Multilevel models in model-
driven engineering, product lines,
and metaprogramming

Model-driven engineering (MDE) aims to raise the level of abstraction in program
specification and increase automation in program development. These are also the
goals of product lines (a family of related programs) and metaprogramming
(programming as computation). We show that the confluence of MDE, product lines,
and metaprogramming exposes a multilevel paradigm of program development, and
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further, we can use object-oriented design techniques to represent programs, the

metaprograms that produced these programs, and the meta-metaprograms that
produced these metaprograms, recursively. The paradigm is based on a small number
of simple and well-known ideas, scales to the synthesis of applications of substantial
size, and helps clarify concepts of MDE.

INTRODUCTION

Over the last decade, there has been an increasing
desire in both research and practice to abandon the
manual development of programs in favor of more
automation." Work on software product lines is an
example.z’3 A product line is a family of similar
programs. Individual programs differ by the features
that they support, where a feature is an increment in
program functionality. By modularizing features,
programs in a product line are produced by
composing features4; that is, the process of devel-
oping a complex program can be reduced to the
comparatively simple activities of feature selection
and composition. Software tools automate the
composition process.

More broadly, research on product lines and
generative, transformational, and component-based
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programming5 are progressing toward the goal of
making programming a computation. This requires a
fundamental shift in perspective on program design
and development. Programs themselves become
objects, and operations on programs are methods of
such objects. Metaprogramming is the concept that
programming is a computation.

Model-driven engineering (MDE) is an emerging

approach to software development that centers on
higher-level specifications of programs in domain-
specific languages (DSLs), greater degrees of auto-
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File types and tools

mation in software development, and the increased
use of standards.’ Among the tenets of MDE is the
use of models to represent a program. A model is a
specification written in a DSL that captures partic-
ular details of a program. As an individual model
represents a limited range of information, a program
specification is often defined by several models. A
model can be computed from other models, and the
process of building programs is one of transforming
high-level models into executables (considered as
yet other models).

Although MDE and metaprogramming are not
identical, they do share concepts and goals; namely,
that programs are first class (i.e., as objects or
models), operations can be performed on them (i.e.,
as methods or transformations), program develop-
ment can be a computation, and programs have
multiple representations.

In this paper, it is argued that product lines enable
both MDE and metaprogramming to converge on a
multilevel paradigm of program design. This para-
digm not only uses object oriented (OO) design
techniques to represent programs that manipulate
everyday objects (e.g., employees, books, ledger
sheets), but also uses OO techniques to represent the
metaprograms that produced these programs, and
the meta-metaprograms that produced these meta-
programs, recursively. The paradigm is based on a
small number of simple and well-known ideas,
scales to the synthesis of applications of substantial
size, and helps clarify concepts of MDE.
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MULTILEVEL DESIGNS

Long before MDE, software engineers realized that a
program has many different representations, a
simple Java** application, .class files, and .htm1
files (produced by the javadoc tool).7 A more
elaborate application might have performance
models (represented as Mathematica files), make-
files (in Extensible Markup Language [XML] for-
mat), formal models (as a state machine in an XML
Metadata Interchange [XMI] file), and so on. Each
representation is written in a language specific for its
purpose—1Java is good for source code, HyperText
Markup Language (HTML) is good for documenta-
tion, and so forth.

Representations can be derived from other repre-
sentations (e.g., a .class file is derived from its
corresponding . java file by javac), or a represen-
tation may express unique information about a
program (e.g., Mathematica files define a perfor-
mance model that is not automatically derivable
from source files). From this perspective, the
software engineering community has been practic-
ing a primitive form of MDE for years.

If we treat files (i.e., representations) as objects that
are instances of file types, an OO design emerges.
Figure 1 identifies the file types that are encountered
in the development of a Java program. File methods
are implemented by Java tools that either transform
a file into another representation (e.g., .javac is a
method that maps a .java file to a .class file) or
that modifies the file (e.g., reform is a pretty
printing tool that transforms unruly . java files into
beautifully formatted files4). Even inheritance rela-
tionships exist: operating systems provide a stand-
ard set of operations (move, copy, delete) on files of
all types. Specialized file types are distinguished by
different file extensions, and have their own
methods (tools).

