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Collecting and organizing all of the architectural information for a system is a challenge

faced by information technology (IT) architects. Transforming that information into

models of a viable architecture and keeping associated work products consistent and

up to date is an even greater challenge. Despite this, model-centric architectural

methods are not as widely adopted or as closely followed as they could be, partly due

to a lack of appropriate tools. The Architects’ Workbench (AWB) is a prototype tool that

addresses these problems and supports the creative process of architectural thinking

and modeling. This paper presents key AWB innovations and discusses how their

design was motivated by insights into architectural work and feedback from IT

architects. We describe the design of AWB itself as a metamodel-driven and method-

based tool, and we report on experience from the use of AWB in production

environments.

INTRODUCTION

IT architects are faced with a formidable information

mangement challenge as they design systems to

address customer needs. For example, in designing a

new Web application that will serve as the single

point from which a customer of a large financial

institution can access all of his or her financial

information, it is often necessary to integrate

hundreds of legacy systems dealing with various

financial instruments, dozens of databases storing

account information, and myriad rules and con-

straints. The challenge for the IT architect is to

organize and analyze initial descriptions of cus-

tomer needs as well as the existing IT environment,

and to design an appropriate solution. This activity

often involves progressively formalizing informa-

tion and building up architectural models. The

resulting models and design rationale must then be

incorporated into a number of overlapping work

product documents for a variety of stakeholders,

and these documents must be kept up to date and

consistent as the system evolves.

IT architecture

To better understand this challenge, we consider IT

architecture in greater detail. Many definitions of IT
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architecture exist (see, for example, Reference 1),

but most agree that an architecture describes the

structures of an IT system—both hardware and

software—and their relationships to one another. It

defines components that need to be bought, built, or

reused, focusing on their externally visible proper-

ties. It defines the operational infrastructure (e.g.,

servers, network connections, etc.) on which these

components will be deployed, and it ensures that the

system will meet its functional and nonfunctional

requirements (to be defined in the following). IT

architecture also provides a high-level breakdown of

the necessary development work and documents

key decisions and their underlying rationale.

There are several methods and languages employed

for describing architectures, such as IEEE 1471,
2

the

Rational Unified Process* (RUP*) ‘‘4þ1’’ view of

architecture,
3

and the Unified Modeling Language**

(UML**
4
). In the IBM Global Services organization

(IGS), an IT architecture is documented in a number

of work products, often using the Architectural

Description Standard (ADS
5
) for terminology and

notation, all of which is defined by Global Services

Method (GS Method). Regardless of the methods

followed, architectures are typically implicitly

connected sets of models, usually documented with

combinations of diagramming, spreadsheet, and

word-processing tools.

There are a number of GS Method work products

that are often among the work products that an IT

architect is responsible for producing. The system

context work product shows the IT system solution

as a black box that exchanges information with

specified external actors—human users and other IT

systems. This documents the scope of the solution.

The architecture overview diagram illustrates key

elements of a solution, such as actors, locations,

components, servers, network connections, and

subsystems. This work product draws elements

from across the breadth of an architecture, for

purposes of communicating key concepts to various

external stakeholders and sponsors. The use case

model elaborates on the information exchange

between the IT system solution and the external

actors. This work product describes functional

requirements of the system, and is often annotated

with nonfunctional requirements (i.e., requirements

that pertain to system qualities or constraints, such

as performance, availability, security, and standards

compliance).

The nonfunctional requirement (NFR) work product

collates nonfunctional requirements from through-

out the architecture. The component model defines

software components and, their responsibilities,

interfaces, and static relationships such as depen-

dencies, as well as the dynamics of the collabora-

tions by which components interact to support use

case scenarios. This work product documents the

functional aspect of the solution. The operational

model documents the infrastructure of the solution

and the deployment of the application components

onto that infrastructure at three levels: conceptual,

specified, and physical. Finally, the architectural

decision work product documents the architecturally

significant decisions that were made across all

aspects of the architecture, along with alternatives

that were considered and the rationale for the

choices that were made. This work product is

critical for understanding a solution, for preserving

its integrity as it undergoes maintenance and

evolution, and for reusing parts of this solution in

other designs.

Although GS Method defines many other work

products, these are some of the key architectural

ones. These work products illustrate the intercon-

nected nature of an architecture, as there are many

relationships among the elements described in each

of these work products. In an ideal world, these

work products consistently document different

aspects of a single architecture and combine to

produce a complete, coherent, and unambiguous

picture of the system under design.

The balancing act

In the field, architects spend much of their time

scavenging mounds of unstructured information for

useful tidbits—in stark contrast with neat descrip-

tions of well-structured work products. A path from

the copious incomplete, inconsistent, and informal

material gathered from meetings and existing docu-

ments to the well-structured specifications required

for solution development is unclear.

Architects often start by gathering vision statements,

sketches of requirements and system structures,

descriptions of existing systems with which to

integrate, and other informal documents. They add

structure and rigor, sketching and fleshing out ideas

as their understanding deepens. When they do

formalize, it is often only to the extent that it helps

clarify important ideas for themselves or their

colleagues. Architects are constantly balancing
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opposing forces, thinking fluidly but within well-

defined structures.

Architects need to grasp myriad details without

losing sight of the larger picture. They need to

respond rapidly to high-level changes and under-

stand their impact throughout the architecture. In

addition, they must interact with a steadily increas-

ing set of stakeholders as disciplines such as

enterprise architecture, service-oriented architecture

and asset-based consulting business architecture

mature. They must balance the specific needs of

their solution against enterprise-level standards,

including technical standards ensuring coexistence

and interoperability.

Time-to-market pressures can cause architects to

trade precision for expediency. They try to rapidly

capture their thoughts (even if incomplete and ill-

formed) and then clarify them and remove incon-

sistencies as time permits. They juggle ideas, sketch

out approaches, weigh alternatives, articulate a

vision to various stakeholders, and produce the

work products, usually as deadlines loom. Among

other things, the transformation of the unstructured

material into a coherent set of work products is a

huge information management challenge. Through-

out the architectural process they analyze, consider

issues and trade-offs, raise and address concerns,

and make decisions. For all of this they rely upon

their training, drawing on their experience, meth-

ods, interactions with colleagues, documented best

practices, and whatever tools are available.

The tools of the trade

Despite a number of special-purpose modeling tools

(such as Rational* Software Architect or the Tele-

logic System Architect**), IT architects often use the

same tools to create an architecture that high-school

students use to complete a homework assignment,

namely, standard office-presentation, spreadsheet,

and word-processing tools. These tools are some-

times tailored to produce one or more of the output

work products discussed earlier, but often without

regard for the thought process that goes into

composing them or the interrelationships among the

artifacts. For example, architectural decisions are

typically documented with a tool such as Microsoft

Word, which has no explicit representation of the

domain of architecture, while operational models

are often documented with Microsoft Visio**. Not

only do these tools lack semantics, but they are not

oriented toward easily interacting with and consis-

tently maintaining a large network of related and

only partially complete models.

