The importance of sibling
clustering for efficient bulkload of
XML document trees

In an XML Data Store (XDS), importing documents from external sources is a very
frequent operation. Because a document import consists of a large number of
individual node inserts, it is essentially a small bulkload operation, and thus efficient
bulkload support is crucial for the performance of the XDS. The bulkload operation is
in essence a mapping of an XML parser’s output into the storage structures of the XDS.
This involves two major subtasks: (1) partitioning the document’s logical tree structure
into subtrees that can be stored on a page in a way that is both space-efficient and
suitable for later processing and (2) mapping the subtrees to the internal
representation of the XDS for paging. In enterprise-scale environments with very large
documents and many parallel bulkload operations, the first task is particularly
challenging, as not only disk space consumption, but also CPU and main-memory
usage are important factors. In this paper, we discuss the requirements for an XDS
bulkload component and examine existing algorithms for tree partitioning and their
applicability to the bulkload operation. We derive a new tree-partitioning algorithm for
use in the bulkload operation and present the design of the bulkload component for
the XDS Natix. Finally, we evaluate the performance of the bulkload component and
compare our results with previous work.

C. C. Kanne
G. Moerkotte

INTRODUCTION

Loading large amounts of data which is already
available in an external format is called a bulkload
operation. In conventional database management
systems (DBMSes), bulkloads are often used to
initialize a database, for example, when introducing
an application to DBMS usage or when importing
data from a different DBMS or storage format.

In contrast, an XDS (XML Data Store) needs to
support document imports as regular operations that
are used very frequently by applications. Hence, the

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

bulkload becomes a core function whose perfor-
mance is a determinant of overall system perfor-
mance; however, we could find very few publications
that discuss efficient XML bulkload in large-scale
XML data stores.

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

KANNE AND MOERKOTTE

321

This paper attempts to mitigate this deficit by
presenting the design and implementation of the
bulkload component for the Natix XDS, a native
XML data store developed at the University of
Mannheim.' Besides requirements analysis and API
(application programming interface) design, our
main focus is the design of an efficient tree-
partitioning algorithm that decomposes the logical
XML document tree into subtrees, or clusters, that fit
on a disk page. Such a clustering algorithm is
needed not only in Natix, but in every XDS that
proxzfides native tree storage, such as IBM’s System
RX.

Of particular concern is the number of clusters
generated. When accessing the stored documents,
intercluster navigation is much slower than intra-
cluster navigation, often by several orders of
magnitude. Even if access reordering techniques are
used,” the number of clusters is a crucial factor for
query performance. Hence, the bulkload algorithm
must minimize the number of clusters generated.

Our main contributions are

1. a detailed requirements analysis for XML bulk-
load components,

2. an analysis of existing tree clustering algorithms,

3. a novel linear-time tree-clustering algorithm that
generates up to 30 percent fewer clusters than the
best known algorithms,

4. a description of the design and implementation of
a concrete XML bulkloader, the Natix bulkload
component, and

5. an evaluation of the Natix bulkload component.

The rest of this paper is organized as follows. In the
next section, “XML storage,” we give a brief
overview of native tree storage in Natix. Next, in the
section “Requirements,” we analyze the require-
ments an XML bulkload component must meet.
Then, in “Tree-clustering algorithms,” we discuss
existing tree-clustering algorithms with respect to
these requirements. In the section “Natix bulkload
component,” we describe the interface and the
implementation of the bulkload component. This
section also covers our novel tree-clustering algo-
rithm. In the section “Evaluation,” we provide our
experimental results, including a comparison with
the bulkload performance of other XML storage
systems. Our concluding remarks are presented in
the last section.

322 KANNE AND MOERKOTTE

XML STORAGE

The design of the bulkload component is strongly
influenced by the format used for storing XML data
in the XDS. A suitable format for an enterprise-level
XDS must efficiently support bulkloads, incremental
updates, synchronization, and recovery. In this
section, we briefly review the Natix format for
storing XML data (for details, refer to References 1,
4, and 5). Similar formats are also used in other
XDSes, such as IBM’s System RX.

Logical tree model

The interface to our core storage engine uses a
simple, general logical tree model with only two
node types and no XML-specific constructs, such as
attributes. This model enables a simple engine
design and is easily mapped to concrete XML models
such as the Document Object Model (DOM) or the
simple API for XML (SAX), as explained in the next
subsection.

The documents are represented as ordered trees in
which nodes are labeled with symbols taken from an
alphabet X. In the current implementation, we use
the set of integers from 0 to 2'°_1 as =. Leaf nodes
can additionally be labeled with arbitrarily long
strings over a different alphabet (in the current
implementation, this alphabet consists of the set of
Unicode characters).

Mapping XML to the logical object model

A small wrapper module maps a concrete XML
representation (such as DOM, SAX) with its node
types and attributes to the simple tree model and
vice versa. A sample tree for a document fragment is
shown in Figure 1.

Mapping XML document nodes to logical nodes
Elements are mapped one-to-one to tree nodes of the
logical model. Attributes are mapped to child nodes
of an additional attribute container child node,
which is always the first child of the element node to
which the attributes belong. Attributes, PCDATA
(including whitespace-only data), CDATA nodes,
and comments are stored as leaf nodes.

Mapping XML tags to tree labels

As alphabet Z, the storage engine uses non-negative
integers, which are called DeclarationIDs. The
module that maps XML to the logical tree model also
performs the mapping from tag names, attribute
names, and special node labels (such as PCDATA) to

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

<SPEECH>

<SPEAKER character=’"famous’>0THELLO</SPEAKER>

<LINE>Let me see your eyes;</LINE>
<LINE>Look in my face.</LINE>

</SPEECH>
SPEAKER
//f// PCDATA
AttrColntalner OTHELLO
character
‘famous’
Figure 1

2PEECH \
LINE LINE
PCDATA PCDATA

Let me see your eyes; Look in my face.

