
Virtual XML: A toolbox and use
cases for the XML world view

&

K. H. Rose

S. Malaika

R. J. Schloss

Although the Extensible Markup Language (XML) has gained in popularity and has

resulted in the creation of powerful software for authoring, transforming, and querying

XML-based business data, much information remains in non-XML form. In this paper

we introduce an approach to virtualize data resources and thus enable applications to

access both XML and non-XML sources. We describe the architectural components that

enable virtual XML—a toolbox that includes a cursor model, an XML-view mechanism

such as the view created with the Data Format Description Language (DFDL), and XML

processing languages. We illustrate the applicability of virtual XML through a number

of use cases in various environments. We discuss the products that we expect from

vendors and the open-source community and the way enterprises can plan to take

advantage of virtual XML developments. Finally, we outline future research directions

that include a vision of virtual XML that covers large-scale structures such as entire file

systems, databases, or even the World Wide Web.

INTRODUCTION

Enterprises seeking ways to make their business

processes more integrated, more nimble, and more

flexible are evolving their data centers and software

platforms by using concepts that IBM has called the

On Demand Operating Environment. Increased

integration can be achieved through IT simplifica-

tion, and a major strategy for simplification is

virtualization. Although much work has been done

on virtualization of physical servers and provision-

ing of applications over a grid of such servers, less

attention has been given to the idea of virtualization

of data resources and the use of fewer languages for

querying, reporting, and manipulating stored data.

An example of virtualization of data resources is

provided by WebSphere Information Integrator,
1

which offers a relational interface to heterogeneous

data. This paper discusses the idea of information

virtualization by using the Extensible Markup

Language (XML) data model as the framework.

Despite predictions to the contrary, XML has

become a very successful notation for information

exchange between disparate systems. The technol-

ogies, tools, and knowledge accumulated over

XML’s long ancestry starting with SGML (Standard

Generalized Markup Language)
2

have contributed to

its success. XML’s support of different platforms and

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ROSE, MALAIKA, AND SCHLOSS 411

diverse encodings, and now its use in various

industries and technologies, have also been a factor.

Due to its success, XML has evolved further and is

no longer constrained to being just an exchange

format. These are some examples of its evolution:

� XML has become a storage format for data held in

files and databases. Indeed database systems

focused on managing XML have been developed.
� XML is the underlying notation for Web services,

which are now used in many distributed systems.

Web services standardization often relies on the

XPath
3,4

interface to manipulate pieces of XML

associated with Web services.
� XML is supported by a variety of widely deployed

tools and interfaces, such as XMLSpy**,
5

and

open source software, such as XML parsers from

the Apache Software Foundation.
6

� XML has popular generic standards such as

XPath
3,4

for manipulating XML, XSLT
7,8

for

transforming XML, and XQuery
9

for querying

XML, as well as industry-specific standards such

as HL7
10

and ACORD
11

for exchanging informa-

tion in the health-care and insurance industries.

With XML’s success, technologies have naturally

evolved to convert non-XML data into XML, and to

convert XML data into other forms. In the world of

relational databases, Structured Query Language

(SQL) has been extended to SQL 2003 to incorporate

SQL/XML.
12

One of SQL/XML’s features is the

availability of functions that assist in the generation

of XML documents from relational data (e.g.,

XMLELEMENT, XMLATTRIBUTES, and XMLAG-

GREGATE). SQL/XML also describes a default XML

format for relational data. See Reference 13 for the

W3C** XML Schema (an XML document describing

allowable structure and data types)
14

defined in the

ISO:SQL/XML—Part 14 (SQL 2003) specification. An

alternative XML schema, which is common to the

result of every possible SQL query, is provided

through JCP (Java Community Process**) JSR (Java

Specification Request) 114.
15

In addition there are many types of data that are not

represented as XML for practical reasons, such as

data generated by low-level sensors, data residing in

archives, data not used for exchange with unknown

partners, and data that are not tree structured (e.g.,

image metadata, video metadata). The inability to

format data as XML may be caused by the lack of

computing power, bandwidth, or storage capacity,

and sometimes, it may even be necessary to trans-

mit the same data in both XML and non-XML

formats as legacy requirements dictate.

In this paper we propose virtual XML, an approach

to an XML-based virtualization of data resources. As

part of this approach, we separate the representation

of the data from the processing model; that is, we

describe how to support processing of non-XML data

as though it is XML and without explicit conversion

to XML. The benefits associated with the virtual

XML approach include leveraging existing inter-

faces, tools, knowledge, and communities of interest

and also the ability to process both non-XML and

XML data in a uniform way by using XML

processing languages.

Through virtual XML, a default view can be

constructed for a well-known non-XML format such

as EXIF JPEG (Exchangeable Image File Joint

Photographic Experts Group, an international spec-

ification to encode information into the headers or

application segments of a JPEG file that includes

shutter speed, aperture, and the date and time the

image was captured).
16

Another example of a well-

known non-XML format for which a default view

could be created, is ASN.1 (Abstract Syntax Nota-

tion 1), an international data standard used in

communication protocols such as mobile phone

systems.
17

Alternatively, a specific view can be

created for a non-XML format using a mechanism

such as DFDL (Data Format Description Language),

which is described later.

To achieve a reasonable notion of virtual XML we

need an XML abstraction, that is, a data model.

Fortunately, this is provided by the W3C XQuery 1.0

and XPath 2.0 Data Model,
18

which extends the XML

Infoset
19

with new features to meet the require-

ments for the new XML processing languages, XPath

2.0,
4

XSLT 2.0,
8

and XQuery 1.0.
9

The extensions

include the following:

� Supporting W3C XML Schema types, both struc-

tures
20

and simple data types,
21

that extend the

XML Infoset with precise type information
� Representing collections of documents and not

just single documents
� Describing the formats of arguments and the

results of XML processing
� Supporting intermediate results during XML pro-

cessing, such as typed atomic values arising from

ROSE, MALAIKA, AND SCHLOSS IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006412

an arithmetic or logical expression, and ordered

heterogeneous sequences arising from a path

expression

Because the concern of virtual XML is processing

rather than representation, adopting the W3C

XQuery 1.0 and XPath 2.0 Data Model
18

is a good fit.

The data model specifies the accessible information

in documents, but because W3C has not specified

the programming-language interfaces or bindings

used to represent or access the data, we propose an

application programming interface (API) for ac-

cessing virtual XML.

We would consider using virtual XML when we

have some non-XML data that we need to process

with agreed-on and well-known XML-based inter-

faces. We may also consider a virtual XML approach

when we need to make some data visible, which for

some reason we cannot represent natively as XML

but would like to offer also through some standard

XML-based interface, for example, those used by

Web services.