Even when a special-purpose modeling tool is used

for one aspect of an architecture, common office

tools are still used for the other parts of the

architecture, and similar deficiencies exist. As an

example, when component models are created with

Rational Software Architect, interrelationships with

operational models made with Visio or architectural

decisions described in Word documents are not

possible.

Without a tool that understands the many facets of

architecture and their interrelationships, developing

an architecture is tedious and prone to lapses that

ultimately result in failures of the designed system to

meet its requirements. Maintaining the architecture

and continuing its evolution is even more daunting.

In practice, many architectural documents quickly

go out of date as the system evolves, creating

difficulties for those charged with maintaining or

enhancing the system.

Furthermore, while developing an architecture is a

journey from an unclear understanding of unstruc-

tured information to a well-structured specification,

the tools typically employed do not support this

transition. Some tools are well-suited for unstruc-

tured information—word processing tools, seman-

tics-free drawing programs, or white boards, for

example. Other tools are well-suited for more

structured information—UML diagramming tools or

formal requirements management tools, for exam-

ple. However, none of these support the trans-

formation from unstructured to structured

information that is inherent in the task of developing

an architecture.

A tool facilitating the practice of the art of IT

architecture

Our goal was to design a tool that supports the

realities of practice, while supporting the formalities

of a given architectural method. To that end, we

formed a team of researchers and IT architects and

analyzed the working methods and thought pro-

cesses of the architects. Based on this analysis, we

incrementally built a tool that attempts to match not

only the formalisms of the practitioners’ methods,

but also the realities of their creative process and

working styles. We wanted a tool that would let
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architects balance formalism and freedom, while

helping them transform unstructured information

into sufficiently formal work products. The initial

result of this work is the Architects’ Workbench

(AWB).

After a brief overview of AWB from a user’s

perspective, we discuss in more detail some of its

key features and its underlying design rationale.

Next, we discuss the overall design and architecture

of AWB, with particular emphasis on those design

decisions that facilitated key developments. We then

report on users’ experience with AWB in field trials,

where IT architects have found AWB to be highly

effective in ‘‘live’’ use in major customer engage-

ments. Finally, we conclude with a discussion of

related efforts and future directions for AWB.

Without loss of generality, examples and method-

specific discussions in the remainder of the paper

will be based on GS Method and ADS. Nonetheless,

these discussions apply equally to other methods

and metamodels. In fact, as will be described later in

the paper, the metamodel- and method-related parts

of AWB have been factored out as ‘‘pluggable

components,’’ and AWB can be (and has been) used

as a workbench based on any of a number of

different methods and metamodels.

A BRIEF TOUR OF AWB

AWB is an Eclipse**
6
-based tool, providing several

views and editors tailored to the ‘‘balancing act’’

described previously. Figure 1 shows the AWB user

interface (UI) configured for system context work—

that is, sketching the boundaries of the system and

its relationship to associated systems and people. In

this example, the Music Web System is being

developed. The project view is on the left side of the

UI. The Outline pane of the project view consists of a

textual hierarchy that shows the model elements

important for system context work, starting with the

Music Web System. The Reminders pane shows

model elements requiring attention. For example,

under ‘‘Actors not involved in Exchanges,’’ we can

see that actors named ‘‘Fans,’’ ‘‘Record execs,’’ and

‘‘Artists’’ have been identified but have not yet been

placed in the system context as being involved in

exchanges.

The middle section of the AWB UI holds editors for

specific model elements. The top, rich-text editor

shows ‘‘BHR meeting notes,’’ containing the notes

taken by the AWB user during a meeting with the

(hypothetical) client BHR. The underlined phrases

in the note are hyperlinks to model elements. The

lower editor shows the Music Web System Context

diagram in progress.

On the right side of the UI is the palette view. Its

Prototypes pane shows a list of the kinds of elements

that are likely to be needed during system context

work. Users can instantiate these elements, often

automatically linking them to selected elements in

the model. The System Context pane of the palette

view shows existing model fragments that the user

may want to incorporate into the system context,

such as exchanges (general categories of informa-

tion flowing between the Music Web System and its

users). Similarly, the Nonfunctional Requirements

pane shows other model elements that are useful to

have on hand.

AWB employs wizards to simplify complex tasks.

For example, there is a Relator wizard, which helps

to determine the kind of relationship to use when

connecting model elements. There is also a Refactor

wizard that facilitates splitting and merging model

elements, and transforming model elements from

one type to another.

With AWB, a practitioner typically begins with

textual information; that is, some combination of

preexisting documents and notes captured from

meetings with the stakeholders. The user either

types or pastes these into AWB’s rich-text editors.

The user can study these notes, identifying impor-

tant bits of information. With the markup and model

technique, he or she can create model elements

directly from the text. In response, AWB creates

bidirectional hyperlinks to assist in navigation

between the notes and the model elements.

When the time comes for more detailed modeling of

some aspect of the system, the user chooses an

appropriate activity from the viewpoint menu. (A

viewpoint is a configurable mode for displaying the

panes of AWB.) This directs AWB to present the

model in its current state in a form well-suited to the

chosen activity. The hierarchical project view alters

itself to show the relevant model elements and

relationships for this activity, and the palette view

presents relevant prototypical model elements,

assets, and peripherally interesting portions of the

model to the user. The Reminders pane in the lower
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left corner presents omissions and recommenda-

tions that are appropriate to the chosen activity,

allowing the practitioner to focus on issues that are

relevant to the task at hand.

AWB provides many ways of viewing and interact-

ing with models. At any time, the architect can

begin to visualize relationships among elements by

using the basic diagram. As understanding of the

solution evolves, the user can refactor the model,

refining the elements involved and specifying the

relationships among them and elaborating the

details of the model in customized diagram editors

(such as those for system context, component

interactions, and operational modeling), while

maintaining connections among the model elements

and traceability back to less-structured information.

The user can move between textual, tree-based,

tabular, and graphical representations of the model

and can generate work products to check the state of

the architectural documents. The documents can

often be edited in WYSIWYG (‘‘what you see is what

you get’’) views, and the changes are immediately

reflected back to the underlying model. As the user

switches among the various activities needed to

complete the architecture, AWB responds with task-

appropriate guidance and presentations of the

model.

We have briefly outlined many of AWB’s capabil-

ities. In the following sections, we will discuss in

more depth some of its key features, focusing on

how they address the problems described previ-

ously.

AWB FEATURES

Several principles guided the design of many AWB

features. We wanted AWB, where possible, to

support multiple projections (or views) of a single,

integrated model, rather than a number of distinct

models that users would have to keep consistent

manually. We wanted to support the fundamental

thought processes used in the practice of IT

Figure 1
AWB configured for system context, showing reminders
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architecture, in particular helping users find order in

the chaos by assisting them in organizing unstruc-

tured information. We wanted to support natural

input and output mechanisms, which means not

only generating work products, but also allowing

users to work with diagrams, trees, tables, or forms,

as appropriate. The following discussion of AWB

features is grouped around these principles.

