
The importance of sibling
clustering for efficient bulkload of
XML document trees

&

C. C. Kanne

G. Moerkotte

In an XML Data Store (XDS), importing documents from external sources is a very

frequent operation. Because a document import consists of a large number of

individual node inserts, it is essentially a small bulkload operation, and thus efficient

bulkload support is crucial for the performance of the XDS. The bulkload operation is

in essence a mapping of an XML parser’s output into the storage structures of the XDS.

This involves two major subtasks: (1) partitioning the document’s logical tree structure

into subtrees that can be stored on a page in a way that is both space-efficient and

suitable for later processing and (2) mapping the subtrees to the internal

representation of the XDS for paging. In enterprise-scale environments with very large

documents and many parallel bulkload operations, the first task is particularly

challenging, as not only disk space consumption, but also CPU and main-memory

usage are important factors. In this paper, we discuss the requirements for an XDS

bulkload component and examine existing algorithms for tree partitioning and their

applicability to the bulkload operation. We derive a new tree-partitioning algorithm for

use in the bulkload operation and present the design of the bulkload component for

the XDS Natix. Finally, we evaluate the performance of the bulkload component and

compare our results with previous work.

INTRODUCTION
Loading large amounts of data which is already

available in an external format is called a bulkload

operation. In conventional database management

systems (DBMSes), bulkloads are often used to

initialize a database, for example, when introducing

an application to DBMS usage or when importing

data from a different DBMS or storage format.

In contrast, an XDS (XML Data Store) needs to

support document imports as regular operations that

are used very frequently by applications. Hence, the

bulkload becomes a core function whose perfor-

mance is a determinant of overall system perfor-

mance; however, we could find very few publications

that discuss efficient XML bulkload in large-scale

XML data stores.

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KANNE AND MOERKOTTE 321

This paper attempts to mitigate this deficit by

presenting the design and implementation of the

bulkload component for the Natix XDS, a native

XML data store developed at the University of

Mannheim.
1

Besides requirements analysis and API

(application programming interface) design, our

main focus is the design of an efficient tree-

partitioning algorithm that decomposes the logical

XML document tree into subtrees, or clusters, that fit

on a disk page. Such a clustering algorithm is

needed not only in Natix, but in every XDS that

provides native tree storage, such as IBM’s System

RX.
2

Of particular concern is the number of clusters

generated. When accessing the stored documents,

intercluster navigation is much slower than intra-

cluster navigation, often by several orders of

magnitude. Even if access reordering techniques are

used,
3

the number of clusters is a crucial factor for

query performance. Hence, the bulkload algorithm

must minimize the number of clusters generated.

Our main contributions are

1. a detailed requirements analysis for XML bulk-

load components,

2. an analysis of existing tree clustering algorithms,

3. a novel linear-time tree-clustering algorithm that

generates up to 30 percent fewer clusters than the

best known algorithms,

4. a description of the design and implementation of

a concrete XML bulkloader, the Natix bulkload

component, and

5. an evaluation of the Natix bulkload component.

The rest of this paper is organized as follows. In the

next section, ‘‘XML storage,’’ we give a brief

overview of native tree storage in Natix. Next, in the

section ‘‘Requirements,’’ we analyze the require-

ments an XML bulkload component must meet.

Then, in ‘‘Tree-clustering algorithms,’’ we discuss

existing tree-clustering algorithms with respect to

these requirements. In the section ‘‘Natix bulkload

component,’’ we describe the interface and the

implementation of the bulkload component. This

section also covers our novel tree-clustering algo-

rithm. In the section ‘‘Evaluation,’’ we provide our

experimental results, including a comparison with

the bulkload performance of other XML storage

systems. Our concluding remarks are presented in

the last section.

XML STORAGE

The design of the bulkload component is strongly

influenced by the format used for storing XML data

in the XDS. A suitable format for an enterprise-level

XDS must efficiently support bulkloads, incremental

updates, synchronization, and recovery. In this

section, we briefly review the Natix format for

storing XML data (for details, refer to References 1,

4, and 5). Similar formats are also used in other

XDSes, such as IBM’s System RX.
2

Logical tree model
The interface to our core storage engine uses a

simple, general logical tree model with only two

node types and no XML-specific constructs, such as

attributes. This model enables a simple engine

design and is easily mapped to concrete XML models

such as the Document Object Model (DOM) or the

simple API for XML (SAX), as explained in the next

subsection.

The documents are represented as ordered trees in

which nodes are labeled with symbols taken from an

alphabet R. In the current implementation, we use

the set of integers from 0 to 2
16� 1 as R. Leaf nodes

can additionally be labeled with arbitrarily long

strings over a different alphabet (in the current

implementation, this alphabet consists of the set of

Unicode characters).

Mapping XML to the logical object model

A small wrapper module maps a concrete XML

representation (such as DOM, SAX) with its node

types and attributes to the simple tree model and

vice versa. A sample tree for a document fragment is

shown in Figure 1.

Mapping XML document nodes to logical nodes

Elements are mapped one-to-one to tree nodes of the

logical model. Attributes are mapped to child nodes

of an additional attribute container child node,

which is always the first child of the element node to

which the attributes belong. Attributes, PCDATA

(including whitespace-only data), CDATA nodes,

and comments are stored as leaf nodes.

Mapping XML tags to tree labels

As alphabet R, the storage engine uses non-negative

integers, which are called DeclarationIDs. The

module that maps XML to the logical tree model also

performs the mapping from tag names, attribute

names, and special node labels (such as PCDATA) to

KANNE AND MOERKOTTE IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006322

DeclarationIDs. All the documents in an XML

collection share the same mapping, which makes

query evaluation simpler and more efficient because

the possible integer values for a given tag or

attribute name can be resolved once per query and

stay the same for all documents in the collection.