Virtual XML could benefit a variety of general-

purpose software products and tools and applica-

tions dealing with stationary data and data streams;

for example, the following:

1. Data publishers—These are producers of non-

XML data that have to be made available later,

without reformating, in an XML format or

through XML interfaces. There is much demand

for such capabilities for data producers that

cannot afford the cost of publishing as XML (e.g.,

resource-constrained sensor devices or mobile

phone systems that publish through ASN.1).
17

2. Data brokers—These are processors that interpret

data in messages and events, such as for mapping

and transformation purposes. Not all data that

brokers process is in XML. Virtual XML enables

brokers to process data through a common XML

model and interfaces, and to offer their users plug

points with standard XML interfaces even for

heterogeneous data. For example, an ESB (En-

terprise Service Bus)
22

contains brokers that

offer service transformation support. These are

points where data transformations and data

filtering can take place and where users can

supply their own transformation scripts. With a

virtual XML approach, an ESB can provide a

uniform transformation environment based

around XML, even though the data being trans-

formed may not be XML.

3. Data consumers—These are software compo-

nents that interpret existing non-XML data in

files, databases (and general archives), and

messages as though it were XML, a capability

provided through tools that offer XML interfaces.

Software processing ASN.1
17

data as though it

were XML through an XML interface such as

XPath
3

is an example in this category.

4. General purpose data-oriented software and vir-

tual XML applications—These are higher levels of

general-purpose software or applications that are

constructed with virtual XML technology. Soft-

ware that offers an XML interface to any ASN.1
17

data or to archived non-XML data is an example

in this category.

The rest of the paper is organized as follows. In the

next section we describe the virtual XML toolbox,

which includes a cursor model, an XML-view

mechanism such as the view created with DFDL, and

XML processing languages. In the following section,

we present several use cases for the preceding

& Virtual XML is a powerful
technology that enables
processing of non-XML data as
though it were converted to
XML &

patterns, and we point to a worked-out example of a

virtual XML application that we published else-

where. We summarize our results in the last section.

Along with the list of cited references and notes, we

provide an annotated list of general references for

work related to XML views.

THE VIRTUAL XML TOOLBOX

In this section we present three technologies and

tools that together enable virtual XML solutions: a

cursor model, an XML-view mechanism such as the

view created with DFDL, and XML processing

languages. But first, we start by explaining the

important role that XPath
3

plays.

The ubiquitous XPath

One of the most common ways of processing XML

data today is to select subsets of that data by using

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ROSE, MALAIKA, AND SCHLOSS 413

the XML Path language, XPath.
3

XPath is provided

as an addressing mechanism in many programming-

language modules used to read or filter XML

content, such as LibXML2.
23

The DOM (Document

Object Model) Version 3 standard
24

even includes a

description of how to support XPath in a generic

way.
25

XPath expressions are also fundamental to

higher-level languages for operating on XML, such

as XSLT
7,8

and XQuery 1.0.
9

Work is now being

completed on a second version of XPath, XPath 2.0.
4

To illustrate XPath, consider the following XML

document:

,flight-updates.

,country.

,origin.CPH,/origin.

,destination.LAX,/destination.

,lift-off-time.2005–07–11T08:00:00þ01:00
,/lift-off-time.

,passenger-count.140,/passenger-count.

,company-name.SAS,/company-name.

,/country.

,country.

,origin.LHR,/origin.

,destination.LAX,/destination.

,lift-off-time.2005–07–11T08:00:00þ00:00
,/lift-off-time.

,passenger-count.160,/passenger-count.

,company-name.BritishAirways,/company-name.

,/country.

,/flight-updates.

A very simple XPath expression to select informa-

tion from this document is

/flight-updates/country/origin

The expression reads as ‘‘from the document root

select the flight-updates child; for each of those,

select the country children; for each of those, select

the origin children.’’ Evaluating the expression

returns a sequence of two nodes, similar to the

following:

(,origin.CPH,/origin.,,origin.LHR,/origin.)

(where we have adopted the use of ‘‘(. . .,. . .)’’

notation for sequence construction from XPath 2.0),

except that the members of the sequence are not

actually subtrees but references into the original tree.

In most cases, the entity that creates an XPath

expression uses names of elements or attributes and

their structural relationship to each other in the

XPath. This is so because all documents processed

are part of a class described by an XML Schema,

using the W3C XML Schema Definition language,
14

although DTDs (Document Type Definitions),

RELAXNG Schemas,
26

and other schema represen-

tations may also describe the document class.

A cursor model
A cursor is a control mechanism for managing

interaction with a potentially large data structure.

Cursors were introduced for relational databases
27

to encapsulate the entire state of an interaction with

a relational database, using the database query

language to change the state of the interaction (or

cursor state) with special controls to allow iteration

over the data currently captured by the query.

It is natural to wish to carry this notion over to XML

data with an XML query language such as XQuery.

So far, such efforts have been focused on two

approaches:

1. ‘‘Upgrading’’ a database cursor interface such as

JDBC** (Java Database Connectivity)
28

to allow

XML access to XQuery using relational pat-

terns.
29,30

2. Wrapping access to an existing in-memory

representation such as the DOM in a JDBC-like

interface.
31,32,33

For a survey of APIs for XML, see Reference 34.

None of these approaches, however, permit the

diversity of XML data access that virtual XML

requires: when using virtual XML, we can make

very few assumptions about the native organization

of the data. To allow for the minimal XML

processing capabilities as expressed by the XPath

and XQuery Data Model,
18

a universal XML cursor

should support the following:

1. A notion of current node through

� support for node-local access to the value of

the data model accessors that are not of node

type, and
� methods that navigate to the nodes returned

by accessors of node type, i.e., of type

document, element, attribute, text, process-

ing-instruction, and comment.

For more information about accessors and their

types, see Reference 18.

ROSE, MALAIKA, AND SCHLOSS IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006414

2. A notion of context sequence containing the

current node, as well as access to the context

position of the current node in the sequence

3. Easy navigation to a different node in the context

sequence

4. Primitives to ensure that all functions and

operators
35

are available

5. Cursor management (cursor creation, cloning,

destruction, etc.)

We have explicitly separated everything having to

do with nodes (item 1 above) from the other four

functions to avoid a client program or path

expression from having any direct access to nodes.

