S. Abrams
B. Bloom
P. Keyser
D. Kimelman
E. Nelson
W. Neuberger

Architectural thinking and
modeling with the Architects’
Workbench

Collecting and organizing all of the architectural information for a system is a challenge
faced by information technology (IT) architects. Transforming that information into
models of a viable architecture and keeping associated work products consistent and
up to date is an even greater challenge. Despite this, model-centric architectural
methods are not as widely adopted or as closely followed as they could be, partly due
to a lack of appropriate tools. The Architects’ Workbench (AWB) is a prototype tool that
addresses these problems and supports the creative process of architectural thinking

T. Roth

I. Simmonds

S. Tang

J. Vlissides
environments.

INTRODUCTION

IT architects are faced with a formidable information
mangement challenge as they design systems to
address customer needs. For example, in designing a
new Web application that will serve as the single
point from which a customer of a large financial
institution can access all of his or her financial
information, it is often necessary to integrate
hundreds of legacy systems dealing with various
financial instruments, dozens of databases storing
account information, and myriad rules and con-
straints. The challenge for the IT architect is to
organize and analyze initial descriptions of cus-
tomer needs as well as the existing IT environment,
and to design an appropriate solution. This activity
often involves progressively formalizing informa-

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

and modeling. This paper presents key AWB innovations and discusses how their
design was motivated by insights into architectural work and feedback from IT
architects. We describe the design of AWB itself as a metamodel-driven and method-
based tool, and we report on experience from the use of AWB in production

tion and building up architectural models. The
resulting models and design rationale must then be
incorporated into a number of overlapping work
product documents for a variety of stakeholders,
and these documents must be kept up to date and
consistent as the system evolves.

IT architecture
To better understand this challenge, we consider IT
architecture in greater detail. Many definitions of IT

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

ABRAMS ET AL.

481

architecture exist (see, for example, Reference 1),
but most agree that an architecture describes the
structures of an IT system—both hardware and
software—and their relationships to one another. It
defines components that need to be bought, built, or
reused, focusing on their externally visible proper-
ties. It defines the operational infrastructure (e.g.,
servers, network connections, etc.) on which these
components will be deployed, and it ensures that the
system will meet its functional and nonfunctional
requirements (to be defined in the following). IT
architecture also provides a high-level breakdown of
the necessary development work and documents
key decisions and their underlying rationale.

There are several methods and languages employed
for describing architectures, such as IEEE 1471,” the
Rational Unified Process* (RUP*) “4+1” view of
architecture,” and the Unified Modeling Language* *
(UML**4). In the IBM Global Services organization
(IGS), an IT architecture is documented in a number
of work products, often using the Architectural
Description Standard (ADSS) for terminology and
notation, all of which is defined by Global Services
Method (GS Method). Regardless of the methods
followed, architectures are typically implicitly
connected sets of models, usually documented with
combinations of diagramming, spreadsheet, and
word-processing tools.

There are a number of GS Method work products
that are often among the work products that an IT
architect is responsible for producing. The system
context work product shows the IT system solution
as a black box that exchanges information with
specified external actors—human users and other IT
systems. This documents the scope of the solution.
The architecture overview diagram illustrates key
elements of a solution, such as actors, locations,
components, servers, network connections, and
subsystems. This work product draws elements
from across the breadth of an architecture, for
purposes of communicating key concepts to various
external stakeholders and sponsors. The use case
model elaborates on the information exchange
between the IT system solution and the external
actors. This work product describes functional
requirements of the system, and is often annotated
with nonfunctional requirements (i.e., requirements
that pertain to system qualities or constraints, such
as performance, availability, security, and standards
compliance).

482 ABRAMS ET AL

The nonfunctional requirement (NFR) work product
collates nonfunctional requirements from through-
out the architecture. The component model defines
software components and, their responsibilities,
interfaces, and static relationships such as depen-
dencies, as well as the dynamics of the collabora-
tions by which components interact to support use
case scenarios. This work product documents the
functional aspect of the solution. The operational
model documents the infrastructure of the solution
and the deployment of the application components
onto that infrastructure at three levels: conceptual,
specified, and physical. Finally, the architectural
decision work product documents the architecturally
significant decisions that were made across all
aspects of the architecture, along with alternatives
that were considered and the rationale for the
choices that were made. This work product is
critical for understanding a solution, for preserving
its integrity as it undergoes maintenance and
evolution, and for reusing parts of this solution in
other designs.

Although GS Method defines many other work
products, these are some of the key architectural
ones. These work products illustrate the intercon-
nected nature of an architecture, as there are many
relationships among the elements described in each
of these work products. In an ideal world, these
work products consistently document different
aspects of a single architecture and combine to
produce a complete, coherent, and unambiguous
picture of the system under design.

The balancing act

In the field, architects spend much of their time
scavenging mounds of unstructured information for
useful tidbits—in stark contrast with neat descrip-
tions of well-structured work products. A path from
the copious incomplete, inconsistent, and informal
material gathered from meetings and existing docu-
ments to the well-structured specifications required
for solution development is unclear.

Architects often start by gathering vision statements,
sketches of requirements and system structures,
descriptions of existing systems with which to
integrate, and other informal documents. They add
structure and rigor, sketching and fleshing out ideas
as their understanding deepens. When they do
formalize, it is often only to the extent that it helps
clarify important ideas for themselves or their
colleagues. Architects are constantly balancing

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

opposing forces, thinking fluidly but within well-
defined structures.

Architects need to grasp myriad details without
losing sight of the larger picture. They need to
respond rapidly to high-level changes and under-
stand their impact throughout the architecture. In
addition, they must interact with a steadily increas-
ing set of stakeholders as disciplines such as
enterprise architecture, service-oriented architecture
and asset-based consulting business architecture
mature. They must balance the specific needs of
their solution against enterprise-level standards,
including technical standards ensuring coexistence
and interoperability.

Time-to-market pressures can cause architects to
trade precision for expediency. They try to rapidly
capture their thoughts (even if incomplete and ill-
formed) and then clarify them and remove incon-
sistencies as time permits. They juggle ideas, sketch
out approaches, weigh alternatives, articulate a
vision to various stakeholders, and produce the
work products, usually as deadlines loom. Among
other things, the transformation of the unstructured
material into a coherent set of work products is a
huge information management challenge. Through-
out the architectural process they analyze, consider
issues and trade-offs, raise and address concerns,
and make decisions. For all of this they rely upon
their training, drawing on their experience, meth-
ods, interactions with colleagues, documented best
practices, and whatever tools are available.

The tools of the trade

Despite a number of special-purpose modeling tools
(such as Rational* Software Architect or the Tele-
logic System Architect**), IT architects often use the
same tools to create an architecture that high-school
students use to complete a homework assignment,
namely, standard office-presentation, spreadsheet,
and word-processing tools. These tools are some-
times tailored to produce one or more of the output
work products discussed earlier, but often without
regard for the thought process that goes into
composing them or the interrelationships among the
artifacts. For example, architectural decisions are
typically documented with a tool such as Microsoft
Word, which has no explicit representation of the
domain of architecture, while operational models
are often documented with Microsoft Visio**. Not
only do these tools lack semantics, but they are not

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

oriented toward easily interacting with and consis-
tently maintaining a large network of related and
only partially complete models.

Even when a special-purpose modeling tool is used
for one aspect of an architecture, common office
tools are still used for the other parts of the
architecture, and similar deficiencies exist. As an
example, when component models are created with
Rational Software Architect, interrelationships with
operational models made with Visio or architectural
decisions described in Word documents are not
possible.

Without a tool that understands the many facets of
architecture and their interrelationships, developing
an architecture is tedious and prone to lapses that
ultimately result in failures of the designed system to
meet its requirements. Maintaining the architecture
and continuing its evolution is even more daunting.
In practice, many architectural documents quickly
go out of date as the system evolves, creating
difficulties for those charged with maintaining or
enhancing the system.

Furthermore, while developing an architecture is a
journey from an unclear understanding of unstruc-
tured information to a well-structured specification,
the tools typically employed do not support this
transition. Some tools are well-suited for unstruc-
tured information—word processing tools, seman-
tics-free drawing programs, or white boards, for
example. Other tools are well-suited for more
structured information—UML diagramming tools or
formal requirements management tools, for exam-
ple. However, none of these support the trans-
formation from unstructured to structured
information that is inherent in the task of developing
an architecture.

A tool facilitating the practice of the art of IT
architecture

Our goal was to design a tool that supports the
realities of practice, while supporting the formalities
of a given architectural method. To that end, we
formed a team of researchers and IT architects and
analyzed the working methods and thought pro-
cesses of the architects. Based on this analysis, we
incrementally built a tool that attempts to match not
only the formalisms of the practitioners’ methods,
but also the realities of their creative process and
working styles. We wanted a tool that would let

ABRAMS ET AL.

483

architects balance formalism and freedom, while
helping them transform unstructured information
into sufficiently formal work products. The initial
result of this work is the Architects” Workbench
(AWB).