An XML fragment and the corresponding instance of its logical tree model

DeclarationIDs. All the documents in an XML
collection share the same mapping, which makes
query evaluation simpler and more efficient because
the possible integer values for a given tag or
attribute name can be resolved once per query and
stay the same for all documents in the collection.

Physical tree model

Natix organizes physical storage in units known as
XML segments. An XML segment provides a storage
area and an interface for storing and accessing a
collection of logical tree instances. A physical tree is
the mapping of a logical tree to physical storage and
consists of records, each of which is smaller than a
disk page and contains a subtree of the logical tree.
In this section we use the term record subtree (or
simply subtree) to refer to any subtree of the logical
tree that is stored in a record. The records can be
addressed using record IDs (RIDs).

A record subtree contains three types of nodes.
Aggregate nodes represent the inner nodes of the
tree and are labeled with non-negative integers
(over the alphabet X). Literal nodes are leaf nodes
that in addition to a label over the alphabet ¥ can
also have content in the form of a string. A proxy
node is a special leaf node that points (refers) to a
record subtree that is stored in a separate record and
corresponds to a connected subtree of the logical
tree. Substituting all proxies with the referenced
subtrees reconstructs the original logical tree.
Although proxies use RIDs to refer to the target
subtree, this is an implementation detail and not a
requirement for applying our techniques (one could
use logical references, such as found in System RXZ).

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Logical tree
‘/‘/ f \\
f2 f3 fa fs fe
n f
=
2 P2
Physical tree ra l rs l
h] h2
I / \
f2 f3 fa || fs fe
Figure 2

One possible way of mapping logical trees onto records

Every record subtree has two attributes: the parent
RID, which points to the parent subtree (if it exists),
and the logical document ID field, which determines
the document to which this subtree belongs.

An example of a logical tree and its mapping onto
records is shown in Figure 2. To store the given
logical tree (assumed not to fit on a page), the
physical data tree is distributed over the three
records r;, r,, and r,. Two proxies (p, and p,) are
used in the top level record. Two helper aggregate
nodes (i, and h,) have been added to the physical
tree. They group the children below p, and p, into a
tree. Proxy and helper aggregate nodes are drawn
with dashed lines. They are only needed to link
together subtrees contained in different records and

KANNE AND MOERKOTTE

323

are called scaffolding nodes. Nodes drawn with solid
lines represent logical nodes (f;), and are called
facade nodes. Only facade nodes are visible to the
caller of the XML segment interface.

The given physical tree is only one possible way of
storing the sample logical tree. Additional possibil-
ities exist as a proxy can be created on any edge of
the logical tree. The maintenance of the physical tree
during incremental updates is described in Refer-
ence 1. The initial creation of a physical tree for a
newly imported document is the main function of
the bulkload component described in this paper.

REQUIREMENTS

The requirements for a bulkload component are
based on four goals, all of which are related to
performance:

1. The interface should closely match the typical
output of XML parsers. XML parsers are the most
common source of imported XML documents,
and many XML tools, among them query
evaluation components, are able to efficiently
deliver results using parser-like interfaces. Hence,
it is reasonable to assume that the data to be
bulkloaded is delivered as XML parser output.
Otherwise, changing the data representation
before or during the bulkload operation would
require expending additional resources.

2. The bulkload operation should not require main
memory proportional to the document size. Linear
memory usage would prohibit the import of
documents larger than available main memory.
As a generalization, the total amount of con-
currently importable documents would be limited
by available physical memory.

3. The storage layout for imported XML documents
should be optimized for performance for typical
workloads (documents). We identify three
subgoals.

A. A dominant access pattern for document
trees is the preorder traversal of subtrees
induced by inner nodes. It is used when
exporting documents and document frag-
ments, which involves translating the XDS
internal representation to a document.
Query evaluation on XML documents typi-
cally also relies on preorder traversals, such
as the evaluation of XPath descendant and

324 KANNE AND MOERKOTTE

descendant-or-self axes. The default
bulkload strategy, therefore, is to create a
layout that adequately supports preorder
traversal.

B. Given a set of children, we assume that the
access frequency to sibling nodes decreases
with their distance from the parent node in
the order of traversal. In Natix, for example,
to reach a child node, all its left siblings
have to be visited. Hence, the likelihood of
being stored in the same record as the
parent node should be higher for left
siblings.

C. The number of clusters or subtrees should
be as small as possible, because traversal of
intercluster borders is much more expen-
sive than intracluster traversal. Hence,
fewer clusters imply higher query
performance.

4. The storage required for imported XML documents
should be minimized. This also implies a minimal
number of clusters, because each cluster induces
storage overhead in the form of proxies and
helper aggregates. As previously mentioned, the
bulkload component maps the logical object
model to the physical object model. Thus, the
main task for the bulkload algorithm is to
determine which subtrees of the logical model
should be stored as physical subtrees, that is,
where to locate the scaffolding nodes.

In the next section we examine existing tree
clustering algorithms and discuss how closely they
fulfill the preceding goals.

TREE-CLUSTERING ALGORITHMS

There are efficient clustering algorithms (applicable
to weighted tree structures) that partition the nodes
of a tree in a way that minimizes the number of
generated clusters. However, the clusters generated
by the existing algorithms have the following
properties: (1) the weight of each cluster has an
upper limit, which is a parameter of the algorithms
(the weight of a cluster is the sum of the weight of its
nodes), and (2) all nodes of a cluster are connected.
In our case, a cluster occupies a physical record, and
the node weight is the size of the node (without its
subtree) in bytes. Hence, the upper limit must be a
value smaller than or equal to the disk page size.