For virtual XML, where we do not know the native

representation of the data, this is key: if we

permitted the client program to hold references to

individual nodes, then we would have to deal with

intricate interdependencies between nodes held by

cursors and client programs (indeed this is the

problem with those APIs that are based on the

DOM
24

); therefore, we shall enforce the use of the

cursor for all access to nodes.

Requiring that the cursor model implement every-

thing needed to ensure that all functions and

operators can be implemented raises an issue with

the W3C XQuery and XPath Data Model: the

functions and operators that deal with node identity

and document order cannot be expressed directly in

terms of the data model accessors; thus, we shall

include primitives for such operations.

Patterns of access to diverse data

The cursor technology described in the previous

section provides different patterns of access to

diverse data. Supporting the processing of a variety

of data poses a new set of challenges, however,

because different real data instances reveal different

native access patterns. This leaves us in a general-

ized instance of the common ‘‘SAX DOM dilemma,’’

where the choice is between simple efficient

interfaces or more advanced less efficient interfaces.

Should we

� design the access API with the least common

denominator that will allow efficient access to all

XML data, traditionally captured by the inten-

tionally ‘‘Simple API for XML’’ (SAX),
36

or
� assume a rich implementation of XML optimized

for every kind of access, such as is standardized

by the elaborate DOM
24

or another object model

such as SDO (Service Data Objects)?
37

The answer is, of course, that none of these will fit

every application: the ‘‘SAX-like’’ approach breaks

down when XML data is used in complex ways

involving reorganization, such as sorting, whereas

the ‘‘DOM-like’’ approach invariably leads to ex-

cessive storage requirements. Our solution to the

dilemma is a compromise: we slice the aspects of the

data model into feature sets that can be combined

into profiles corresponding to the use patterns.

The SAX pattern

SAX was one of the earliest interfaces for XML

processing.
36

It is a push model based on the XML

producer calling the XML consumer once for each

part, or event, that is encountered during a left-to-

right traversal of the XML tree. The key interface of

SAX is thus ‘‘ContentHandler,’’ implemented by the

consumer. (In practice one encounters the notion of

‘‘SAX-like’’ for all XML solutions that involve some

kind of streaming of the XML source into something

similar to a SAX event sequence.)

Table 1 shows how the basic SAX events translate to

cursor operations. The translation of a

startElement SAX event into cursor operations

involves visiting every attribute individually, which

is conveyed by iteration (denoted, as usual, with ‘*’)

where the cursor operations are as follows:

� free—Releases this cursor as it will no longer be

used
� node-properties—Denotes a generic way to

access the truly local properties of the current

item: name, value, and type
� toAttributes—Sets up the cursor to iterate over

the attributes of the current element node, if

possible
� toChildren—Sets up the cursor to iterate over the

children (immediate descendants) of the current

node, if possible
� toNext—Advances the cursor to the next item
� push—Shorthand for pushing the cursor state onto

a stack
� pop—Shorthand for replacing the cursor state with

the cursor state popped from the hidden stack

This shows that a single cursor object can mimic the

behavior of the SAX protocol. Because a cursor is a

pull protocol, this means that no node properties

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ROSE, MALAIKA, AND SCHLOSS 415

have to be generated unless explicitly requested,

allowing for high-speed skipping of encoded char-

acter strings, for example.

Most important, streaming XML processing using

‘‘the SAX pattern’’ has essentially the same effi-

ciency with real SAX and the cursor protocol.

Further details, including the relationship between

push and pull, are given in Reference 38.

The DOM pattern

DOM
24

was originally developed to allow program-

matic management of HTML pages but has been

generalized since to XML. It allows complete control

over the in-memory representation of the XML data

as follows:

� It is an object model where the user gets individual

separate references to objects representing

‘‘nodes.’’ Consequently, a DOM implementation

uses at least as many objects per document

instance as there are nodes that the application

has touched in that document.
� It allows full navigation of the XML tree, in the

downward (parent to child), upward (child to

parent), and sideways (sibling to sibling), direc-

tions by having a rich set of methods on nodes

that return other related nodes.
� It allows changes to be made to the tree.

The DOM pattern can thus be mapped to the cursor

model as shown in Table 2, Part 1. As for efficiency,

the comparison in Table 2, Part 2 is telling. Thus,

using a cursor model instead of the DOM essentially

trades the DOM’s fast node-identity checking for the

cursor’s better automatic memory management.

Data Format Description Language

The second virtual XML tool allows the XML

representation of data in all forms. The W3C XML

Schema Definition language
14

includes special

xs:annotation declaration elements containing

(among other things) one or more xs:appinfo

elements, called application information annota-

tions, and also permits attributes to appear on all the

elements used in the XML representation of schema

that come from a supplementary, or ‘‘foreign,’’

namespace.

A number of communities have been active in areas

related to virtual XML through defining XML schema

annotations to handle non-XML data. A scientific

project of this kind is the BFD (Binary Format

Description) project at the Pacific Northwest Na-

tional Laboratory.
39

BizTalk**, on the other hand, is

a commercial project from Microsoft that includes a

flat-file extension feature to allow the definition of

annotations to control how a flat-file business

document is translated to and from its equivalent

XML business document.
40,41

We provide here examples using DFDL.
42

DFDL,

which is being developed by the Global Grid Forum

(GGF)
43

Data Format Description Language Working

Group,
44

exploits application information annota-

tions to define the precise mapping between non-

Table 2 Mapping the DOM pattern to the cursor

model

Part 1

DOM Pattern Cursor Model

Node Cursor that will never
be moved

Return neighbor
node

Navigation of a duplicate
cursor to the neighbor

Part 2

Property DOM Cursor

Node
identity

Fast
(object identity)

Slow

Node
release

Only when a node
is explicitly
deleted (all
nodes are
interlinked)

Normal
(cursors are
not interlinked)

Table 1 Translation of basic SAX events to cursor

operations

SAX Event Cursor Operation Sequence

startDocument to Children

endDocument free

startElement node-properties; push;
toAttributes;
node-properties;
(toNext; node-properties;)
pop; push; toChildren

endElement pop

text node-properties

ROSE, MALAIKA, AND SCHLOSS IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006416

XML formatted data (in byte strings) and the XML

data structure declared by the schema. By design,

DFDL is limited to fairly ‘‘direct’’ mappings to ensure

that implementations can map both ways (to and

from XML).

One of the most common formats for simple data

exchange is the COBOL (common business-oriented

language) ‘‘copybook’’ record storage format. (Of

course, data formats described in any other lan-

guage, not just COBOL, can be mapped with DFDL.)

We examine the COBOL copybook in Figure 1.

