K. H. Rose
S. Malaika
R. J. Schloss

Virtual XML: A toolbox and use
cases for the XML world view

Although the Extensible Markup Language (XML) has gained in popularity and has
resulted in the creation of powerful software for authoring, transforming, and querying
XML-based business data, much information remains in non-XML form. In this paper
we introduce an approach to virtualize data resources and thus enable applications to
access both XML and non-XML sources. We describe the architectural components that
enable virtual XML—a toolbox that includes a cursor model, an XML-view mechanism
such as the view created with the Data Format Description Language (DFDL), and XML
processing languages. We illustrate the applicability of virtual XML through a number
of use cases in various environments. We discuss the products that we expect from
vendors and the open-source community and the way enterprises can plan to take
advantage of virtual XML developments. Finally, we outline future research directions
that include a vision of virtual XML that covers large-scale structures such as entire file

systems, databases, or even the World Wide Web.

INTRODUCTION

Enterprises seeking ways to make their business
processes more integrated, more nimble, and more
flexible are evolving their data centers and software
platforms by using concepts that IBM has called the
On Demand Operating Environment. Increased
integration can be achieved through IT simplifica-
tion, and a major strategy for simplification is
virtualization. Although much work has been done
on virtualization of physical servers and provision-
ing of applications over a grid of such servers, less
attention has been given to the idea of virtualization
of data resources and the use of fewer languages for
querying, reporting, and manipulating stored data.
An example of virtualization of data resources is
provided by WebSphere Information Integrator,1
which offers a relational interface to heterogeneous

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

data. This paper discusses the idea of information
virtualization by using the Extensible Markup
Language (XML) data model as the framework.

Despite predictions to the contrary, XML has
become a very successful notation for information
exchange between disparate systems. The technol-
ogies, tools, and knowledge accumulated over
XML'’s long ancestry starting with SGML (Standard
Generalized Markup Language)2 have contributed to
its success. XML’s support of different platforms and

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

ROSE, MALAIKA, AND SCHLOSS

411

diverse encodings, and now its use in various
industries and technologies, have also been a factor.
Due to its success, XML has evolved further and is
no longer constrained to being just an exchange
format. These are some examples of its evolution:

* XML has become a storage format for data held in
files and databases. Indeed database systems
focused on managing XML have been developed.

e XML is the underlying notation for Web services,

which are now used in many distributed systems.

Web services standardization often relies on the

XPath™ interface to manipulate pieces of XML

associated with Web services.

XML is supported by a variety of widely deployed

tools and interfaces, such as XMLSpy"‘*,5 and

open source software, such as XML parsers from
the Apache Software Foundation.’

e XML has popular generic standards such as
XPath>* for manipulating XML, XSLT"*® for
transforming XML, and XQuery9 for querying
XML, as well as industry-specific standards such
as HL7'® and ACORD'" for exchanging informa-
tion in the health-care and insurance industries.

With XML’s success, technologies have naturally
evolved to convert non-XML data into XML, and to
convert XML data into other forms. In the world of
relational databases, Structured Query Language
(SQL) has been extended to SQL 2003 to incorporate
SQL/XML.'? One of SQL/XML’s features is the
availability of functions that assist in the generation
of XML documents from relational data (e.g.,
XMLELEMENT, XMLATTRIBUTES, and XMLAG-
GREGATE). SQL/XML also describes a default XML
format for relational data. See Reference 13 for the
W3C** XML Schema (an XML document describing
allowable structure and data types) ' defined in the
ISO:SQL/XML—Part 14 (SQL 2003) specification. An
alternative XML schema, which is common to the
result of every possible SQL query, is provided
through JCP (Java Community Process**) JSR (Java
Specification Request) 114."°

In addition there are many types of data that are not
represented as XML for practical reasons, such as
data generated by low-level sensors, data residing in
archives, data not used for exchange with unknown
partners, and data that are not tree structured (e.g.,
image metadata, video metadata). The inability to
format data as XML may be caused by the lack of
computing power, bandwidth, or storage capacity,

412 ROSE, MALAIKA, AND SCHLOSS

and sometimes, it may even be necessary to trans-
mit the same data in both XML and non-XML
formats as legacy requirements dictate.

In this paper we propose virtual XML, an approach
to an XML-based virtualization of data resources. As
part of this approach, we separate the representation
of the data from the processing model; that is, we
describe how to support processing of non-XML data
as though it is XML and without explicit conversion
to XML. The benefits associated with the virtual
XML approach include leveraging existing inter-
faces, tools, knowledge, and communities of interest
and also the ability to process both non-XML and
XML data in a uniform way by using XML
processing languages.

Through virtual XML, a default view can be
constructed for a well-known non-XML format such
as EXIF JPEG (Exchangeable Image File Joint
Photographic Experts Group, an international spec-
ification to encode information into the headers or
application segments of a JPEG file that includes
shutter speed, aperture, and the date and time the
image was captured).16 Another example of a well-
known non-XML format for which a default view
could be created, is ASN.1 (Abstract Syntax Nota-
tion 1), an international data standard used in
communication protocols such as mobile phone
systerns.17 Alternatively, a specific view can be
created for a non-XML format using a mechanism
such as DFDL (Data Format Description Language),
which is described later.

To achieve a reasonable notion of virtual XML we
need an XML abstraction, that is, a data model.
Fortunately, this is provided by the W3C XQuery 1.0
and XPath 2.0 Data Model,18 which extends the XML
Infoset'” with new features to meet the require-
ments for the new XML processing languages, XPath
2.0,4 XSLT 2.0,8 and XQuery 1.0.” The extensions
include the following:

e Supporting W3C XML Schema types, both struc-
tures”’ and simple data types,z1 that extend the
XML Infoset with precise type information

* Representing collections of documents and not
just single documents

* Describing the formats of arguments and the
results of XML processing

* Supporting intermediate results during XML pro-
cessing, such as typed atomic values arising from

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

an arithmetic or logical expression, and ordered
heterogeneous sequences arising from a path
expression

Because the concern of virtual XML is processing
rather than representation, adopting the W3C
XQuery 1.0 and XPath 2.0 Data Model'® is a good fit.
The data model specifies the accessible information
in documents, but because W3C has not specified
the programming-language interfaces or bindings
used to represent or access the data, we propose an
application programming interface (API) for ac-
cessing virtual XML.

We would consider using virtual XML when we
have some non-XML data that we need to process
with agreed-on and well-known XML-based inter-
faces. We may also consider a virtual XML approach
when we need to make some data visible, which for
some reason we cannot represent natively as XML
but would like to offer also through some standard
XML-based interface, for example, those used by
Web services.