Unfortunately, our problem is slightly more com-
plicated than mere assignment of logical nodes to

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

clusters because in our case (1) the storage cost of a
cut edge is not 0, as a cut edge causes overhead in
the form of a proxy node and a new physical record
header, and (2) it is possible to put adjacent siblings
into a single cluster that does not contain their
parent node, thus creating unconnected subtrees
within the same cluster (sibling clustering).

Note that these issues apply to many other
conceivable tree storage structures because (1) any
storage scheme must deal with the entire tree
structure, not only the uncut edges, and (2) even if
efficient sibling clustering is not explicitly supported
by a format, it is still desirable to perform implicit
clustering of siblings by placing them on the same
disk page. As explained earlier, our bulkload
algorithm has to solve a more general problem than
that solved by existing tree-clustering algorithms.
The fundamental objective for a tree-clustering
algorithm for bulkload operations is to find a
minimal number of weight-limited clusters. Hence,
in the remainder of this section, we review existing
tree-clustering algorithms to find a good starting
point for a new bulkload algorithm.

Workload-directed algorithms

Depth-first search’ applied to (weighted) graphs
assigns nodes to the current cluster in a “greedy”
manner. New clusters are created whenever the
current cluster cannot include the additional node.
The resulting clustering is not compatible with our
storage structure, as the preorder traversal may
cause unconnected subtrees to be clustered together.
The cost of cut edges is also not taken into account.
In the weighted variant, the algorithm also accounts
for edge weights that represent traversal frequen-
cies. Here, the edges to visit are ordered by weight to
avoid cutting heavily used edges. This reordering
requires, in the worst case, that the entire document
be kept in main memory.

Lukes’ presents a linear-time algorithm that incor-
porates edge weights and finds an optimal cluster-
ing, that is, one that maximizes the total weight of
all edges that do not cross clusters. For unit edge
weights, the algorithm finds the clustering with the
smallest possible number of clusters. However, the
algorithm has very large resource requirements; its
running time is O(nkz) where n is the number of
nodes and k is the weight limit. In Reference 8,
running times of several hours on modern PCs for
very small documents (~100K) are reported. The

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

algorithm uses dynamic programming and creates
and maintains a large number of intermediate
clusterings, which can take up more memory than
the original document. In addition, it does not
consider sibling clusterings and does not take into
account costs for cut edges.

Bordawekar and Shmueli® extend Lukes by intro-
ducing several techniques to limit memory usage
and improve running time. This breaks the opti-
mality but achieves clusterings whose values are
quite close to the optimum. Again, cut edges and
sibling clusterings are not considered. As we will see
in the section “Evaluation,” the performance of the
algorithm is inferior to the Natix algorithm, even
though their measurements only reflect the actual
clustering phase, and not the construction of the
persistent data structures and associated costs, such
as logging.

Schkolnick” partitions hierarchical structures based
on access patterns. However, the algorithm does not
enforce a size limit for clusters and does not
consider nodes of varying weight. The algorithm has
a different objective than space-efficient bulkload; it
clusters objects into base collections, which can be
joined to efficiently answer queries. Although this
may be applied to join-based XML query processing,
it does not solve our problem of finding weight-
limited clusters.

The algorithm by Kundu and Misra

As the starting point for our own bulkload algo-
rithm, we have chosen the algorithm by Kundu and
Misra,'® which creates a clustering of a tree with
weighted nodes, where each cluster is connected
and has at most weight k, and where the number of
clusters is minimal. To facilitate the description of
our own algorithm in a later section, we now
provide a brief description of the original algorithm
and discuss its suitability as a bulkload algorithm in
more detail.

The Kundu and Misra algorithm pursues a bottom-
up approach, successively assigning clusters to
nodes. A node is processed only after its children
have been processed. Having processed node x
ensures that the weight of the subtree rooted at x is
smaller than k. The weight of a subtree is the sum of
all weights of those nodes in the subtree that have
not been assigned to a cluster. As long as the subtree
weight is larger than k, new clusters are created for

KANNE AND MOERKOTTE

325

children of x, each containing the subtree including
the children and all descendant nodes that are not
yet assigned to a cluster. Partitions are created for
the children in descending order of their subtree
weight. Once the subtree rooted at x has a weight
less than k, the processing of x is complete. When
this algorithm has reached the root node of a tree,
the clusters produced are smaller than k, and a
minimum number of clusters containing connected
subtrees has been generated (see Reference 10 for a

proof).

Suitability as bulkload algorithm

The Kundu and Misra algorithm is easily applied to
the clustering problem for the bulkload operation.
Document tree nodes have a weight proportional to
their space usage, clusters are stored as physical
records, and the limit for the size of a physical
record is the system page size. The algorithm
generates clusters in a bottom-up manner by
constructing optimal clusterings for higher levels of
the tree by combining optimal clusterings of
subtrees. This prepares preorder traversals of docu-
ment fragments, as required for document export or
when traversing such subtrees for the purpose of
evaluating queries.

In addition, however, a bulkload algorithm for Natix
has to address issues such as those mentioned
earlier:

1. Keeping the entire document tree in memory
should be avoided.

2. There is overhead associated with a physical
record because the stand-alone header and the
proxy node in the referring record require storage
space.

3. Neighboring siblings can be assigned to the same
physical record, amortizing the overhead over
several subtrees.

4. The leftmost siblings should have a higher
probability of being clustered with their parent.

The first issue can easily be addressed because the
algorithm’s bottom-up approach does not change a
node’s assignment to a cluster. Hence, once a cluster
has reached the size limit, it can be stored in a
physical record on disk, and the constituent nodes
need not be retained in main memory.