The unit (at level ‘‘01’’) is a record named

CUSTOMER-RECORD. Each record has four fields

(at level ‘‘05’’). The first field contains 20 characters,

and the second field has 15 characters (‘‘X(20)’’ and

‘‘X(15)’’, respectively). The third and fourth fields

contain three and 10 digits (‘‘999’’ and ‘‘9(10)’’,

respectively).

The following record corresponds to the COBOL

structure in Figure 1:

Callas Maria 0254084444444

The W3C XML Schema in Figure 2 corresponds to a

collection of the records described by the copybook.

The schema contains the information in the copy-

book. The unit is an element named CUSTOMER-

RECORD. Each of these elements has four child

elements of type ‘‘last-name,’’ ‘‘first-name,’’ ‘‘age,’’

and ‘‘phone.’’ The first two types are strings

restricted to 20 and 15 characters, respectively

(encoded with the ‘‘length’’ facet). The third type is

an integer restricted to three digits (expressed by

restricting the ‘‘totalDigits’’). The fourth type is a

string restricted to ten digits (expressed by setting

the pattern facet to \df10g).

Note that the elements are in the same order as the

data in the copybook and that we have translated

the last field as a string rather than as an integer

(because leading zeros are not ignored, etc.).

The XML Schema in Figure 2 becomes a DFDL

specification by changing the beginning to the

following:

,xs:schema xmlns:xs =

‘‘http://www.w3.org/2001/XMLSchema’’

xmlns:data¼‘‘http://dataformat.org/’’.
,xs:annotation.

,xs:appinfo source¼‘‘http://dataformat.org/’’.
,data:defaults.

,data:format data:encoding¼‘‘ebcdic-cp-us’’/.

,/data:defaults.

,/xs:appinfo.

,/xs:annotation.

. . .

This makes the mapping from a byte stream to XML

precise. Here’s how it works:

� The data: prefix is defined to be bound to the

DFDL namespace.
� The data:defaults directive is a container for

default DFDL format properties.
� The data:format directive is the main DFDL

declaration containing property values.
� The data:encoding property, in particular, sets

the character encoding to the EBCDIC character

set used by COBOL copybook.

That’s all. Using this DFDL format, the data with

two copybook records in Figure 3A (as one

contiguous stream) is viewed as if it were the XML

document in Figure 3B. The DFDL engine generates

this view by making some simple assumptions:

Figure 1
Example of a COBOL copybook

00572 **
00572 * COBOL COPYBOOK - CUSTOMERS
00572 * DATA FOR CUSTOMER TABLE
00572 **
00572 01 CUSTOMER-RECORD.
00573 05 CUSTOMER-LAST-NAME PIC X(20).
00574 05 CUSTOMER-FIRST-NAME PIC X(15).
00575 05 CUSTOMER-AGE PIC 999.
00576 05 CUSTOMER-PHONE PIC 9(10).

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ROSE, MALAIKA, AND SCHLOSS 417

� Only the top-level element is assumed to be the

root element.
� The data is expected to contain only the simply

typed values mandated by the W3C XML Schema,

appearing in the same order as in the XML view.
� The W3C XML Schema textual form is used as the

default textual form for each value.

The data:format directive allows a large number of

properties to be specified directly on element/

attribute declarations, on type declarations, or as

defaults, including for

� basic byte size and order and character-set

encoding used for text,

� binary numeric formats (integer, decimal, and

floating-point representation details),

� textual numeric representation properties (base,

decimal-point convention, negation mark, etc.),

� identifying leading/trailing tags for specific struc-

tures as well as separating sequences (both binary

and textual), and

� computation to select between choices or compute

property values from the data.

If some business information is stored as real XML

documents and some is stored in a representation

that DFDL can map as virtual XML, the same XML

Schema can be used to describe the XML structure of

Figure 2
W3C XML Schema corresponding to the collection of records described by the copybook in Figure 1

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="last-name">
 <xs:restriction base="xs:string"><xs:length value=”20”/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="first-name">
 <xs:restriction base="xs:string"><xs:length value="15"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="age">
 <xs:restriction base="xs:int"><xs:totalDigits value="3"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="phone">
 <xs:restriction base="xs:string"><xs:pattern value="\d{10}"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:element name="copybook">
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="9999">
 <xs:element name="CUSTOMER-RECORD">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMER-LAST-NAME" type="last-name"/>
 <xs:element name="CUSTOMER-FIRST-NAME"
 type="first-name"/>
 <xs:element name="CUSTOMER-AGE" type="age"/>
 <xs:element name="CUSTOMER-PHONE" type="phone"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

ROSE, MALAIKA, AND SCHLOSS IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006418

both. For the real XML, the dfdl:foo attributes are

simply ignored.

XML processing languages
XML processing languages that run efficiently over

the diverse virtual XML data sources discussed

earlier represent the third and last tool needed for

virtual XML. The most pervasive tool is XPath, of

course, but a set of tools also includes XSLT,
8

XQuery,
9

and BPEL4WS (Business Process Execu-

tion Language for Web Services),
45

which supports

copying and moving XML. The challenge is to

implement these efficiently.

The approach that we have adopted in our prototype

release, the virtual XML Garden,
46

is to (1) imple-

ment the processing languages lazily such that

processing is driven in an ‘‘on demand’’ fashion by

the consumer accessing the processing result, and

(2) analyze expressions and queries to understand

the data profile properties of each component. The

technical details of how this is achieved are beyond

the scope of this paper.
46

SOLVING BUSINESS PROBLEMS WITH VIRTUAL
XML
In this section we describe a number of use cases

that illustrate business solutions implemented with

virtual XML. These involve a sensor-based computer

system, a commercial broker system, an archival

system, a file access method, and a data aggregator

application.

Use case 1—A sensor-based computer system

The use of sensors in computer systems is increas-

ing, and the integration of diverse sensor systems

into a single system infrastructure is becoming

desirable. Although sensors do not usually generate

XML data, the data is often converted to XML in

order to take advantage of common infrastructure

and interfaces and to conform to standards. Virtual

XML provides the ability to view and process sensor

data as XML without performing any conversion,

and thus, it helps speed up the operation of the

system. In other words, without virtual XML, the

emitted sensor data would first be converted into

XML in advance of being processed and consumed.

With virtual XML technology, the emitted sensor

data is transformed to XML as required, in a just-in-

time manner.

This use case is an example of applying virtual XML

to the data publisher pattern. Other data publisher

examples include relational-database event pub-

lishers, where data is emitted as a result of changes

made to a database system, or publishers of system

infrastructure events; that is, events such as the

failure of a software component or a change in the

utilization of a software component.