After a brief overview of AWB from a user’s
perspective, we discuss in more detail some of its
key features and its underlying design rationale.
Next, we discuss the overall design and architecture
of AWB, with particular emphasis on those design
decisions that facilitated key developments. We then
report on users’ experience with AWB in field trials,
where IT architects have found AWB to be highly
effective in “live” use in major customer engage-
ments. Finally, we conclude with a discussion of
related efforts and future directions for AWB.

Without loss of generality, examples and method-
specific discussions in the remainder of the paper
will be based on GS Method and ADS. Nonetheless,
these discussions apply equally to other methods
and metamodels. In fact, as will be described later in
the paper, the metamodel- and method-related parts
of AWB have been factored out as “pluggable
components,” and AWB can be (and has been) used
as a workbench based on any of a number of
different methods and metamodels.

A BRIEF TOUR OF AWB

AWB is an Eclipse**ﬁ—based tool, providing several
views and editors tailored to the “balancing act”
described previously. Figure 1 shows the AWB user
interface (UI) configured for system context work—
that is, sketching the boundaries of the system and
its relationship to associated systems and people. In
this example, the Music Web System is being
developed. The project view is on the left side of the
UL The Outline pane of the project view consists of a
textual hierarchy that shows the model elements
important for system context work, starting with the
Music Web System. The Reminders pane shows
model elements requiring attention. For example,
under “Actors not involved in Exchanges,” we can
see that actors named “Fans,” “Record execs,” and
“Artists” have been identified but have not yet been
placed in the system context as being involved in
exchanges.

The middle section of the AWB UI holds editors for
specific model elements. The top, rich-text editor
shows “BHR meeting notes,” containing the notes

484 ABRAMS ET AL

taken by the AWB user during a meeting with the

(hypothetical) client BHR. The underlined phrases

in the note are hyperlinks to model elements. The

lower editor shows the Music Web System Context
diagram in progress.

On the right side of the Ul is the palette view. Its
Prototypes pane shows a list of the kinds of elements
that are likely to be needed during system context
work. Users can instantiate these elements, often
automatically linking them to selected elements in
the model. The System Context pane of the palette
view shows existing model fragments that the user
may want to incorporate into the system context,
such as exchanges (general categories of informa-
tion flowing between the Music Web System and its
users). Similarly, the Nonfunctional Requirements
pane shows other model elements that are useful to
have on hand.

AWB employs wizards to simplify complex tasks.
For example, there is a Relator wizard, which helps
to determine the kind of relationship to use when
connecting model elements. There is also a Refactor
wizard that facilitates splitting and merging model
elements, and transforming model elements from
one type to another.

With AWB, a practitioner typically begins with
textual information; that is, some combination of
preexisting documents and notes captured from
meetings with the stakeholders. The user either
types or pastes these into AWB’s rich-text editors.
The user can study these notes, identifying impor-
tant bits of information. With the markup and model
technique, he or she can create model elements
directly from the text. In response, AWB creates
bidirectional hyperlinks to assist in navigation
between the notes and the model elements.

When the time comes for more detailed modeling of
some aspect of the system, the user chooses an
appropriate activity from the viewpoint menu. (A
viewpoint is a configurable mode for displaying the
panes of AWB.) This directs AWB to present the
model in its current state in a form well-suited to the
chosen activity. The hierarchical project view alters
itself to show the relevant model elements and
relationships for this activity, and the palette view
presents relevant prototypical model elements,
assets, and peripherally interesting portions of the
model to the user. The Reminders pane in the lower

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

1% [| & |-

es=

Fivopect 11 Navigater| 1) 4 o) |) = = 01| £olbe meetng notes 52 =] Synvorize | Ever oo | E=0)
Lot + System Context. a
BHR meeting not =
Qutine -0 a g notes el techtectire Crerveew Dusram -
1 (B) Music Web System otes -8 § Bagic Diagram
\ Component
:I Dats Insiance
« Allow arfists to post newsinformation about tours, as well as downloadable songs - teasers from Data Type:
albums, indrnidually sold songs, or songs that they choose 1o release, Important Artists must have ﬁ-!}fm
creative control over their sites, subject to the business constraints imposed by BHR - IT System
» Record execs and mgmt can get access to traffic data and stats to track trends in the fan base, see j Enteracton
wha is gefting more hits / downloads, etc. Can also f | ind Qualtative 7.
« Eans get rich interaction with their favorite bands. They can create a partal including thesr favorite Guanttabve WFR
bands, artists, songs, etc. Effectively, they are satting up thier own wirtual record label. They will be 7 e tile
able to order physical CDs as well as download songs. They will need to log in for access to & f"“":x::““"“
cusiomization features, but may access other features anonymousty. T“':‘mm
Text o
Typical artist scenario; U:C«ue =
Log onto web site.
e B Post announcement about new four dates i":w _ =
System Conbext Overview Dlngrans = Posting triggers a “todo™ for the marketing team i
5B b Web System Context Log ot '_:g“‘“’ i
1 Locations
Markating team scenario;
A n Marketing preson receives notification about new tour dates for indy band
5 G4 Target IT Systems wath o Excharges =""|| checks download, popularity, and revenue stats for the band
Music Web Sysiem ||| decides on pessible marketing campaign to support the tour, which includes crossposts to "related” bands
& % Outof scope Exchanges Logs out
-y post news informaton about tours, I ;1
e s e ot il e T S i a4 5551
1 il track trends in the fan base: T T =
23 Actors netivvolved in Exchanges
-4, B Music Web System Context [System Context Diagras]
Dingram = B8 || Honfunciionsl Requinements: - B
55 4 settng up ther own vinutal record label Hhusic Weh Syvtem
ik Tack revenue ffrancial info
-}k track trencls in the fan base:
= & Exchanges with no s
- post neses informasion about tours,
Bk Bettng up thier ov virutal necord label
-4 ok revenue frandel info
-y trinck werady in the fan base
EHE Actors with o NFRs.
1. Big Fulfilment System [
-1 g Market Inteligence
-1, Big Royalty Systes
-,;;p“ |} o Cantext [Exia Annbues | [* Deprecated | Debug | Anchers and Anchored Hodes 50
| Editing BHR Project’: BHR meeting notes.
Figure 1
AWB configured for system context, showing reminders

left corner presents omissions and recommenda-
tions that are appropriate to the chosen activity,
allowing the practitioner to focus on issues that are
relevant to the task at hand.

AWB provides many ways of viewing and interact-
ing with models. At any time, the architect can
begin to visualize relationships among elements by
using the basic diagram. As understanding of the
solution evolves, the user can refactor the model,
refining the elements involved and specifying the
relationships among them and elaborating the
details of the model in customized diagram editors
(such as those for system context, component
interactions, and operational modeling), while
maintaining connections among the model elements
and traceability back to less-structured information.
The user can move between textual, tree-based,
tabular, and graphical representations of the model
and can generate work products to check the state of
the architectural documents. The documents can

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

often be edited in WYSIWYG (“what you see is what
you get”) views, and the changes are immediately
reflected back to the underlying model. As the user
switches among the various activities needed to
complete the architecture, AWB responds with task-
appropriate guidance and presentations of the
model.

We have briefly outlined many of AWB’s capabil-
ities. In the following sections, we will discuss in
more depth some of its key features, focusing on
how they address the problems described previ-
ously.

AWB FEATURES

Several principles guided the design of many AWB
features. We wanted AWB, where possible, to
support multiple projections (or views) of a single,
integrated model, rather than a number of distinct
models that users would have to keep consistent
manually. We wanted to support the fundamental
thought processes used in the practice of IT

ABRAMS ET AL

485

architecture, in particular helping users find order in
the chaos by assisting them in organizing unstruc-
tured information. We wanted to support natural
input and output mechanisms, which means not
only generating work products, but also allowing
users to work with diagrams, trees, tables, or forms,
as appropriate. The following discussion of AWB
features is grouped around these principles.

One principle is common to all features; that
principle is to focus on the work, not the output.
Many software tools are focused on supporting
results of work, rather than the work itself. As a
simple example, typical word-processing programs
support font selection, layout, tables, and other
typographic issues, rather than helping writers think
through the development of an introduction, a
hypothesis, supporting ideas, and a conclusion.
Similarly, typical architectural modeling tools sup-
port the production of specific artifacts (such as
class, activity, or deployment diagrams, as in the
case of UML), and not the process of thinking
through the ramifications of key design decisions in
the architecture. Just as putting words on paper aids
in thinking during the writing process, documenting
architectures in diagrams assists in their design.
However, tools should better support the develop-
ment of works in progress and the evolution of ideas
from their initial unstructured states to their more
refined forms, as embodied in the final outputs.
Similar design philosophies motivated the develop-
ment of an earlier system in a different domain—
that of music composition.7 While the mechanisms
used are not the same, the philosophies and design
trade-offs discussed in Reference 7 for that work are
quite similar to those of AWB.