Virtual XML could benefit a variety of general-
purpose software products and tools and applica-
tions dealing with stationary data and data streams;
for example, the following:

1. Data publishers—These are producers of non-
XML data that have to be made available later,
without reformating, in an XML format or
through XML interfaces. There is much demand
for such capabilities for data producers that
cannot afford the cost of publishing as XML (e.g.,
resource-constrained sensor devices or mobile
phone systems that publish through ASN .1).17

2. Data brokers—These are processors that interpret
data in messages and events, such as for mapping
and transformation purposes. Not all data that
brokers process is in XML. Virtual XML enables
brokers to process data through a common XML
model and interfaces, and to offer their users plug
points with standard XML interfaces even for
heterogeneous data. For example, an ESB (En-
terprise Service Bus)22 contains brokers that
offer service transformation support. These are
points where data transformations and data
filtering can take place and where users can
supply their own transformation scripts. With a
virtual XML approach, an ESB can provide a
uniform transformation environment based

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

around XML, even though the data being trans-
formed may not be XML.

3. Data consumers—These are software compo-
nents that interpret existing non-XML data in
files, databases (and general archives), and
messages as though it were XML, a capability
provided through tools that offer XML interfaces.
Software processing ASN 1" data as though it
were XML through an XML interface such as
XPath® is an example in this category.

4. General purpose data-oriented software and vir-
tual XML applications—These are higher levels of
general-purpose software or applications that are
constructed with virtual XML technology. Soft-
ware that offers an XML interface to any ASN.1"
data or to archived non-XML data is an example
in this category.

The rest of the paper is organized as follows. In the
next section we describe the virtual XML toolbox,
which includes a cursor model, an XML-view
mechanism such as the view created with DFDL, and
XML processing languages. In the following section,
we present several use cases for the preceding

m Virtual XML is a powerful
technology that enables
processing of non-XML data as
though it were converted to
XML m

patterns, and we point to a worked-out example of a
virtual XML application that we published else-
where. We summarize our results in the last section.
Along with the list of cited references and notes, we
provide an annotated list of general references for
work related to XML views.

THE VIRTUAL XML TOOLBOX

In this section we present three technologies and
tools that together enable virtual XML solutions: a
cursor model, an XML-view mechanism such as the
view created with DFDL, and XML processing
languages. But first, we start by explaining the
important role that XPath® plays.

The ubiquitous XPath
One of the most common ways of processing XML
data today is to select subsets of that data by using

ROSE, MALAIKA, AND SCHLOSS 413

the XML Path language, XPath.” XPath is provided
as an addressing mechanism in many programming-
language modules used to read or filter XML
content, such as LibXML2.”*> The DOM (Document
Object Model) Version 3 standard™ even includes a
description of how to support XPath in a generic
vvay.25 XPath expressions are also fundamental to
higher-level languages for operating on XML, such
as XSLT”® and XQuery 1.0.” Work is now being
completed on a second version of XPath, XPath 2.0°

To illustrate XPath, consider the following XML
document:

<flight-updates>
<country>
<origin>CPH</origin>
<destination>LAX</destination>
<lift-off-time>2005-07-11T708:00:00+01:00
</1ift-off-time>
<passenger-count>140</passenger-count>
<company-name>SAS</company-name>
</country>
<country>
<origin>LHR</origin>
<destination>LAX</destination>
<lift-off-time>2005-07-11T708:00:00+00:00
</1ift-off-time>
<passenger-count>160</passenger-count>
<company-name>British Airways</company-name>
</country>
</flight-updates>

A very simple XPath expression to select informa-
tion from this document is

/flight-updates/country/origin

The expression reads as “from the document root
select the flight-updates child; for each of those,
select the country children; for each of those, select
the origin children.” Evaluating the expression
returns a sequence of two nodes, similar to the
following:

(<origin>CPH</origin>, <origin>LHR</origin>)

th)

(where we have adopted the use of “(...,...)
notation for sequence construction from XPath 2.0),
except that the members of the sequence are not

actually subtrees but references into the original tree.

In most cases, the entity that creates an XPath
expression uses names of elements or attributes and

414 ROSE, MALAIKA, AND SCHLOSS

their structural relationship to each other in the
XPath. This is so because all documents processed
are part of a class described by an XML Schema,
using the W3C XML Schema Definition language,14
although DTDs (Document Type Definitions),
RELAXNG Schemas,26 and other schema represen-
tations may also describe the document class.

A cursor model

A cursor is a control mechanism for managing
interaction with a potentially large data structure.
Cursors were introduced for relational databases’’
to encapsulate the entire state of an interaction with
a relational database, using the database query
language to change the state of the interaction (or
cursor state) with special controls to allow iteration
over the data currently captured by the query.

It is natural to wish to carry this notion over to XML
data with an XML query language such as XQuery.
So far, such efforts have been focused on two
approaches:

1. “Upgrading” a database cursor interface such as
JDBC** (Java Database Connectivity)28 to allow
XML access to XQuery using relational pat-
terns.””*"

2. Wrapping access to an existing in-memory
representation such as the DOM in a JDBC-like

interface.”' %%
For a survey of APIs for XML, see Reference 34.

None of these approaches, however, permit the
diversity of XML data access that virtual XML
requires: when using virtual XML, we can make
very few assumptions about the native organization
of the data. To allow for the minimal XML
processing capabilities as expressed by the XPath
and XQuery Data Model,18 a universal XML cursor
should support the following:

1. A notion of current node through

e support for node-local access to the value of
the data model accessors that are not of node
type, and

e methods that navigate to the nodes returned
by accessors of node type, i.e., of type
document, element, attribute, text, process-
ing-instruction, and comment.

For more information about accessors and their

types, see Reference 18.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

2. A notion of context sequence containing the
current node, as well as access to the context
position of the current node in the sequence

3. Easy navigation to a different node in the context
sequence

4. Primitives to ensure that all functions and
opelrators35 are available

5. Cursor management (cursor creation, cloning,
destruction, etc.)

We have explicitly separated everything having to
do with nodes (item 1 above) from the other four
functions to avoid a client program or path
expression from having any direct access to nodes.
For virtual XML, where we do not know the native
representation of the data, this is key: if we
permitted the client program to hold references to
individual nodes, then we would have to deal with
intricate interdependencies between nodes held by
cursors and client programs (indeed this is the
problem with those APIs that are based on the
DOM24); therefore, we shall enforce the use of the
cursor for all access to nodes.