Publishing such data as XML can be costly, but

having a way of processing binary data through

general-purpose XML interfaces facilitates the pro-

duction and distribution of non-XML.

Figure 3
Cobol copybook records transformed into DFDL format; (A) copybook records; (B) DFDL format

A
ROSE KRISTOFFER 0402025555555
ROSE SOFUS 0060000000000

B
<copybooks>
 <CUSTOMER-RECORD>
 <CUSTOMER-LAST-NAME>ROSE </CUSTOMER-LAST-NAME>
 <CUSTOMER-FIRST-NAME>KRISTOFFER </CUSTOMER-FILE-FIRST-NAME>
 <CUSTOMER-AGE>40</CUSTOMER-FILE-AGE>
 <CUSTOMER-PHONE>2025555555</CUSTOMER-FILE-PHONE>
 </CUSTOMER-RECORD>
 <CUSTOMER-RECORD>
 <CUSTOMER-LAST-NAME>ROSE </CUSTOMER-LAST-NAME>
 <CUSTOMER-FIRST-NAME>SOFUS </CUSTOMER-FILE-FIRST-NAME>
 <CUSTOMER-AGE>6</CUSTOMER-FILE-AGE>
 <CUSTOMER-PHONE>0000000000</CUSTOMER-FILE-PHONE>
 </CUSTOMER-RECORD>
</copybooks>

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ROSE, MALAIKA, AND SCHLOSS 419

Use Case 2—A commercial broker system

Brokers are software systems that mediate between

entities such as service requestors and service

providers. They can be viewed as an example of

applying virtual XML to the data broker pattern.

Messaging brokers are used to implement the event-

driven and XML-based messaging engine (the bus)

of the Enterprise Service Bus.
22

Commercial brokers

and messaging systems are becoming more versatile

in the types of data they process, transform, and

aggregate. Virtual XML provides the ability for

brokers and their users to view the data processed or

produced as XML, regardless of its format.

Without virtual XML, a broker would have to first

convert a non-XML message into XML, before

applying any transformations or filtering, to reduce

or remove messages from the stream flowing

through the broker. With virtual XML, the broker

could apply transformations and filters without

converting the messages in advance.

Use case 3—An archival system

Many businesses and scientific institutions preserve

their data for long periods. They do so for a variety

of reasons, such as complying with governmental

regulations and the need to perform data mining in

order to ascertain trends. The preservation periods

can exceed 20 years. Data formats in common use

change over time, and the software tools to process

the formats become less readily available. When

dealing with archival data we can either convert the

data in advance, or convert it when there is a need

to process it. Virtual XML makes it possible to create

XML views on the archival data with currently used

tools. The Scientific Annotation Middleware (SAM)

system,
47

for example, which makes it possible to

view all of the recorded information through a single

interface or protocol, follows an approach similar to

virtual XML. This use case is an example of applying

virtual XML to the data consumer pattern.

Use case 4—A file access method

Just as it is desirable to access archival data in a

uniform way, it is also desirable to access hetero-

geneous data stored in a file system in a uniform

way. The GEDDM: Grid Based Conversion of

Unstructured Data using a Common Semantic

Model
48

program is an example of a project that

attempts to access a variety of file formats through

XML interfaces and is similar in concept to our

virtual XML approach. Another possibility that has

been discussed at the GGF,
43

is the use of the WS-

DAIX (Web Services Data Access and Integration for

XML)
49

interface to access heterogeneous data,

which can be viewed as an extension to virtual XML.

This interface supports XPath and XQuery through

Web services. These use cases are examples of

applying virtual XML to the data consumer pattern

as well as using general-purpose virtual XML tools.

Use case 5—A data aggregator application

Often data collection, especially when done from a

wide range of sources, is done with some small

easy-to-distribute tool that was put together in the

past beyond recall. Such ad hoc legacy programs

often use standard tools to do their job. By making it

easy for programmers to access legacy formats such

as the ZIP
50

format in XML, the processing of

aggregated data can be moved to use the XML tool

stack. This use case is an example of applying

virtual XML to the data aggregator pattern.

Putting the use cases together

Figure 4 illustrates two scenarios that combine

elements of our five use cases in which all data is

non-XML data viewed as XML. In the top part of the

figure a publisher, such as a sensor device, sends

non-XML data to a data broker. Through the use of

virtual XML technologies, the data broker views the

published data as XML. The data may be processed

by the data broker and then sent as non-XML data to

a consumer, which views the same data as XML. At

the bottom of the figure an application accesses non-

Figure 4
Putting the use cases together

Data
Broker

New Data Archive
Data

XML View XML View

Data

Publisher

XML View

Consumer

Data

XM
L V

ie
w

Application
(consumer)

ROSE, MALAIKA, AND SCHLOSS IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006420

XML data from two sources: a source of new data

and a source of existing (archived) data.

The Chartered Arrivals System example
51

demon-

strates how a collection of non-XML files can be

zipped into one file and transmitted to interested

parties who can process the zipped file and its

contents by using virtual XML tools and technolo-

gies. The example illustrates how particular data

items in the individual files within the zip archive

can be accessed directly by using XPath or XQuery

and combining a specific XML view of the individual

files with a default XML view of the zip archive.

CONCLUSION
In this paper we introduce the concept of virtual XML

as a way of representing and processing non-XML

data as XML. We describe the architectural compo-

nents needed to enable applications to work with

both XML and virtual XML without change: an XML

cursor concept that supports various patterns of

access to diverse data, a way of describing the data as

XML (DFDL), and XML processing languages.

We show that the virtual XML concept can be

applied in two ways. We can either construct a

default view for a well-known non-XML format such

as EXIF JPEG
16

or ASN.1,
17

or we can construct a

specific view for a non-XML format as illustrated in

the Chartered Aircraft Arrivals use case, in which we

describe a zip archive via DFDL notation.

It is likely that DFDL 1.0 will be published sometime

in 2006. Alpha (experimental) software suitable for

learning DFDL is becoming available
46

and more

examples are expected in 2006. Soon thereafter

vendors of message brokering and mapping soft-

ware, Enterprise Service Bus transformation facili-

ties, and ETL (Extract, Transform and Load)

software will be able to support virtual XML by

using DFDL. Because additional powerful XML

facilities, such as XQuery 1.0, will also be widely

available, organizations that wish to correlate non-

XML with XML information are likely to adopt

virtual XML whenever messaging or query-infra-

structure middleware updates are installed.