Physical tree model

Natix organizes physical storage in units known as

XML segments. An XML segment provides a storage

area and an interface for storing and accessing a

collection of logical tree instances. A physical tree is

the mapping of a logical tree to physical storage and

consists of records, each of which is smaller than a

disk page and contains a subtree of the logical tree.

In this section we use the term record subtree (or

simply subtree) to refer to any subtree of the logical

tree that is stored in a record. The records can be

addressed using record IDs (RIDs).

A record subtree contains three types of nodes.

Aggregate nodes represent the inner nodes of the

tree and are labeled with non-negative integers

(over the alphabet R). Literal nodes are leaf nodes

that in addition to a label over the alphabet R can

also have content in the form of a string. A proxy

node is a special leaf node that points (refers) to a

record subtree that is stored in a separate record and

corresponds to a connected subtree of the logical

tree. Substituting all proxies with the referenced

subtrees reconstructs the original logical tree.

Although proxies use RIDs to refer to the target

subtree, this is an implementation detail and not a

requirement for applying our techniques (one could

use logical references, such as found in System RX
2
).

Every record subtree has two attributes: the parent

RID, which points to the parent subtree (if it exists),

and the logical document ID field, which determines

the document to which this subtree belongs.

An example of a logical tree and its mapping onto

records is shown in Figure 2. To store the given

logical tree (assumed not to fit on a page), the

physical data tree is distributed over the three

records r
1
, r

2
, and r

3
. Two proxies (p

1
and p

2
) are

used in the top level record. Two helper aggregate

nodes (h
1

and h
2
) have been added to the physical

tree. They group the children below p
1

and p
2

into a

tree. Proxy and helper aggregate nodes are drawn

with dashed lines. They are only needed to link

together subtrees contained in different records and

Figure 1
An XML fragment and the corresponding instance of its logical tree model

SPEAKER

SPEECH

LINE LINE

PCDATA
Let me see your eyes;

PCDATA
Look in my face.AttrContainer

PCDATA
OTHELLO

character
‘famous’

<SPEECH>
<SPEAKER character=’famous’>OTHELLO</SPEAKER>
<LINE>Let me see your eyes;</LINE>
<LINE>Look in my face.</LINE>
</SPEECH>

Figure 2
One possible way of mapping logical trees onto records

f4f3 f6f5f2

f1

p1 p2

f2 f4 f5 f6f3

h2

Logical tree

Physical tree

f1

r1

h1

r2 r3

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KANNE AND MOERKOTTE 323

are called scaffolding nodes. Nodes drawn with solid

lines represent logical nodes (f
i
), and are called

facade nodes. Only facade nodes are visible to the

caller of the XML segment interface.

The given physical tree is only one possible way of

storing the sample logical tree. Additional possibil-

ities exist as a proxy can be created on any edge of

the logical tree. The maintenance of the physical tree

during incremental updates is described in Refer-

ence 1. The initial creation of a physical tree for a

newly imported document is the main function of

the bulkload component described in this paper.

REQUIREMENTS

The requirements for a bulkload component are

based on four goals, all of which are related to

performance:

1. The interface should closely match the typical

output of XML parsers. XML parsers are the most

common source of imported XML documents,

and many XML tools, among them query

evaluation components, are able to efficiently

deliver results using parser-like interfaces. Hence,

it is reasonable to assume that the data to be

bulkloaded is delivered as XML parser output.

Otherwise, changing the data representation

before or during the bulkload operation would

require expending additional resources.

2. The bulkload operation should not require main

memory proportional to the document size. Linear

memory usage would prohibit the import of

documents larger than available main memory.

As a generalization, the total amount of con-

currently importable documents would be limited

by available physical memory.

3. The storage layout for imported XML documents

should be optimized for performance for typical

workloads (documents). We identify three

subgoals.

A. A dominant access pattern for document

trees is the preorder traversal of subtrees

induced by inner nodes. It is used when

exporting documents and document frag-

ments, which involves translating the XDS

internal representation to a document.

Query evaluation on XML documents typi-

cally also relies on preorder traversals, such

as the evaluation of XPath descendant and

descendant-or-self axes. The default

bulkload strategy, therefore, is to create a

layout that adequately supports preorder

traversal.

B. Given a set of children, we assume that the

access frequency to sibling nodes decreases

with their distance from the parent node in

the order of traversal. In Natix, for example,

to reach a child node, all its left siblings

have to be visited. Hence, the likelihood of

being stored in the same record as the

parent node should be higher for left

siblings.

C. The number of clusters or subtrees should

be as small as possible, because traversal of

intercluster borders is much more expen-

sive than intracluster traversal. Hence,

fewer clusters imply higher query

performance.

4. The storage required for imported XML documents

should be minimized. This also implies a minimal

number of clusters, because each cluster induces

storage overhead in the form of proxies and

helper aggregates. As previously mentioned, the

bulkload component maps the logical object

model to the physical object model. Thus, the

main task for the bulkload algorithm is to

determine which subtrees of the logical model

should be stored as physical subtrees, that is,

where to locate the scaffolding nodes.

In the next section we examine existing tree

clustering algorithms and discuss how closely they

fulfill the preceding goals.

TREE-CLUSTERING ALGORITHMS
There are efficient clustering algorithms (applicable

to weighted tree structures) that partition the nodes

of a tree in a way that minimizes the number of

generated clusters. However, the clusters generated

by the existing algorithms have the following

properties: (1) the weight of each cluster has an

upper limit, which is a parameter of the algorithms

(the weight of a cluster is the sum of the weight of its

nodes), and (2) all nodes of a cluster are connected.

In our case, a cluster occupies a physical record, and

the node weight is the size of the node (without its

subtree) in bytes. Hence, the upper limit must be a

value smaller than or equal to the disk page size.