Requiring that the cursor model implement every-
thing needed to ensure that all functions and
operators can be implemented raises an issue with
the W3C XQuery and XPath Data Model: the
functions and operators that deal with node identity
and document order cannot be expressed directly in
terms of the data model accessors; thus, we shall
include primitives for such operations.

Patterns of access to diverse data

The cursor technology described in the previous
section provides different patterns of access to
diverse data. Supporting the processing of a variety
of data poses a new set of challenges, however,
because different real data instances reveal different
native access patterns. This leaves us in a general-
ized instance of the common “SAX DOM dilemma,”
where the choice is between simple efficient
interfaces or more advanced less efficient interfaces.
Should we

¢ design the access API with the least common
denominator that will allow efficient access to all
XML data, traditionally captured by the inten-
tionally “Simple API for XML” (SAX),36 or

e assume a rich implementation of XML optimized
for every kind of access, such as is standardized

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

by the elaborate DOM** or another object model
such as SDO (Service Data Objects)?37

The answer is, of course, that none of these will fit
every application: the “SAX-like” approach breaks
down when XML data is used in complex ways
involving reorganization, such as sorting, whereas
the “DOM-like” approach invariably leads to ex-
cessive storage requirements. Our solution to the
dilemma is a compromise: we slice the aspects of the
data model into feature sets that can be combined
into profiles corresponding to the use patterns.

The SAX pattern

SAX was one of the earliest interfaces for XML
processing.36 It is a push model based on the XML
producer calling the XML consumer once for each
part, or event, that is encountered during a left-to-
right traversal of the XML tree. The key interface of
SAX is thus “ContentHandler,” implemented by the
consumer. (In practice one encounters the notion of
“SAX-like” for all XML solutions that involve some
kind of streaming of the XML source into something
similar to a SAX event sequence.)

Table 1 shows how the basic SAX events translate to
cursor operations. The translation of a
startElement SAX event into cursor operations
involves visiting every attribute individually, which
is conveyed by iteration (denoted, as usual, with “*’)
where the cursor operations are as follows:

e free—Releases this cursor as it will no longer be
used

® node-properties—Denotes a generic way to
access the truly local properties of the current
item: name, value, and type

® toAttributes—Sets up the cursor to iterate over
the attributes of the current element node, if
possible

® toChildren—Sets up the cursor to iterate over the
children (immediate descendants) of the current
node, if possible

e toNext—Advances the cursor to the next item

* push—Shorthand for pushing the cursor state onto
a stack

* pop—Shorthand for replacing the cursor state with
the cursor state popped from the hidden stack

This shows that a single cursor object can mimic the
behavior of the SAX protocol. Because a cursor is a
pull protocol, this means that no node properties

ROSE, MALAIKA, AND SCHLOSS

415

Table 1 Translation of basic SAX events to cursor
operations

SAX Event Cursor Operation Sequence
startDocument to Children
endDocument free

startElement node-properties; push;
toAttributes;
node-properties;

(toNext; node-properties;)

pop; push; toChildren

endETement pop

text node-properties

Table 2 Mapping the DOM pattern to the cursor
model

Part 1
DOM Pattern Cursor Model
Node Cursor that will never

be moved

Return neighbor Navigation of a duplicate

node cursor to the neighbor
Part 2

Property DOM Cursor

Node Fast STow

identity (object identity)

Node Only when a node Normal

release 1isexplicitly (cursors are

deleted (all
nodes are
interlinked)

not interlinked)

have to be generated unless explicitly requested,
allowing for high-speed skipping of encoded char-
acter strings, for example.

Most important, streaming XML processing using
“the SAX pattern” has essentially the same effi-
ciency with real SAX and the cursor protocol.
Further details, including the relationship between
push and pull, are given in Reference 38.

The DOM pattern
DOM™ was originally developed to allow program-
matic management of HTML pages but has been

416 ROSE, MALAIKA, AND SCHLOSS

generalized since to XML. It allows complete control
over the in-memory representation of the XML data
as follows:

e [t is an object model where the user gets individual
separate references to objects representing
“nodes.” Consequently, a DOM implementation
uses at least as many objects per document
instance as there are nodes that the application
has touched in that document.

e It allows full navigation of the XML tree, in the
downward (parent to child), upward (child to
parent), and sideways (sibling to sibling), direc-
tions by having a rich set of methods on nodes
that return other related nodes.

e It allows changes to be made to the tree.

The DOM pattern can thus be mapped to the cursor
model as shown in Table 2, Part 1. As for efficiency,
the comparison in Table 2, Part 2 is telling. Thus,
using a cursor model instead of the DOM essentially
trades the DOM’s fast node-identity checking for the
cursor’s better automatic memory management.

Data Format Description Language

The second virtual XML tool allows the XML
representation of data in all forms. The W3C XML
Schema Definition language14 includes special
xs:annotation declaration elements containing
(among other things) one or more xs:appinfo
elements, called application information annota-
tions, and also permits attributes to appear on all the
elements used in the XML representation of schema
that come from a supplementary, or “foreign,”
namespace.

A number of communities have been active in areas
related to virtual XML through defining XML schema
annotations to handle non-XML data. A scientific
project of this kind is the BFD (Binary Format
Description) project at the Pacific Northwest Na-
tional Laboratory.39 BizTalk**, on the other hand, is
a commercial project from Microsoft that includes a
flat-file extension feature to allow the definition of
annotations to control how a flat-file business
document is translated to and from its equivalent

XML business document.***'

We provide here examples using DFDL.* DFDL,
which is being developed by the Global Grid Forum
(GGF)* Data Format Description Language Working
Group,44 exploits application information annota-
tions to define the precise mapping between non-

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

00572 *Hx*xkkrkkhrhkhhrhhrrhhrhhhrhhrrhhrhhrhrhhrrhrx

00572 *
00572 *

COBOL COPYBOOK - CUSTOMERS
DATA FOR CUSTOMER TABLE

00572 **xxxkkkkkkkkkkhhhhrkrrkkkhhkkkkhhhrhrrrrrrkhkkk

00572 01 CUSTOMER-RECORD.

00573 05 CUSTOMER-LAST-NAME PIC X(20).
00574 05 CUSTOMER-FIRST-NAME PIC X(15).
00575 05 CUSTOMER-AGE PIC 999.
00576 05 CUSTOMER-PHONE PIC 9(10).
Figure 1

Example of a COBOL copybook

XML formatted data (in byte strings) and the XML
data structure declared by the schema. By design,
DFDL is limited to fairly “direct” mappings to ensure
that implementations can map both ways (to and
from XML).