Many well-known formats, such as the EXIF JPEG

format,
16

can be described with DFDL once, and it

would be reasonable to expect many of these one-

time mapping specifications (default views) will be

published. For meta-formats, such as HL7 (earlier

than Version 2.4)
10

or ASC X12 (American National

Standards Institute [ANSI] Accredited Standards

Committee X12 for electronic data interchange),
52

a

translator from the data format description to DFDL

can be developed. As previously mentioned, re-

searchers have already standardized XML Schema

views of relational schemas so that virtual XML will

& Virtual XML enables the
processing of ZIP files with
standard XML tools &

apply to both structured and tabular information. As

additional frameworks for analysis of free-form text,

such as the IBM Unstructured Information Manage-

ment Architecture,
53

mature, much free-form text

will also be viewable after augmentation in some

form of XML, involving items such as resumes,

contracts, and clinical notes. For applications in

which minimizing the traffic between devices is

crucial but general-purpose compression and de-

compression circuitry is too expensive or draws too

much power, DFDL-mapped structured information

may be interchanged (although this is logically XML,

it does not physically involve instances of XML

documents).

XML interfaces for accessing information are likely

to become a significant part of all enterprise

operations because of the trend toward including

XML data model services and content transforma-

tion and building on top of the virtual XML

technologies described in this paper. The Chartered

Aircraft System
51

is an illustration of this trend, by

demonstrating how an XPath- or XQuery-based

query can operate on an aggregate of XML or non-

XML documents or records.

We observe that most file systems have a hierarch-

ical arrangement of folders or directories, which

corresponds nicely to the XML structure. Therefore,

writing XPath expressions that a virtual XML engine

interprets (with some navigation occurring in the

file system and some navigation occurring within

XML documents or a virtual XML document view of

structured information in the files) is an appealing

next step. Our prototype release
46

already contains

examples of such functions.

Similarly, databases that include a large collection of

documents could also be addressed as if they were

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ROSE, MALAIKA, AND SCHLOSS 421

represented as a single document with an enriched

XPath. Using the concept of profiles, an engine

accepting XPaths against an entire database would

reject queries that could lead to non-terminating

searches (for example, looping through documents

that are considered siblings). Thus knowledge of

scale can be used to avoid accepting impractical or

non-terminating queries.

Finally, all the information on the Web that is

addressable with URIs might be addressable with a

single query as proposed by one of the authors.
54

New metadata (different than DFDL) may be needed

to support these applications, and these are some of

the long-term research directions that the virtual

XML concept opens.

ACKNOWLEDGMENTS
We thank the anonymous reviewers whose feedback

was most helpful. We are grateful to the members of

the Virtual XML Garden: Lionel Villard, Rajeshwari

Rajendra, Paul Castro, Christopher Holtz, William Li,

and Stefan Schmidt for their contribution to virtual

XML. We thank Manfred Oevers for his comments on

an earlier version of this paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Altova, Inc, Sun Microsystems, Massachusetts Institute of
Technology, or Microsoft Corporation in the United States,
other countries, or both.

CITED REFERENCES AND NOTES
1. S. Bourbonnais, V. M. Gogate, L. M. Haas, R. W. Horman,

S. Malaika, I. Narang, and V. Raman, ‘‘Towards an
Information Infrastructure for the Grid,’’ IBM Systems
Journal 43, No. 4, 665–688 (December 2004).

2. SGML is described at Cover Pages, http://xml.
coverpages.org/sgml.html.

3. XML Path Language (XPath), Version 1.0, W3C Recom-
mendation, J. Clark and S. DeRose (Editors), World Wide
Web Consortium (November 1999), http://www.w3.org/
TR/1999/REC-xpath-19991116.

4. XML Path Language (XPath) 2.0, W3C Candidate
Recommendation, A. Berglund, S. Boag, D. Chamberlin,
M. F. Fernández, M. Kay, J. Robie, and J. Siméon
(Editors), World Wide Web Consortium (April 2005),
http://www.w3.org/TR/2005/CR-xpath20-20051103.

5. XMLSpy from Altova, Inc., http://www.altova.com/.

6. The Apache XML Project, Apache Software Foundation,
http://xml.apache.org/.

7. XSL Transformations (XSLT), Version 1.0, W3C Recom-
mendation, J. Clark (Editor), World Wide Web Con-

sortium (November 1999), http://www.w3.org/TR/
1999/REC-xslt-19991116.

8. XSL Transformations (XSLT), Version 2.0, W3C Candi-
date Recommendation, M. Kay (Editor), World Wide Web
Consortium (November 2005), http://www.w3.org/TR/
2005/CR-xslt20-20051103/.

9. XQuery 1.0: An XML Query Language, W3C Candidate, S.
Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J.
Robie, and J. Siméon (Editors), World Wide Web
Consortium (November 2005), http://www.w3.org/TR/
2005/CR-xquery-20051103.

10. Health Level Seven, Inc., http://www.hl7.org/.

11. ACORD Global Insurance Standards, Association for
Cooperative Operations Resarch and Development,
http://www.acord.org/.

12. The ISO: SQL/XML—Part 14 (SQL 2003) specification,
ISO/IEC 9075-14:2003, International Organization for
Standardization, http://www.iso.org/iso/en/
CatalogueDetailPage.CatalogueDetail?CSNUMBER¼
35341&scopelist¼.

13. The ISO: SQL/XML—Part 14 (SQL 2003) specification,
XML schema, defined at the International Organization
for Standardization, http://standards.iso.org/iso/9075/
2002/12/.

14. D. C. Fallside and P. Walmsley: XML Schema Part 0:
Primer (Second Edition), W3C Recommendation, World
Wide Web Consortium (October 2004), http://www.w3.
org/TR/2004/REC-xmlschema-0-20041028.

15. JCP JSR 114 JDBC Rowset Implementations XML schema,
defined at http://java.sun.com/xml/ns/jdbc/webrowset.
xsd.

16. EXIF JPEG format, defined at Japan Electronics and
Information Technology Industries Association, http://
www.jeita.or.jp/english/standard/html/1_4.htm.

17. ASN.1 (Abstract Syntax Notation 1) is described at
http://asn1.elibel.tm.fr/en/.

18. XQuery 1.0 and XPath 2.0 Data Model, November 2005,
W3C Candidate Recommendation, M. F. Fernández, A.
Malhotra, J. Marsh, M. Nagy, and N. Walsh (Editors),
World Wide Web Consortium (November 2005), http://
www.w3.org/TR/2005/CR-xpath-datamodel-20051103/.

19. XML Information Set (Second Edition), W3C Recommen-
dation, J. Cowan and R. Tobin (Editors), World Wide
Web Consortium (February 2004), http://www.w3.org/
TR/xml-infoset.