Finding order in the chaos

AWB features aimed at bringing order to chaotic,
unstructured inputs are detailed in the following
subsections.

Capture before modeling

Early in the development of AWB, we recognized
that capturing information is an activity in itself. It is
hard to structure information while capturing it,
especially if it is not clear how it should be
structured. Accordingly, AWB provides facilities for
capturing “raw” information. Capture is supported
by the viewpoint “Note Taking” and by facilities for
storing and pasting rich text. In this viewpoint, the
architect can create collections of free-form rich text
artifacts called Notes. Architects can use simple text

486 ABRAMS ET AL

formatting to add some organization while capturing
thoughts and ideas in a meeting. Existing documents
can also be pasted into Notes. This capability is
critical. Furthermore, most model elements also
have a rich text “raw notes” field, allowing raw
information about each element to be stored.

Markup and model

Including rich text facilities in a modeling environ-
ment is not novel, but allowing the text to serve as
input for the modeling process is. Because architects
often glean key requirements and constraints and
architectural opportunities from existing documents
and notes taken during meetings, we developed
“markup and model” capabilities, which enable an
architect to select a word, phrase, or passage within
a note and create a hyperlink from it to a newly
created element. AWB creates the new element of
the appropriate type, labels it based on the selected
text, and turns the selected text into a hyperlink to
the new element. AWB also creates a “refers to”
relationship between the note and the new element,
ensuring traceability from the new model element
back to the note from which it was created. When
the hyperlink is followed, an editor is opened on the
newly created element. Markup and model can also
be used to link a phrase in a note to an existing
model element, allowing several textual references
to a model element to exist within a single note, or
even in multiple notes. Conceptually, the markup
and model function is similar to Skuce and
Lethbridge’s CODE systemss’9 although, as de-
scribed later, AWB’s reminders and viewpoints are
activity-specific, whereas CODE’s maps and notifi-
cations are not.

Progressive markup and model through semantic
hyperlinks

The markup and model capability is available in all
rich text fields, including text in notes as well as
“raw notes” fields. When appropriate, it can create
relationships other than the generic “refers to”
relationship. We call this “semantic hyperlinking,”
and Figure 2 illustrates it.

The leftmost rectangle in the figure shows notes that
were taken by an architect in a meeting with a
customer. Even though the architects were thinking
in terms of GS Method and concepts such as use
cases, it was nevertheless effective to first capture
the discussion in meeting notes along with the
varied information about servers, locations, pro-
cesses, people to talk to, things to do, and other

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

[

[T 8 st i onn o N 5

| @ Purchase by Unregistered Customer: Customer. ..

[use Casa]

-0

| et e

Customer

| Primary

| ‘Actor
Main
Scenario

Alternatives Click b
| Varlations Click har

Related Click here b
Information
lssues No issues

to post news/information about tours, as well as downloade|
asers from albums, individually sold songs, or songs thatthe
. Important: Artists must have creative control over their sites,
Hness constraints imposed by EHR.
xecs and mgmt can get access to rafic data and stats 1o track
259, 300 who is getting more hits / downloads, etc. Can also &
#financial info
st rich interaction with their favorite bands. They can create a pol
ng their favorite bands, arists, sengs, eic. Effectively, they are se
W virutal record label. They will be able to order physical CDs a
bad songs. They will need to log in for access to customization fe
1y access other features anonymously.

F b by L d C : Customer points browser to
| Bhrmusic.com They browse around available music. They find something(s) that
| they want to buy, add them to a shopping cart? They go to checkout ... Now they
~ st supply shipping and payment details (with an option to register now)

Purchase by Unregistered Customer: Customer...

points browser to bhrmusic.com They browse around
awyiable music. They find something(s) that they want to buy, add
thel\ to a shopping cart? They go to checkout ... Now they must
shipping and payment details (with an option to register now)
~ to change

change

Conteat el Ouftornes | Actirs ared Scerares | 5t 1xtredd o) b actir | T1acaslty | Dmcmrciercors | ks ||

nge

]
| Sererpten
Purchase by Liveguteied Cisimer: Cuttsmer ponts

| BPuechane by Urregutered Cuntowrer: Cu

Purchase by Registered Customer: User browses 1o bhrmusic.com Automated
or manual login process (below) enables user's profile to be located. User now sees
a personalized website, including tems being considered purchase, in course of
fulfilment, new items matching preferences, standard menus, eic. User may browse
{same things as above) Selections from prior sessions are there. Checking out can
be a one-click process since we have shipping and payment info.

Typical arist scenario

Log ento web site..

Post announcement about new tour dates

Posting triggers a “odo” for the marketing team

Log out =]

e s i e ey Gt

Figure 2
Progressive markup and model

Tevnal descpbon i be Polded n work products -8
|50 T o et To Qusitaten PR, Quanttatvs 98] -8
| b | Desergtan

|

wontext] | o sk

issues that came up. In reviewing the notes after the
meeting, the architect noticed a large passage of text
that related to a use case. The architect selected the
relevant text, starting with “Purchase by Unregis-
tered Customer,” and created a use case model
element from it (shown in the middle rectangle).
When a large passage of text such as this is selected,
an elided substring is used for the label of the
created model element, and the entire text is copied
into the “Raw Notes” field of the new model
element. In this way, a large passage of text is
quickly inserted into a model element, without
concern for its structure. (Structuring typically takes
place later.) In this case, after looking at the new use
case, the architect cut and pasted the bulk of it into
the “Main Scenario” field of the use case, where it
would later be refined for inclusion in the use-case

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

work product. Noticing that the scenario mentioned
a kind of actor, the architect selected the word
“Customer” and created a new actor model element
(shown in the rightmost rectangle). AWB consulted
the metamodel, found that ‘Actors’ can be related to
use cases with the “Involves” relationship, and
automatically created this relationship and associ-
ated it with the hyperlink.

In this way, the initial simple pieces of model
structure can be progressively assembled by mark-
ing up and gradually adding structure to plain text.
Figure 3 shows this fragment of the model after the
architect marked up a second paragraph of the
meeting notes to create another use case and actor.
In some sense, parts of this work derive from
semantic linking and hypertext as in the Vannevar
Bush Memex'’ and Engelbart’s Augrnent.11 These

ABRAMS ET AL.

487

Use Case Involves | Actor
Purchase by —— e
Unregistered Customer
e
Refersto
Note
Meeting 10/17/2005
Refersto
T
Use Case Involves | Actor
Purchase by > User
Registered Customer

Figure 3
Model fragment

Use Case
/4 Purchase by

Unregistered Customer
Refers y

L 3

“_Involves

\
\
\
\
\

N\
Refers to

\

/ /
/Involves
- | Use Case ya

"4 Purchase by
Registered Customer

Figure 4
Model fragment after refactoring

Note Actor
Meeting 10/17/2005 Customer

works were precursors to modern Web and “wiki”

concepts. Augment was used as a knowledge

management tool by defense intelligence groups for

analysis work.

High-level sketching
AWRB users were also interested in using simple

diagrams to visualize relationships among elements,
even before determining which type of relationships
were appropriate. Basic diagrams in AWB address
this need, allowing a kind of high-level sketching

without the complications of semantics. Model

coupled with the refactoring and refinement oper-
ations that allow gradual structuring of models on
the canvas.

Refactoring

To further assist in model refinement, AWB pro-
vides refactoring wizards to merge or split elements.
In our example, the architect may realize that the
inevitably imprecise language of informal meeting
notes suggests that “Customer” and “User” are
independent actors, when in fact they refer to the
same thing. As such, AWB is asked to merge the
“Customer” and “User” elements and, with a little
help from the merge wizard, transforms this part of
the model into that shown in Figure 4. Similarly, the
architect may choose to split a model element, and
the ensuing wizard helps allocate the original
element’s relations among the resulting elements.

In addition, AWB lets users change the type of an
element. This is a significant capability, as mis-
understandings in categorizing meeting notes are
inevitable. The Change Type wizard assists the
architect in dealing with attributes and relationships
as the model element is transformed. This trans-
formation may result in errors as the ramifications
of the type change propagate throughout a model.
For example, a system may be misidentified as an
actor because the system’s acronym sounded like a
person’s name. When this is realized, much
information about this system may have already
been captured. The change type refactoring allows
the architect to focus on the ramifications of the
misunderstanding while keeping the bulk of the
captured information intact. This is an important
feature, which preserves the flow of architectural
work.

One model, multiple viewpoints

As discussed, AWB encourages opportunistic iden-
tification of many different kinds of elements,
facilitating architects” workflow. To avoid consis-
tency problems, AWB keeps all of these elements in
one model. To avoid information overload, subsets
of that model are presented when appropriate, using
viewpoints to support specific activities. When
alternative views of the model are required, AWB

elements can be placed on the drawing canvas, and
generic relationships between them can be estab-
lished, selectively hidden, or displayed individually
or by relationship type. Basic diagrams have been
used to produce architecture overview diagrams,
but they are also useful thinking tools, when

generates them.