One of the most common formats for simple data
exchange is the COBOL (common business-oriented
language) “copybook” record storage format. (Of
course, data formats described in any other lan-
guage, not just COBOL, can be mapped with DFDL.)
We examine the COBOL copybook in Figure 1.

The unit (at level “01”) is a record named
CUSTOMER-RECORD. Each record has four fields
(at level “05”). The first field contains 20 characters,
and the second field has 15 characters (“X(20)” and
“X(15)”, respectively). The third and fourth fields
contain three and 10 digits (“999” and “9(10)”,
respectively).

The following record corresponds to the COBOL
structure in Figure 1:

Callas Maria 0254084444444

The W3C XML Schema in Figure 2 corresponds to a
collection of the records described by the copybook.
The schema contains the information in the copy-
book. The unit is an element named CUSTOMER-
RECORD. Each of these elements has four child
elements of type “last-name,” “first-name,” “age,
and “phone.” The first two types are strings
restricted to 20 and 15 characters, respectively
(encoded with the “length” facet). The third type is
an integer restricted to three digits (expressed by
restricting the “totalDigits™). The fourth type is a
string restricted to ten digits (expressed by setting
the pattern facet to \d{10}).

2

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Note that the elements are in the same order as the
data in the copybook and that we have translated
the last field as a string rather than as an integer
(because leading zeros are not ignored, etc.).

The XML Schema in Figure 2 becomes a DFDL
specification by changing the beginning to the
following:

<xs:schema xmlns:xs =
“http://www.w3.0rg/2001/XMLSchema”
xmins:data=*http://dataformat.org/”>
<xs:annotation>
<xs:appinfo source=*http://dataformat.org/”>
<data:defaults>
<data:format data:encoding=“ebcdic-cp-us”/>
</data:defaults>
</xs:appinfo>
</xs:annotation>

This makes the mapping from a byte stream to XML
precise. Here’s how it works:

e The data: prefix is defined to be bound to the
DFDL namespace.

® The data:defaults directive is a container for
default DFDL format properties.

® The data:format directive is the main DFDL
declaration containing property values.

® The data:encoding property, in particular, sets
the character encoding to the EBCDIC character
set used by COBOL copybook.

That’s all. Using this DFDL format, the data with
two copybook records in Figure 3A (as one
contiguous stream) is viewed as if it were the XML
document in Figure 3B. The DFDL engine generates
this view by making some simple assumptions:

ROSE, MALAIKA, AND SCHLOSS

417

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:simpleType name="last-name">

{xs:restriction base="xs:string"><{xs:length value="20"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="first-name">

{xs:restriction base="xs:string"><xs:length value="15"/>

<{/xs:restriction>
</xs:simpleType>

<xs:simpleType name="age">

{xs:restriction base="xs:int"><{xs:totalDigits value="3"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="phone">

{xs:restriction base="xs:string"><xs:pattern value="\d{10}"/>

{/xs:restriction>
</xs:simpleType>

<xs:element name="copybook">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="9999">

<xs:element name="CUSTOMER-RECORD">
<xs:complexType>
{Xs:sequence>

<xs:element name="CUSTOMER-LAST-NAME" type="last-name"/>

<{xs:element name="CUSTOMER-FIRST-NAME"
type="first-name"/>

<xs:element name="CUSTOMER-AGE" type="age"/>

<xs:element name="CUSTOMER-PHONE" type="phone"/>

</xs:sequence>
</xs:complexType>
</xs:element>
{/xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Figure 2

W3C XML Schema corresponding to the collection of records described by the copybook in Figure 1

* Only the top-level element is assumed to be the
root element.

e The data is expected to contain only the simply
typed values mandated by the W3C XML Schema,
appearing in the same order as in the XML view.

* The W3C XML Schema textual form is used as the
default textual form for each value.

The data:format directive allows a large number of
properties to be specified directly on element/
attribute declarations, on type declarations, or as
defaults, including for

* basic byte size and order and character-set
encoding used for text,

418 ROSE, MALAIKA, AND SCHLOSS

* binary numeric formats (integer, decimal, and
floating-point representation details),

e textual numeric representation properties (base,
decimal-point convention, negation mark, etc.),

¢ identifying leading/trailing tags for specific struc-
tures as well as separating sequences (both binary
and textual), and

e computation to select between choices or compute
property values from the data.

If some business information is stored as real XML
documents and some is stored in a representation

that DFDL can map as virtual XML, the same XML
Schema can be used to describe the XML structure of

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

A

ROSE KRISTOFFER 0402025555555
ROSE SOFUS 0060000000000
B

<copybooks>

<CUSTOMER-RECORD>
<CUSTOMER- LAST-NAME>ROSE
<CUSTOMER-FIRST-NAME>KRISTOFFER
<CUSTOMER-AGE>40</CUSTOMER-FILE-AGE>

</CUSTOMER-LAST-NAME>
</CUSTOMER-FILE-FIRST-NAME>

<CUSTOMER-PHONE>2025555555</CUSTOMER-FILE-PHONE>

</CUSTOMER-RECORD>
<CUSTOMER-RECORD>
<CUSTOMER-LAST-NAME>ROSE
<CUSTOMER-FIRST-NAME>SOFUS
<CUSTOMER-AGE>6</CUSTOMER-FILE-AGE>

</CUSTOMER-LAST-NAME>
</CUSTOMER-FILE-FIRST-NAME>

<CUSTOMER-PHONE>0000000000</CUSTOMER-FILE-PHONE>

</CUSTOMER-RECORD>
</copybooks>

Figure 3

Cobol copybook records transformed into DFDL format; (A) copybook records; (B) DFDL format

both. For the real XML, the dfd1:foo attributes are
simply ignored.

XML processing languages

XML processing languages that run efficiently over
the diverse virtual XML data sources discussed
earlier represent the third and last tool needed for
virtual XML. The most pervasive tool is XPath, of
course, but a set of tools also includes XSLT,8
XQuery,9 and BPEL4WS (Business Process Execu-
tion Language for Web Services),45 which supports
copying and moving XML. The challenge is to
implement these efficiently.