We refer to the weight limit for a cluster as the
cluster limit. A cluster limit smaller than the capacity

326 KANNE AND MOERKOTTE

of a disk page may be used to avoid fragmentation.
Because the actual cluster size can vary with the tree
structure and the size of text nodes, the cluster size
is often less than its limit, and thus, many pages are
underutilized. In Natix, the cluster limit is set by
default to a quarter of the disk page size. This allows
several clusters to share a page and thus improves
space utilization.

NATIX BULKLOAD COMPONENT

Based on the requirements stated in the previous
section, we now present the design and implemen-
tation of the Natix bulkload component. We begin
with the bulkload API that is used to import an
external document and then elaborate on our
clustering algorithm.

Interface

Figure 3 shows the internal bulkload interface for
XML collections. Natix internally organizes storage
in so-called segments, hence the identifier XMLSeg-
ment.

As input, the bulkload component expects a docu-
ment tree in the form of a sequence of “visit events”
resulting from a depth-first traversal of the tree. The
entity that uses the bulkload interface signals these
events to the bulkload component by calling
appropriate functions each time a node is visited.

The bulkload interface corresponds directly to
parser interfaces such as sAX'" or libxml."* These
generate parsing events that correspond to a depth-
first search of the abstract syntax tree. Clients need
to register callbacks with the parser, and these
callbacks are invoked when the associated event
occurs. Each SAX event can be directly translated
into a single call of the bulkload interface (attributes
are an exception because they are delivered as a list,
together with the parent element). The first visit of
the document root node initializes the bulkload
(beginBulkload()), and the second visit
(endBulkload()) terminates the bulkload and re-
turns the node identifier of the stored root node. The
beginBulkload() call allows a size hint for the
document to be specified. For small documents, this
allows the document to be fitted into a matching gap
on a partially filled page.

When visiting nonliteral nodes (beginInternal-
Node ()) for the first time, the caller may specify how

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

class SEG_XMLSegment :
{

public:

[...]

éiass BuTlkloadContext;

public SEG_SlottedPageSegment

BulkloadContext *beginBulkload(const DocumentID &doc, DeclarationID logt,

uint32_t childcount,

uint32_t sizehint);

void beginInternalNode(BulkloadContext *context, DeclarationID 1t, uint32_t

children);

void endInternalNode(BulkloadContext *context);

void addLiteralNode(BulkloadContext *context,

contentsize, ptr_t content);

NID endBulkload(BulkloadContext *context);

DeclarationID 1t, uint32_t

void abortBulkload(BulkloadContext *context);

[...1
b

Figure 3
XML bulkload API

many children the internal node has, if known. After
all descendants of the node have been added,
endInternalNode() is called. When leaf nodes that
are labeled with strings are visited, addLiteral-
Node () is called.

Bulkload algorithm

We now describe the variant of the Kundu and
Misra'” algorithm used in Natix. After giving a top-
level explanation on how to extend the algorithm for
our XML storage format, we elaborate on the details,
using C++-like pseudocode to specify the routines
involved.

Extending the Kundu and Misra Algorithm

As previously mentioned, three remaining issues
need to be addressed by our algorithm: (1) the
overhead weight associated with a physical record,
(2) the ability to cluster siblings in order to reduce
this overhead, and (3) ensuring that the leftmost
siblings have a higher probability of being clustered
with their parent than other siblings. The issue of
overhead is dealt with in the detailed algorithm
description below.

The possibility of sibling clustering introduces
another degree of freedom when nodes are pro-
cessed. Instead of choosing the “heaviest” child first
when creating new subtrees, it is now possible to
create an “artifical” heaviest child by grouping
consecutive siblings together into one physical
record. This also can be used to address our
remaining issue: make clustering of leftmost chil-

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

dren with their parent more likely. We can now
store some of the rightmost children together in a
separate physical record and, at the same time, keep
a heavier child further to the left in the same cluster
as its parent.

More precisely, instead of choosing the heaviest
child to be assigned to a separate cluster from the
parent, the bulkload algorithm combines some of
the rightmost, unassigned, consecutive children of
the currently processed node and clusters them into
physical records smaller than the cluster limit. This
amortizes the record overhead over several nodes. It
also increases the likelihood of the leftmost children
being clustered with the parent node. Unfortunately,
these changes break the optimality assurance of the
original algorithm. This demotes the Natix algorithm
to a heuristic with respect to the minimum number
of records generated. It is not clear how the bottom-
up algorithm can be modified to address the issues
above and still retain global optimality. In partic-
ular, whereas sibling clustering is desirable with
respect to the number of generated clusters, it
increases the search space of possible clusterings.
We have not yet been able to find a linear-time
algorithm that produces an optimal solution.

Since efficiency is of great importance for document
import, we consider a slightly suboptimal clustering
acceptable, as it can be done in linear time. The
heuristic algorithm explained next generates very
good clusterings in all observed cases. In particular,
it outperforms the optimal solution without sibling
clustering.

KANNE AND MOERKOTTE

327

void SEG_XMLSegment:beginInternalNode (BulkloadContext *context, DeclarationID id)

{

context->current()->appendNode (new BulkloadNode(id));

}

Figure 4
The beginInternalNode() function

void SEG_XMLSegment::endInternalNode(BulkloadContext *context)

{

BulkloadNode *processed=context->current();

pruneCurrentCluster(context);
context->current(processed->parent());

context->current()->addWeight(processed->weight());
if(context->current()->weight() > m * clusterLimit())

pruneCurrentCluster(context);

Figure 5
The endInternalNode() function

Detailed description of the Natix algorithm

The algorithm maintains a main-memory tree that
consists of nodes that have not yet been assigned to
a cluster. The main-memory tree nodes are stored
using native C++ pointers for parent references and
sets of child pointers in each node. The main-
memory tree also includes main-memory versions
for proxies referencing subtrees that have already
been assigned to clusters and moved to physical
records. The worst-case size of this main-memory
tree is proportional to the height of the document
tree, that is, the maximal path length from the root
node to a leaf node in the document. This property is
ensured by keeping, on each level, only as many
nodes as fit within a certain configured memory
limit, which is an integer multiple of the cluster
limit.