Unfortunately, our problem is slightly more com-

plicated than mere assignment of logical nodes to

KANNE AND MOERKOTTE IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006324

clusters because in our case (1) the storage cost of a

cut edge is not 0, as a cut edge causes overhead in

the form of a proxy node and a new physical record

header, and (2) it is possible to put adjacent siblings

into a single cluster that does not contain their

parent node, thus creating unconnected subtrees

within the same cluster (sibling clustering).

Note that these issues apply to many other

conceivable tree storage structures because (1) any

storage scheme must deal with the entire tree

structure, not only the uncut edges, and (2) even if

efficient sibling clustering is not explicitly supported

by a format, it is still desirable to perform implicit

clustering of siblings by placing them on the same

disk page. As explained earlier, our bulkload

algorithm has to solve a more general problem than

that solved by existing tree-clustering algorithms.

The fundamental objective for a tree-clustering

algorithm for bulkload operations is to find a

minimal number of weight-limited clusters. Hence,

in the remainder of this section, we review existing

tree-clustering algorithms to find a good starting

point for a new bulkload algorithm.

Workload-directed algorithms

Depth-first search
6

applied to (weighted) graphs

assigns nodes to the current cluster in a ‘‘greedy’’

manner. New clusters are created whenever the

current cluster cannot include the additional node.

The resulting clustering is not compatible with our

storage structure, as the preorder traversal may

cause unconnected subtrees to be clustered together.

The cost of cut edges is also not taken into account.

In the weighted variant, the algorithm also accounts

for edge weights that represent traversal frequen-

cies. Here, the edges to visit are ordered by weight to

avoid cutting heavily used edges. This reordering

requires, in the worst case, that the entire document

be kept in main memory.

Lukes
7

presents a linear-time algorithm that incor-

porates edge weights and finds an optimal cluster-

ing, that is, one that maximizes the total weight of

all edges that do not cross clusters. For unit edge

weights, the algorithm finds the clustering with the

smallest possible number of clusters. However, the

algorithm has very large resource requirements; its

running time is O(nk
2
) where n is the number of

nodes and k is the weight limit. In Reference 8,

running times of several hours on modern PCs for

very small documents (;100K) are reported. The

algorithm uses dynamic programming and creates

and maintains a large number of intermediate

clusterings, which can take up more memory than

the original document. In addition, it does not

consider sibling clusterings and does not take into

account costs for cut edges.

Bordawekar and Shmueli
8

extend Lukes by intro-

ducing several techniques to limit memory usage

and improve running time. This breaks the opti-

mality but achieves clusterings whose values are

quite close to the optimum. Again, cut edges and

sibling clusterings are not considered. As we will see

in the section ‘‘Evaluation,’’ the performance of the

algorithm is inferior to the Natix algorithm, even

though their measurements only reflect the actual

clustering phase, and not the construction of the

persistent data structures and associated costs, such

as logging.

Schkolnick
9

partitions hierarchical structures based

on access patterns. However, the algorithm does not

enforce a size limit for clusters and does not

consider nodes of varying weight. The algorithm has

a different objective than space-efficient bulkload; it

clusters objects into base collections, which can be

joined to efficiently answer queries. Although this

may be applied to join-based XML query processing,

it does not solve our problem of finding weight-

limited clusters.

The algorithm by Kundu and Misra

As the starting point for our own bulkload algo-

rithm, we have chosen the algorithm by Kundu and

Misra,
10

which creates a clustering of a tree with

weighted nodes, where each cluster is connected

and has at most weight k, and where the number of

clusters is minimal. To facilitate the description of

our own algorithm in a later section, we now

provide a brief description of the original algorithm

and discuss its suitability as a bulkload algorithm in

more detail.

The Kundu and Misra algorithm pursues a bottom-

up approach, successively assigning clusters to

nodes. A node is processed only after its children

have been processed. Having processed node x

ensures that the weight of the subtree rooted at x is

smaller than k. The weight of a subtree is the sum of

all weights of those nodes in the subtree that have

not been assigned to a cluster. As long as the subtree

weight is larger than k, new clusters are created for

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KANNE AND MOERKOTTE 325

children of x, each containing the subtree including

the children and all descendant nodes that are not

yet assigned to a cluster. Partitions are created for

the children in descending order of their subtree

weight. Once the subtree rooted at x has a weight

less than k, the processing of x is complete. When

this algorithm has reached the root node of a tree,

the clusters produced are smaller than k, and a

minimum number of clusters containing connected

subtrees has been generated (see Reference 10 for a

proof).

Suitability as bulkload algorithm

The Kundu and Misra algorithm is easily applied to

the clustering problem for the bulkload operation.

Document tree nodes have a weight proportional to

their space usage, clusters are stored as physical

records, and the limit for the size of a physical

record is the system page size. The algorithm

generates clusters in a bottom-up manner by

constructing optimal clusterings for higher levels of

the tree by combining optimal clusterings of

subtrees. This prepares preorder traversals of docu-

ment fragments, as required for document export or

when traversing such subtrees for the purpose of

evaluating queries.

In addition, however, a bulkload algorithm for Natix

has to address issues such as those mentioned

earlier:

1. Keeping the entire document tree in memory

should be avoided.

2. There is overhead associated with a physical

record because the stand-alone header and the

proxy node in the referring record require storage

space.

3. Neighboring siblings can be assigned to the same

physical record, amortizing the overhead over

several subtrees.

4. The leftmost siblings should have a higher

probability of being clustered with their parent.

The first issue can easily be addressed because the

algorithm’s bottom-up approach does not change a

node’s assignment to a cluster. Hence, once a cluster

has reached the size limit, it can be stored in a

physical record on disk, and the constituent nodes

need not be retained in main memory.

We refer to the weight limit for a cluster as the

cluster limit. A cluster limit smaller than the capacity

of a disk page may be used to avoid fragmentation.

Because the actual cluster size can vary with the tree

structure and the size of text nodes, the cluster size

is often less than its limit, and thus, many pages are

underutilized. In Natix, the cluster limit is set by

default to a quarter of the disk page size. This allows

several clusters to share a page and thus improves

space utilization.