The approach that we have adopted in our prototype
release, the virtual XML Garden,46 is to (1) imple-
ment the processing languages lazily such that
processing is driven in an “on demand” fashion by
the consumer accessing the processing result, and
(2) analyze expressions and queries to understand
the data profile properties of each component. The
technical details of how this is achieved are beyond
the scope of this paper.46

SOLVING BUSINESS PROBLEMS WITH VIRTUAL
XML

In this section we describe a number of use cases
that illustrate business solutions implemented with
virtual XML. These involve a sensor-based computer
system, a commercial broker system, an archival
system, a file access method, and a data aggregator
application.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Use case 1—A sensor-based computer system
The use of sensors in computer systems is increas-
ing, and the integration of diverse sensor systems
into a single system infrastructure is becoming
desirable. Although sensors do not usually generate
XML data, the data is often converted to XML in
order to take advantage of common infrastructure
and interfaces and to conform to standards. Virtual
XML provides the ability to view and process sensor
data as XML without performing any conversion,
and thus, it helps speed up the operation of the
system. In other words, without virtual XML, the
emitted sensor data would first be converted into
XML in advance of being processed and consumed.
With virtual XML technology, the emitted sensor
data is transformed to XML as required, in a just-in-
time manner.

This use case is an example of applying virtual XML
to the data publisher pattern. Other data publisher
examples include relational-database event pub-
lishers, where data is emitted as a result of changes
made to a database system, or publishers of system
infrastructure events; that is, events such as the
failure of a software component or a change in the
utilization of a software component.

Publishing such data as XML can be costly, but
having a way of processing binary data through
general-purpose XML interfaces facilitates the pro-
duction and distribution of non-XML.

ROSE, MALAIKA, AND SCHLOSS

419

Data
Broker

Q
‘ Publisher

~—

~—

Application
XML View (consumer) XML View
New Data Archive
Data
Figure 4

Putting the use cases together

Use Case 2—A commercial broker system
Brokers are software systems that mediate between
entities such as service requestors and service
providers. They can be viewed as an example of
applying virtual XML to the data broker pattern.
Messaging brokers are used to implement the event-
driven and XML-based messaging engine (the bus)
of the Enterprise Service Bus.”” Commercial brokers
and messaging systems are becoming more versatile
in the types of data they process, transform, and
aggregate. Virtual XML provides the ability for
brokers and their users to view the data processed or
produced as XML, regardless of its format.

Without virtual XML, a broker would have to first
convert a non-XML message into XML, before
applying any transformations or filtering, to reduce
or remove messages from the stream flowing
through the broker. With virtual XML, the broker
could apply transformations and filters without
converting the messages in advance.

Use case 3—An archival system

Many businesses and scientific institutions preserve
their data for long periods. They do so for a variety
of reasons, such as complying with governmental
regulations and the need to perform data mining in
order to ascertain trends. The preservation periods
can exceed 20 years. Data formats in common use
change over time, and the software tools to process
the formats become less readily available. When
dealing with archival data we can either convert the

420 ROSE, MALAIKA, AND SCHLOSS

data in advance, or convert it when there is a need
to process it. Virtual XML makes it possible to create
XML views on the archival data with currently used
tools. The Scientific Annotation Middleware (SAM)
system,47 for example, which makes it possible to
view all of the recorded information through a single
interface or protocol, follows an approach similar to
virtual XML. This use case is an example of applying
virtual XML to the data consumer pattern.

Use case 4—A file access method

Just as it is desirable to access archival data in a
uniform ways, it is also desirable to access hetero-
geneous data stored in a file system in a uniform
way. The GEDDM: Grid Based Conversion of
Unstructured Data using a Common Semantic
Model*® program is an example of a project that
attempts to access a variety of file formats through
XML interfaces and is similar in concept to our
virtual XML approach. Another possibility that has
been discussed at the GGF," is the use of the WS-
DAIX (Web Services Data Access and Integration for
XML)49 interface to access heterogeneous data,
which can be viewed as an extension to virtual XML.
This interface supports XPath and XQuery through
Web services. These use cases are examples of
applying virtual XML to the data consumer pattern
as well as using general-purpose virtual XML tools.

Use case 5—A data aggregator application

Often data collection, especially when done from a
wide range of sources, is done with some small
easy-to-distribute tool that was put together in the
past beyond recall. Such ad hoc legacy programs
often use standard tools to do their job. By making it
easy for programmers to access legacy formats such
as the ZIP*’ format in XML, the processing of
aggregated data can be moved to use the XML tool
stack. This use case is an example of applying
virtual XML to the data aggregator pattern.

Putting the use cases together

Figure 4 illustrates two scenarios that combine
elements of our five use cases in which all data is
non-XML data viewed as XML. In the top part of the
figure a publisher, such as a sensor device, sends
non-XML data to a data broker. Through the use of
virtual XML technologies, the data broker views the
published data as XML. The data may be processed
by the data broker and then sent as non-XML data to
a consumer, which views the same data as XML. At
the bottom of the figure an application accesses non-

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

XML data from two sources: a source of new data
and a source of existing (archived) data.

The Chartered Arrivals System example51 demon-
strates how a collection of non-XML files can be
zipped into one file and transmitted to interested
parties who can process the zipped file and its
contents by using virtual XML tools and technolo-
gies. The example illustrates how particular data
items in the individual files within the zip archive
can be accessed directly by using XPath or XQuery
and combining a specific XML view of the individual
files with a default XML view of the zip archive.

CONCLUSION

In this paper we introduce the concept of virtual XML
as a way of representing and processing non-XML
data as XML. We describe the architectural compo-
nents needed to enable applications to work with
both XML and virtual XML without change: an XML
cursor concept that supports various patterns of
access to diverse data, a way of describing the data as
XML (DFDL), and XML processing languages.

We show that the virtual XML concept can be
applied in two ways. We can either construct a
default view for a well-known non-XML format such
as EXIF JPEG'® or ASN.I,N or we can construct a
specific view for a non-XML format as illustrated in
the Chartered Aircraft Arrivals use case, in which we
describe a zip archive via DFDL notation.

It is likely that DFDL 1.0 will be published sometime
in 2006. Alpha (experimental) software suitable for
learning DFDL is becoming available*® and more
examples are expected in 2006. Soon thereafter
vendors of message brokering and mapping soft-
ware, Enterprise Service Bus transformation facili-
ties, and ETL (Extract, Transform and Load)
software will be able to support virtual XML by
using DFDL. Because additional powerful XML
facilities, such as XQuery 1.0, will also be widely
available, organizations that wish to correlate non-
XML with XML information are likely to adopt
virtual XML whenever messaging or query-infra-
structure middleware updates are installed.