Generating results from a single model
One benefit of the single-model approach is that
each element referred to in the architecture is

488 ABRAMS ET AL IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

represented only once. Although different facets of
an element may appear in different contexts or work
products, this does not require multiple instances of
that element. As an example, an actor can initiate a
use case, be located in a given location, and have
associated nonfunctional requirements without re-
quiring multiple actors in the model for each of
these aspects. Each of the work products referencing
that actor extracts appropriate information from the
model. With many of the architectural tools typi-
cally employed, this is not simple to implement.

One example of this is the automatic filtering of the
operational modeling diagrams. In many cases,
architects model a system of systems—a set of
applications deployed using a common infrastruc-
ture and sharing some services. It is often necessary
to separately visualize the operational model,
focusing only on those nodes that are relevant for a
particular application. Our operational diagrams can
automatically filter themselves based on a number
of criteria (which system is being focused on, which
physical environment is being modeled, etc.),
saving the user from having to explicitly maintain a
set of diagrams. From one model, a family of
diagrams can be generated by specifying different
filtering parameters.

Template-driven work products

In response to complaints from architects that prior
tools led them to focus on presentation rather than
content, we decided to reverse that in AWB. Thus,
AWB deliberately provided the modeling facilities
outlined earlier together with a document generator
based on Extensible Markup Language (XML) and
Hypertext Markup Language (HTML). This docu-
ment generator creates work products—documents
that combine boilerplate text, diagrams, and textual
descriptions of the model elements. In this way,
users focus on the model, and AWB generates the
documents.

Because the precise structure, layout, and style of
work products may vary, AWB’s document gener-
ation engine is driven by user-defined templates. By
creating a new template or by modifying a pre-
defined sample template, architects can produce a
custom system context, operational model, compo-
nent model, or other work product that meets their
customer’s needs and documentation standards.
Within a template, as described below, instructions
for gathering text and diagrams from the model

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

(using the AWB query language Quetzal, described
later) are combined with the HTML constructs
needed to format query results into paragraphs,
sections, and tables of a document, respecting
defined style constraints. For example, a fragment of
an operational-model work product may include all
of the conceptual nodes within a particular location
and create an HTML level-3 section labeled with the
value of the node’s name attribute, followed by the
node’s rich text description and tables of its deploy-
ment units and its connections to other nodes.

For this scheme to be viable, AWB includes textual
information in its models. By combining textual and
semantic information in one model, maintaining the
set of related architectural documents is greatly
simplified, even as the model evolves. Users simply
regenerate the documents as needed.

Editable work products

Unfortunately, the generated documents can look
quite different from most of the views and editors
that AWB presents for interacting with the model. At
times, this was inconvenient and even confusing for
practitioners when, for example, they tried to find
the source in the model for a text description of the
work product. Furthermore, for many practitioners
and for some kinds of modeling, forms, templates,
and tables are very natural input mechanisms. We
therefore began to explore what it would mean to
allow the generated work products to be used as
input devices as well as output artifacts.

To address this, we adopted a “modeling by forms”
approach. Using this approach, with a little extra
work a template designer can create a template that
generates a document in which practically all
model-derived parts are editable when viewed in an
embedded browser-based editor. Precisely the same
engine is used to generate content either for a
printable work product or for this document-centric
editing. The template includes markups that are
instructions to the editor to make certain fields
editable and includes enough embedded informa-
tion to allow it to convert the document changes into
model changes. By breaking down large document
templates into parts that cover particular model
elements (such as the section of an operational-
model work product that pertains to a specific
location), AWB can use a series of WYSIWYG
editors whose layout and contents match sections of
the documents that AWB generates and which are
under the control of architects. For example,

ABRAMS ET AL.

489

=-E% Target IT Systems with ngxchanges
] @ Music Web System
D Q_, Out of scope Exchanges
Bl post ne Ns[nformation about Wess,

Reminders ol [=]

[- Q', Ex anges involving too few Actors
(-9 post news/information about tours
] a}-g setting up their own virtual record label
-9 track revenue/finandal info
] [#-3= track trends in the fan base
I— (2% Exchanges with no NFRs
3 #= post news finformation about tours
(-9 setting up their own virtual record label
(- track revenue/finandal info
| [#-§= track trends in the fan base
-2 Actors with no NFRs
&g, Big Fulfilment System
[#-"§. Big Market Intelligence
[-¥j. Big Royalty System
[#-ts Fans ﬂ

|| Editing 'BHR Project’: BHR meeting notes

Figure 5
Resolving reminders in AWB

architects who are more comfortable entering the
details of a use case in a form-based text editor can
do so, while avoiding any “round-tripping” prob-
lems that can arise when going between external
documents and AWB models.

Activity-centric modeling

The behavior of AWB is responsive to the user’s
current activity through the viewpoint mechanism.
The following subsections detail this mechanism
and its interaction with the reminders feature.

Viewpoints: Focusing on one activity

A user tells AWB the activity he or she is engaged in
by selecting a viewpoint from the project view. The
choice of a viewpoint determines several aspects of
AWRB’s behavior. First, it defines the contents of the
project view, presenting a relevant subset of the
model in a hierarchical form. For example, the

490 ABRAMS ET AL

system context viewpoint lists one or more systems,
together with the exchanges and actors that repre-
sent, at the highest level, each system’s interactions
with its environment, as well as model elements
representing system context diagrams. Second, the
viewpoint determines the contents of the palette
view, offering prototypes and existing model content
suitable for assembly during the selected activity. In
the system context viewpoint, this includes target IT
systems, exchanges, actors, and system context
diagrams. The changing project and palette views
are another example of the “single-model” principle,
although driven by activity. Selection of viewpoint
also determines which reminders are present,
providing activity-specific progress guidance, sim-
ilar in principle to the guidance provided by the
WayPointer modeling product.12

Defined by a domain expert and stored as part of the
metamodel, the viewpoint specification essentially
consists of definitions of each of the panes in these
project and palette views. Each pane is specified as a
set of queries that are run on the model and a set of
hierarchical structures in which to organize the
query results. The query language used is Quetzal,
which was specifically designed for dealing with
AWB’s modeling constructs and is discussed in
more detail later.

Editors containing activity-specific pages are also
responsive to the selected viewpoint. For example,
exchange model elements are relevant as part of a
system context model, and they can also be used
during use case modeling to group use cases. The
Use Cases page of the Exchange editor shows
additional information about how the exchange has
been refined into use cases. When an editor is
opened, it is automatically set to show the relevant
page, based on the currently selected viewpoint. By
ordering and placing at hand those resources and
elements that are needed, a viewpoint helps the
architect focus on an activity.

Handling loose ends: Reminders and Quick Fixes
Populating models by marking up documents or
creating informal diagrams can quickly lead to fairly
large models. Typically, users create many disasso-
ciated parts of models, along with the occasional
redundancy. This parallels the thought process
involved in architectural work, as architects often
work with fragmentary information, which is full of
loose ends too numerous to track manually. AWB

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

8l Music Web System Context X

n

g

Music Web System Context

=

Artists

Diagram

post news/information about tours

track trends in the fan base

Record execs

track revenue/financial info

~

Fans

Music Web System

setting up their own virtual record label

[System Context Diagram]

2

|| Big Market Intelligence []

Marketing Data

Orders

{| Big Fulfillment System ||

[| Big Royalty System ||

oContext | Extra Attributes | Appears In | * Deprecated | Debug |

Figure 6
System context with reminders resolved

handles loose ends with reminders, shown in the
bottom-most pane of the project view in most
viewpoints. Typically, reminders show elements
that have been identified but not yet properly
incorporated into the model, which suggests that
there is more work to be done. In the implementa-
tion, reminders are also queries run against the
model and can therefore illustrate anything com-
putable by Quetzal. AWB only presents reminders
when the focus is on an activity for which they are
relevant, as determined by the viewpoint.

In the example shown in Figure 1, after gleaning
system context elements from a note, the architect is
reminded (in the lower left pane) about existing
elements that may be relevant to the assembly of the
system context. With the series of drag-and-drop
gestures shown in Figure 5, reminders are resolved
and disappear, and the architect rapidly assembles
the system context diagram as shown in Figure 6.

An architect may resolve each reminder at any time
and in any way that he or she chooses, or an

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

architect may decide to ignore it completely. AWB
does not insist that reminders be handled and will,
in fact, tolerate many kinds of errors and incon-
sistencies in the spirit of Reference 13. An out-of-
scope exchange may be deleted, brought into scope
through dragging and dropping, merged with
another exchange, or even refactored to become a
use case for later consideration during a more
detailed phase of modeling.

Viewpoints have evolved over time to include
sufficient information to ensure that architects need
not constantly switch viewpoints to look for the
elements that they need in their work. Reminders
act as a propellant that helps push practitioners
through the design process. A common pattern is
that work done in one viewpoint generates re-
minders to be addressed in other viewpoints.