A makefile is a program that operates at this level of
abstraction. It consists of one or more scripts that
create objects (i.e., files) by invoking methods (i.e.,
tools) in a particular order, and whose goal is to
maintain the consistency of these objects whenever
an object is modified. (In effect, a makefile is a
metaprogram—a program that produces a program.)
Makefiles are written in a special language that is not
object-oriented, but that could be given a class
structure. Figure 2A shows the skeleton of an ant
build script, and Figure 2B shows its corresponding
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class structure (i.e., an ant project is a class, ant
tasks are methods, and property definitions are
members). Although this correspondence is loose, it
is not difficult to recognize an OO class structure in
other non-Java artifacts as well. We will return to this
observation later in the section entitled “AHEAD.”

Given the above, there are clearly two different levels
of abstraction in program design. The meta-applica-
tion level deals with the construction, manipulation,
and synthesis of application level artifacts (files, etc.).
Although there are OO languages to express programs
at the application level, there is no language that
unifies the concepts of files with objects, file instances
with file types, tools with methods, and execution
scripts (e.g., makefiles) as bodies of methods.
(Perhaps Smalltalk and Lisp are exceptions, as they
were both programming languages and programming
environments.) Not surprisingly, programs at the
meta-application level are developed by using tools
and design techniques that are reminiscent of those
used at the application level in the 1960s. The primary
reason that OO techniques now dominate program-
ming is that they impose more structure on programs.
More structure means program complexity is better
controlled, accidental complexity is reduced, and
greater opportunities for automation and analysis
arise (e.g., tools that restructure programs using
design patterns). On the other hand, programs at the
meta-application level are very simple—almost triv-
ially so—compared to their counterparts at the
application level. Perhaps this, for no other reason,
explains why tools and design techniques at the meta-
application level have not progressed.

MDE may be a driving force to change this. MDE
explicitly embraces the idea that programs have
multiple representations, thus complicating activities
at the meta-application level. There are potentially
many more program representations, called models,
to keep track of; there are many more operations that
can be performed on models to modify them or to
derive other models. Keeping track of all these
representations and relationships itself demands a
modeling and programming language. Instead of
inventing yet another set of concepts and terminol-
ogy for this purpose—which itself would be enor-
mously time consuming—why not consider OO as a
starting point? The benefits seem clear.

First, OO provides a standard vocabulary and
concepts for expressing program designs at any level
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A B

<project myMake> ————>class myMake {
<property name="p”"——> p =1
value="1"/>

<target main—— > void main() {

depends="common”> common( ) ;
<compile A /> compile A;
<compile B /> compile B;
<compile C /> compile C;

</target> }
<target common>————> void common() {

<compile X> compile X;
<compile Y> compile Y:
</target> }
<{/project> }
Figure 2

Makefile-class concept correspondence

of abstraction. Enabling researchers and developers
to communicate with an established terminology
would be extraordinarily beneficial, potentially
saving the MDE community years of work.>’

Second, OO provides a reasonable way to think
about programs. It formats our thinking so that
abstractions are more clearly distinguishable from
their possible implementations. For example, today
there is an increased interest in graph transforma-
tions to manipulate MDE models that are encoded as
graphs.10 While this is fine, let us not forget that
there are many program representations that are
graphs whose operations are not implemented by
graph transformations. A Java program is clearly a
graph of classes, yet no javac compiler that I know
of is implemented by graph transformations.

These points are elaborated in the following sections
by briefly describing projects whose authors un-
knowingly have used multilevel models to blend
model-driven, metaprogramming, and product-line
development. The purpose of this paper is to make
explicit the notion and value of multilevel models
and how to express them.