20. XML Schema Part 1: Structures (2nd Edition), W3C
Recommendation, H. S. Thompson, D. Beech, M.
Maloney, and N. Mendelsohn (Editors), World Wide Web
Consortium (October 2004), http://www.w3.org/TR/
xmlschema-1.

21. XML Schema Part 2: Datatypes (2nd Edition), W3C
Recommendation, P. V. Biron and A. Malhotra (Editors),
World Wide Web Consortium (October 2004), http://
www.w3.org/TR/xmlschema-2.

22. M.-T. Schmidt, B. Hutchison, P. Lambros, and R.
Phippen, ‘‘The Enterprise Service Bus: Making Service-
Oriented Architecture Real,’’ IBM Systems Journal 44, No.
4, 781–797 (December 2005).

23. XMLSoft.org: LibXML2: The XML C Parser and Toolkit for
Gnome and Other Systems, with a Variety of Language
Bindings (2005), http://xmlsoft.org/.

24. Document Object Model (DOM) Level 3 Core Specification,
Version 1.0, W3C Recommendation, A. Le Hors,
P. Le Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion,

ROSE, MALAIKA, AND SCHLOSS IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006422

and S. Byrne (Editors), World Wide Web Consortium
(April 2004), http://www.w3.org/TR/2004/
REC-DOM-Level-3-Core-20040407.

25. Document Object Model (DOM) Level 3 XPath Specifica-
tion (Version 1.0), W3C Working Group Note,
R. Whitmer (Editor), World Wide Web Consortium
(February 2004), http://www.w3.org/TR/2004/
NOTE-DOM-Level-3-XPath-20040226.

26. RELAX NG Specification, J. Clark and M. Murata
(Editors), OASIS (December 2001), http://www.
oasis-open.org/committees/relax-ng/spec-20011203.
html.

27. D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P.
Griffiths, R. A. Lorie, J. W. Mehl, P. Reisner, and B. W.
Wade, ‘‘SEQUEL 2: A Unified Approach to Data Defi-
nition, Manipulation, and Control,’’ IBM Journal of
Research and Development 20, No. 6, 560–575 (1976).

28. JDBC Technology, Sun Microsystems, Inc., http://java.
sun.com/products/jdbc/.

29. N. Li, J. Hui-I Hsiao, and P. Tijare, ‘‘Cursor Management
for XML Data,’’ in Proceedings of XML Database
Symposium (XSym 2003), Lecture Notes in Computer
Science 2824, Springer-Verlag, Berlin, Germany (Sep-
tember 2003), pp. 52–69.

30. .NET Framework Class Library, XPathNavigator Class,
Microsoft Corporation, http://msdn.Microsoft.com/
library/default.asp?url¼/library/en-us/cpref/html/
frlrfsystemxmlxpathxpathnavigatorclasstopic.asp.

31. Introduction to OJXQI—The Oracle Java XQuery API,
Oracle Corporation, http://www.oracle.com/technology/
sample_code/tech/xml/xmldb/jxqi.html.

32. K. Inaba, Purely Applicative XML Cursor, http://www.
kmonos.net/pub/Slit/index.en.html.

33. XmlCursor Interface, BEA Systems, Inc., http://e-docs.
bea.com/workshop/docs81/doc/en/core/index.html.

34. D. Obasanjo, A Survey of APIs and Techniques for
Processing XML, O’Reilly Media, Inc. (2003), http://
www.xml.com/pub/a/2003/07/09/xmlapis.html.

35. XQuery 1.0 and XPath 2.0 Functions and Operators, W3C
Candidate Recommendation, A. Malhotra, J. Melton, and
N. Walsh (Editors), World Wide Web Consortium
(November 2005), http://www.w3.org/TR/2005/
CR-xpath-functions-20051103/.

36. Simple API for XML, Version 2.0.2 (April 2004), http://
www.saxproject.org/.

37. J. Beatty, S. Brodsky, M. Carey, R. Ellersick, M. Nally,
and R. Preotiuc-Pietro, Service Data Objects, Version 2.0,
IBM Corp. and BEA Systems, Inc. (June 2005), ftp://
www6.software.ibm.com/software/developer/library/
j-commonj-sdowmt/Commonj-SDO-Specification-v2.0.
pdf.

38. K. Rose and L. Villard, ‘‘Phantom XML,’’ Proceedings of
the XML 2005 Conference, November 14–18, Atlanta,
Georgia (2005), http://www.idealliance.org/
proceedings/xml05/abstracts/paper80.HTML.

39. Binary Format Description Language (BFD) project at the
Pacific Northwest National Laboratory, U.S. Department
of Energy, http://collaboratory.emsl.pnl.gov/sam/bfd/.

40. BizTalk project from Microsoft Corporation, http://www.
microsoft.com/biztalk/default.mspx.

41. T. Restrepo, BizTalk 2004 Flat File Schema Tutorial (Parts
1 and 2), http://www.winterdom.com/dev/bts/.

42. M. Beckerle, Data Format Description Language (DFDL),
A Proposal: Data Format Description Language Working

Group Working Draft (2005-08-29), https://forge.
gridforum.org/projects/dfdl-wg.

43. Global Grid Forum, http://www.ggf.org/.

44. M. Westhead, M. Beckerle, and J. Myers, Data Format
Description Language Working Group, Global Grid
Forum, 2004, http://forge.gridforum.org/projects/
dfdl-wg.

45. BPEL4WS (Business Process Execution Language for
Web Services), described at http://www.ibm.com/
developerworks/library/specification/ws-bpel/.

46. Virtual XML Garden, described at http://www.
alphaworks.ibm.com/tech/virtualxml.

47. Scientific Annotation Middleware (SAM) described at
http://www.scidac.org/SAM.

48. K. Loughran, P. Donachy, T. J. Harmer, R. H. Perrott,
M. Prentice, S. Bearder, and J. Rasch, GEDDM: Grid Based
Conversion of Unstructured Data Using a Common
Semantic Model, http://www.allhands.org.uk/2004/
proceedings/papers/166.pdf.

49. M. Antonioletti, S. Hastings, A. Krause, S. Langella,
S. Laws, S. Malaika, and N. W. Paton, Web Services Data
Access and Integration—The XML Realization (DAIS-WG)
(December 2005), https://forge.gridforum.org/projects/
dais-wg.

50. Zip Archive, described at http://www.info-zip.org/.

51. Chartered Aircraft System, IBM Corporation, http://
domino.research.ibm.com/comm/research_projects.nsf/
pages/virtualxml.examples.html.