As an example, consider an architect who has been
exploring how to support a set of use cases by
mapping out component interaction diagrams for
representative scenarios. As each scenario is de-

ABRAMS ET AL.

491

constructed and responsibility is allocated to repre-
sentative components, new components, new oper-
ations, and new intercomponent dependencies are
introduced. After designing sequences for a number
of scenarios and accumulating many operations and
dependencies, the architect steps back and consol-
idates the component model. In doing so, the
architect needs to view the model with components
at center stage rather than use cases or scenarios.
Switching to the component modeling viewpoint,
the architect sees a hierarchy with components
decomposed into interfaces, and interfaces into
operations. In this viewpoint, reminders indicate
that new operations have been introduced and need
to be grouped into interfaces. Moreover, from this
viewpoint the architect is better able to note
redundant operations introduced to support differ-
ent scenarios and to merge them.

Certain inconsistencies are more serious—outright
violations of the underlying metamodel, for exam-
ple. When this happens, the offending model
elements are flagged with error indicators wherever
they appear, and AWB provides Eclipse Quick Fixes
to assist the user in clearing things up. These error
indicators are visible in all viewpoints.

DESIGN AND IMPLEMENTATION OF AWB

In this section, we discuss the layered architecture of
AWB, the use of models and metamodels, and the
generation of work products.

AWB's layered architecture

AWRB is built as a collection of plug-ins to the Eclipse
platform. Eclipse provides much to build on: a
platform-independent graphical user interface tool-
kit and application framework, a convenient and
customizable way to manage panes, menu items,
and controls, a powerful model of resources and
builders, easy access to versioning and source
control systems, a generic facility for error reporting
and Quick Fixes, and so on. On top of Eclipse, AWB
adds a core set of modeling facilities, views and
editors for displaying and editing models, a query
engine, a model refactoring engine, and search and
document-generation facilities. These facilities,
however, are mostly generic; that is, they are not
particularly specialized to the domain of IT archi-
tecture, but rather to the task of building modeling
tools which generally function in the way that we
have described thus far. We call this core the “xWB”
platform.

492 ABRAMS ET AL

Above this level, a metamodel customizes xXWB to
the domain of IT architecture. The metamodel
includes a specification of the allowable types of
model elements, their attributes, and their relation-
ships to each other. It specifies the viewpoints for
that domain and the contents and layout of various
editors. To help architects avoid the difficulty of
designing on a “blank sheet,” a metamodel can
include starting points for a model. These starting
points can include typical modeling constructs or
predefined work-product templates, for example.
The AWB metamodel has a starting point that
includes templates for all of the key work products
described previously. The metamodel consists of an
XML schema for the key type definitions, with some
supporting XML files to define relation type hier-
archies, allowable relations, viewpoints (including
their reminders), and editor behaviors.

Because richer domain-specific behavior is often
needed, xXWB defines extension points. This allows
plug-ins to AWB to provide richer kinds of behavior,
usually attached to specific kinds of model elements
or metamodels. Diagram editors are examples of
this, ranging from a simple diagram that shows
nodes as boxes and relations as lines to styles of
diagrams that are specific to system context and
operational modeling.

In this way, AWB was designed with a “shearing
layers”14 approach, putting the most basic and
common alterations at the simplest layers. View-
point definitions were one example of changes that
needed to be simple and quick.

The first level of customization, then, is in those
parts of the tool that are driven by model data.
Work-product templates, some editor definitions,
and user-defined reminders are at this level and are
very rapidly customizable, even by fairly naive
users.

The second level of customization is at the
metamodel level, particularly the peripheral aspects
of the metamodel. This is where viewpoints, for
instance, are defined and can be customized very
quickly, but this requires understanding the more
complicated viewpoint-specification language.

The third level of customization is at the heart of the

metamodel itself. Metamodels have a more intricate
structure than templates and queries, and, accord-

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

ingly, fewer people are able to customize them.
Metamodel customization enables minor tweaks to
the metamodel, for differing practices, or those
made to accommodate major changes, such as
entirely different domains. Examples of the latter
include retargeting the workbench at requirements
tracking, or even managing an antique-glass collec-
tion, as one author did; in effect, varying the “x” in
xWB. It allows the creation of new types of nodes,
editors, viewpoints, and so on. This is a mechan-
ically simple task, but requires detailed analysis and
understanding of the domain. At this level, a subject
matter expert can quickly iterate and experiment
with changes to the metamodel, as we did with our
users in designing AWB.

A fourth level of customization involves Eclipse
plug-in extensions. Their use enables the addition of
a fairly arbitrary variety of gadgetry at a relatively
high cost of programming. Our customized diagrams
are examples of this. Alterations here required a
more typical coding and debugging cycle before they
could be released to our users.

Model and metamodel

The AWB internal representation of a model is
simple enough; it is a directed graph of nodes, which
are the model elements of interest (e.g., users,
nonfunctional requirements, and use cases). Nodes
are connected by relationships (e.g., a user initiates
a use case). Both nodes and relationships have
properties of scalar data (e.g., a user has a name).

Nodes and relationships also have types from a type
hierarchy; for example, a nonfunctional requirement
node may be qualitative or quantitative; the
relationship “uses” is more specific than the
relationship “depends on.” The typing is advisory
rather than strict; for example, a particular user
might be given a nickname property as well as a
name, or initiate a nonfunctional requirement, even
if users ordinarily do not. This is a particularly
powerful feature of AWB. Especially when refac-
toring is used, the model can be put into unusual
states. Reminders and Quick Fixes then help users
return the model to a normative state, as
appropriate.

A metamodel describes the node and relationship
type hierarchies, properties, editors, viewpoints,
and so on. The most elaborate metamodels naturally
concern IT architecture and requirements, but, as
described previously, the core XWB platform is not

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

tied to those topics; we also have metamodels for
expressing metamodels themselves. (Indeed, a
“metamodeler’s workbench” built on xWB is the
primary editor for our metamodels.) The metamodel
is consulted by many parts of the workbench. The
Relator wizard, for example, uses the metamodel to
present a set of relationships to a user when relating
two model elements. The markup and model
facilities query the metamodel to see if semantic
hyperlinking can be employed.

Work-product generation and queries

AWB can generate documents based on templates.
Templates are written in a hybrid of HTML, Quetzal,
and AWB-manipulation commands. For example, to
create an alphabetical, numbered list of the labels of
all user nodes, the template would include the
following:

<for-each-node type=“user” sorted-by="label”>
 <label/></1i>
</for-each-node>

The template language is reasonably simple, and it
has been used extensively. After spending some
time on an XQuery-based implementation of these
features, we opted to develop a language more
suited to AWB models."” Quetzal is a moderate-size
language with strong resemblances to OCL2 and
XQuery, designed with the relatively naive user in
mind. For example, to tell if some other node has the
same label as node N, the following query can be
used:

all.node.exists(it !=Nand it.label =N.label)
or, more verbosely,

FOR othernode IN all.node
WHEN othernode ! =N
SOMETIMES othernode.label =N.Tabel

Substantial queries can be written to customize
documents and behavior. Other aspects of the
system are controlled by Quetzal queries or scripts.
Viewpoints—especially the contents of Reminder
panes—are defined in Quetzal. As mentioned, the
user-defined reminders are written in Quetzal.
Quetzal can also be used as a scripting language
through a Command facility, which allows new

ABRAMS ET AL.

493

commands to be added to appropriate context
menus in AWB (these menus launch Quetzal
scripts).

The document generation facility, coupled with an
embedded, wrappered browser (i.e., one that has a
programming interface to allow it to be used as a
component in Eclipse), is used to create editable
work products. These editable work products are
essentially “work products with a twist,” viewed by
our embedded browser. The document generation
facility provides a twist (i.e., a clever device) in that
it inserts additional HTML tags which
include attributes ignored by the browser but crucial
to AWB. These attributes identify the source in the
model of the various document parts. Depending on
where in the work product the user clicks, AWB can
selectively place the browser into edit mode, track
the user’s changes, and push them back into the
appropriate places in the model. Another twist is
that for certain kinds of queries, such as iterations
over lists of related model elements, additional
markup includes embedded Quetzal commands
telling AWB how to handle the addition and removal
of elements of that list. This lets AWB augment the
browser’s context menu with commands to add and
remove elements of the list, and then AWB can push
the appropriate changes into the model. For
example, looking at the use-case work product, the
architect can add new or existing users to the list of
actors involved in the use case, and AWB will create
or destroy the appropriate relationships and ele-
ments in the model.

EXPERIENCE

The goal of the AWB project, as stated previously,
was to design a tool that supports the realities of
field-level practice, while supporting the formalities
of a given architecture method. To validate our work
and to drive its refinement, we launched a program
of field trials in which IT architects used AWB as
part of “live” customer projects.