One principle is common to all features; that

principle is to focus on the work, not the output.

Many software tools are focused on supporting

results of work, rather than the work itself. As a

simple example, typical word-processing programs

support font selection, layout, tables, and other

typographic issues, rather than helping writers think

through the development of an introduction, a

hypothesis, supporting ideas, and a conclusion.

Similarly, typical architectural modeling tools sup-

port the production of specific artifacts (such as

class, activity, or deployment diagrams, as in the

case of UML), and not the process of thinking

through the ramifications of key design decisions in

the architecture. Just as putting words on paper aids

in thinking during the writing process, documenting

architectures in diagrams assists in their design.

However, tools should better support the develop-

ment of works in progress and the evolution of ideas

from their initial unstructured states to their more

refined forms, as embodied in the final outputs.

Similar design philosophies motivated the develop-

ment of an earlier system in a different domain—

that of music composition.
7

While the mechanisms

used are not the same, the philosophies and design

trade-offs discussed in Reference 7 for that work are

quite similar to those of AWB.

Finding order in the chaos
AWB features aimed at bringing order to chaotic,

unstructured inputs are detailed in the following

subsections.

Capture before modeling

Early in the development of AWB, we recognized

that capturing information is an activity in itself. It is

hard to structure information while capturing it,

especially if it is not clear how it should be

structured. Accordingly, AWB provides facilities for

capturing ‘‘raw’’ information. Capture is supported

by the viewpoint ‘‘Note Taking’’ and by facilities for

storing and pasting rich text. In this viewpoint, the

architect can create collections of free-form rich text

artifacts called Notes. Architects can use simple text

formatting to add some organization while capturing

thoughts and ideas in a meeting. Existing documents

can also be pasted into Notes. This capability is

critical. Furthermore, most model elements also

have a rich text ‘‘raw notes’’ field, allowing raw

information about each element to be stored.

Markup and model

Including rich text facilities in a modeling environ-

ment is not novel, but allowing the text to serve as

input for the modeling process is. Because architects

often glean key requirements and constraints and

architectural opportunities from existing documents

and notes taken during meetings, we developed

‘‘markup and model’’ capabilities, which enable an

architect to select a word, phrase, or passage within

a note and create a hyperlink from it to a newly

created element. AWB creates the new element of

the appropriate type, labels it based on the selected

text, and turns the selected text into a hyperlink to

the new element. AWB also creates a ‘‘refers to’’

relationship between the note and the new element,

ensuring traceability from the new model element

back to the note from which it was created. When

the hyperlink is followed, an editor is opened on the

newly created element. Markup and model can also

be used to link a phrase in a note to an existing

model element, allowing several textual references

to a model element to exist within a single note, or

even in multiple notes. Conceptually, the markup

and model function is similar to Skuce and

Lethbridge’s CODE systems
8,9

although, as de-

scribed later, AWB’s reminders and viewpoints are

activity-specific, whereas CODE’s maps and notifi-

cations are not.

Progressive markup and model through semantic

hyperlinks

The markup and model capability is available in all

rich text fields, including text in notes as well as

‘‘raw notes’’ fields. When appropriate, it can create

relationships other than the generic ‘‘refers to’’

relationship. We call this ‘‘semantic hyperlinking,’’

and Figure 2 illustrates it.

The leftmost rectangle in the figure shows notes that

were taken by an architect in a meeting with a

customer. Even though the architects were thinking

in terms of GS Method and concepts such as use

cases, it was nevertheless effective to first capture

the discussion in meeting notes along with the

varied information about servers, locations, pro-

cesses, people to talk to, things to do, and other
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issues that came up. In reviewing the notes after the

meeting, the architect noticed a large passage of text

that related to a use case. The architect selected the

relevant text, starting with ‘‘Purchase by Unregis-

tered Customer,’’ and created a use case model

element from it (shown in the middle rectangle).

When a large passage of text such as this is selected,

an elided substring is used for the label of the

created model element, and the entire text is copied

into the ‘‘Raw Notes’’ field of the new model

element. In this way, a large passage of text is

quickly inserted into a model element, without

concern for its structure. (Structuring typically takes

place later.) In this case, after looking at the new use

case, the architect cut and pasted the bulk of it into

the ‘‘Main Scenario’’ field of the use case, where it

would later be refined for inclusion in the use-case

work product. Noticing that the scenario mentioned

a kind of actor, the architect selected the word

‘‘Customer’’ and created a new actor model element

(shown in the rightmost rectangle). AWB consulted

the metamodel, found that ‘Actors’ can be related to

use cases with the ‘‘Involves’’ relationship, and

automatically created this relationship and associ-

ated it with the hyperlink.

In this way, the initial simple pieces of model

structure can be progressively assembled by mark-

ing up and gradually adding structure to plain text.

Figure 3 shows this fragment of the model after the

architect marked up a second paragraph of the

meeting notes to create another use case and actor.

In some sense, parts of this work derive from

semantic linking and hypertext as in the Vannevar

Bush Memex
10

and Engelbart’s Augment.
11

These

Figure 2
Progressive markup and model
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works were precursors to modern Web and ‘‘wiki’’

concepts. Augment was used as a knowledge

management tool by defense intelligence groups for

analysis work.

High-level sketching

AWB users were also interested in using simple

diagrams to visualize relationships among elements,

even before determining which type of relationships

were appropriate. Basic diagrams in AWB address

this need, allowing a kind of high-level sketching

without the complications of semantics. Model

elements can be placed on the drawing canvas, and

generic relationships between them can be estab-

lished, selectively hidden, or displayed individually

or by relationship type. Basic diagrams have been

used to produce architecture overview diagrams,

but they are also useful thinking tools, when

coupled with the refactoring and refinement oper-

ations that allow gradual structuring of models on

the canvas.

Refactoring

To further assist in model refinement, AWB pro-

vides refactoring wizards to merge or split elements.

In our example, the architect may realize that the

inevitably imprecise language of informal meeting

notes suggests that ‘‘Customer’’ and ‘‘User’’ are

independent actors, when in fact they refer to the

same thing. As such, AWB is asked to merge the

‘‘Customer’’ and ‘‘User’’ elements and, with a little

help from the merge wizard, transforms this part of

the model into that shown in Figure 4. Similarly, the

architect may choose to split a model element, and

the ensuing wizard helps allocate the original

element’s relations among the resulting elements.

In addition, AWB lets users change the type of an

element. This is a significant capability, as mis-

understandings in categorizing meeting notes are

inevitable. The Change Type wizard assists the

architect in dealing with attributes and relationships

as the model element is transformed. This trans-

formation may result in errors as the ramifications

of the type change propagate throughout a model.