The bulkload operation starts with an empty main-
memory tree. Every call to the interface functions to
construct the document adds a new main-memory
node. Whenever the main memory-tree exceeds a
memory limit, a cluster of main-memory nodes is
transferred to a record on secondary storage.

To simplify the exposition, we only describe the
beginInternalNode() and endInternalNode()
functions. Calls to addLiteralNode() can be re-

328 KANNE AND MOERKOTTE

garded as calls to beginInternalNode() immedi-
ately followed by endInternalNode().

The beginInternalNode() function simply adds the
new node to the main-memory tree (Figure 4).
When endInternalNode() is called (Figure 5), the
current node’s subtree has been completely visited
by the depth-first traversal, and it can be processed.
The function pruneCurrentCluster() is called to
ensure that the node’s subtree is smaller than the
cluster limit. Then the parent of the current node
becomes the new current node, and its weight is
increased by the subtree weight of the node for
which endBulkload() was called. Finally, if the size
of the main-memory tree below the current node has
reached a certain constant threshold, we start to
create physical records to reduce the amount of
memory occupied by the bulkload, even if the
cluster limit has not been reached. The threshold,
known as memory limit, is the cluster limit multi-
plied by an integer m (memory factor). In the section
“Evaluation,” we show that for memory factor
values greater than the Natix default m =5, the
performance gains are negligible.

Figure 6 shows the code for pruning the main-

memory tree. If the subtree below the current node
together with the stand-alone record header is larger

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

void SEG_XMLSegment::pruneCurrentCluster(BulkloadContext *context)

{

BuTlkloadNode *current=context->current();

if(current->weight() + clusterOverhead() > clusterLimit())

clusterChildren(context,

IGNOREPROXIES);

while(current->weight() + clusterOverhead() > clusterLimit())

clusterChildren(context,

Figure 6
The pruneCurrentCluster() function

CLUSTERPROXIES) ;

void SEG_XMLSegment::clusterChildren(BulkloadContext *context, ClusterMode m)

{

BuTlkloadNode *current=context->current();

BulkloadNode *lastsplit=current->lastChild();
lastsplit=findClusterBoundRight(context,lastsplit,mode);

while(lastsplit!=0 &&

current->weight() + clusterOverhead() > clusterLimit())

{
BulkloadNode* firstsplit;

firstsplit=findClusterBoundLeft(context,lastsplit,mode);

RID target=createRecord(context,firstsplit,lastsplit,false);
BulkloadNode* nextsplit=firstsplit->leftSibling;
replaceWithProxy(context,current,firstsplit,lastsplit,target);

lastsplit=nextsplit;

lastsplit=findClusterBoundRight(context,lastsplit,mode);

Figure 7
The clusterChildren() function

than the cluster limit, then the children of the node
are clustered into physical records until the size of
the main-memory subtree falls below the cluster
limit. The IGNOREPROXIES identifier is explained
below.

During pruning of the tree, physical records are
created that contain subtrees of the main-memory
tree. These main-memory subtrees are replaced with
main-memory proxy nodes. Therefore, even after
creating clusters and removing the nodes from the
main-memory tree, the remaining proxy nodes may
still cause the subtree to be larger than the cluster
limit. Hence, in the while loop the proxy nodes
themselves are grouped into clusters, and physical
records are created for them, possibly in several
levels, until the subtree fits into the cluster limit.

The clusterChildren() function (Figure 7) deter-

mines the cluster boundaries, moves clustered
subtrees into physical records, and replaces the

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

subtrees with proxies in the main-memory tree.
Note that the grouping of child nodes into clusters
proceeds from right to left, making sure that nodes
further to the right are more likely to be clustered, as
specified in our requirements.

We briefly describe the lower-level functions re-
quired by clusterChildren(). The findCluster-
BoundRight() and findClusterBoundLeft()
functions determine the interval of those children of
the current node that are to be included in a new
physical record. The findClusterBoundRight()
function looks for nodes satisfying a predicate that
depends on the mode parameter. The search starts
at the second argument lastsplit and continues to
the left siblings. If mode == IGNOREPROXIES, then the
predicate is true for all non-proxy nodes. Otherwise,
any node qualifies.

The findClusterBoundlLeft() function moves fur-
ther right, starting from the rightmost node of the

KANNE AND MOERKOTTE

329

new partition. It includes nodes in the interval as
long as they satisfy the preceding predicate, and
while the closed interval of subtrees bounded by
firstsplit and Tastsplit still fits into a physical
record.

The createRecord() function is straightforward and
creates new subtree records from the main-memory
representations. If main-memory proxy nodes are
included in the subtree, they are inserted into the
physical record, and their target record’s parent
pointer is updated to refer to the new physical
record.

The replacelWithProxy() function removes the
main-memory representation of the subtrees that
have been moved to a record and inserts a proxy
instead.

Memory management

The main-memory representation consists of many
small objects, including literals (we should point out
that literals are of variable size). In spite of this,
memory management is not expensive during
bulkload. Memory is allocated for the nodes during
a depth-first traversal, and memory is released for
entire subtrees at the same time. These two facts can
be exploited in the following memory management
technique. The memory manager requests memory
in blocks of constant size from the operating system,
adding nodes to blocks in depth-first preorder as
they are delivered to the bulkload component. The
order in which the blocks are used is maintained in a
list. This way, the subtree induced by a node is
stored on consecutive blocks. When a subtree’s
main-memory structure is no longer used, the
sequence of blocks that contain nodes only of this
subtree can be deallocated in a per-block fashion,
without processing the individual nodes on the
blocks.