NATIX BULKLOAD COMPONENT

Based on the requirements stated in the previous

section, we now present the design and implemen-

tation of the Natix bulkload component. We begin

with the bulkload API that is used to import an

external document and then elaborate on our

clustering algorithm.

Interface

Figure 3 shows the internal bulkload interface for

XML collections. Natix internally organizes storage

in so-called segments, hence the identifier XMLSeg-

ment.

As input, the bulkload component expects a docu-

ment tree in the form of a sequence of ‘‘visit events’’

resulting from a depth-first traversal of the tree. The

entity that uses the bulkload interface signals these

events to the bulkload component by calling

appropriate functions each time a node is visited.

The bulkload interface corresponds directly to

parser interfaces such as SAX
11

or libxml.
12

These

generate parsing events that correspond to a depth-

first search of the abstract syntax tree. Clients need

to register callbacks with the parser, and these

callbacks are invoked when the associated event

occurs. Each SAX event can be directly translated

into a single call of the bulkload interface (attributes

are an exception because they are delivered as a list,

together with the parent element). The first visit of

the document root node initializes the bulkload

(beginBulkload()), and the second visit

(endBulkload()) terminates the bulkload and re-

turns the node identifier of the stored root node. The

beginBulkload() call allows a size hint for the

document to be specified. For small documents, this

allows the document to be fitted into a matching gap

on a partially filled page.

When visiting nonliteral nodes (beginInternal-

Node()) for the first time, the caller may specify how

KANNE AND MOERKOTTE IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006326

many children the internal node has, if known. After

all descendants of the node have been added,

endInternalNode() is called. When leaf nodes that

are labeled with strings are visited, addLiteral-

Node() is called.

Bulkload algorithm

We now describe the variant of the Kundu and

Misra
10

algorithm used in Natix. After giving a top-

level explanation on how to extend the algorithm for

our XML storage format, we elaborate on the details,

using Cþþ-like pseudocode to specify the routines

involved.

Extending the Kundu and Misra Algorithm

As previously mentioned, three remaining issues

need to be addressed by our algorithm: (1) the

overhead weight associated with a physical record,

(2) the ability to cluster siblings in order to reduce

this overhead, and (3) ensuring that the leftmost

siblings have a higher probability of being clustered

with their parent than other siblings. The issue of

overhead is dealt with in the detailed algorithm

description below.

The possibility of sibling clustering introduces

another degree of freedom when nodes are pro-

cessed. Instead of choosing the ‘‘heaviest’’ child first

when creating new subtrees, it is now possible to

create an ‘‘artifical’’ heaviest child by grouping

consecutive siblings together into one physical

record. This also can be used to address our

remaining issue: make clustering of leftmost chil-

dren with their parent more likely. We can now

store some of the rightmost children together in a

separate physical record and, at the same time, keep

a heavier child further to the left in the same cluster

as its parent.

More precisely, instead of choosing the heaviest

child to be assigned to a separate cluster from the

parent, the bulkload algorithm combines some of

the rightmost, unassigned, consecutive children of

the currently processed node and clusters them into

physical records smaller than the cluster limit. This

amortizes the record overhead over several nodes. It

also increases the likelihood of the leftmost children

being clustered with the parent node. Unfortunately,

these changes break the optimality assurance of the

original algorithm. This demotes the Natix algorithm

to a heuristic with respect to the minimum number

of records generated. It is not clear how the bottom-

up algorithm can be modified to address the issues

above and still retain global optimality. In partic-

ular, whereas sibling clustering is desirable with

respect to the number of generated clusters, it

increases the search space of possible clusterings.

We have not yet been able to find a linear-time

algorithm that produces an optimal solution.

Since efficiency is of great importance for document

import, we consider a slightly suboptimal clustering

acceptable, as it can be done in linear time. The

heuristic algorithm explained next generates very

good clusterings in all observed cases. In particular,

it outperforms the optimal solution without sibling

clustering.

Figure 3
XML bulkload API

class SEG_XMLSegment : public SEG_SlottedPageSegment
{
public:
[...]
 class BulkloadContext;
 BulkloadContext *beginBulkload(const DocumentID &doc, DeclarationID logt,
 uint32_t childcount, uint32_t sizehint);
 void beginInternalNode(BulkloadContext *context, DeclarationID lt, uint32_t
 children);
 void endInternalNode(BulkloadContext *context);
 void addLiteralNode(BulkloadContext *context, DeclarationID lt, uint32_t
 contentsize, ptr_t content);
 NID endBulkload(BulkloadContext *context);
 void abortBulkload(BulkloadContext *context);
[...]
};

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KANNE AND MOERKOTTE 327

Detailed description of the Natix algorithm

The algorithm maintains a main-memory tree that

consists of nodes that have not yet been assigned to

a cluster. The main-memory tree nodes are stored

using native Cþþ pointers for parent references and

sets of child pointers in each node. The main-

memory tree also includes main-memory versions

for proxies referencing subtrees that have already

been assigned to clusters and moved to physical

records. The worst-case size of this main-memory

tree is proportional to the height of the document

tree, that is, the maximal path length from the root

node to a leaf node in the document. This property is

ensured by keeping, on each level, only as many

nodes as fit within a certain configured memory

limit, which is an integer multiple of the cluster

limit.

The bulkload operation starts with an empty main-

memory tree. Every call to the interface functions to

construct the document adds a new main-memory

node. Whenever the main memory-tree exceeds a

memory limit, a cluster of main-memory nodes is

transferred to a record on secondary storage.

To simplify the exposition, we only describe the

beginInternalNode() and endInternalNode()

functions. Calls to addLiteralNode() can be re-

garded as calls to beginInternalNode() immedi-

ately followed by endInternalNode().