There have been three major phases of our field trial
program. First, IT architecture work was done with
AWB in 2003 by an IT architect who was a member
of the AWB team. His feedback was incorporated
into the tool design immediately. Second, there was
an initial beta program in 2004, where AWB was
used more broadly within the IBM IT architecture
community, mostly for requirements gathering,
proposal response, and early solution design. Third,

494 ABRAMS ET AL

a pilot program was established in 2005 and is still
ongoing. As part of this program, IT architects are
using AWB on both the functional and operational
aspects of solutions, as part of end-to-end architec-
ture work on major customer projects.

In the following sections, we detail some of the
experience, feedback, and lessons learned through
our field trial programs. (Some of the feedback has
already been presented earlier in this paper as part
of the AWB design rationale.) In brief, feedback has
been extremely positive, and to our great delight, the
features of AWB are indeed proving to be highly
effective in support of the creative process and work
styles of practicing IT architects.

Initial requirements gathering

A number of architects have used AWB “live”
during customer meetings, with their laptop display
projected in place of a whiteboard. They used AWB
to document brainstorming discussions, capturing
initial thinking about the vision, scope, interfaces,
and primary requirements for a system. The
architects reported that the ability to take notes,
mark them up “on the fly,” form basic models,
instantly generate system context diagrams, and
update it all dynamically proved to be invaluable in
keeping discussions focused and on track. They
reported that the stakeholders were comfortable that
all parties involved understood the scope of the
solutions and the interfaces involved. Customers
were impressed and very enthusiastic about the
style of work that the new tool permitted.

The architects also reported that in follow-on work,
linking proved very useful. If pieces of information
or requirements seemed conflicting or seemed to
require excessive design to satisfy, the architect
could get back to the source of the information and
perhaps request clarification or restatement of the
requirement.

Proposal analysis

A consulting architect used AWB to conduct a
quality assessment review of a 49-page proposal
prepared in response to a 79-page customer Request
for Proposal (RFP). He used AWB to capture
requirements from the RFP, including the current IT
environment, functional requirements, nonfunc-
tional requirements, architectural guidelines, and
required deliverables. In addition, he highlighted
requirements that he suspected would be challeng-
ing to satisfy. He then used AWB to capture the

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

essence of the proposal, including use cases,
components, nodes, and architectural decisions. He
highlighted areas of concern with respect to techni-
cal viability.

The captured architectural information then served
as the basis for his assessment of the quality of the
proposal, including whether all components to be
developed were included in the estimates, whether
all COTS (commercial off-the-shelf) components
were included in the price calculation, and whether
all of the deliverables requested by the customer
were included in the estimates. The architect used
AWSB to present his findings during a workshop with
the proposal team.

He reported that AWB helped him quickly gain
insight into both the RFP and the response. He made
extensive use of the ability to link multiple text
passages to a single model element as a way to
isolate inconsistencies and to tie together a number
of different references, often using different names,
to the same system component.

Early stages of solution design

A consultant, working as part of a consortium
preparing a proposal for a large government portal
project, used AWB for the solution design phase.
AWB was used “live” to capture the various
architectural aspects emerging from workshop dis-
cussions. AWB allowed the consultant to quickly
capture technological and use case requirements
from all the project consortium partners (18 partners
in total from different industries, with different
backgrounds, and with different views of the term
“architecture”). The consultant used AWB mainly to
consolidate his notes and draft early versions of the
architecture overview, actors, use cases, external
collaborations, and system context. The consultant
reported that AWB greatly eased his understanding
of the solution and allowed him to “play” with
different options to realize the architecture. He
further reported that AWB proved extremely suc-
cessful in bringing together all of the participants
and bringing them all up to the same level of
understanding.

Infrastructure redesign

In one pilot engagement, AWB was used for a large
project involving infrastructure redesign. The cus-
tomer was moving from a “thick client” approach to
a “thin client” approach and was taking that
situation as an opportunity to completely redo the

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

architecture for 95 percent of the infrastructure of
the system. The system consisted of hundreds of
servers supporting 11,000 end users. The team using
AWRB reported that the architecture was developed
in far less time and with far less effort than it would
have taken using traditional tools, a savings of
approximately 25 percent. The architects are now
handing the architecture over to the development
design authority—that is, the group that will own
the architecture through the rest of the life cycle—
and AWB is to become the repository of the
architecture and the tool for its manipulation for the
long term. One of the project principals remarked,
“AWB is now truly a viable tool for generating and
manipulating large complex architectures for real
engagements.”

Re-hosting and server consolidation

In another pilot engagement, IBM Global Services
was contracted to move a customer’s data center to
an IBM hosting center. The existing customer
system was a complex three-tiered system, with
complex firewall rules and stringent high-security
and high-availability requirements. As part of the re-
hosting effort, the application and infrastructure
architects used AWB to consolidate 38 Web appli-
cations, which allowed the number of servers for
those Web applications to be reduced from 86 to 36.
The consolidation work involved documenting
functional application components and their de-
pendencies, mapping them to conceptual server
nodes, and realizing those nodes with the physical
server nodes that became the actual servers. The
architects additionally had to handle mapping of
middleware components based on application re-
quirements. As part of this work, they developed
their own custom “server build” work product
template, listing machine configurations, middle-
ware requirements, and deployed application com-
ponents. This work product was input into Excel**
“build sheets,” which were handed over to the
server build team, who actually built and configured
the servers according to these specifications.

The architects reported that as a result of using
AWB, they saved 200-300 hours on this engage-
ment. They further estimated that during subse-
quent server consolidation, having the AWB models
as a starting point will save them 60 percent of the
architecture effort, as compared with projects where
no suitable architectural documentation exists, and
10 percent, as compared with projects where some

ABRAMS ET AL.

495

architectural documentation exists in Word and
Visio. The architects indicated that AWB’s consoli-
dated view of the functional and operational models
will allow them to maintain an accurate, up-to-date
description of the architecture as it evolves.

Further, the architects reported that the excitement
generated by the use of the tool was a catalyst in
getting application and infrastructure architects to
collaborate—a distinct benefit of using AWB. They
also reported that with AWB they could instantly
satisfy customer requests for summary diagrams of
the IT environment. Before AWB, pulling together
such diagrams was a daunting task. The filtering
options of AWB diagrams and work products were
also crucial, in that it was often necessary to
produce diagrams of subsets of the environment.
Finally, the architects reported, “Without AWB we’d
still be documenting [this consolidation], or maybe
we wouldn’t be documenting it at all,” and they
indicated that AWB smoothed the handoff to the
operations group that would run the system.

The consulting architect responsible for quality
assurance (QA) on the project reported that use of
AWB made QA much faster and more certain. The
review of the architecture took roughly half the time
that it would have taken otherwise. The QA
architect reported that AWB helped the application
and infrastructure architects follow GS Method more
closely and use ADS more appropriately. The QA
architect was delighted at how easy it was for him to
navigate around the various models. The improved
quality and easy understandability of the architec-
tural models both likely contributed to the reduced
QA review time. Overall, the QA architect reported
that instead of the usual many calls to solution
architects asking for missing information or for
clarifications, for this review there were just three
calls asking why a certain approach was taken or if
something had not been considered, and AWB
facilitated very effective communication. As for the
learning curve inherent in any new tool, the QA
architect remarked, “I was able to get up to speed
and productive with AWB remarkably quickly.”

Lessons learned

In this section, we present the lessons learned from
working with a large number of IT architects on
realistic industrial-scale architectures; namely, what
issues are of major importance to the practitioner
community and what resonates strongly with them.

496 ABRAMS ET AL

We hope these insights will help steer researchers
toward areas that will have a lasting impact on
practice.

User population

Most IT architects are under enormous time
pressure. Thus, they will not adopt any tool that
takes very long to learn or that takes longer to use in
production work than the tools they are currently
using. This is the case even if the new tool offers
significant “downstream” benefits. AWB addresses
this by trying to be as streamlined as possible for the
work styles we observed.

Practitioners are constantly being bombarded by
improved or extended metamodels, processes,
methods, and best practices. Keeping up with this is
daunting and overwhelming. Any tool that provides
“roadmaps” or guidance in these areas is greatly
appreciated. Although more detailed process-driven
and technique-driven guidance would be a bonus,
AWB reminders begin to address this issue.

Many IT architects are not computer science majors;
instead they are business or IT majors (a number of
them have remarked that a “graph” is something
that shows the value of their stock portfolio over
time). For these users, any tool that supports a
document-editing or diagram-editing approach to
modeling is far more effective for them than a tool
that only supports more explicit graph manipulation
(i.e., adding or deleting nodes and edges). AWB is
beginning to address this with the modeling by
forms approach. Further, allowing users to work at
multiple levels of detail with respect to the
metamodel has proven to be effective. For example,
when working with GS Method and ADS, it is more
effective for some users to view and manipulate
models as components simply being placed on
servers. Such users can disregard details of the
component interfaces, operation signatures, de-
ployment units, and so forth.