For example, a system may be misidentified as an

actor because the system’s acronym sounded like a

person’s name. When this is realized, much

information about this system may have already

been captured. The change type refactoring allows

the architect to focus on the ramifications of the

misunderstanding while keeping the bulk of the

captured information intact. This is an important

feature, which preserves the flow of architectural

work.

One model, multiple viewpoints
As discussed, AWB encourages opportunistic iden-

tification of many different kinds of elements,

facilitating architects’ workflow. To avoid consis-

tency problems, AWB keeps all of these elements in

one model. To avoid information overload, subsets

of that model are presented when appropriate, using

viewpoints to support specific activities. When

alternative views of the model are required, AWB

generates them.

Generating results from a single model

One benefit of the single-model approach is that

each element referred to in the architecture is

Actor
User

Actor
Customer

Figure 3
Model fragment 

Refers to

Refers to

Involves

Involves

Use Case 
Purchase by 
Unregistered Customer

Use Case 
Purchase by 
Registered Customer

Note
Meeting 10/17/2005

Actor
Customer

Figure 4
Model fragment after refactoring

Refers to

Refers to

Involves

Involves

Use Case 
Purchase by 
Unregistered Customer

Note
Meeting 10/17/2005

Use Case 
Purchase by 
Registered Customer
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represented only once. Although different facets of

an element may appear in different contexts or work

products, this does not require multiple instances of

that element. As an example, an actor can initiate a

use case, be located in a given location, and have

associated nonfunctional requirements without re-

quiring multiple actors in the model for each of

these aspects. Each of the work products referencing

that actor extracts appropriate information from the

model. With many of the architectural tools typi-

cally employed, this is not simple to implement.

One example of this is the automatic filtering of the

operational modeling diagrams. In many cases,

architects model a system of systems—a set of

applications deployed using a common infrastruc-

ture and sharing some services. It is often necessary

to separately visualize the operational model,

focusing only on those nodes that are relevant for a

particular application. Our operational diagrams can

automatically filter themselves based on a number

of criteria (which system is being focused on, which

physical environment is being modeled, etc.),

saving the user from having to explicitly maintain a

set of diagrams. From one model, a family of

diagrams can be generated by specifying different

filtering parameters.

Template-driven work products

In response to complaints from architects that prior

tools led them to focus on presentation rather than

content, we decided to reverse that in AWB. Thus,

AWB deliberately provided the modeling facilities

outlined earlier together with a document generator

based on Extensible Markup Language (XML) and

Hypertext Markup Language (HTML). This docu-

ment generator creates work products—documents

that combine boilerplate text, diagrams, and textual

descriptions of the model elements. In this way,

users focus on the model, and AWB generates the

documents.

Because the precise structure, layout, and style of

work products may vary, AWB’s document gener-

ation engine is driven by user-defined templates. By

creating a new template or by modifying a pre-

defined sample template, architects can produce a

custom system context, operational model, compo-

nent model, or other work product that meets their

customer’s needs and documentation standards.

Within a template, as described below, instructions

for gathering text and diagrams from the model

(using the AWB query language Quetzal, described

later) are combined with the HTML constructs

needed to format query results into paragraphs,

sections, and tables of a document, respecting

defined style constraints. For example, a fragment of

an operational-model work product may include all

of the conceptual nodes within a particular location

and create an HTML level-3 section labeled with the

value of the node’s name attribute, followed by the

node’s rich text description and tables of its deploy-

ment units and its connections to other nodes.

For this scheme to be viable, AWB includes textual

information in its models. By combining textual and

semantic information in one model, maintaining the

set of related architectural documents is greatly

simplified, even as the model evolves. Users simply

regenerate the documents as needed.

Editable work products

Unfortunately, the generated documents can look

quite different from most of the views and editors

that AWB presents for interacting with the model. At

times, this was inconvenient and even confusing for

practitioners when, for example, they tried to find

the source in the model for a text description of the

work product. Furthermore, for many practitioners

and for some kinds of modeling, forms, templates,

and tables are very natural input mechanisms. We

therefore began to explore what it would mean to

allow the generated work products to be used as

input devices as well as output artifacts.

To address this, we adopted a ‘‘modeling by forms’’

approach. Using this approach, with a little extra

work a template designer can create a template that

generates a document in which practically all

model-derived parts are editable when viewed in an

embedded browser-based editor. Precisely the same

engine is used to generate content either for a

printable work product or for this document-centric

editing. The template includes markups that are

instructions to the editor to make certain fields

editable and includes enough embedded informa-

tion to allow it to convert the document changes into

model changes. By breaking down large document

templates into parts that cover particular model

elements (such as the section of an operational-

model work product that pertains to a specific

location), AWB can use a series of WYSIWYG

editors whose layout and contents match sections of

the documents that AWB generates and which are

under the control of architects. For example,
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architects who are more comfortable entering the

details of a use case in a form-based text editor can

do so, while avoiding any ‘‘round-tripping’’ prob-

lems that can arise when going between external

documents and AWB models.

Activity-centric modeling

The behavior of AWB is responsive to the user’s

current activity through the viewpoint mechanism.

The following subsections detail this mechanism

and its interaction with the reminders feature.

Viewpoints: Focusing on one activity

A user tells AWB the activity he or she is engaged in

by selecting a viewpoint from the project view. The

choice of a viewpoint determines several aspects of

AWB’s behavior. First, it defines the contents of the

project view, presenting a relevant subset of the

model in a hierarchical form. For example, the

system context viewpoint lists one or more systems,

together with the exchanges and actors that repre-

sent, at the highest level, each system’s interactions

with its environment, as well as model elements

representing system context diagrams. Second, the

viewpoint determines the contents of the palette

view, offering prototypes and existing model content

suitable for assembly during the selected activity. In

the system context viewpoint, this includes target IT

systems, exchanges, actors, and system context

diagrams. The changing project and palette views

are another example of the ‘‘single-model’’ principle,

although driven by activity. Selection of viewpoint

also determines which reminders are present,

providing activity-specific progress guidance, sim-

ilar in principle to the guidance provided by the

WayPointer modeling product.
12

Defined by a domain expert and stored as part of the

metamodel, the viewpoint specification essentially

consists of definitions of each of the panes in these

project and palette views. Each pane is specified as a

set of queries that are run on the model and a set of

hierarchical structures in which to organize the

query results. The query language used is Quetzal,

which was specifically designed for dealing with

AWB’s modeling constructs and is discussed in

more detail later.

Editors containing activity-specific pages are also

responsive to the selected viewpoint. For example,

exchange model elements are relevant as part of a

system context model, and they can also be used

during use case modeling to group use cases. The

Use Cases page of the Exchange editor shows

additional information about how the exchange has

been refined into use cases. When an editor is

opened, it is automatically set to show the relevant

page, based on the currently selected viewpoint. By

ordering and placing at hand those resources and

elements that are needed, a viewpoint helps the

architect focus on an activity.