Many well-known formats, such as the EXIF JPEG
format,16 can be described with DFDL once, and it
would be reasonable to expect many of these one-
time mapping specifications (default views) will be
published. For meta-formats, such as HL7 (earlier
than Version 2.4)10 or ASC X12 (American National

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Standards Institute [ANSI] Accredited Standards
Committee X12 for electronic data interchange),52 a
translator from the data format description to DFDL
can be developed. As previously mentioned, re-
searchers have already standardized XML Schema
views of relational schemas so that virtual XML will

m Virtual XML enables the
processing of ZIP files with
standard XML tools m

apply to both structured and tabular information. As
additional frameworks for analysis of free-form text,
such as the IBM Unstructured Information Manage-
ment Architecture,53 mature, much free-form text
will also be viewable after augmentation in some
form of XML, involving items such as resumes,
contracts, and clinical notes. For applications in
which minimizing the traffic between devices is
crucial but general-purpose compression and de-
compression circuitry is too expensive or draws too
much power, DFDL-mapped structured information
may be interchanged (although this is logically XML,
it does not physically involve instances of XML
documents).

XML interfaces for accessing information are likely
to become a significant part of all enterprise
operations because of the trend toward including
XML data model services and content transforma-
tion and building on top of the virtual XML
technologies described in this paper. The Chartered
Aircraft Systern51 is an illustration of this trend, by
demonstrating how an XPath- or XQuery-based
query can operate on an aggregate of XML or non-
XML documents or records.

We observe that most file systems have a hierarch-
ical arrangement of folders or directories, which
corresponds nicely to the XML structure. Therefore,
writing XPath expressions that a virtual XML engine
interprets (with some navigation occurring in the
file system and some navigation occurring within
XML documents or a virtual XML document view of
structured information in the files) is an appealing
next step. Our prototype release™® already contains
examples of such functions.

Similarly, databases that include a large collection of
documents could also be addressed as if they were

ROSE, MALAIKA, AND SCHLOSS

421

represented as a single document with an enriched
XPath. Using the concept of profiles, an engine
accepting XPaths against an entire database would
reject queries that could lead to non-terminating
searches (for example, looping through documents
that are considered siblings). Thus knowledge of
scale can be used to avoid accepting impractical or
non-terminating queries.

Finally, all the information on the Web that is
addressable with URIs might be addressable with a
. 54

single query as proposed by one of the authors.
New metadata (different than DFDL) may be needed
to support these applications, and these are some of
the long-term research directions that the virtual
XML concept opens.

ACKNOWLEDGMENTS

We thank the anonymous reviewers whose feedback
was most helpful. We are grateful to the members of
the Virtual XML Garden: Lionel Villard, Rajeshwari
Rajendra, Paul Castro, Christopher Holtz, William Li,
and Stefan Schmidt for their contribution to virtual
XML. We thank Manfred Oevers for his comments on
an earlier version of this paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Altova, Inc, Sun Microsystems, Massachusetts Institute of
Technology, or Microsoft Corporation in the United States,
other countries, or both.

CITED REFERENCES AND NOTES
1. S.Bourbonnais, V. M. Gogate, L. M. Haas, R. W. Horman,
S. Malaika, I. Narang, and V. Raman, “Towards an
Information Infrastructure for the Grid,” IBM Systems
Journal 43, No. 4, 665-688 (December 2004).

2. SGML is described at Cover Pages, http://xml.
coverpages.org/sgml.html.

3. XML Path Language (XPath), Version 1.0, W3C Recom-
mendation, J. Clark and S. DeRose (Editors), World Wide
Web Consortium (November 1999), http://www.w3.org/
TR/1999/REC-xpath-19991116.

4. XML Path Language (XPath) 2.0, W3C Candidate
Recommendation, A. Berglund, S. Boag, D. Chamberlin,
M. F. Fernandez, M. Kay, J. Robie, and J. Siméon
(Editors), World Wide Web Consortium (April 2005),
http://www.w3.0org/TR/2005/CR-xpath20-20051103.

5. XMLSpy from Altova, Inc., http://www.altova.com/.

6. The Apache XML Project, Apache Software Foundation,
http://xml.apache.org/.

7. XSL Transformations (XSLT), Version 1.0, W3C Recom-
mendation, J. Clark (Editor), World Wide Web Con-

422 ROSE, MALAIKA, AND SCHLOSS

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

sortium (November 1999), http://www.w3.org/TR/
1999/REC-xsl1t-19991116.

XSL Transformations (XSLT), Version 2.0, W3C Candi-
date Recommendation, M. Kay (Editor), World Wide Web
Consortium (November 2005), http://www.w3.org/TR/
2005/CR-xslt20-20051103/.

XQuery 1.0: An XML Query Language, W3C Candidate, S.
Boag, D. Chamberlin, M. F. Ferndndez, D. Florescu, J.
Robie, and J. Siméon (Editors), World Wide Web
Consortium (November 2005), http://www.w3.org/TR/
2005/CR-xquery-20051103.

Health Level Seven, Inc., http://www.hl7.org/.

ACORD Global Insurance Standards, Association for
Cooperative Operations Resarch and Development,
http://www.acord.org/.

The ISO: SQL/XML—Part 14 (SQL 2003) specification,
ISO/IEC 9075-14:2003, International Organization for
Standardization, http://www.iso.org/iso/en/
CatalogueDetailPage.CatalogueDetaiZCSNUMBER=
35341&scopelist=.

The ISO: SQL/XML—Part 14 (SQL 2003) specification,
XML schema, defined at the International Organization
for Standardization, http://standards.iso.org/iso/9075/
2002/12/.

D. C. Fallside and P. Walmsley: XML Schema Part 0:
Primer (Second Edition), W3C Recommendation, World
Wide Web Consortium (October 2004), http://www.w3.
org/TR/2004/REC-xmlschema-0-20041028.

JCP JSR 114 JDBC Rowset Implementations XML schema,
defined at http://java.sun.com/xml/ns/jdbc/webrowset.
xsd.

EXIF JPEG format, defined at Japan Electronics and
Information Technology Industries Association, http://
www.jeita.or.jp/english/standard/html/1_4.htm.

ASN.1 (Abstract Syntax Notation 1) is described at
http://asnl.elibel.tm.fr/en/.

XQuery 1.0 and XPath 2.0 Data Model, November 2005,
W3C Candidate Recommendation, M. F. Fernandez, A.
Malhotra, J. Marsh, M. Nagy, and N. Walsh (Editors),
World Wide Web Consortium (November 2005), http://
www.w3.org/TR/2005/CR-xpath-datamodel-20051103/.