The context for IT architecture work

In the real world, “green field” systems, that is,
those starting completely from scratch, are very
rare. Tools simplifying the process of integrating
with legacy systems would therefore provide enor-
mous benefits. Such tools could support rapid
reverse-engineering or import of models of legacy
systems and highlight contact points between the
system being developed and the external and legacy

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

systems with which it will be integrated. In addition,
tool support for asset reuse and sharing between (or
federation of) models is becoming increasingly
important.

Architecture work never takes place in a vacuum—it
is performed by teams which include the architec-
turally “uninitiated.” Examples include both “up-
stream” customer subject matter experts and
business analysts and “downstream” developers
and operations staff. Tools for architects should
therefore incorporate conventional team support for
their models and integrate well with tools for others
on the team. An integrated tool suite should allow
for relatively seamless collaboration between team
members. When material is exported to other tools
and can be altered there, support is needed for
“round-tripping”; that is, it should be possible to
accept revisions to the material and fold the changes
back into the artifacts being maintained by the
architectural tool. This can be challenging because
integration with opaque external tools can be difficult.
More research into suitable techniques is needed.

Consulting architects often find that customers have
standardized their own custom representation of
architecture and specific work-product formats, and
they insist that these be used. As a result, for an
architectural tool to be acceptable it must be easily
extensible and customizable. AWB’s layered archi-
tecture supports this. Further, consultants are
expected to deliver polished work products and
reports suitable for many stakeholders. Any tool that
produces anything less creates the burden of having
to transfer the content into another tool for final
polishing, with resulting consistency management
issues.

An ideal in this context would be to provide effective
support for asset reuse, which is regarded as a major
key to success for large-scale architecture organiza-
tions. A facility that allows effective harvest, search,
and reuse of assets would be a boon to architects,
increasing productivity and improving the quality
and consistency of delivered architectures. Effective
asset reuse entails support not just in finding assets
but also in using them; for example, helping to map
parts of an existing model to proper “touch points”
in the assets to be reused.

Leverage by automation

The feedback we have received from IT architects
indicates that they are pleased with the extent to

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

which AWB supports their style of doing the basic
work of producing architectures and generating
work products. At the same time, they tell us that
now that AWB supports a full representation of
architectures, they eagerly anticipate the leverage
that could be obtained by automating many of the
time-consuming tasks they currently do manually.

By keeping the generated work products up to date
and consistent, AWB already saves its users an
enormous amount of time and improves the quality
of their work products. Other ways that AWB could
save users time include automation of the following
functions:

1. Impact analysis based on traceability—The links
in AWB currently provide a measure of trace-
ability, that is, a user can start from one artifact
and follow links to other artifacts that somehow
are related to, or gave rise to, that artifact. Given
this traceability information, practitioners would
greatly appreciate automated analysis of the
impact of proposed changes to the architecture.

2. NFR formalization, propagation, budget alloca-
tion, and aggregation—If AWB were to allow for
finer-grained and more detailed formalization of
nonfunctional requirements, it would be possible
for automated analysis to propagate NFRs from
the point where they are specified (e.g., on the
basic categories of interactions in the system
context) to points further “downstream” in the
architecture, for example, to use cases, scenarios,
components, servers, and network connections.
This would provide a basis for algorithms for load
forecasting, performance analysis, and capacity
planning.

3. Scenario walkthroughs (for validation)—Archi-
tects spend a great deal of time validating
architectures by putting together interaction and
sequence diagrams that trace progress through
the system for a given scenario, including both
scenarios where everything proceeds normally
and scenarios where things like high-availability
features come into play. With sufficient formal-
ization, AWB could automatically produce dia-
grams and allow users to introduce faults or
constraints to determine the effect on the
interactions.

4. Derivation of lower levels from higher levels—Part
of the modeling process involves producing
progressively more elaborate and detailed spec-
ifications from initial higher-level specifications.

ABRAMS ET AL.

497

Given a representation of techniques, best prac-
tices, and heuristics, AWB could automatically
produce starting points for lower-level specifica-
tions from higher-level specifications.

5. Systems configuration—Practitioners spend an
inordinate amount of time configuring systems
(hardware, middleware, and software), making
technology choices, selecting compatible ver-
sions, and setting parameters. Given a knowledge
base, AWB could automatically produce a start-
ing point for systems configurations, thereby
saving practitioners significant amounts of time
and allowing them to produce configurations that
are more likely to be complete and effective.

The preceding only scratches the surface of the
kinds of work that could be automated once full
architectural models are captured in a tool such as
AWB.

FUTURE WORK

There are a number of areas for future work and
innovation as AWB continues to evolve. Some of
these were alluded to in the previous section. Those
included modeling by forms, variable levels of
metamodel and model detail, integration with other
tools and providing for “round-tripping,” extensi-
bility of the metamodel by the end user, a
convenient means of work product definition, and
facilitating asset reuse and reference architectures.
The previous section also described a number of
areas for future work relating to various forms of
automation.

Controlled experiments in which two teams conduct
the same engagement in parallel are prohibitively
expensive and often impossible when customer
meetings and interviews are part of the process. We
do hope to collect measurements from production
engagements done using AWB, and to compare
those measurements with benchmarks established
for similar engagements. Until such studies are
undertaken and completed, our results are primarily
qualitative rather than quantitative, and we rely on
feedback from highly experienced senior practi-
tioners to determine the success of AWB at achiev-
ing its goals.

Additional areas for future work include team
support; namely, providing an effective means by
which one user can survey and understand the
changes made to a model by another user before
accepting the changes or merging other changes

498 ABRAMS ET AL

with them; and support for “stages” of an architec-
ture; namely, being able to support a number of
versions of an architecture concurrently, with
promotion of model fragments from one stage to the
next. Another area is that of enterprise architecture
compliance; that is, providing support for verifica-
tion that an architecture complies with an estab-
lished enterprise architecture.

CONCLUSION

AWSB is a tool for IT architects to gather, structure,
and maintain the information that constitutes the
architecture of an IT system (or collection of IT
systems). It emphasizes evolution from partial,
informal, overlapping, and inconsistent information
into precise formal models that constitute “action-
able” specifications. With AWB, users maintain one
composite model in a central repository and then
generate many formatted work products as reports
that are always accurate and up to date.

AWB innovations and features (to date) include:
opportunistic modeling, complementary textual hi-
erarchical and diagrammatic model manipulation,
viewpoints, reminders, model refactoring, work
product modeling, generation, and direct editing and
GS Method operational-modeling support.

AWB has been used in production engagements by
IT architects, and the response has been very
positive. Work is now proceeding on generation of
artifacts that feed into downstream solution devel-
opment activities, as well as closer integration with
tools for development, deployment, and testing. In
addition, work is underway on using AWB to
produce reference architectures as reusable assets
for a number of the industries served by IBM. AWB
has proven to be highly effective, even in these early
field trials, and it will continue to evolve even as it is
deployed ever more broadly.

ACKNOWLEDGMENTS

We gratefully acknowledge the support and
collaboration of a number of our colleagues,
including Daniel Yellin (as reviewer and mentor),
Francoise Legoues (our IGS partner), and ADS
leaders and developers Ian Charters, Ed Kahan,
Philippe Spaas, and Carl Spencer. We would also like
to thank our many beta and pilot users, especially
Matt Bloom, Thorsten Gau, Scott McCauley, Kevin
Robson, Christian Schiller, and Marc Walford.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc., Telelogic AB, Microsoft Corpora-
tion, or the Eclipse Foundation in the United States, other
countries, or both.

CITED REFERENCES

1. L. Bass, P. Clements, and R. Kazman, Software Archi-
tecture in Practice, Addison-Wesley, Reading, MA (1998).

2. IEEE Std 1471-2000 IEEE Recommended Practice for
Architectural Description of Software-Intensive Sys-
tems—Description, http://standards.ieee.org/reading/
ieee/std_public/description/se/1471-2000_desc.html.

3. P. Kruchten, “The 4+1 View Model of Architecture,” IEEE
Software 12, No. 6 (1995).

4. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide, Addison-Wesley, Read-
ing, MA (1999).

5. R. Youngs, D. Redmond-Pyle, P. Spaas, and E. Kahan, “A
Standard for Architecture Description,” IBM Systems
Journal 38, No. 1, 32-50 (1999).

6. Object Technology International, Inc., “Eclipse Platform
Technical Overview,” http://www.eclipse.org/
whitepapers/eclipse-overview.pdf.

7. S. Abrams, J. Smith, R. Bellofatto, R. Fuhrer,
D. Oppenheim, J. Wright, R. Boulanger, N. Leonard,
D. Mash, and M. Rendish, “QSketcher: An Environment
for Composing Music for Film,” Proceedings of the Fourth
Conference on Creativity and Cognition, Loughborough
University, U.K., 2002, ACM Press, New York,
pp. 157-164.