The beginInternalNode() function simply adds the

new node to the main-memory tree (Figure 4).

When endInternalNode() is called (Figure 5), the

current node’s subtree has been completely visited

by the depth-first traversal, and it can be processed.

The function pruneCurrentCluster() is called to

ensure that the node’s subtree is smaller than the

cluster limit. Then the parent of the current node

becomes the new current node, and its weight is

increased by the subtree weight of the node for

which endBulkload() was called. Finally, if the size

of the main-memory tree below the current node has

reached a certain constant threshold, we start to

create physical records to reduce the amount of

memory occupied by the bulkload, even if the

cluster limit has not been reached. The threshold,

known as memory limit, is the cluster limit multi-

plied by an integer m (memory factor). In the section

‘‘Evaluation,’’ we show that for memory factor

values greater than the Natix default m¼ 5, the

performance gains are negligible.

Figure 6 shows the code for pruning the main-

memory tree. If the subtree below the current node

together with the stand-alone record header is larger

Figure 4
The beginInternalNode() function

void SEG_XMLSegment:beginInternalNode (BulkloadContext *context, DeclarationID id)
{
 context->current()->appendNode (new BulkloadNode(id));
}

Figure 5
The endInternalNode() function

void SEG_XMLSegment::endInternalNode(BulkloadContext *context)
{
 BulkloadNode *processed=context->current();
 pruneCurrentCluster(context);
 context->current(processed->parent());
 context->current()->addWeight(processed->weight());
 if(context->current()->weight() > m * clusterLimit())
 pruneCurrentCluster(context);
}

KANNE AND MOERKOTTE IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006328

than the cluster limit, then the children of the node

are clustered into physical records until the size of

the main-memory subtree falls below the cluster

limit. The IGNOREPROXIES identifier is explained

below.

During pruning of the tree, physical records are

created that contain subtrees of the main-memory

tree. These main-memory subtrees are replaced with

main-memory proxy nodes. Therefore, even after

creating clusters and removing the nodes from the

main-memory tree, the remaining proxy nodes may

still cause the subtree to be larger than the cluster

limit. Hence, in the while loop the proxy nodes

themselves are grouped into clusters, and physical

records are created for them, possibly in several

levels, until the subtree fits into the cluster limit.

The clusterChildren() function (Figure 7) deter-

mines the cluster boundaries, moves clustered

subtrees into physical records, and replaces the

subtrees with proxies in the main-memory tree.

Note that the grouping of child nodes into clusters

proceeds from right to left, making sure that nodes

further to the right are more likely to be clustered, as

specified in our requirements.

We briefly describe the lower-level functions re-

quired by clusterChildren(). The findCluster-

BoundRight() and findClusterBoundLeft()

functions determine the interval of those children of

the current node that are to be included in a new

physical record. The findClusterBoundRight()

function looks for nodes satisfying a predicate that

depends on the mode parameter. The search starts

at the second argument lastsplit and continues to

the left siblings. If mode == IGNOREPROXIES, then the

predicate is true for all non-proxy nodes. Otherwise,

any node qualifies.

The findClusterBoundLeft() function moves fur-

ther right, starting from the rightmost node of the

Figure 6
The pruneCurrentCluster() function

void SEG_XMLSegment::pruneCurrentCluster(BulkloadContext *context)
{
 BulkloadNode *current=context->current();
 if(current->weight() + clusterOverhead() > clusterLimit())
 clusterChildren(context, IGNOREPROXIES);
 while(current->weight() + clusterOverhead() > clusterLimit())
 clusterChildren(context, CLUSTERPROXIES);
}

Figure 7
The clusterChildren() function

void SEG_XMLSegment::clusterChildren(BulkloadContext *context, ClusterMode m)
{
 BulkloadNode *current=context->current();
 BulkloadNode *lastsplit=current->lastChild();
 lastsplit=findClusterBoundRight(context,lastsplit,mode);
 while(lastsplit!=0 &&
 current->weight() + clusterOverhead() > clusterLimit())
 {
 BulkloadNode* firstsplit;
 firstsplit=findClusterBoundLeft(context,lastsplit,mode);
 RID target=createRecord(context,firstsplit,lastsplit,false);
 BulkloadNode* nextsplit=firstsplit->leftSibling;
 replaceWithProxy(context,current,firstsplit,lastsplit,target);
 lastsplit=nextsplit;
 lastsplit=findClusterBoundRight(context,lastsplit,mode);
 }
}

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KANNE AND MOERKOTTE 329

new partition. It includes nodes in the interval as

long as they satisfy the preceding predicate, and

while the closed interval of subtrees bounded by

firstsplit and lastsplit still fits into a physical

record.

The createRecord() function is straightforward and

creates new subtree records from the main-memory

representations. If main-memory proxy nodes are

included in the subtree, they are inserted into the

physical record, and their target record’s parent

pointer is updated to refer to the new physical

record.

The replaceWithProxy() function removes the

main-memory representation of the subtrees that

have been moved to a record and inserts a proxy

instead.

Memory management

The main-memory representation consists of many

small objects, including literals (we should point out

that literals are of variable size). In spite of this,

memory management is not expensive during

bulkload. Memory is allocated for the nodes during

a depth-first traversal, and memory is released for

entire subtrees at the same time. These two facts can

be exploited in the following memory management

technique. The memory manager requests memory

in blocks of constant size from the operating system,

adding nodes to blocks in depth-first preorder as

they are delivered to the bulkload component. The

order in which the blocks are used is maintained in a

list. This way, the subtree induced by a node is

stored on consecutive blocks. When a subtree’s

main-memory structure is no longer used, the

sequence of blocks that contain nodes only of this

subtree can be deallocated in a per-block fashion,

without processing the individual nodes on the

blocks.

Terminating import operations prematurely

A document import may be terminated prematurely,

for example, because XML document validation fails

halfway through a document. For such cases, the

bulkload interface provides an abortBulkload()

method. A call to this routine removes both the

nodes still in main memory and the partially stored

document on disk storage.