XML Information Set (Second Edition), W3C Recommen-
dation, J. Cowan and R. Tobin (Editors), World Wide
Web Consortium (February 2004), http://www.w3.org/
TR/xml-infoset.

XML Schema Part 1: Structures (2nd Edition), W3C
Recommendation, H. S. Thompson, D. Beech, M.
Maloney, and N. Mendelsohn (Editors), World Wide Web
Consortium (October 2004), http://www.w3.org/TR/
xmlschema-1.

XML Schema Part 2: Datatypes (2nd Edition), W3C
Recommendation, P. V. Biron and A. Malhotra (Editors),
World Wide Web Consortium (October 2004), http://
www.w3.org/TR/xmlschema-2.

M.-T. Schmidt, B. Hutchison, P. Lambros, and R.
Phippen, “The Enterprise Service Bus: Making Service-
Oriented Architecture Real,” IBM Systems Journal 44, No.
4, 781-797 (December 2005).

XMLSoft.org: LibXML2: The XML C Parser and Toolkit for
Gnome and Other Systems, with a Variety of Language
Bindings (2005), http://xmlsoft.org/.

Document Object Model (DOM) Level 3 Core Specification,
Version 1.0, W3C Recommendation, A. Le Hors,

P. Le Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion,

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

and S. Byrne (Editors), World Wide Web Consortium
(April 2004), http://www.w3.org/TR/2004/
REC-DOM-Level-3-Core-20040407.

25. Document Object Model (DOM) Level 3 XPath Specifica-
tion (Version 1.0), W3C Working Group Note,
R. Whitmer (Editor), World Wide Web Consortium
(February 2004), http://www.w3.org/TR/2004/
NOTE-DOM-Level-3-XPath-20040226.

26. RELAX NG Specification, J. Clark and M. Murata
(Editors), OASIS (December 2001), http://www.
oasis-open.org/committees/relax-ng/spec-20011203.
html.

27. D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P.
Griffiths, R. A. Lorie, J. W. Mehl, P. Reisner, and B. W.
Wade, “SEQUEL 2: A Unified Approach to Data Defi-
nition, Manipulation, and Control,” IBM Journal of
Research and Development 20, No. 6, 560-575 (1976).

28. JDBC Technology, Sun Microsystems, Inc., http://java.
sun.com/products/jdbc/.

29. N. Li, J. Hui-I Hsiao, and P. Tijare, “Cursor Management
for XML Data,” in Proceedings of XML Database
Symposium (XSym 2003), Lecture Notes in Computer
Science 2824, Springer-Verlag, Berlin, Germany (Sep-
tember 2003), pp. 52-69.

30. .NET Framework Class Library, XPathNavigator Class,
Microsoft Corporation, http://msdn.Microsoft.com/
library/default.asp?url=/library/en-us/cpref/html/
frirfsystemxmlxpathxpathnavigatorclasstopic.asp.

31. Introduction to OJXQI—The Oracle Java XQuery API,
Oracle Corporation, http://www.oracle.com/technology/
sample_code/tech/xml/xmldb/jxqi.html.

32. K. Inaba, Purely Applicative XML Cursor, http://Www.
kmonos.net/pub/Slit/index.en.html.

33. XmlCursor Interface, BEA Systems, Inc., http://e-docs.
bea.com/workshop/docs81/doc/en/core/index.html.

34. D. Obasanjo, A Survey of APIs and Techniques for
Processing XML, O’Reilly Media, Inc. (2003), http://
www.xml.com/pub/a/2003/07/09/xmlapis.html.

35. XQuery 1.0 and XPath 2.0 Functions and Operators, W3C
Candidate Recommendation, A. Malhotra, J. Melton, and
N. Walsh (Editors), World Wide Web Consortium
(November 2005), http://www.w3.0rg/TR/2005/
CR-xpath-functions-20051103/.

36. Simple API for XML, Version 2.0.2 (April 2004), http://
WWW.saxproject.org/.

37. J. Beatty, S. Brodsky, M. Carey, R. Ellersick, M. Nally,
and R. Preotiuc-Pietro, Service Data Objects, Version 2.0,
IBM Corp. and BEA Systems, Inc. (June 2005), ftp://
wwwob6.software.ibm.com/software/developer/library/
j-commonj-sdowmt/Commonj-SDO-Specification-v2.0.
pdf.

38. K. Rose and L. Villard, “Phantom XML,” Proceedings of
the XML 2005 Conference, November 14-18, Atlanta,
Georgia (2005), http://www.idealliance.org/
proceedings/xml05/abstracts/paper80.HTML.

39. Binary Format Description Language (BFD) project at the
Pacific Northwest National Laboratory, U.S. Department
of Energy, http://collaboratory.emsl.pnl.gov/sam/bfd/.

40. BizTalk project from Microsoft Corporation, http://www.
microsoft.com/biztalk/default.mspx.

41. T. Restrepo, BizTalk 2004 Flat File Schema Tutorial (Parts
1 and 2), http://www.winterdom.com/dev/bts/.

42. M. Beckerle, Data Format Description Language (DFDL),
A Proposal: Data Format Description Language Working

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Group Working Draft (2005-08-29), https://forge.
gridforum.org/projects/dfdl-wg.

43. Global Grid Forum, http://www.ggf.org/.

44, M. Westhead, M. Beckerle, and J. Myers, Data Format
Description Language Working Group, Global Grid
Forum, 2004, http://forge.gridforum.org/projects/
dfdl-wg.

45. BPEL4WS (Business Process Execution Language for
Web Services), described at http://www.ibm.com/
developerworks/library/specification/ws-bpel/.

46. Virtual XML Garden, described at http://www.
alphaworks.ibm.com/tech/virtualxml.

47. Scientific Annotation Middleware (SAM) described at
http://www.scidac.org/SAM.

48. K. Loughran, P. Donachy, T. J. Harmer, R. H. Perrott,
M. Prentice, S. Bearder, and J. Rasch, GEDDM: Grid Based
Conversion of Unstructured Data Using a Common
Semantic Model, http://www.allhands.org.uk/2004/
proceedings/papers/166.pdf.

49. M. Antonioletti, S. Hastings, A. Krause, S. Langella,
S. Laws, S. Malaika, and N. W. Paton, Web Services Data
Access and Integration—The XML Realization (DAIS-WG)
(December 2005), https://forge.gridforum.org/projects/
dais-wg.

