph by replacing

‘‘database’’ with ‘‘model,’’ ‘‘schema’’ with ‘‘meta-

model,’’ and ‘‘transactions’’ with ‘‘transformations.’’

Paraphrasing:

A model is an object, where different model

instances of the same metamodel are different

objects. The state of a model object is defined by its

tuples. Transformations are methods on model

objects that update its state or that create new

models.

Doing so, an analogy to describe fundamental ideas

in MDE emerges. Figure 4 lists the correspondence of

database, MDE, and OO terminologies, where each

row of terms are different names for the same concept

(i.e., a model is an object; an object is a database).

These are the essential ideas behind the pioneering

work in MIC.
27

A MIC model is literally stored as a

database of tuples, and the schema of the database is

its metamodel.
37

MIC now uses a graph trans-

formation technology to define methods (i.e., tools)

that map models.
27

Previously, low-level Cþþ code

was used to write such tools.

The connection to our meta-application level is that

MDE platforms enable an architect to define

individual classes and their object instances at the

meta-application level. Object state is defined by a

model, the schema of a model is a metamodel, and

object methods are transformations.

MDE platforms aim to replace traditional program-

ming languages with DSLs. An object technology is

needed to relate these classes, their instances, and

their methods. This is our meta-application level.

Product lines fit naturally into an OO meta-applica-

tion level as additional methods (that correspond to

features) in meta-application-level classes.

Sadly, what makes all this confusing and compli-

cated is that different names have been given by

different communities to the same concept. By using

a single name per concept, the ideas become clearer.

CONCLUSION

The history of software development is marked by a

series of advances that progressively raise the level

of abstraction in which programs are specified; as

the level increases, so does the degree to which

software development can be automated.

MDE is an emerging technology that has the

potential to go far beyond today’s OO languages and

program-development technologies. In this paper it

was argued that MDE should be a next-generation

OO technology that focuses on programming at the

meta-application level (and higher levels), where

objects are programs and methods are operations

that map programs. At this level, program design

and development is a computation, historically

called metaprogramming. The synergistic value of

the convergence of these ideas is apparent in

product lines, where features are operations that

transform programs (i.e., methods of program

objects), and program development is function

(method) application.
38

Case studies were presented which demonstrated

that a multilevel design paradigm for product lines

in MDE is feasible, that it scales to the synthesis of

large applications, and that it helps clarify concepts

of MDE. I hope these ideas take us a step closer to

realizing a broader vision of software development.
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