Deallocating the nodes in main memory is done in

the same way as removing subtrees. However, there

are two approaches to removing the on-disk

structures, depending on whether Natix recovery

code is enabled.

With enabled recovery, a transaction savepoint is

created during beginBulkload(). Upon abortBulk-

load(), the transaction is rolled back to that

savepoint, and removal of the data structures on

disk is automatically handled by the recovery

subsystem’s rollback routines.

Without recovery support, the bulkload component

first scans the main-memory structure for proxy

nodes and deletes the referenced records, recur-

sively descending into further proxy nodes if

present. After the subtree records are removed from

disk, the main-memory tree is deallocated.

EVALUATION
We evaluated the performance of the Natix bulkload

component and present now the experimental

results. These results show the effect of sibling

clustering, the scalability of our design with respect

to document size, and a comparison of the

performance of Natix with other XDSes.

Document collections
Experiments were performed using three document

collections. The first was the XMark benchmark,
13

using scaling factors of n 3 0.2 with n 2 f1 . . . 5g.
The second was a synthetic document collection

generated using the ToXgene data generator.
14

The

Document Type Definition (DTD) as well as the

generator template file are listed in Reference 15.

The smallest document contained 50 employees,

100 students, 10 lectures, and 30 exams. We

generated six documents. With each document we

quadrupled these numbers, so that the biggest

document contained 51,200 employees, 102,400

students, 10,240 lectures and 30,720 exams. This led

to document sizes between 59 KB and 43 MB.

Environment
The system used for the experiments ran on two

machines. Machine NEW was used for all experiments

except for the comparison to the older benchmark

results. It was equipped with 512 MB RAM, a

Pentium** IV CPU with 2.4 GHz, and an Ultra Wide

SCSI hard disk. The operating system was a SUSE**

Linux 9.3 with kernel version 2.6.11. Machine OLD

was used to reproduce the environment from

Reference 13 and had 512 MB of RAM, a Pentium III

running at 600 MHz, and an Ultra Wide SCSI disk.

KANNE AND MOERKOTTE IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006330

Natix was compiled with gþþ 3.3.5, using optimi-

zation level O3.

The measured times are the total elapsed time to

import the document, including full logging and

recovery support. A main-memory page buffer with

sufficient memory to hold the entire document was

used. The times do not include system startup time

(about 0.1 seconds), and the page buffer was not

flushed during bulkload. However, the times do

include commit processing and flushing of the log.

For the comparison to MonetDB,
16

we used the

Monet Database Server with the Pathfinder module

as publicly distributed (MonetDB 4.8.0, Pathfinder

0.8.0). We present the import times reported by the

Monet console.

Algorithms
For Natix, we implemented the bulkload algorithm

by using a default value of m¼5. A disk page size of

8 KB was used, and the cluster limit was set to 2 KB

to avoid fragmentation (see the section ‘‘Suitability

as bulkload algorithm’’).

We also implemented a modified variant of the

Kundu and Misra algorithm to compare our ap-

proach to optimal partitioning without sibling

partitions. We had to modify the Kundu and Misra

algorithm to incorporate the fact that the weight of a

cluster is modified by the additional proxy nodes.

This involves three modifications. First, for pro-

cessing a node, the weight of proxies is added to the

node. Second, nodes whose weight is smaller than

or equal to a proxy node are always clustered with

their parent, because clustering them would not

decrease the weight of the parent node. Third, the

Kundu algorithm has to deal with the case in which

the physical representation for a single node with

proxies for all its children and small nodes clustered

with the parent does not fit into the cluster limit. In

this case, and only in this case, we use the same

approach as in the Natix algorithm; namely, to

partition the proxy nodes and the small regular

nodes from right to left by clustering them into

‘‘intermediate clusters’’ of maximal weight that are

referenced by a proxy in the parent’s cluster (see the

clusterChildren() function). As the experimental

results show, this rarely occurs.

Results
The experimental results cover several aspects of

Natix performance: importance of sibling clustering,

scalability, comparison with XC,
17

and comparison

with other published results.

The importance of sibling clustering

The first series of experiments is intended to

illustrate the importance of sibling clustering.

Hence, we took the XMark document with scaling

factor 0.2, producing a document about 20 MB in

size, and bulkloaded it using the modified Kundu

and Misra algorithm and the Natix algorithm. For

the Natix algorithm, we used different values for the

m parameter.

The number of clusters generated are shown in

Table 1. The modified Kundu and Misra algorithm

produces about 50 percent more clusters than the

Natix algorithm with values m . 1. This demon-

strates that even a heuristic for sibling clustering can

significantly outperform the optimal single child

clustering case. Note that the number of nodes for

which intermediate clusters had to be created for the

Kundu and Misra algorithm was less than 750 and

did not significantly distort the results.

For m ¼ 1, the Natix algorithm does not perform

well. This is expected because once it reaches that

limit, it immediately creates new clusters for any

additional node, instead of delaying clustering

decisions until more siblings are available. It

performs even worse than the Kundu and Misra

algorithm because it degenerates to a nonoptimal

single-child clustering.

For m . 1, the number of clusters quickly converges

against the best case achievable by the Natix

algorithm with unlimited memory, which is shown

in the last row.

Table 1 Number of clusters for XMark with a scaling

factor 0.2

Method Clusters

Kundu (Optimal Single Child Clustering) 30198

Natix (Sibling Clustering, m ¼ 1) 33929

Natix (Sibling Clustering, m ¼ 2) 22852

Natix (Sibling Clustering, m ¼ 3) 22117

Natix (Sibling Clustering, m ¼ 5) 21895

Natix (Sibling Clustering, m ¼ 10) 21779

Natix (Sibling Clustering, m ¼ ‘) 21692

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KANNE AND MOERKOTTE 331

Scalability

In this experiment, we evaluate the scalability of our

approach and compare it to the scalability of a

nonclustering approach.