50. Zip Archive, described at http://www.info-zip.org/.

51. Chartered Aircraft System, IBM Corporation, http://
domino.research.ibm.com/comm/research_projects.nsf/
pages/virtualxml.examples.html.

52. ASC X12 (American National Standards Institute (ANSI)
Accredited Standards Committee X12 for Electronic Data
Interchange), described at http://www.x12.org/.

53. D. Ferrucci and A. Lally, “Building an Example Applica-
tion with the Unstructured Information Management
Architecture,” IBM Systems Journal (Special Issue on
Unstructured Information Management) 43, No. 3, 455-
475 (2004).

54. The XML World View, ACM Symposium on Document
Engineering, University of Wisconsin-Milwaukee, USA
(October 2004), http://www.sdml.info/doceng2004.

GENERAL REFERENCES ON XML VIEWS
These references are organized by location or subject as
follows:

IBM Almaden Research Center (the first work on XML views
was done here):

M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasundaram,
E. Shekita, and S. Subramanian, “XPERANTO: Publishing
Object-Relational Data as XML,” Proceedings of the Third
International Workshop on the Web and Databases (WebDB
2000), May 18-19, 2000, Dallas, Texas, ACM, New York
(2000), pp. 105-110.

J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,

B. Lindsay, H. Pirahesh, and B. Reinwald, “Efficiently
Publishing Relational Data as XML documents,” Proceedings
of the Third International Workshop on the Web and
Databases (WebDB 2000), May 18-19, 2000, Dallas, Texas,
ACM, New York (2000), pp. 65-76.

INRIA:

S. Abiteboul, “On Views and XML,” Proceedings of the
Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS 1999), May 31-June 2,

ROSE, MALAIKA, AND SCHLOSS

423

1999, Philadelphia, Pennsylvania, ACM, New York (1999),
pp. 30-38.

University of Washington:

Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Weld, “An
Adaptive Query Execution System for Data Integration,”
Proceedings of the ACM SIGMOD International Conference on
Management of Data, June 1-3, 1999, Philadelphia, ACM,
New York (1999), pp. 299-310.

University of Pennsylvania and AT&T Research:

M. F. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, and
W-C. Tan, SilkRoute,” A Framework for Publishing Relational
Data in XML,” ACM Transactions on Database Systems 27,
No. 4, 438-493 (2002).

UCSD Mix project—The idea of virtual views of data as XML
was explored with early strategies documented in the
following references:

B. Ludascher, Y. Papakonstantinou, and P. Velikhov, “Nav-
igation-Driven Evaluation of Virtual Mediated Views,” Pro-
ceedings of the 7th International Conference on Extending
Database Technology (EDBT 2000), Konstanz, Germany,
March 27-31, 2000, Lecture Notes in Computer Science 1777,
Springer, Berlin (2000), pp. 150-165.

C. Baru, V. Chu, A. Gupta, B. Ludascher, R. Marciano,

Y. Papakonstantinou, and P. Velikhov, “XML-Based Informa-
tion Mediation for Digital Libraries,” Proceedings of the Fourth
ACM Conference on Digital Libraries, August 11-14, 1999,
Berkeley, CA, ACM, New York (1999), pp. 214-215.

A large body of work on adapting relational data into XML
has been published, including the following references:

P. Bohannon, H. F. Korth, and P. P. S. Narayan, “The Table
and the Tree: On-Line Access to Relational Data through
Virtual XML Documents,” Proceedings of the Fourth Interna-
tional Workshop on the Web and Databases (WebDB 2001),
Santa Barbara, California, USA, May 24-25, 2001, ACM, New
York (2001), pp. 55-60.

M. L. Lo, S-K Chen, S. Padmanabhan, and J-Y Chung, “XAS: A
System for Accessing Componentized, Virtual XML Docu-
ments,” Proceedings of the 23rd International Conference on
Software Engineering (ICSE 2001), May 12-19, 2001, Toronto,
Ontario, Canada, IEEE, New York (2001), pp. 493-502.

P. Bohannon, S. Ganguly, H. F. Korth, P. P. S. Narayan, and
P. Shenoy, “Optimizing View Queries in ROLEX to Support
Navigable Result Trees,” Proceedings of the 28th International
Conference on Very Large Databases (VLDB 2002), Morgan
Kaufmann Publishers, San Francisco, CA (2002), pp. 119-130.

A large body of work on adapting HTML pages into XML has
been published, including the following references:

A. Sahuguet and F. Azavant, “Web Ecology: Recycling HTML
Pages as XML Documents Using W4F,” Proceedings of the
ACM SIGMOD Workshop on The Web and Databases
(WebDB’99), June 3-4, 1999, Philadelphia, Pennsylvania,
ACM, New York (1999), pp. 31-36.

J. Naughton et al., “The Niagara Internet Query System,” I[EEE
Data Engineering Bulletin 24, No. 2, 27-33 (2001).

Accepted for publication November 29, 2005.
Published online May 16, 2006.

Kristoffer H. Rose

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, New York 10532 (krisrose@us.ibm.com).
Dr. Rose received a Ph.D. degree in computer science from the
University of Copenhagen in 1996, doing research in tree and graph

424 ROSE, MALAIKA, AND SCHLOSS

rewriting systems. After four years in academia, the last as an
associate professor at Ecole Normale Superieur in Lyon, France, he
joined the Watson Research Center in 2000. At IBM, he is working
on XML technology with a special interest in how XML and the
XML processing languages (XSLT, XQuery, etc.) can be
implemented so that they can be used efficiently over large data
structures even when those are not in XML. Most recently he has
been experimenting with (and has implemented) Data Format
Description Language (DFDL) to this end.

Susan Malaika

IBM, 294 Route 100, Somers, New York 10589
(malaika@us.ibm.com). Susan Malaika is a Senior Technical
Staff Member in IBM’s Information Management Group. She
develops standards that support data for grid environments at
the Global Grid Forum. Her specialties include XML, the Web,
and databases. In addition to working as an IBM product
software developer, she has also worked as an Internet
specialist, a data analyst, and an application designer and
developer. She has also co-authored a book on the Web and
published articles on transaction processing and XML. She is a
member of the IBM Academy of Technology.

Robert J. Schloss

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, New York 10532 (rschloss@us.ibm.com).
Robert Schloss, a Senior Technical Staff Member, is working on
runtime tools for XML and Web Services middleware at the Watson
Research Center in the Next Generation Web Group. He received an
A.B. degree in mathematics and computer science from Yale
University. Mr. Schloss is a founding member of the XML Research
group at IBM, and he has a long involvement with Web data
interchange standards. M

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