Handling loose ends: Reminders and Quick Fixes

Populating models by marking up documents or

creating informal diagrams can quickly lead to fairly

large models. Typically, users create many disasso-

ciated parts of models, along with the occasional

redundancy. This parallels the thought process

involved in architectural work, as architects often

work with fragmentary information, which is full of

loose ends too numerous to track manually. AWB

Figure 5
Resolving reminders in AWB
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handles loose ends with reminders, shown in the

bottom-most pane of the project view in most

viewpoints. Typically, reminders show elements

that have been identified but not yet properly

incorporated into the model, which suggests that

there is more work to be done. In the implementa-

tion, reminders are also queries run against the

model and can therefore illustrate anything com-

putable by Quetzal. AWB only presents reminders

when the focus is on an activity for which they are

relevant, as determined by the viewpoint.

In the example shown in Figure 1, after gleaning

system context elements from a note, the architect is

reminded (in the lower left pane) about existing

elements that may be relevant to the assembly of the

system context. With the series of drag-and-drop

gestures shown in Figure 5, reminders are resolved

and disappear, and the architect rapidly assembles

the system context diagram as shown in Figure 6.

An architect may resolve each reminder at any time

and in any way that he or she chooses, or an

architect may decide to ignore it completely. AWB

does not insist that reminders be handled and will,

in fact, tolerate many kinds of errors and incon-

sistencies in the spirit of Reference 13. An out-of-

scope exchange may be deleted, brought into scope

through dragging and dropping, merged with

another exchange, or even refactored to become a

use case for later consideration during a more

detailed phase of modeling.

Viewpoints have evolved over time to include

sufficient information to ensure that architects need

not constantly switch viewpoints to look for the

elements that they need in their work. Reminders

act as a propellant that helps push practitioners

through the design process. A common pattern is

that work done in one viewpoint generates re-

minders to be addressed in other viewpoints.

As an example, consider an architect who has been

exploring how to support a set of use cases by

mapping out component interaction diagrams for

representative scenarios. As each scenario is de-

Figure 6
System context with reminders resolved

Artists

Record execs

Fans

track trends in the fan base

track revenue/financial info

setting up their own virtual record label

post news/information about tours

Marketing Data

Orders

Sales Data

Big Market Intelligence

Big Royalty System

Music Web System Big Fulfillment System
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constructed and responsibility is allocated to repre-

sentative components, new components, new oper-

ations, and new intercomponent dependencies are

introduced. After designing sequences for a number

of scenarios and accumulating many operations and

dependencies, the architect steps back and consol-

idates the component model. In doing so, the

architect needs to view the model with components

at center stage rather than use cases or scenarios.

Switching to the component modeling viewpoint,

the architect sees a hierarchy with components

decomposed into interfaces, and interfaces into

operations. In this viewpoint, reminders indicate

that new operations have been introduced and need

to be grouped into interfaces. Moreover, from this

viewpoint the architect is better able to note

redundant operations introduced to support differ-

ent scenarios and to merge them.

Certain inconsistencies are more serious—outright

violations of the underlying metamodel, for exam-

ple. When this happens, the offending model

elements are flagged with error indicators wherever

they appear, and AWB provides Eclipse Quick Fixes

to assist the user in clearing things up. These error

indicators are visible in all viewpoints.

DESIGN AND IMPLEMENTATION OF AWB

In this section, we discuss the layered architecture of

AWB, the use of models and metamodels, and the

generation of work products.

AWB’s layered architecture

AWB is built as a collection of plug-ins to the Eclipse

platform. Eclipse provides much to build on: a

platform-independent graphical user interface tool-

kit and application framework, a convenient and

customizable way to manage panes, menu items,

and controls, a powerful model of resources and

builders, easy access to versioning and source

control systems, a generic facility for error reporting

and Quick Fixes, and so on. On top of Eclipse, AWB

adds a core set of modeling facilities, views and

editors for displaying and editing models, a query

engine, a model refactoring engine, and search and

document-generation facilities. These facilities,

however, are mostly generic; that is, they are not

particularly specialized to the domain of IT archi-

tecture, but rather to the task of building modeling

tools which generally function in the way that we

have described thus far. We call this core the ‘‘xWB’’

platform.

Above this level, a metamodel customizes xWB to

the domain of IT architecture. The metamodel

includes a specification of the allowable types of

model elements, their attributes, and their relation-

ships to each other. It specifies the viewpoints for

that domain and the contents and layout of various

editors. To help architects avoid the difficulty of

designing on a ‘‘blank sheet,’’ a metamodel can

include starting points for a model. These starting

points can include typical modeling constructs or

predefined work-product templates, for example.

The AWB metamodel has a starting point that

includes templates for all of the key work products

described previously. The metamodel consists of an

XML schema for the key type definitions, with some

supporting XML files to define relation type hier-

archies, allowable relations, viewpoints (including

their reminders), and editor behaviors.

Because richer domain-specific behavior is often

needed, xWB defines extension points. This allows

plug-ins to AWB to provide richer kinds of behavior,

usually attached to specific kinds of model elements

or metamodels. Diagram editors are examples of

this, ranging from a simple diagram that shows

nodes as boxes and relations as lines to styles of

diagrams that are specific to system context and

operational modeling.

In this way, AWB was designed with a ‘‘shearing

layers’’
14

approach, putting the most basic and

common alterations at the simplest layers. View-

point definitions were one example of changes that

needed to be simple and quick.

The first level of customization, then, is in those

parts of the tool that are driven by model data.

Work-product templates, some editor definitions,

and user-defined reminders are at this level and are

very rapidly customizable, even by fairly naı̈ve

users.

The second level of customization is at the

metamodel level, particularly the peripheral aspects

of the metamodel. This is where viewpoints, for

instance, are defined and can be customized very

quickly, but this requires understanding the more

complicated viewpoint-specification language.

The third level of customization is at the heart of the

metamodel itself. Metamodels have a more intricate

structure than templates and queries, and, accord-
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ingly, fewer people are able to customize them.

Metamodel customization enables minor tweaks to

the metamodel, for differing practices, or those

made to accommodate major changes, such as

entirely different domains. Examples of the latter

include retargeting the workbench at requirements

tracking, or even managing an antique-glass collec-

tion, as one author did; in effect, varying the ‘‘x’’ in

xWB. It allows the creation of new types of nodes,

editors, viewpoints, and so on. This is a mechan-

ically simple task, but requires detailed analysis and

understanding of the domain. At this level, a subject

matter expert can quickly iterate and experiment

with changes to the metamodel, as we did with our

users in designing AWB.