We import the two document collections into Natix

and MonetDB/Pathfinder.
16

MonetDB is a relational

main-memory DBMS that stores XML as binary

relations in which the nodes are stored in preorder,

that is, in the order delivered by the parser. In such a

format, no clustering is required, but only a preorder

traversal is supported as an efficient access path,

and updates may be costly.

The results from Table 2 show that the Natix

bulkload algorithm exhibits a running time linear to

the document size. For the XMark documents,

MonetDB is about twice as fast and also scales

linearly. For the ‘‘uni’’ documents, the Natix

behavior does not change, the scalability and

bulkload speed remain similar to the XMark case.

MonetDB, however, shows a different behavior and

is slower and scales worse. We were not able to find

the cause.

We conclude that the clustering approach employed

by Natix performs and scales adequately, its

performance comparable with a nonclustering ap-

proach.

Comparison with XC

XC is an XML clustering algorithm developed at the

IBM Thomas J. Watson Research Center in York-

town Heights, New York.
17

Its optimized version of

the Lukes algorithm is a workload-directed algo-

rithm that generates good clustering tailored to

previously configured workloads. However, it does

not have acceptable performance for online bulk-

loads. We show some of the results for XC in

Table 3. The table also includes Natix import times

for the same documents. The XC system is written in

Cþþ, and the experiments were performed on an

x86-based Linux system with 1.7 GHz CPU speed.

The Natix results were obtained on our 2.4 GHz

machine NEW. The results show running times for

Natix that are faster by about an order of magnitude.

This difference is clearly beyond the difference in

processor speed. In addition, the XC heuristic

algorithm performs only single-child clustering,

which is inferior to sibling clustering with respect to

the number of clusters, as demonstrated earlier.

Comparison with other published results

There are few published results for bulkload

performance of XDS systems. The only comparable

results we could find were obtained using the XMark

benchmark by Schmidt et al.
13

They compare

bulkload performance for an XMark scaling factor of

1 on various anonymous mass-storage systems. We

display some of their results in Table 4.

We limit our comparison to disk-based systems,

omitting their numbers for main-memory-only

systems, as we do not know whether the main-

memory-only systems perform logging or check-

pointing and whether the numbers reflect the

corresponding overhead. The remaining systems are

relational DBMSes, identified as System A, System

B, and System C in this paper. No details about the

Table 2 Import times (seconds) for Natix and

MonetDB

Document Size (10
3

bytes) MonetDB Natix

xmark 0.2 22514 2.16s 5.34s

xmark 0.4 46693 4.52s 10.76s

xmark 0.6 70322 9.88s 16.46s

xmark 0.8 93560 12.03s 22.74s

xmark 1.0 105264 16.03s 27.98s

uni1.xml 58 0.03s 0.02s

uni2.xml 166 0.04s 0.09s

uni3.xml 673 0.08s 0.19s

uni4.xml 2704 0.31s 0.81s

uni5.xml 11053 3.27s 3.08s

uni6.xml 44360 28.70s 13.67s

Table 3 Comparing import times (in seconds): XC

Versus Natix

Document Size XC Natix

SigmodRecord.xml 467 KB 2.82s 0.27s

mondial-3.0.xml 1.8 MB 22.69s 0.58s

partsupp.xml 2.2 MB 6.54s 0.49s

uwm.xml 2.3 MB 6.78s 0.91s

orders.xml 5.2 MB 18.86s 1.25s

KANNE AND MOERKOTTE IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006332

employed mappings from documents to relations are

given, except that Systems A and B do not require a

DTD, whereas System C requires that a relational

schema be manually generated from a DTD.

Table 4 also includes a measurement of Natix’s

bulkload performance for the same document. We

used our machine OLD, which is very similar to the

one described in Schmidt et al.,
13

except that it has

less main memory (512 MB compared to their 1 GB),

and a slightly faster processor (600 Mhz compared

to their 550 Mhz).

Although Natix outperforms the relational systems

by factors between 1.9 and 3.6, little is known about

the exact configurations and techniques used to

store XML in the relational systems. Hence, it is

unclear to what extent the numbers are comparable.

CONCLUSION

In this paper we discuss the bulkload component of

Natix, a module of the Natix XDS that efficiently

converts external documents to the Natix storage

format.

In our requirements analysis, we argue that a

bulkload component for XML must address three

important issues. First, the processing of documents

must be efficient in its usage of resources such as

computing power and memory. Second, the inter-

face to the bulkload component must closely match

the format in which external documents are

delivered, avoiding expensive conversions. Third,

the layout for storing the documents on persistent

storage devices must be of high quality in this sense:

for tree-structured data such as XML, the number of

generated clusters should be minimal. Clusters

represent subtrees of the document tree that are

closely related with respect to document structure

and that fit on a disk page. In the context of the

Natix storage format and similar approaches, such a

cluster is a subset of the set of document nodes that

is connected through parent-child and sibling

relationships.

We also evaluate the extent to which a number of

existing algorithms fit our requirements. Even the

best candidate, the tree-clustering algorithm by

Kundu and Misra, fails to address all requirements,

in particular because it keeps the entire document in

memory and because it does not cluster siblings.

We extend the approach by Kundu and Misra into a

novel clustering heuristic, the Natix bulkload

algorithm. Albeit not optimal, this algorithm uses

sibling clustering to produce 30 percent fewer

clusters than an optimal single-child clustering. The

algorithm has linear complexity with respect to the

document size and uses main-storage space pro-

portional to the document tree height.

We present experimental results that demonstrate

the competitiveness of our bulkload component.