Let us begin by focusing on product lines whose
programs have only one representation, namely
source code. This requires the use of an elementary
idea, called mixins, which was my first introduction
to the idea of programs as objects and operations that
map such objects. Once the power of mixins is
appreciated, changing to the synthesis of programs
with multiple representations is easier to understand.
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MIXINS: FUNCTIONS THAT MAP CLASSES

A mixin is a class whose superclass is specified by a
parameter. An elementary mixin (where I take
liberties on syntax) that adds a color attribute with
set and get methods to its input class is:

class addColor<class base> extends base {
int color=0;
int getColor() { returncolor; }
void setColor(int c) { color=c; }

1

With the above, colors could be added to sky-
scrapers, T-shirts, vertices, or any other classes
whose objects need color:

cSkyscraper extends addColor<Skyscraper>;
cTShirt extends addColor<TShirt>;
cVertex extends addColor<Vertex>;

The motivation for mixins is code reuse: mixins
encapsulate stereotypical extensions of classes that
can be reused many times. From a design perspec-
tive, a mixin is a function that takes a class as input
and produces an extended class as output. The
addColor mixin places virtually no constraints on
the classes that it extends. Although this is typical
for classical mixins,'"""? experience suggests this is
uncommon.

A more typical example shows that a mixin not only
can add new data members and methods to a class,
but also it can extend existing methods. The
following mixin can be applied to stack classes to
count the number of times the pop() method has
been invoked:

class countPop<class aStack>
extends aStack {
int cntr=0;
void resetCntr() {cntr=0;}
int getCntr() { return cntr; }
Object pop() {
cntr++;
return super.pop();

}

Note that countPop cannot be applied to just any
stack, but only stacks that implement the Object
pop() method. Additionally, countPop should only
be applied to stacks that do not already have cntr,
resetCntr(), or getCntr() members, as overriding
them may break methods that depend on the
overridden semantics."” This example is more
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revealing about the nature of mixins (or more
generally, about the nature of functions that map
programs). Mixins are not conceived in isolation,
but rather are carefully designed with other mixins
and base classes so that they are compatible. Mixins
that invoke or extend base class methods, which is
the norm, demand coordinated designs. This in-
timacy is further amplified by the fact that mixins
should be designed to extend a particular family of
classes, so that the result of applying a mixin to a
class yields another class within the same family.
This latter point is crucial, as it is the key to
synthesizing a family of classes by mixin composi-
tion. This family is a product line.

As an example, Berger created a mixin library, called
Heap Layers, to define a product line of memory
allocators. " It had a few base allocators (mallocHeap,
mmapHeap) and a set of over 20 mixins to extend these
allocators (debugHeap, profileHeap, ...). The design
of a particular allocator starts with a base allocator,
and then, a sequence of mixins is applied to give the
target allocator its desired features. Memory allocator
al allocates space from a memory-mapped heap and
includes checks for a variety of allocation errors:

class al extends debugHeap<mmapHeap>;
class a2 extends profileHeap<al>; (1)

whereas allocator a2 additionally collects and out-
puts fragmentation statistics. Of course, the exam-
ples in Reference 14 are much more elaborate, but I
hope that the idea is clear. The reported benefits of
this design are that sophisticated allocator imple-
mentations can be developed quickly and cheaply,
and performance is comparable to hand-coded
allocators. These benefits are typical of this genre of
work.

Before we proceed, let us reflect on a tenet of OO
design. The methods and internal representation of
state for an object are designed with each other in
mind—they are not created in isolation. Prior to OO,
languages like C allowed programmers to separately
define structs and functions over instances of
structs. The idea of a class as a conceptual module
that integrates both a struct and its functions was
missing. By analogy, if mixins are added to Java,
they are likely to have free-standing definitions in a
program, much like generics have now in Java 1.5;
therefore classes and mixins (functions on classes)
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are defined separately; there is no module concept
that integrates base classes and their mixins. Yet our
experience tells us that the designs of base classes
and mixins are indeed intimately connected; their
connections are no different than members and
methods of an everyday OO class; that is, base
classes and mixins must agree on the names and
semantics of methods, the representation of state,
and so forth. The level of modularity of mixins
needs to be raised from being free-standing func-
tions on classes to methods of a class of classes (or
more generally, a class of programs).

In other words, by adding mixins as stand-alone
entities like class and generic declarations, OO
language researchers are introducing structured-
programming language concepts for the meta-
application level in OO programming languages.
Rather than repeating the structured versus OO
arguments of the 1980s-90s, we should use OO
concepts at the meta-application level immediately.