A fourth level of customization involves Eclipse

plug-in extensions. Their use enables the addition of

a fairly arbitrary variety of gadgetry at a relatively

high cost of programming. Our customized diagrams

are examples of this. Alterations here required a

more typical coding and debugging cycle before they

could be released to our users.

Model and metamodel

The AWB internal representation of a model is

simple enough; it is a directed graph of nodes, which

are the model elements of interest (e.g., users,

nonfunctional requirements, and use cases). Nodes

are connected by relationships (e.g., a user initiates

a use case). Both nodes and relationships have

properties of scalar data (e.g., a user has a name).

Nodes and relationships also have types from a type

hierarchy; for example, a nonfunctional requirement

node may be qualitative or quantitative; the

relationship ‘‘uses’’ is more specific than the

relationship ‘‘depends on.’’ The typing is advisory

rather than strict; for example, a particular user

might be given a nickname property as well as a

name, or initiate a nonfunctional requirement, even

if users ordinarily do not. This is a particularly

powerful feature of AWB. Especially when refac-

toring is used, the model can be put into unusual

states. Reminders and Quick Fixes then help users

return the model to a normative state, as

appropriate.

A metamodel describes the node and relationship

type hierarchies, properties, editors, viewpoints,

and so on. The most elaborate metamodels naturally

concern IT architecture and requirements, but, as

described previously, the core xWB platform is not

tied to those topics; we also have metamodels for

expressing metamodels themselves. (Indeed, a

‘‘metamodeler’s workbench’’ built on xWB is the

primary editor for our metamodels.) The metamodel

is consulted by many parts of the workbench. The

Relator wizard, for example, uses the metamodel to

present a set of relationships to a user when relating

two model elements. The markup and model

facilities query the metamodel to see if semantic

hyperlinking can be employed.

Work-product generation and queries

AWB can generate documents based on templates.

Templates are written in a hybrid of HTML, Quetzal,

and AWB-manipulation commands. For example, to

create an alphabetical, numbered list of the labels of

all user nodes, the template would include the

following:

,ol.

,for-each-node type¼‘‘user’’ sorted-by¼‘‘label’’.
,li. ,label/. ,/li.

,/for-each-node.

,/ol.

The template language is reasonably simple, and it

has been used extensively. After spending some

time on an XQuery-based implementation of these

features, we opted to develop a language more

suited to AWB models.
15

Quetzal is a moderate-size

language with strong resemblances to OCL2 and

XQuery, designed with the relatively naı̈ve user in

mind. For example, to tell if some other node has the

same label as node N, the following query can be

used:

all.node.exists(it !¼ N and it.label ¼ N.label)

or, more verbosely,

FOR othernode IN all.node

WHEN othernode ! ¼ N
SOMETIMES othernode.label ¼ N.label

Substantial queries can be written to customize

documents and behavior. Other aspects of the

system are controlled by Quetzal queries or scripts.

Viewpoints—especially the contents of Reminder

panes—are defined in Quetzal. As mentioned, the

user-defined reminders are written in Quetzal.

Quetzal can also be used as a scripting language

through a Command facility, which allows new
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commands to be added to appropriate context

menus in AWB (these menus launch Quetzal

scripts).

The document generation facility, coupled with an

embedded, wrappered browser (i.e., one that has a

programming interface to allow it to be used as a

component in Eclipse), is used to create editable

work products. These editable work products are

essentially ‘‘work products with a twist,’’ viewed by

our embedded browser. The document generation

facility provides a twist (i.e., a clever device) in that

it inserts additional HTML ,span. tags which

include attributes ignored by the browser but crucial

to AWB. These attributes identify the source in the

model of the various document parts. Depending on

where in the work product the user clicks, AWB can

selectively place the browser into edit mode, track

the user’s changes, and push them back into the

appropriate places in the model. Another twist is

that for certain kinds of queries, such as iterations

over lists of related model elements, additional

markup includes embedded Quetzal commands

telling AWB how to handle the addition and removal

of elements of that list. This lets AWB augment the

browser’s context menu with commands to add and

remove elements of the list, and then AWB can push

the appropriate changes into the model. For

example, looking at the use-case work product, the

architect can add new or existing users to the list of

actors involved in the use case, and AWB will create

or destroy the appropriate relationships and ele-

ments in the model.

EXPERIENCE

The goal of the AWB project, as stated previously,

was to design a tool that supports the realities of

field-level practice, while supporting the formalities

of a given architecture method. To validate our work

and to drive its refinement, we launched a program

of field trials in which IT architects used AWB as

part of ‘‘live’’ customer projects.

There have been three major phases of our field trial

program. First, IT architecture work was done with

AWB in 2003 by an IT architect who was a member

of the AWB team. His feedback was incorporated

into the tool design immediately. Second, there was

an initial beta program in 2004, where AWB was

used more broadly within the IBM IT architecture

community, mostly for requirements gathering,

proposal response, and early solution design. Third,

a pilot program was established in 2005 and is still

ongoing. As part of this program, IT architects are

using AWB on both the functional and operational

aspects of solutions, as part of end-to-end architec-

ture work on major customer projects.

In the following sections, we detail some of the

experience, feedback, and lessons learned through

our field trial programs. (Some of the feedback has

already been presented earlier in this paper as part

of the AWB design rationale.) In brief, feedback has

been extremely positive, and to our great delight, the

features of AWB are indeed proving to be highly

effective in support of the creative process and work

styles of practicing IT architects.

Initial requirements gathering

A number of architects have used AWB ‘‘live’’

during customer meetings, with their laptop display

projected in place of a whiteboard. They used AWB

to document brainstorming discussions, capturing

initial thinking about the vision, scope, interfaces,

and primary requirements for a system. The

architects reported that the ability to take notes,

mark them up ‘‘on the fly,’’ form basic models,

instantly generate system context diagrams, and

update it all dynamically proved to be invaluable in

keeping discussions focused and on track. They

reported that the stakeholders were comfortable that

all parties involved understood the scope of the

solutions and the interfaces involved. Customers

were impressed and very enthusiastic about the

style of work that the new tool permitted.

The architects also reported that in follow-on work,

linking proved very useful. If pieces of information

or requirements seemed conflicting or seemed to

require excessive design to satisfy, the architect

could get back to the source of the information and

perhaps request clarification or restatement of the

requirement.

Proposal analysis

A consulting architect used AWB to conduct a

quality assessment review of a 49-page proposal

prepared in response to a 79-page customer Request

for Proposal (RFP). He used AWB to capture

requirements from the RFP, including the current IT

environment, functional requirements, nonfunc-

tional requirements, architectural guidelines, and

required deliverables. In addition, he highlighted

requirements that he suspected would be challeng-

ing to satisfy. He then used AWB to capture the
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essence of the proposal, including use cases,

components, nodes, and architectural decisions. He

highlighted areas of concern with respect to techni-

cal viability.