Specifically, we show that sibling clustering is

superior to single-child clustering and that our

algorithm scales linearly with the document size

while the multiplying constants are small. More-

over, compared to highly efficient relational bulk-

load techniques that materialize the document in

preorder as it arrives, the performance penalty that

has to be paid for clustering is acceptable. Finally,

our bulkload component is faster by at least an order

of magnitude than existing workload-directed ap-

proaches that derive their clustering decisions

primarily from expected access patterns.

In the future, we plan to improve our heuristics for

sibling clustering. We also intend to incorporate

information about access patterns into our algorithm

without compromising bulkload performance.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Intel
Corporation, or Novell, Inc. in the United States, other
countries, or both.

CITED REFERENCES
1. T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J.

Neumann, R. Schiele, and T. Westmann, ‘‘Anatomy of a
Native XML Base Management System,’’ VLDB Journal
11, No. 4, 292–314, (2002).

2. K. Beyer, R. J. Cochrane, V. Josifovski, J. Kleewein, G.
Lapis, G. Lohman, B. Lyle, F. Ozcan, H. Pirahesh,
N. Seemann, T. Truong, B. Van der Linden, B. Vickery,

Table 4 XML bulkload times for various systems

System Bulkload Time (seconds)

System A (from Reference 15) 414

System B (from Reference 15) 781

System C (from Reference 15) 548

Natix 215

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 KANNE AND MOERKOTTE 333

and C. Zhang, ‘‘System RX: One Part Relational, One Part
XML,’’ Proceedings of the ACM SIGMOD Conference
(2005), pp. 347–358.

3. C.-C. Kanne, M. Brantner, and G. Moerkotte, ‘‘Cost-
Sensitive Reordering of Navigational Primitives,’’ Pro-
ceedings of the ACM SIGMOD Conference (2005), pp. 742–
753.

4. C.-C. Kanne and G. Moerkotte, Efficient Storage of XML
Data, Technical Report TR-1999-008, Department for
Mathematics and Computer Science, University of
Mannheim (June 1999).

5. C.-C. Kanne and G. Moerkotte, ‘‘Efficient Storage of XML
Data,’’ Proceedings of the 16th International Conference
on Data Engineering (ICDE), IEEE Computer Society
(2000), page 198.

6. M. M. Tsangaris and J. F. Naughton, ‘‘On the Perfor-
mance of Object Clustering Techniques,’’ In Proceedings
of the 1992 ACM SIGMOD International Conference on
Management of Data, San Diego, California, June 2–5,
1992, Michael Stonebraker, Editor, ACM Press (1992),
pp. 144–153.

7. J. A. Lukes, ‘‘Efficient Algorithm for the Partitioning of
Trees,’’ IBM Journal of Research and Development 18,
No. 3, 217–224 (1974).

8. R. Bordawekar and O. Shmueli, ‘‘Flexible Workload-
Aware Clustering of XML Documents,’’ Database and
XML Technologies, Proceedings of Second International
XML Database Symposium, XSym 2004, Lecture Notes in
Computer Science 3186, Springer, New York (2004),
pp. 204–218.

9. M. Schkolnick, ‘‘A Clustering Algorithm for Hierarchical
Structures,’’ ACM Transactions on Database Systems 2,
No. 1, 27–44 (1977).

10. S. Kundu and J. Misra, ‘‘A Linear Tree Partitioning
Algorithm,’’ SIAM Journal on Computing 6, No. 1,
151–154 (March 1977).

11. D. Megginson, SAX: A Simple API for XML, Technical
Report, Megginson Technologies Ltd. (2001).

12. D. Veillard, The XML C Parser and Toolkit of Gnome
(2002), http://www.xmlsoft.org/index.html.

13. A. Schmidt, F. Waas, M. Kersten, M. J. Carey,
I. Manolescu, and R. Busse, ‘‘XMark: A Benchmark for
XML Data Management,’’ Proceedings of the 28th VLDB
Conference (2002), pp. 974–985.

14. D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons,
‘‘ToXgene: a Template-Based Data Generator for XML,’’
Proceedings of the ACM SIGMOD Conference (2002),
pp. 616–616.

15. C-C. Kanne and G. Moerkotte, The Importance of Sibling
Clustering for Efficient Bulkload of XML Document Trees,
Technical Report TR-2005-009, Department of
Mathematics and Computer Science, University of Mann-
heim (November 2005).

16. P. A. Boncz, T. Grust, S. Manegold, J. Rittinger, and
J. Teubner, Pathfinder: Relational XQuery over Multi-
Gigabyte XML Inputs In Interactive Time, Technical Report
INS-E0503, CWI, Amsterdam, Netherland (March 2005).

17. R. Bordawekar and O. Shmueli, Flexible Workload-Aware
Clustering of XML Documents, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY (May 2004)
(available from the author).

Accepted for publication November 8, 2005.

Carl-Christian Kanne
Department for Practical Computer Science III, University of
Mannheim, 68131 Mannheim, Germany (cc@informatik.
uni-mannheim.de). Dr. Kanne is a researcher at the University
of Mannheim. He received a Masters (Diplom) degree in
computer science from Rheinisch-Westfälische Technische
Hochschule (RWTH) Aachen in 1998, and a Ph.D. degree from
the University of Mannheim in 2003. His current work focuses
on Natix, a native XML data store developed at the University
of Mannheim.

Guido Moerkotte
Department for Practical Computer Science III, University of
Mannheim, 68131 Mannheim, Germany (moerkotte@
informatik.uni-mannheim.de). Dr. Moerkotte studied
computer science at the University of Dortmund, the
University of Massachusetts at Amherst, and the University of
Karlsruhe. From the University of Karlsruhe he received a
diploma in 1987, a doctoral degree in 1989, and his
habilitation in 1994. He is currently a full professor at the
University of Mannheim. His research interests include all
aspects of database management systems. He is especially
interested in system design and implementation. He is a co-
author of more than 100 publications. &

KANNE AND MOERKOTTE IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006334

Published online May 3, 2006.