We can understand the Heap Layers mixin library as
a two-level OO design. The bottom or application
level defines the class structure of memory alloca-
tion programs. Superimposed on this design is a
higher or meta-application level that consists of a
single OO class whose instances are different
memory allocator programs. Basic allocators
(mallocHeap, mmapHeap) are produced by construc-
tors, and mixins are methods (i.e., functions) that
add features to these programs.15 Thus, the Heap
Layers mixin library has the following meta-appli-
cation-level class structure:

class MemAlloc {
private MemAlloc_Representation state;
static MemAlloc mallocHeap(){...} //constructors
static MemAlToc mmapHeap() {...}

// optional features
MemAlloc adaptHeap() {...}
MemAlloc chunkHeap() {...}

} )

That is, all instances of the MemAl1oc product-line
share a common internal representation and are
expressions (i.e., metaprograms), such as:

MemAlloc al,a2;
al =MemAlloc.mmapHeap().debugHeap();
a2=al.profileHeap(); (3)
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Note that MemA11oc program representations could
be abstract syntax trees, and MemA11loc methods
would manipulate these trees. To relate the class
definition a2 of (1) with the metaprogram variable
a2 of (3), we might need to invoke a toSource()
method on the a2 variable to produce its source-
code representation. The use of toSource() is
implied in our discussions. Although there are
earlier examples of two-level designs,m_18 the Heap
Layers mixin library is ideal for our discussion
because a memory allocation program is just a
single class, and mixins are perfect for extending
programs that can be defined by a single class. But
memory-allocation programs lack scale in two
important ways. First, most programs are rarely
simple enough to be single classes, and the changes
made by most program extensions are rarely limited
to a single class. How can mixins scale to
encapsulate changes to larger programs? Second,
most meta-application-level models of product lines
are also not defined by a single class; they, too, can
have multiple classes. Both questions are addressed
in the next section.

Mixin layers: Functions that map programs
Smaragdakis showed how mixins could scale to
modularize extensions of multiclass programs.lg’20
Instead of storing the classes of a program in a
package, program classes could be listed as inner
classes of a single class. Suppose myProgram is
defined by the set of classes [A...Z]. We could
encode myProgram as a single class with A...7 as
inner classes:

class myProgram {
class A{... }

classZ{...}

A mixin myMixin could then be defined to modu-
larize changes to myProgram, such as adding new
classes (e.g., class AA) and extending previously
defined classes (e.g., class 7):

class myMixin<class base> extends base {

class AA{ ...}
class Z extends base.Z { ...}

myMixin is a mixin layer—it is a mixin that
modularizes a program extension, that is, the
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addition of classes and extensions to existing
classes. Semantically, a mixin layer defines a
stereotypical extension that can be applied to a set of
programs. In a product-line context, a mixin layer
implements a feature. A program of a product line
has a particular set of features; it is synthesized to a
base program by applying a sequence of mixin
layers.

This approach to the design and synthesis of
programs is called GenVoca.”®?' A GenVoca model M
of a product line has one or more base programs
bl...bm (called constants) and one or more mixin
layers (called functions) f1...fm. A design for a
program p in the product line of M is an expression,
such as p=f2(f4(b1)). When GenVoca models are
viewed from a meta-application-level perspective,
most are single classes. The constants correspond to
constructors, and functions correspond to methods.
The meta-application-level class structure of a
typical GenVoca model M is:

class M{
private_M Representation state;
staticMbl(){...}// constructor #1
staticMb2(){...}// constructor #2

MFf1(){...} // method or feature #1
M f2(){...} // method or feature #2

That is, all instances of M’s product line share a
common internal representation and are expressions
(i.e., metaprograms), such as:

Mp=M.b1().f4().f2();

The Heap Layers mixin library is an example of a
GenVoca design.