Terminating import operations prematurely

A document import may be terminated prematurely,
for example, because XML document validation fails
halfway through a document. For such cases, the
bulkload interface provides an abortBulkload()
method. A call to this routine removes both the
nodes still in main memory and the partially stored
document on disk storage.

Deallocating the nodes in main memory is done in
the same way as removing subtrees. However, there

330 KANNE AND MOERKOTTE

are two approaches to removing the on-disk
structures, depending on whether Natix recovery
code is enabled.

With enabled recovery, a transaction savepoint is
created during beginBulkload(). Upon abortBulk-
1oad(), the transaction is rolled back to that
savepoint, and removal of the data structures on
disk is automatically handled by the recovery
subsystem’s rollback routines.

Without recovery support, the bulkload component
first scans the main-memory structure for proxy
nodes and deletes the referenced records, recur-
sively descending into further proxy nodes if
present. After the subtree records are removed from
disk, the main-memory tree is deallocated.

EVALUATION

We evaluated the performance of the Natix bulkload
component and present now the experimental
results. These results show the effect of sibling
clustering, the scalability of our design with respect
to document size, and a comparison of the
performance of Natix with other XDSes.

Document collections

Experiments were performed using three document
collections. The first was the XMark benchmark,13
using scaling factors of n X 0.2 with n € {1 ... 5}.
The second was a synthetic document collection
generated using the ToXgene data generator.14 The
Document Type Definition (DTD) as well as the
generator template file are listed in Reference 15.
The smallest document contained 50 employees,
100 students, 10 lectures, and 30 exams. We
generated six documents. With each document we
quadrupled these numbers, so that the biggest
document contained 51,200 employees, 102,400
students, 10,240 lectures and 30,720 exams. This led
to document sizes between 59 KB and 43 MB.

Environment

The system used for the experiments ran on two
machines. Machine NEW was used for all experiments
except for the comparison to the older benchmark
results. It was equipped with 512 MB RAM, a
Pentium** IV CPU with 2.4 GHz, and an Ultra Wide
SCSI hard disk. The operating system was a SUSE**
Linux 9.3 with kernel version 2.6.11. Machine 0LD
was used to reproduce the environment from
Reference 13 and had 512 MB of RAM, a Pentium III
running at 600 MHz, and an Ultra Wide SCSI disk.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Natix was compiled with g++ 3.3.5, using optimi-
zation level O3.

The measured times are the total elapsed time to
import the document, including full logging and
recovery support. A main-memory page buffer with
sufficient memory to hold the entire document was
used. The times do not include system startup time
(about 0.1 seconds), and the page buffer was not
flushed during bulkload. However, the times do
include commit processing and flushing of the log.

For the comparison to MonetDB,16 we used the
Monet Database Server with the Pathfinder module
as publicly distributed (MonetDB 4.8.0, Pathfinder
0.8.0). We present the import times reported by the
Monet console.

Algorithms

For Natix, we implemented the bulkload algorithm
by using a default value of m=5. A disk page size of
8 KB was used, and the cluster limit was set to 2 KB
to avoid fragmentation (see the section “Suitability
as bulkload algorithm™).

We also implemented a modified variant of the
Kundu and Misra algorithm to compare our ap-
proach to optimal partitioning without sibling
partitions. We had to modify the Kundu and Misra
algorithm to incorporate the fact that the weight of a
cluster is modified by the additional proxy nodes.
This involves three modifications. First, for pro-
cessing a node, the weight of proxies is added to the
node. Second, nodes whose weight is smaller than
or equal to a proxy node are always clustered with
their parent, because clustering them would not
decrease the weight of the parent node. Third, the
Kundu algorithm has to deal with the case in which
the physical representation for a single node with
proxies for all its children and small nodes clustered
with the parent does not fit into the cluster limit. In
this case, and only in this case, we use the same
approach as in the Natix algorithm; namely, to
partition the proxy nodes and the small regular
nodes from right to left by clustering them into
“intermediate clusters” of maximal weight that are
referenced by a proxy in the parent’s cluster (see the
clusterChildren() function). As the experimental
results show, this rarely occurs.

Results
The experimental results cover several aspects of
Natix performance: importance of sibling clustering,

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Table 1 Number of clusters for XMark with a scaling
factor 0.2

Method Clusters
Kundu (Optimal Single Child Clustering) 30198
Natix (Sibling Clustering, m = 1) 33929
Natix (Sibling Clustering, m = 2) 22852
Natix (Sibling Clustering, m = 3) 22117
Natix (Sibling Clustering, m = 5) 21895
Natix (Sibling Clustering, m = 10) 21779
Natix (Sibling Clustering, m =) 21692

scalability, comparison with XC,17 and comparison
with other published results.

The importance of sibling clustering

The first series of experiments is intended to
illustrate the importance of sibling clustering.
Hence, we took the XMark document with scaling
factor 0.2, producing a document about 20 MB in
size, and bulkloaded it using the modified Kundu
and Misra algorithm and the Natix algorithm. For
the Natix algorithm, we used different values for the
m parameter.

The number of clusters generated are shown in
Table 1. The modified Kundu and Misra algorithm
produces about 50 percent more clusters than the
Natix algorithm with values m > 1. This demon-
strates that even a heuristic for sibling clustering can
significantly outperform the optimal single child
clustering case. Note that the number of nodes for
which intermediate clusters had to be created for the
Kundu and Misra algorithm was less than 750 and
did not significantly distort the results.

For m =1, the Natix algorithm does not perform
well. This is expected because once it reaches that
limit, it immediately creates new clusters for any
additional node, instead of delaying clustering
decisions until more siblings are available. It
performs even worse than the Kundu and Misra
algorithm because it degenerates to a nonoptimal
single-child clustering.

For m > 1, the number of clusters quickly converges
against the best case achievable by the Natix
algorithm with unlimited memory, which is shown
in the last row.