52. ASC X12 (American National Standards Institute (ANSI)
Accredited Standards Committee X12 for Electronic Data
Interchange), described at http://www.x12.org/.

53. D. Ferrucci and A. Lally, ‘‘Building an Example Applica-
tion with the Unstructured Information Management
Architecture,’’ IBM Systems Journal (Special Issue on
Unstructured Information Management) 43, No. 3, 455–
475 (2004).

54. The XML World View, ACM Symposium on Document
Engineering, University of Wisconsin-Milwaukee, USA
(October 2004), http://www.sdml.info/doceng2004.

GENERAL REFERENCES ON XML VIEWS
These references are organized by location or subject as
follows:

IBM Almaden Research Center (the first work on XML views
was done here):

M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasundaram,
E. Shekita, and S. Subramanian, ‘‘XPERANTO: Publishing
Object-Relational Data as XML,’’ Proceedings of the Third
International Workshop on the Web and Databases (WebDB
2000), May 18–19, 2000, Dallas, Texas, ACM, New York
(2000), pp. 105–110.

J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,
B. Lindsay, H. Pirahesh, and B. Reinwald, ‘‘Efficiently
Publishing Relational Data as XML documents,’’ Proceedings
of the Third International Workshop on the Web and
Databases (WebDB 2000), May 18–19, 2000, Dallas, Texas,
ACM, New York (2000), pp. 65–76.

INRIA:

S. Abiteboul, ‘‘On Views and XML,’’ Proceedings of the
Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS 1999), May 31–June 2,

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ROSE, MALAIKA, AND SCHLOSS 423

1999, Philadelphia, Pennsylvania, ACM, New York (1999),
pp. 30–38.

University of Washington:

Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Weld, ‘‘An
Adaptive Query Execution System for Data Integration,’’
Proceedings of the ACM SIGMOD International Conference on
Management of Data, June 1–3, 1999, Philadelphia, ACM,
New York (1999), pp. 299–310.

University of Pennsylvania and AT&T Research:

M. F. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, and
W-C. Tan, SilkRoute,’’ A Framework for Publishing Relational
Data in XML,’’ ACM Transactions on Database Systems 27,
No. 4, 438–493 (2002).

UCSD Mix project—The idea of virtual views of data as XML
was explored with early strategies documented in the
following references:

B. Ludascher, Y. Papakonstantinou, and P. Velikhov, ‘‘Nav-
igation-Driven Evaluation of Virtual Mediated Views,’’ Pro-
ceedings of the 7th International Conference on Extending
Database Technology (EDBT 2000), Konstanz, Germany,
March 27–31, 2000, Lecture Notes in Computer Science 1777,
Springer, Berlin (2000), pp. 150–165.

C. Baru, V. Chu, A. Gupta, B. Ludascher, R. Marciano,
Y. Papakonstantinou, and P. Velikhov, ‘‘XML-Based Informa-
tion Mediation for Digital Libraries,’’ Proceedings of the Fourth
ACM Conference on Digital Libraries, August 11–14, 1999,
Berkeley, CA, ACM, New York (1999), pp. 214–215.

A large body of work on adapting relational data into XML
has been published, including the following references:

P. Bohannon, H. F. Korth, and P. P. S. Narayan, ‘‘The Table
and the Tree: On-Line Access to Relational Data through
Virtual XML Documents,’’ Proceedings of the Fourth Interna-
tional Workshop on the Web and Databases (WebDB 2001),
Santa Barbara, California, USA, May 24–25, 2001, ACM, New
York (2001), pp. 55–60.

M. L. Lo, S-K Chen, S. Padmanabhan, and J-Y Chung, ‘‘XAS: A
System for Accessing Componentized, Virtual XML Docu-
ments,’’ Proceedings of the 23rd International Conference on
Software Engineering (ICSE 2001), May 12–19, 2001, Toronto,
Ontario, Canada, IEEE, New York (2001), pp. 493–502.

P. Bohannon, S. Ganguly, H. F. Korth, P. P. S. Narayan, and
P. Shenoy, ‘‘Optimizing View Queries in ROLEX to Support
Navigable Result Trees,’’ Proceedings of the 28th International
Conference on Very Large Databases (VLDB 2002), Morgan
Kaufmann Publishers, San Francisco, CA (2002), pp. 119–130.

A large body of work on adapting HTML pages into XML has
been published, including the following references:

A. Sahuguet and F. Azavant, ‘‘Web Ecology: Recycling HTML
Pages as XML Documents Using W4F,’’ Proceedings of the
ACM SIGMOD Workshop on The Web and Databases
(WebDB’99), June 3–4, 1999, Philadelphia, Pennsylvania,
ACM, New York (1999), pp. 31–36.

J. Naughton et al., ‘‘The Niagara Internet Query System,’’ IEEE
Data Engineering Bulletin 24, No. 2, 27–33 (2001).

Accepted for publication November 29, 2005.

Kristoffer H. Rose
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, New York 10532 (krisrose@us.ibm.com).
Dr. Rose received a Ph.D. degree in computer science from the
University of Copenhagen in 1996, doing research in tree and graph

rewriting systems. After four years in academia, the last as an
associate professor at Ecole Normale Superieur in Lyon, France, he
joined the Watson Research Center in 2000. At IBM, he is working
on XML technology with a special interest in how XML and the
XML processing languages (XSLT, XQuery, etc.) can be
implemented so that they can be used efficiently over large data
structures even when those are not in XML. Most recently he has
been experimenting with (and has implemented) Data Format
Description Language (DFDL) to this end.

Susan Malaika
IBM, 294 Route 100, Somers, New York 10589
(malaika@us.ibm.com). Susan Malaika is a Senior Technical
Staff Member in IBM’s Information Management Group. She
develops standards that support data for grid environments at
the Global Grid Forum. Her specialties include XML, the Web,
and databases. In addition to working as an IBM product
software developer, she has also worked as an Internet
specialist, a data analyst, and an application designer and
developer. She has also co-authored a book on the Web and
published articles on transaction processing and XML. She is a
member of the IBM Academy of Technology.

Robert J. Schloss
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, New York 10532 (rschloss@us.ibm.com).
Robert Schloss, a Senior Technical Staff Member, is working on
runtime tools for XML and Web Services middleware at the Watson
Research Center in the Next Generation Web Group. He received an
A.B. degree in mathematics and computer science from Yale
University. Mr. Schloss is a founding member of the XML Research
group at IBM, and he has a long involvement with Web data
interchange standards. &

ROSE, MALAIKA, AND SCHLOSS IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006424

Published online May 16, 2006.