Genesis was a product line of relational database
systems; it was also the first example of a GenVoca
design.m’22 Genesis could synthesize a product line
of file management systems, relational storage
systems, and relational database systems through
feature (mixin-layer) composition. Unlike memory
allocation programs, each Genesis system contained
many different classes, and its meta-application
model also had multiple classes. Genesis is only
sketched in the following paragraphs; the actual
design is more complicated.
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A file management system (FMS) is a program that
performs low-level activities to store and retrieve
tuples of individual relations. Tuples are stored in
primitive file structures, such as BTree, Hash, and
Heaps. Alternatively, inverted files could be used,
where tuples are stored in one structure (such as
Heap) and index records are stored in another (such
as Hash). Optionally, tuples could be compressed.
An FMS has a single meta-application-level class
structure:

class FMS {
private FMS_Representation state;
static FMS BTree () {...} // constructors
static FMS Hash () {...}
static FMS Heap () {...}

{...} // optional features
FMS indexed( FMS indexfile )
FMS compress () {...}

Particular FMS designs are instances of class FMS.
For example, fs1 defines an FMS that stores
compressed tuples on a heap, and fs? is an inverted
file where tuples are stored on a heap and index
records are stored in Btree structures:

FMS fsl. fs2;
fsl=FMS.Heap().compress();
fs2 =FMS.Heap().indexed( FMS.BTree() );

A relational storage system (RSS) differs from an
FMS in that it supports relational join operations in
addition to relation retrievals. The features of RSS
include different join algorithms (mergejoin,
hashjoin, nestedloops) and an adapter to translate
RSS interface calls into FMS calls (adaptfms). An
RSS has a meta-application-level class structure:

class RSS
private RSS_Representation state;
static RSSadaptfms ( FMS f ) {...} // constructor

// optional features
RSS mergejoin() {...}
RSS hashjoin() {...}
RSS nestedloops() {...}

As an example, r1 is a relational storage system that
uses nested loops and hash joins to process rela-
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tional joins, and stores relations in an fs1 file
system:

RSS r1 =RSS.adaptfms( fsl )
.nestedloops().hashjoin();

Finally, a relational database system (RDS) layers a
query language on top of an RSS. Genesis provides
two different languages, Quel and SQL (Structured
Query Language). An RDS has the meta-application-
level class structure:

class RDS {
private RDS_Representation state;
static RDS Quel ( RSSr ) {...} // constructors
static RDS SQL ( RSSr) {...}

Relational system s1 presents an SQL front end to
relational storage system r1:

RDS s1=RDS.SQL ( rl);

Using the FMS, RSS, and RDS classes, architects could
synthesize different file management systems, rela-
tional storage systems, and database systems.
Although three meta-application-level classes have
been sketched, Genesis has many more.

There is nothing magical about mixin-based tech-
nologies. They reduce to a simple development
concept: when a feature is added to a program, new
packages, classes, data members, and methods can
be added, and existing methods can be extended.

I no longer use the traditional programming
language concept of a mixin as it has, among other
problems, complications with fix-points, the inabil-
ity to add new constructors, and the inability to
rename variables. I have since replaced it with a
mixin-like technology that provides more general
capabilities.4 Other technologies, such as aspects,
could be used to achieve these and even greater
effects.

DESIGNS WITH THREE OR MORE LEVELS

Both Heap Layers and Genesis are examples of a two-
level design. Three and higher-level designs are
indeed possible and are modeled no differently than
the application and meta-application levels; that is,
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we leverage OO’s contribution to scale invariance to
describe more abstract levels of program description.

Suppose we want to synthesize the MemAlTloc class
of Heap Layers, to customize it with a particular set
of constructors and methods. Conceptually, this is
the process of creating a product line of product lines
(PLoPL). A PLoPL is modeled by a class on a third or
meta-meta-application level.

The idea is simple: create a class MAPL (memory
allocation product line). We have a constructor
(base) that generates a MemAl1loc class that has only
a program-representation data member. We then
define methods (i.e., mixins) of this class to add
specific constructors and methods to the target
MemAlloc class:

class MAPL {
primitive MAPL_Representation state;
static MAPL base(); // constructor

// features that add constructors
// and methods to a MAPL object
MAPL addConstructorMallocHeap();
MAPL addConstructorMmapHeap();
MAPL addMethodAdaptHeap();

MAPL addMethodChunkHeap();

Thus, the MemAlTloc class (2) that we considered
earlier would be synthesized by a meta-meta-
application-level expression:

MAPL MemAlloc =
MAPL.base().addConstructorMallocHeap()
.addConstructorMmapHeap()
.addMethodAdaptHeap()
.addMethodChunkHeap(). ...;