KANNE AND MOERKOTTE

331

Table 2 Import times (seconds) for Natix and
MonetDB

Table 3 Comparing import times (in seconds): XC
Versus Natix

Document Size (103 bytes) MonetDB Natix Document Size XC Natix
xmark 0.2 22514 2.16s 5.34s SigmodRecord.xml 467 KB 2.82s 0.27s
xmark 0.4 46693 4.52s 10.76s mondial-3.0.xml 1.8 MB 22.69s 0.58s
xmark 0.6 70322 9.88s 16.46s partsupp.xml 2.2 MB 6.54s 0.49s
xmark 0.8 93560 12.03s 22.74s uwm.xml 2.3 MB 6.78s 0.91s
xmark 1.0 105264 16.03s 27.98s orders.xml 5.2 MB 18.86s 1.25s
unil.xml 58 0.03s 0.02s
uni2.xml 166 0.04s 0.09s Comparison with XC .

XC is an XML clustering algorithm developed at the
uni3.xml 673 0.08s 0.19s IBM Thomas J. Watson Research Center in York-

. 17 .. .
oL sl 2704 0.31s 0.81s town Heights, New York. " Its optimized version of
) the Lukes algorithm is a workload-directed algo-

unis.xml 11053 3:27s 3.08s rithm that generates good clustering tailored to
uni6.xml 44360 28.70s 13.67s previously configured workloads. However, it does

not have acceptable performance for online bulk-

» loads. We show some of the results for XC in
Scalability

In this experiment, we evaluate the scalability of our
approach and compare it to the scalability of a
nonclustering approach.

We import the two document collections into Natix
and MonetDB/Pathﬁnder.16 MonetDB is a relational
main-memory DBMS that stores XML as binary
relations in which the nodes are stored in preorder,
that is, in the order delivered by the parser. In such a
format, no clustering is required, but only a preorder
traversal is supported as an efficient access path,
and updates may be costly.

The results from Table 2 show that the Natix
bulkload algorithm exhibits a running time linear to
the document size. For the XMark documents,
MonetDB is about twice as fast and also scales
linearly. For the “uni” documents, the Natix
behavior does not change, the scalability and
bulkload speed remain similar to the XMark case.
MonetDB, however, shows a different behavior and
is slower and scales worse. We were not able to find
the cause.

We conclude that the clustering approach employed
by Natix performs and scales adequately, its
performance comparable with a nonclustering ap-
proach.

332 KANNE AND MOERKOTTE

Table 3. The table also includes Natix import times
for the same documents. The XC system is written in
C++, and the experiments were performed on an
x86-based Linux system with 1.7 GHz CPU speed.
The Natix results were obtained on our 2.4 GHz
machine NEW. The results show running times for
Natix that are faster by about an order of magnitude.
This difference is clearly beyond the difference in
processor speed. In addition, the XC heuristic
algorithm performs only single-child clustering,
which is inferior to sibling clustering with respect to
the number of clusters, as demonstrated earlier.

Comparison with other published results

There are few published results for bulkload
performance of XDS systems. The only comparable
results we could find were obtained using the XMark
benchmark by Schmidt et al.’ They compare
bulkload performance for an XMark scaling factor of
1 on various anonymous mass-storage systems. We
display some of their results in Table 4.

We limit our comparison to disk-based systems,
omitting their numbers for main-memory-only
systems, as we do not know whether the main-
memory-only systems perform logging or check-
pointing and whether the numbers reflect the
corresponding overhead. The remaining systems are
relational DBMSes, identified as System A, System
B, and System C in this paper. No details about the

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Table 4 XML bulkload times for various systems

System Bulkload Time (seconds)
System A (from Reference 15) 414
System B (from Reference 15) 781
System C (from Reference 15) 548
Natix 215

employed mappings from documents to relations are
given, except that Systems A and B do not require a
DTD, whereas System C requires that a relational
schema be manually generated from a DTD.

Table 4 also includes a measurement of Natix’s
bulkload performance for the same document. We
used our machine 0LD, which is very similar to the
one described in Schmidt et al.," except that it has
less main memory (512 MB compared to their 1 GB),
and a slightly faster processor (600 Mhz compared
to their 550 Mhz).

Although Natix outperforms the relational systems
by factors between 1.9 and 3.6, little is known about
the exact configurations and techniques used to
store XML in the relational systems. Hence, it is
unclear to what extent the numbers are comparable.

CONCLUSION

In this paper we discuss the bulkload component of
Natix, a module of the Natix XDS that efficiently
converts external documents to the Natix storage
format.

In our requirements analysis, we argue that a
bulkload component for XML must address three
important issues. First, the processing of documents
must be efficient in its usage of resources such as
computing power and memory. Second, the inter-
face to the bulkload component must closely match
the format in which external documents are
delivered, avoiding expensive conversions. Third,
the layout for storing the documents on persistent
storage devices must be of high quality in this sense:
for tree-structured data such as XML, the number of
generated clusters should be minimal. Clusters
represent subtrees of the document tree that are
closely related with respect to document structure
and that fit on a disk page. In the context of the
Natix storage format and similar approaches, such a
cluster is a subset of the set of document nodes that

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

is connected through parent-child and sibling
relationships.

We also evaluate the extent to which a number of
existing algorithms fit our requirements. Even the
best candidate, the tree-clustering algorithm by
Kundu and Misra, fails to address all requirements,
in particular because it keeps the entire document in
memory and because it does not cluster siblings.

We extend the approach by Kundu and Misra into a
novel clustering heuristic, the Natix bulkload
algorithm. Albeit not optimal, this algorithm uses
sibling clustering to produce 30 percent fewer
clusters than an optimal single-child clustering. The
algorithm has linear complexity with respect to the
document size and uses main-storage space pro-
portional to the document tree height.