The captured architectural information then served

as the basis for his assessment of the quality of the

proposal, including whether all components to be

developed were included in the estimates, whether

all COTS (commercial off-the-shelf) components

were included in the price calculation, and whether

all of the deliverables requested by the customer

were included in the estimates. The architect used

AWB to present his findings during a workshop with

the proposal team.

He reported that AWB helped him quickly gain

insight into both the RFP and the response. He made

extensive use of the ability to link multiple text

passages to a single model element as a way to

isolate inconsistencies and to tie together a number

of different references, often using different names,

to the same system component.

Early stages of solution design
A consultant, working as part of a consortium

preparing a proposal for a large government portal

project, used AWB for the solution design phase.

AWB was used ‘‘live’’ to capture the various

architectural aspects emerging from workshop dis-

cussions. AWB allowed the consultant to quickly

capture technological and use case requirements

from all the project consortium partners (18 partners

in total from different industries, with different

backgrounds, and with different views of the term

‘‘architecture’’). The consultant used AWB mainly to

consolidate his notes and draft early versions of the

architecture overview, actors, use cases, external

collaborations, and system context. The consultant

reported that AWB greatly eased his understanding

of the solution and allowed him to ‘‘play’’ with

different options to realize the architecture. He

further reported that AWB proved extremely suc-

cessful in bringing together all of the participants

and bringing them all up to the same level of

understanding.

Infrastructure redesign
In one pilot engagement, AWB was used for a large

project involving infrastructure redesign. The cus-

tomer was moving from a ‘‘thick client’’ approach to

a ‘‘thin client’’ approach and was taking that

situation as an opportunity to completely redo the

architecture for 95 percent of the infrastructure of

the system. The system consisted of hundreds of

servers supporting 11,000 end users. The team using

AWB reported that the architecture was developed

in far less time and with far less effort than it would

have taken using traditional tools, a savings of

approximately 25 percent. The architects are now

handing the architecture over to the development

design authority—that is, the group that will own

the architecture through the rest of the life cycle—

and AWB is to become the repository of the

architecture and the tool for its manipulation for the

long term. One of the project principals remarked,

‘‘AWB is now truly a viable tool for generating and

manipulating large complex architectures for real

engagements.’’

Re-hosting and server consolidation

In another pilot engagement, IBM Global Services

was contracted to move a customer’s data center to

an IBM hosting center. The existing customer

system was a complex three-tiered system, with

complex firewall rules and stringent high-security

and high-availability requirements. As part of the re-

hosting effort, the application and infrastructure

architects used AWB to consolidate 38 Web appli-

cations, which allowed the number of servers for

those Web applications to be reduced from 86 to 36.

The consolidation work involved documenting

functional application components and their de-

pendencies, mapping them to conceptual server

nodes, and realizing those nodes with the physical

server nodes that became the actual servers. The

architects additionally had to handle mapping of

middleware components based on application re-

quirements. As part of this work, they developed

their own custom ‘‘server build’’ work product

template, listing machine configurations, middle-

ware requirements, and deployed application com-

ponents. This work product was input into Excel**

‘‘build sheets,’’ which were handed over to the

server build team, who actually built and configured

the servers according to these specifications.

The architects reported that as a result of using

AWB, they saved 200–300 hours on this engage-

ment. They further estimated that during subse-

quent server consolidation, having the AWB models

as a starting point will save them 60 percent of the

architecture effort, as compared with projects where

no suitable architectural documentation exists, and

10 percent, as compared with projects where some
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architectural documentation exists in Word and

Visio. The architects indicated that AWB’s consoli-

dated view of the functional and operational models

will allow them to maintain an accurate, up-to-date

description of the architecture as it evolves.

Further, the architects reported that the excitement

generated by the use of the tool was a catalyst in

getting application and infrastructure architects to

collaborate—a distinct benefit of using AWB. They

also reported that with AWB they could instantly

satisfy customer requests for summary diagrams of

the IT environment. Before AWB, pulling together

such diagrams was a daunting task. The filtering

options of AWB diagrams and work products were

also crucial, in that it was often necessary to

produce diagrams of subsets of the environment.

Finally, the architects reported, ‘‘Without AWB we’d

still be documenting [this consolidation], or maybe

we wouldn’t be documenting it at all,’’ and they

indicated that AWB smoothed the handoff to the

operations group that would run the system.

The consulting architect responsible for quality

assurance (QA) on the project reported that use of

AWB made QA much faster and more certain. The

review of the architecture took roughly half the time

that it would have taken otherwise. The QA

architect reported that AWB helped the application

and infrastructure architects follow GS Method more

closely and use ADS more appropriately. The QA

architect was delighted at how easy it was for him to

navigate around the various models. The improved

quality and easy understandability of the architec-

tural models both likely contributed to the reduced

QA review time. Overall, the QA architect reported

that instead of the usual many calls to solution

architects asking for missing information or for

clarifications, for this review there were just three

calls asking why a certain approach was taken or if

something had not been considered, and AWB

facilitated very effective communication. As for the

learning curve inherent in any new tool, the QA

architect remarked, ‘‘I was able to get up to speed

and productive with AWB remarkably quickly.’’

Lessons learned

In this section, we present the lessons learned from

working with a large number of IT architects on

realistic industrial-scale architectures; namely, what

issues are of major importance to the practitioner

community and what resonates strongly with them.

We hope these insights will help steer researchers

toward areas that will have a lasting impact on

practice.

User population

Most IT architects are under enormous time

pressure. Thus, they will not adopt any tool that

takes very long to learn or that takes longer to use in

production work than the tools they are currently

using. This is the case even if the new tool offers

significant ‘‘downstream’’ benefits. AWB addresses

this by trying to be as streamlined as possible for the

work styles we observed.

Practitioners are constantly being bombarded by

improved or extended metamodels, processes,

methods, and best practices. Keeping up with this is

daunting and overwhelming. Any tool that provides

‘‘roadmaps’’ or guidance in these areas is greatly

appreciated. Although more detailed process-driven

and technique-driven guidance would be a bonus,

AWB reminders begin to address this issue.

Many IT architects are not computer science majors;

instead they are business or IT majors (a number of

them have remarked that a ‘‘graph’’ is something

that shows the value of their stock portfolio over

time). For these users, any tool that supports a

document-editing or diagram-editing approach to

modeling is far more effective for them than a tool

that only supports more explicit graph manipulation

(i.e., adding or deleting nodes and edges). AWB is

beginning to address this with the modeling by

forms approach. Further, allowing users to work at

multiple levels of detail with respect to the

metamodel has proven to be effective. For example,

when working with GS Method and ADS, it is more

effective for some users to view and manipulate

models as components simply being placed on

servers. Such users can disregard details of the

component interfaces, operation signatures, de-

ployment units, and so forth.