For details on how such models are implemented,
see Reference 23. Interestingly, PLoPLs arise natu-
rally in another form, called staged configuration
models, where a product line is progressively
simplified in different stages for different sets of
customers.’* In principle, levels higher than three
may exist; they, too, would be described as other
levels. In summary, multilevel models allow us to
define a hierarchy of product lines. An individual
application is defined at the bottom level. A product
line of applications is defined at the meta-applica-
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A // tokens B // tokens c // tokens
INT {0-9}*; ID {a-Z}{a-20-9}%*; INT {0-9}*;
ID {a-Z}{a-20-9}*;
// rules // rules
1ist : value // rules
Tist “,” value value : super list : value
; | ID | Tist *,” value
value : INT ; value : INT
ID
Figure 3

Grammars and an extension

tion level. A PLoPL is defined at the meta-meta-
application level, and so on. So far, we have
considered the synthesis of programs that have only
a single representation (e.g., source code). We
remove this restriction in the next section.

AHEAD

Consider a parser. It is specified by at least two
different program representations at the application
level. There is a grammar representation that
defines the grammar of the language and a source-
code representation that defines the semantic
actions that are to be performed when a rule of the
grammar is matched. Although both representations
can reference each other, neither is fully derivable
from the other. (In the language of MDE, our
application is specified by two different models,
each written in its own DSL.)

When a feature is added to a language, its parser
must be updated. This means that the grammar
must be extended (with new tokens and rules that
define the language extension), and the source code
must be extended (with the semantic actions for
these new rules). From previous sections, we know
how to extend the source-code representation of a
program—use a mixin-like technology to add new
members and new methods to existing classes, add
new classes, and extend existing methods. But how
are grammars extended?

In the section “Multilevel designs,” we noted that a
class structure could be imposed on non-Java
artifacts. With a class structure, we could use mixin-
like technologies to extend these artifacts as well.
This idea is called the Principle of Uniformity—give
all artifacts (program representations) a class
structure, and extend them analogously to code.”
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Let us illustrate this with a simple grammar. Figure
3A shows the Backus Naur Form (BNF) of a list of
integers. We can impose a class structure: a
grammar is a class, tokens are data members, and
rules are methods. A grammar can be extended by
adding new tokens, new rules, and extending
existing rules.

Figure 3B shows an extension of this grammar that
generalizes a list to include identifiers. The value :
super construct means extend the righthand side of
the previously defined value production. Readers
may recognize that this extension is a mixin for a
grammar. The expected result of composing the
base grammar (Figure 3A) with its mixin extension
(Figure 3B) is shown in Figure 3C.

The big picture is simple. Programs have many
different representations. When a feature is added to
a program, any or all of its representations may
change. For example, the source code of a program
changes (to implement that feature), its perfor-
mance model changes (to profile that feature), its
documentation changes (to document that feature),
and so on.

The relationships between program representations
have a simple OO description. Suppose a program
has two representations: C (for code) and G (for
grammar). A GenVoca product line of such pro-
grams is described by one or more base programs
b1, b2, ... and one or more optional features f1,
f2, ... . We can define a meta-application class for
each representation:

class C{

private C_Representation state;
static Cbl_C() {...}; // constructors
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static Cb2_C() {...};

Cf1_CO){...}; // optional features
Cf2_CO {...};

}

class G {
private G_Representation state;
static Gbl_G() {...}; // constructors
static Gb2_G() {...};
Gfl1_G() {...}; // optional features
Gf2_GO) {...};

}

A product line of programs that have consistent G
and C representations is a class whose objects
maintain a G and C state, and when a method is
invoked (i.e., a feature is added), both representa-
tions are updated. This is expressed by another
meta-application-level class P:

class P {

private G g;

private Cc;

static Pbl() { // constructors
Pp=newP();
p.g=G.bl_G();
p.c=C.bl_C();
returnp;

}

Pfl() { //optional features
Pp=this.clone(); // copy
p.g=9.f1_G();
p.c=c.f1_C();
return p;

}

Note that the code of class P above is so predictable
that it could be produced automatically. Thus,
program p, which is base program b1 extended with
feature f1, is the expression (metaprogram):

Pp=P.bl ().f10);

Internally, p maintains two consistent representa-
tions: a C representation and a G representation, the
values of which are:

p.c=C.b1_C().f1_C(O);
p.g=G.bl1_G().f1_G();
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These ideas extend to an arbitrary number of
program representations and have been imple-
mented in the AHEAD Tool Suite.” See Reference 25
for an example of these ideas. Although the
emphasis of AHEAD is more on a mathematical
description of meta-level models and their compo-
sition, it is not difficult to recognize this
correspondence.