We present experimental results that demonstrate
the competitiveness of our bulkload component.
Specifically, we show that sibling clustering is
superior to single-child clustering and that our
algorithm scales linearly with the document size
while the multiplying constants are small. More-
over, compared to highly efficient relational bulk-
load techniques that materialize the document in
preorder as it arrives, the performance penalty that
has to be paid for clustering is acceptable. Finally,
our bulkload component is faster by at least an order
of magnitude than existing workload-directed ap-
proaches that derive their clustering decisions
primarily from expected access patterns.

In the future, we plan to improve our heuristics for
sibling clustering. We also intend to incorporate
information about access patterns into our algorithm
without compromising bulkload performance.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Intel
Corporation, or Novell, Inc. in the United States, other
countries, or both.

CITED REFERENCES
1. T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J.
Neumann, R. Schiele, and T. Westmann, “Anatomy of a
Native XML Base Management System,” VLDB Journal
11, No. 4, 292-314, (2002).

2. K. Beyer, R. J. Cochrane, V. Josifovski, J. Kleewein, G.
Lapis, G. Lohman, B. Lyle, F. Ozcan, H. Pirahesh,
N. Seemann, T. Truong, B. Van der Linden, B. Vickery,

KANNE AND MOERKOTTE

333

10.

11.

12.

13.

14.

15.

16.

17.

and C. Zhang, “System RX: One Part Relational, One Part
XML,” Proceedings of the ACM SIGMOD Conference
(2005), pp. 347-358.

C.-C. Kanne, M. Brantner, and G. Moerkotte, “Cost-
Sensitive Reordering of Navigational Primitives,” Pro-
ceedings of the ACM SIGMOD Conference (2005), pp. 742-
753.

C.-C. Kanne and G. Moerkotte, Efficient Storage of XML
Data, Technical Report TR-1999-008, Department for
Mathematics and Computer Science, University of
Mannheim (June 1999).

C.-C. Kanne and G. Moerkotte, “Efficient Storage of XML
Data,” Proceedings of the 16th International Conference
on Data Engineering (ICDE), IEEE Computer Society
(2000), page 198.

M. M. Tsangaris and J. F. Naughton, “On the Perfor-
mance of Object Clustering Techniques,” In Proceedings
of the 1992 ACM SIGMOD International Conference on
Management of Data, San Diego, California, June 2-5,
1992, Michael Stonebraker, Editor, ACM Press (1992),
pp. 144-153.

J. A. Lukes, “Efficient Algorithm for the Partitioning of
Trees,” IBM Journal of Research and Development 18,
No. 3, 217-224 (1974).

R. Bordawekar and O. Shmueli, “Flexible Workload-
Aware Clustering of XML Documents,” Database and
XML Technologies, Proceedings of Second International
XML Database Symposium, XSym 2004, Lecture Notes in
Computer Science 3186, Springer, New York (2004),

pp. 204-218.

M. Schkolnick, “A Clustering Algorithm for Hierarchical
Structures,” ACM Transactions on Database Systems 2,
No. 1, 27-44 (1977).

S. Kundu and J. Misra, “A Linear Tree Partitioning
Algorithm,” SIAM Journal on Computing 6, No. 1,
151-154 (March 1977).

D. Megginson, SAX: A Simple API for XML, Technical
Report, Megginson Technologies Ltd. (2001).

D. Veillard, The XML C Parser and Toolkit of Gnome
(2002), http://www.xmlsoft.org/index.html.

A. Schmidt, F. Waas, M. Kersten, M. J. Carey,

1. Manolescu, and R. Busse, “XMark: A Benchmark for
XML Data Management,” Proceedings of the 28th VLDB
Conference (2002), pp. 974-985.

D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons,
“ToXgene: a Template-Based Data Generator for XML,”
Proceedings of the ACM SIGMOD Conference (2002),

pp. 616-616.

C-C. Kanne and G. Moerkotte, The Importance of Sibling
Clustering for Efficient Bulkload of XML Document Trees,
Technical Report TR-2005-009, Department of
Mathematics and Computer Science, University of Mann-
heim (November 2005).

P. A. Boncz, T. Grust, S. Manegold, J. Rittinger, and

J. Teubner, Pathfinder: Relational XQuery over Multi-
Gigabyte XML Inputs In Interactive Time, Technical Report
INS-E0503, CWI, Amsterdam, Netherland (March 2005).

R. Bordawekar and O. Shmueli, Flexible Workload-Aware
Clustering of XML Documents, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY (May 2004)
(available from the author).

Accepted for publication November 8, 2005.
Published online May 3, 2006.

334 KANNE AND MOERKOTTE

Carl-Christian Kanne

Department for Practical Computer Science III, University of
Mannheim, 68131 Mannheim, Germany (cc@informatik.
uni-mannheim.de). Dr. Kanne is a researcher at the University
of Mannheim. He received a Masters (Diplom) degree in
computer science from Rheinisch-Westfdlische Technische
Hochschule (RWTH) Aachen in 1998, and a Ph.D. degree from
the University of Mannheim in 2003. His current work focuses
on Natix, a native XML data store developed at the University
of Mannheim.

Guido Moerkotte

Department for Practical Computer Science III, University of
Mannheim, 68131 Mannheim, Germany (moerkotte@
informatik.uni-mannheim.de). Dr. Moerkotte studied
computer science at the University of Dortmund, the
University of Massachusetts at Amherst, and the University of
Karlsruhe. From the University of Karlsruhe he received a
diploma in 1987, a doctoral degree in 1989, and his
habilitation in 1994. He is currently a full professor at the
University of Mannheim. His research interests include all
aspects of database management systems. He is especially
interested in system design and implementation. He is a co-
author of more than 100 publications. H

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