The context for IT architecture work

In the real world, ‘‘green field’’ systems, that is,

those starting completely from scratch, are very

rare. Tools simplifying the process of integrating

with legacy systems would therefore provide enor-

mous benefits. Such tools could support rapid

reverse-engineering or import of models of legacy

systems and highlight contact points between the

system being developed and the external and legacy
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systems with which it will be integrated. In addition,

tool support for asset reuse and sharing between (or

federation of) models is becoming increasingly

important.

Architecture work never takes place in a vacuum—it

is performed by teams which include the architec-

turally ‘‘uninitiated.’’ Examples include both ‘‘up-

stream’’ customer subject matter experts and

business analysts and ‘‘downstream’’ developers

and operations staff. Tools for architects should

therefore incorporate conventional team support for

their models and integrate well with tools for others

on the team. An integrated tool suite should allow

for relatively seamless collaboration between team

members. When material is exported to other tools

and can be altered there, support is needed for

‘‘round-tripping’’; that is, it should be possible to

accept revisions to the material and fold the changes

back into the artifacts being maintained by the

architectural tool. This can be challenging because

integration with opaque external tools can be difficult.

More research into suitable techniques is needed.

Consulting architects often find that customers have

standardized their own custom representation of

architecture and specific work-product formats, and

they insist that these be used. As a result, for an

architectural tool to be acceptable it must be easily

extensible and customizable. AWB’s layered archi-

tecture supports this. Further, consultants are

expected to deliver polished work products and

reports suitable for many stakeholders. Any tool that

produces anything less creates the burden of having

to transfer the content into another tool for final

polishing, with resulting consistency management

issues.

An ideal in this context would be to provide effective

support for asset reuse, which is regarded as a major

key to success for large-scale architecture organiza-

tions. A facility that allows effective harvest, search,

and reuse of assets would be a boon to architects,

increasing productivity and improving the quality

and consistency of delivered architectures. Effective

asset reuse entails support not just in finding assets

but also in using them; for example, helping to map

parts of an existing model to proper ‘‘touch points’’

in the assets to be reused.

Leverage by automation

The feedback we have received from IT architects

indicates that they are pleased with the extent to

which AWB supports their style of doing the basic

work of producing architectures and generating

work products. At the same time, they tell us that

now that AWB supports a full representation of

architectures, they eagerly anticipate the leverage

that could be obtained by automating many of the

time-consuming tasks they currently do manually.

By keeping the generated work products up to date

and consistent, AWB already saves its users an

enormous amount of time and improves the quality

of their work products. Other ways that AWB could

save users time include automation of the following

functions:

1. Impact analysis based on traceability—The links

in AWB currently provide a measure of trace-

ability, that is, a user can start from one artifact

and follow links to other artifacts that somehow

are related to, or gave rise to, that artifact. Given

this traceability information, practitioners would

greatly appreciate automated analysis of the

impact of proposed changes to the architecture.

2. NFR formalization, propagation, budget alloca-

tion, and aggregation—If AWB were to allow for

finer-grained and more detailed formalization of

nonfunctional requirements, it would be possible

for automated analysis to propagate NFRs from

the point where they are specified (e.g., on the

basic categories of interactions in the system

context) to points further ‘‘downstream’’ in the

architecture, for example, to use cases, scenarios,

components, servers, and network connections.

This would provide a basis for algorithms for load

forecasting, performance analysis, and capacity

planning.

3. Scenario walkthroughs (for validation)—Archi-

tects spend a great deal of time validating

architectures by putting together interaction and

sequence diagrams that trace progress through

the system for a given scenario, including both

scenarios where everything proceeds normally

and scenarios where things like high-availability

features come into play. With sufficient formal-

ization, AWB could automatically produce dia-

grams and allow users to introduce faults or

constraints to determine the effect on the

interactions.

4. Derivation of lower levels from higher levels—Part

of the modeling process involves producing

progressively more elaborate and detailed spec-

ifications from initial higher-level specifications.
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Given a representation of techniques, best prac-

tices, and heuristics, AWB could automatically

produce starting points for lower-level specifica-

tions from higher-level specifications.

5. Systems configuration—Practitioners spend an

inordinate amount of time configuring systems

(hardware, middleware, and software), making

technology choices, selecting compatible ver-

sions, and setting parameters. Given a knowledge

base, AWB could automatically produce a start-

ing point for systems configurations, thereby

saving practitioners significant amounts of time

and allowing them to produce configurations that

are more likely to be complete and effective.

The preceding only scratches the surface of the

kinds of work that could be automated once full

architectural models are captured in a tool such as

AWB.

FUTURE WORK

There are a number of areas for future work and

innovation as AWB continues to evolve. Some of

these were alluded to in the previous section. Those

included modeling by forms, variable levels of

metamodel and model detail, integration with other

tools and providing for ‘‘round-tripping,’’ extensi-

bility of the metamodel by the end user, a

convenient means of work product definition, and

facilitating asset reuse and reference architectures.

The previous section also described a number of

areas for future work relating to various forms of

automation.

Controlled experiments in which two teams conduct

the same engagement in parallel are prohibitively

expensive and often impossible when customer

meetings and interviews are part of the process. We

do hope to collect measurements from production

engagements done using AWB, and to compare

those measurements with benchmarks established

for similar engagements. Until such studies are

undertaken and completed, our results are primarily

qualitative rather than quantitative, and we rely on

feedback from highly experienced senior practi-

tioners to determine the success of AWB at achiev-

ing its goals.

Additional areas for future work include team

support; namely, providing an effective means by

which one user can survey and understand the

changes made to a model by another user before

accepting the changes or merging other changes

with them; and support for ‘‘stages’’ of an architec-

ture; namely, being able to support a number of

versions of an architecture concurrently, with

promotion of model fragments from one stage to the

next. Another area is that of enterprise architecture

compliance; that is, providing support for verifica-

tion that an architecture complies with an estab-

lished enterprise architecture.

CONCLUSION

AWB is a tool for IT architects to gather, structure,

and maintain the information that constitutes the

architecture of an IT system (or collection of IT

systems). It emphasizes evolution from partial,

informal, overlapping, and inconsistent information

into precise formal models that constitute ‘‘action-

able’’ specifications. With AWB, users maintain one

composite model in a central repository and then

generate many formatted work products as reports

that are always accurate and up to date.

AWB innovations and features (to date) include:

opportunistic modeling, complementary textual hi-

erarchical and diagrammatic model manipulation,

viewpoints, reminders, model refactoring, work

product modeling, generation, and direct editing and

GS Method operational-modeling support.

AWB has been used in production engagements by

IT architects, and the response has been very

positive. Work is now proceeding on generation of

artifacts that feed into downstream solution devel-

opment activities, as well as closer integration with

tools for development, deployment, and testing. In

addition, work is underway on using AWB to

produce reference architectures as reusable assets

for a number of the industries served by IBM. AWB

has proven to be highly effective, even in these early

field trials, and it will continue to evolve even as it is

deployed ever more broadly.
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