AN MDE CASE STUDY

Bold Stroke is a product line written in several
million lines of C++ that supports a family of
mission-computing avionics for a variety of military
aircraft.”® Recent work by Gray et al. used Model-
Integrated Computing (MIC) by Sztipanovits and
Karsai at Vanderbilt University,27 which is a specific
platform for MDE, to demonstrate how models
could capture the design of the Bold Stroke code
base and how simple model edits could be auto-
matically translated into substantial code-base ed-
its.”® The manner in which artifacts of a MIC design
process are related and manipulated is ad hoc,
requiring manual adaptations due to the lack of an
0O design (i.e., objects and methods) at the meta-
application level.”’ Consequently, the elegance of
MIC designs is obscured. We use Bold Stroke as a
case study, and we invite readers to compare our
explanation with Reference 28 to judge the
difference.

Briefly, Gray et al. use three different representa-
tions of Bold Stroke: the C++ code base, its
Embedded-Systems Modeling Language (ESML)
model representation,30 and an XML representation
for configuring the start-up of Bold Stroke. The XML
representation is derived directly from the ESML
model by the ConfigurationInterface model inter-
preter (i.e., transformation). Features can be added
to Bold Stroke: among them are different kinds of
locks for supporting concurrency (e.g.,
externallock, internallock, and noLock) and
logging a “black box” data recorder (1ogging). Each
feature is specified by a separate transformation. We
capture this meta-application design by a single
class:

class BoldStrokeApp {
private CppCode C; // code repr
private ESMLM; // model repr
BoldStrokeApp () {...} // constructor
XML ConfigurationInterface () {
return M.deriveXMLconfiguration();
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}
BoldStrokeApp externallock() {...} // features

BoldStrokeApp internallock() {...}
BoldStrokeApp noLock() {...}
BoldStrokeApp Togging(options) {...}

}

A BoldStrokeApp object maintains two different
representations: an ESML model and C++ code. Both
are data members. A version v of Bold Stroke that
has external locks and logging is:

BoldStrokeApp v =new BoldStrokeApp().
externallock().logging(options);

When the externallock method is invoked, both
representations change. Let UpdLM() be a method
that updates an ESML model by weaving in external-
lock declarations, and let UpdC(ESML x) be a method
that, given an ESML model x, updates the C++ code
to conform to x. The externallock method
becomes:

BoldStrokeApp externallock() {
BoldStrokeApp e=this.clone();
e.M=M.UpdLM(); // weave locks intomodel
e.C=C.UpdC(e.M); // weave Tock code
returne;

}

Gray et al. use the term 2-level weaving to describe
the weaving of the model and then the use of the
woven model to determine how to weave the code
base. This idea is easily captured above. Features
are added to Bold Stroke by sequentially invoking
feature methods. Gray et al. noticed an interesting
optimization: there is no need to incrementally
update the code representation after each model
update. Instead, model updates can be batched, and
the code representation is updated only when it is
needed. We can express this idea by adding a
getCode method to class BoldStrokeApp:

CppCode getCode() {
return C.UpdC(M); // weave code updates here

}

This allows us to simplify the definition of
externallock (and other feature methods) by
updating only the model representation:

BoldStrokeApp externallock() {
BoldStrokeApp e=this.clone();
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e.M=M.UpdLM();
return e;

This optimization does not synchronize the model
and code representations. Model changes are col-
lected, and modifications to the code are made only
when the getCode method is invoked. This is a
common OO coding idiom. Of course, considerable
work is needed to implement these methods; but the
simplicity of design is now evident.

Reference 28 is a good example that demonstrates a
point of this paper: not only is OO good for defining
the structure of models, it is also good for defining
the methods (transformations) on these models as
well. By modeling transformations as methods, the
simplicity and elegance of MDE designs are
revealed. Not doing so makes it difficult for authors
to convey their ideas and for readers to understand
them.