8. T. C. Lethbridge and D. Skuce, “Beyond Hypertext:
Knowledge Management for Technical Documentation,”
Proceedings of the 10th ACM Annual International
Conference on Systems Documentation ACM Press,

New York (November 1992), pp. 313-322.

9. D. Skuce and T. C. Lethbridge, “CODE4: A Unified System
for Managing Conceptual Knowledge,” International
Journal of Human Computer Studies 42, 413-451 (1995).

10. V. Bush, “As We May Think,” Atlantic Monthly (July
1945).

11. D.C. Engelbart and W. K. English, A Research Center for
Augmenting Human Intellect,” AFIPS Conference Pro-
ceedings of the 1968 Fall Joint Computer Conference
(December 1968), pp. 395-410, http://bootstrap.org/
augdocs/friedewald030402 /researchcenter1968/
ResearchCenter1968.html.

12. R. Racko, “A Cool Tool Tool,” Software Development
Magazine (May 2004), http://www.jaczone.com/papers/
05sd.Racko21-26.pdf.

13. R. Balzer, “Tolerating Inconsistency,” Proceedings of the
13th IEEE International Conference on Software Engi-
neering, IEEE Computer Society Press, Austin, Texas
(May 1991), pp. 158-165.

14. S. Brand, How Buildings Learn: What Happens After
They’re Built, Penguin Group, Canada (1995).

15. B. Bloom, “Lopsided Little Languages: Experience with
XQuery,” Proceedings of the Second International Work-
shop on XQuery Implementation, Experience and Per-
spectives (2005).

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

Accepted for publication March 6, 2006.
Published online July 12, 2006.

Steven Abrams

IBM Research Division, Thomas J. Watson Research

Center, 19 Skyline Drive, Hawthorne, New York, 10532
(sabrams@us.ibm.com). Dr. Abrams is a research staff
member in the Software Technology department of IBM
Research managing the Business Application Modeling group.
With that team, he develops tools that help people
understand, describe, architect, visualize, and validate
enterprise applications more easily and naturally than
possible with traditional tools. He has had a varied career in
fields such as computer music, robotics, computational
geometry, and CAD/CAM and rapid prototyping tools. Dr.
Abrams recently served on the National Academy of Sciences
committee on Information Technology and Creativity. He
studied at Columbia University where he earned B.S., M.S.,
and Ph.D. degrees in computer science.

Bard Bloom

IBM Research Division, Thomas J. Watson Research

Center, 19 Skyline Drive, Hawthorne, New York, 10532
(bardb@us.ibm.com). Dr. Bloom received a Ph.D. degree
from the Massachusetts Institute of Technology in 1989,
taught at Cornell University until 1995, and has worked at the
Watson Research Center since then.

Paul Keyser

IBM Research Division, Thomas J. Watson Research

Center, 19 Skyline Drive, Hawthorne, New York, 10532
(pkeyser@us.ibm.com). Dr. Keyser studied physics and
classics at St. Andrews’ School, Duke University, and the
University of Colorado at Boulder. After a few years of
research and teaching in classics at the University of Alberta at
Edmonton, Cornell University, and other places, he returned
to his first love, programming. He is currently crafting Java™
and Eclipse™ plug-ins for the Watson Research Center in the
Semantic Analysis area. His publications include work on
gravitational physics, stylometry, and ancient science and
technology.

Doug Kimelman

IBM Research Division, Thomas J. Watson Research

Center, 19 Skyline Drive, Hawthorne, New York, 10532
(dnk@us.ibm.com). Dr. Kimelman is a research staff member
at the Watson Research Center. His general interests include
the structure and behavior of complex systems, and “human
computer bandwidth.” Specific areas in which he has worked
include: parallel systems, operating systems, debuggers,
performance tools, software visualization, software
development environments, and technologies for specifying
and implementing large-scale IT systems.

Eric Nelson

IBM Software Group, 3100 Smoketree Court, Raleigh, North
Carolina 27604-1054 (ericnels@us.ibm.com). Dr. Nelson is a
Certified Senior IT Architect in the Federal CTO Strategic
Technology Architecture team. He received a Ph.D. degree in
cognitive psychology from the University of Chicago in 1987,
where he worked for a time as the university’s technical
liaison to the National Science Foundation (NSF)
supercomputer centers, assisting faculty and students in the
design and implementation of their research projects for NSF
systems and the Argonne National Laboratory parallel-
computing facility. While at Chicago, he led the development
of a PC-based population dynamics simulation system that
was part of a multi-university biological-sciences laboratory-
simulation collection called BioQuest, which won an
EDUCOM innovation award in 1991. In 1992, he moved to
Tokyo, where he taught psychology and computer science and

ABRAMS ET AL.

499

was a software consultant in financial services. He continued
consulting in Singapore in both financial services and
modeling and simulation for games and real-time training
systems. Upon returning to the United States in 1997, he
joined IBM Global Services, where he was part of the
Enterprise Architecture and Technology Center of Excellence,
working with a broad range of Fortune 100 clients in financial
services, distribution, retail, and media. In 2002, he joined the
Federal CTO Strategic Technology Architecture team and now
works with Department of Defense and civilian agencies on
technology strategy and transformation to open architectural
systems and service-oriented architectures.

Wendy Neuberger

IBM Sales and Distribution, 609 Harvard Street, Vestal, New
York 13850 (wneuberg@us.ibm.com). Ms. Neuberger is a
Senior Technical Staff Member and Certified IT Architect in
IBM Sales and Distribution, Distribution Sector. She is
responsible for the development and deployment of retail
reference architecture that integrates industry solutions, best
practices, and tooling. Prior to joining Sales and Distribution,
she was in IBM Global Services, Application Management
Services (AMS). Ms. Neuberger was a member of the AMS
Research Institute, championing several technology
innovation projects, including Architects” Workbench. She
received a B.S. degree in business management and an M.B.A.
degree in management information systems from Binghamton
University and joined IBM in 1983.

Tova Roth

IBM Research Division, Thomas J. Watson Research

Center, 19 Skyline Drive, Hawthorne, New York, 10532
(tova@us.ibm.com). Ms. Roth is an advisory software
engineer at the Watson Research Center. In addition to the
Architects” Workbench, her work at IBM Research has
included visualization of complex systems, optimization of
dynamic systems, debugging tools, performance tools, and
tools for aspect-oriented development. Prior to joining IBM
Research, Ms. Roth worked on visualization of financial data
and computer-graphics tools.

lan Simmonds

IBM Research Division, Thomas J. Watson Research

Center, 19 Skyline Drive, Hawthorne, New York, 10532
(simmonds@us.ibm.com). Mr. Simmonds is an advisory
software engineer in the Business Application Modeling
department at the Watson Research Center. He received a B.A.
degree in mathematics from Cambridge University in 1987.
Prior to joining IBM, he developed PCTE-based software
engineering tools for ESPRIT’s PACT and ATMOSPHERE
projects and EUREKA’s EAST Environment and contributed to
the standardization of ECMA and ISO PCTE. He joined IBM in
1993 and since 1995, has researched methods and tools for
business and IT consulting (specifically for the insurance
industry), requirements management, systems envisioning,
and (starting in 2002) IT and enterprise architecture.

Steven Tang

IBM Research Division, Thomas J. Watson Research

Center, 19 Skyline Drive, Hawthorne, New York, 10532
(stang@us.ibm.com). Dr. Tang is a software engineer at the
Watson Research Center. His major focus areas are advanced
user interface (UI) interaction techniques, frameworks, and
graphical and rich text clients. Specifically, he led the
development of a query-driven browser-based UI that
supports modeling through declaratively specified forms. Dr.
Tang received both an M.S. degree and a Ph.D. degree in
electrical engineering from Stanford University. He published
several papers on Ul builders and frameworks at the UIST
conference between 1991 and 1994. Dr. Tang joined IBM
Research in 2003, where he has been applying his Ul expertise
on tooling support for modeling applications. Prior to joining

500 ABRAMS ET AL

IBM, Dr. Tang worked for Fujitsu Network Communications
as a senior manager for Ul development, and he also co-
founded a company in 1999 that specialized in rich Ajax
applications supporting incremental two-way updates.

John Vlissides

Dr. Vlissides was an IBM research staff member from 1991
and a member of the IBM Academy of Technology from 1998.
He was best known for his part in creating the field of software
patterns and for his first book, Design Patterns, coauthored
with Gamma, Helm, and Johnson (known in the field as the
“Gang of Four” or “GoF”). He and the Gang of Four were
recently awarded the 2005 ACM SIGPLAN Programming
Languages Achievement Award for their work on design
patterns. Dr. Vlissides’ research interests were in software
design tools and techniques (especially object-oriented ones),
design patterns, application frameworks and builders,
software visualization, and tools for user interface
development. He received a B.S. degree in electrical
engineering from the University of Virginia and M.S. and
Ph.D. degrees from Stanford University. Dr. Vlissides passed
away in November, 2005, after a battle of more than a year
and a half with a brain tumor. M

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006