OTHER MDE CONCEPTS

There are many concepts and proposals in MDE that
can be expressed in an OO manner. To illustrate one
particular example, we note that the MDE literature
is steeped in discussions of models, metamodels,
and meta-metamodels.’"**** Briefly, a model is a
representation of a program and is an instance of a
metamodel (that is, a model is an object and the
metamodel is its class). Recursively, a metamodel is
an instance of a meta-metamodel. Generally, recur-
sion stops at the meta-metamodel level, as it is an
instance of itself.*

Metamodels are paramount to MDE; they are the
definitions of DSLs. The ability to create custom
languages for particular domains and the ability to
write models (specifications) in these languages is
the key to MDE’s success, and naturally is a primary

focus of tool development in MDE platforms.l’m’27

Given the above, what is the relationship between
our meta-application level and the more established
MDE concept of metamodels? Here is a simple way
to understand their connection. Many people find
the concept of models, metamodels, and meta-
metamodels intimidating, but these really are fancy
names for familiar and well-understood concepts in
databases. A database schema is a metamodel; an
instance of a schema is a database. Every DBMS
(database management system) internally has a
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cast-in-concrete meta-metamodel, called the infor-
mation schema, whose instances are database
schemas.”>° If readers think in terms of databases,
the metaconcepts of MDE are easy to appreciate.

To leverage this analogy, think of a database as an
object, where different database instances of the
same schema are different objects. The state of a
database object is defined by its tuples. Transactions
are methods on database objects that update its state
or that create new databases.

Now, revise the preceding paragraph by replacing
“database” with “model,” “schema” with “meta-
model,” and “transactions” with “transformations.”
Paraphrasing:

A model is an object, where different model
instances of the same metamodel are different
objects. The state of a model object is defined by its
tuples. Transformations are methods on model
objects that update its state or that create new
models.

Doing so, an analogy to describe fundamental ideas
in MDE emerges. Figure 4 lists the correspondence of
database, MDE, and OO terminologies, where each
row of terms are different names for the same concept
(i.e., a model is an object; an object is a database).

These are the essential ideas behind the pioneering
work in MIC.*” A MIC model is literally stored as a
database of tuples, and the schema of the database is
its metamodel.”” MIC now uses a graph trans-
formation technology to define methods (i.e., tools)
that map models.”’ Previously, low-level C++ code
was used to write such tools.

The connection to our meta-application level is that
MDE platforms enable an architect to define
individual classes and their object instances at the
meta-application level. Object state is defined by a
model, the schema of a model is a metamodel, and
object methods are transformations.

MDE platforms aim to replace traditional program-
ming languages with DSLs. An object technology is
needed to relate these classes, their instances, and
their methods. This is our meta-application level.
Product lines fit naturally into an OO meta-applica-
tion level as additional methods (that correspond to
features) in meta-application-level classes.
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Databases MDE 00

information-schema  meta-meta-model meta-class

schema meta-model class

database model object

transaction transformation method
Figure 4

Terminology correspondences

Sadly, what makes all this confusing and compli-
cated is that different names have been given by
different communities to the same concept. By using
a single name per concept, the ideas become clearer.

CONCLUSION

The history of software development is marked by a
series of advances that progressively raise the level
of abstraction in which programs are specified; as
the level increases, so does the degree to which
software development can be automated.

MDE is an emerging technology that has the
potential to go far beyond today’s OO languages and
program-development technologies. In this paper it
was argued that MDE should be a next-generation
00 technology that focuses on programming at the
meta-application level (and higher levels), where
objects are programs and methods are operations
that map programs. At this level, program design
and development is a computation, historically
called metaprogramming. The synergistic value of
the convergence of these ideas is apparent in
product lines, where features are operations that
transform programs (i.e., methods of program
objects), and program development is function
(method) alpplication.38

Case studies were presented which demonstrated

that a multilevel design paradigm for product lines
in MDE is feasible, that it scales to the synthesis of
large applications, and that it helps clarify concepts
of MDE. I hope these ideas take us a step closer to
realizing a broader vision of software development.
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