Emerging patterns in the use of
XML for information modeling
in vertical industries

Extensible Markup Language (XML) has emerged as the predominant non-binary
information format. The impact of XML has been most strongly felt in information

S. Hinkelman
D. Buddenbaum
L.-J. Zhang

exchange environments and information modeling. This paper focuses on a set of
innovative patterns that has emerged in the use of XML for information modeling and
business content design in the health-care, travel, insurance, and other industries. We

provide historical perspectives on this development and characterize XML's current
state in relation to Web Services.

INTRODUCTION

The use of XML (Extensible Markup Language) for
information modeling within vertical industries has
taken many diverse forms. Some, but not all, of
these forms have been influenced by the emerging
service-oriented architecture (SOA) XML infrastruc-
tures. Despite the diversity of approaches taken by
industry-level consortiums working with XML, there
is a great deal of commonality, as exemplified by
four basic patterns for XML business content design
which have recently emerged within vertical in-
dustry consortiums. These patterns are (1) Business
Content Envelope, (2) Web-Services-Based Infra-
structure, (3) Wrapped Content, and (4) Top-Down
Modeling. This set of patterns, though limited,
provides a framework that can aid Web Services
adoption efforts by industry standards organiza-
tions.

In this paper, we begin with a review of the history
of the development of a selection of XML standards.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Next, we focus on the emergence of the aforemen-
tioned industry-level patterns in XML business
content design and describe these patterns in detail.
We then describe the associated effects and impli-
cation of mappings (i.e., “bindings”) of these
patterns to a Web Services infrastructure.

DEVELOPMENT OF XML STANDARDS

XML was originally designed for large-scale elec-
tronic publishing applications but has grown to
handle the exchange of information in a variety of
contexts. The fundamental standards activity for
XML was conducted by the World Wide Web
Consortium' (W3C**), beginning with the Exten-
sible Markup Language2 (XML) Version 1.0 W3C

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

HINKELMAN, BUDDENBAUM, AND ZHANG

373

Recommendation in February 1998. W3C continues
to coordinate XML standards activity with working
groups in such areas as XML Query, XML Schema,
XML Core, and XML Processing Model.

Industry consortiums developing standards for XML
information exchange have emerged over the last
several years due to the explosive growth of XML
and its ability to define structured vocabularies.
Some of these organizations and their efforts are
described in this paper. A number of these orga-
nizations have explicitly defined themselves as
using today’s commercial Web Services infrastruc-
ture for information exchange.

The Open Application Group, Incorporated3 (OAGI)
manages the Open Application Group Integration
Specifications (OAGIS**) standard, which defines a
business information envelope along with a set of
business-information content types. The Association
for Cooperative Operations Research and Develop-
ment” (ACORD), the leader in global insurance
standards, has developed messaging standards for
Life and Annuity (L&A), Property and Casualty
(P&C), and reinsurance products for the insurance
industry. Like OAG], it is a member-driven orga-
nization whose efforts began before Web Services
were defined and widely accepted, and its mission
includes staying current with infrastructure tech-
nologies such as Web Services. Remaining infra-
structure-neutral like OAGi, ACORD has developed
core specifications and complementary Framework
Implementation Guides. As stated in the ACORD
Messaging Service XML Specification and SOAP
Implementation Guide, “The design of the ACORD
core payload standards will not prohibit or inten-
tionally favor use of any framework standards that
are specified by cross-industry bodies. On the
reverse, ACORD Framework Implementation Guides
can be viewed as cross-industry standard profiles to
support the insurance business processes in the
most adequate way.”5 Like OAGIi’s approach, the
ACORD approach is not to design Web services
directly as a dependency, but to map onto Web
Services capabilities. The OpenTravel Alliance**
(OTA) serves a similar function for the travel
industry. The standardization activities of OAGi,
ACORD, and OTA are described in detail in this
paper, along with those of some other companies.

As is the case in many fields, the nature of the
organizations managing the development of stan-

374 HINKELMAN, BUDDENBAUM, AND ZHANG

dards has a great impact on the type and qualities of
standards that are produced. In the following
subsections, we list some of the organizational
characteristics relevant in this context for XML
standards.

Legacy-based vs “green field” organizations
Some organizations have a long history of standards
work in information exchange, possibly going back
to the days of Electronic Data Interchange (EDI).
Their activity reflects this history, and tremendous
effort tends to be spent on managing transitions
between technical implementations, even to the
degree of ensuring some level of backward and
forward compatibility. These efforts often result in a
suboptimal implementation. Other organizations
lead “green field” standards efforts (i.e., those
without a history), enjoying much more freedom to
adopt current techniques, based on the “best of
breed” thinking at the time that the development is
taking place. For example, a “session” construct
may be a necessary element for supporting reliable
or sequenced messaging. A green field approach
would typically rely on a recent horizontal (i.e.,
cross-industry) standard such as Web Services
Reliable Messaging6 (WS-RM), to provide this
support; a more seasoned standard would probably
use a legacy mechanism modeled within its archi-
tecture. In the latter case, for reasons of continuity
(because approaches may be short-lived), ease of
adoption, and consistency with production applica-
tions, the legacy approach may be perpetuated at the
expense of, or in addition to, the application of a
recently emerged standard, such as WS-RM, that
provides the same function.

Comprehensive vs streamlined organizations
Some organizations mandate the development of
solutions across the entire “eco-system” of imple-
mentations. This results in a more complete view of
the scope of the problem, with generally wider
acceptance, but with an increased burden of
consensus building and use of existing production
standards. This also results in a potentially more
conservative approach to cross-industry standards
adoption. Other efforts are managed by streamlined
consortiums of like-minded organizations looking to
accelerate development and adoption of a particular
standard within a smaller scope of use. In this case,
the effort is associated with solving a key aspect of a
problem which the consortium has deep knowledge
of and wishes to see addressed.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Information exchange vs service optimization
focus

The organization’s charter puts limits on the scope
of the issues that the organization can and will
address. Some standards organizations are devel-
oped to solve information sharing problems. In this
case, the modeled content can be more document-
oriented in an attempt to synchronize the data held
by the various members of the organization, such as
a standard for sharing customer data. Other stan-
dards organizations are concerned with service
optimization. In this case, the modeled content is
designed to efficiently provide a service, such as
payments over a banking network. Still other
standards organizations are more concerned about
process optimization and take a more service-
oriented approach aimed at bringing a process
through various states to its conclusion, for
example, from inception through completion of a
purchase order.

Structure vs process focus

The maturity of the standards produced by an
industry standards organization can be based on the
degree to which it standardizes not only structure
and syntax but also processes. Standardized pro-
cesses provide a standardized context for the use of
message formats derived from the structure and
syntax of the business information model. This
provides impetus for the standardized design of
functions such as security, reliability, and routing.
Specifying information interaction patterns among
relevant technologies increases the value of the
business content specification by facilitating adop-
tion. Industry standards organizations wish to
provide bindings to relevant technologies for this
reason. Dominant business players tend to simplify
interaction requirements, limiting them to the set of
patterns and technologies that meet their business
needs; industries with a more heterogeneous set of
partners usually have a more complex set of
required interaction patterns.

EMERGING BUSINESS CONTENT DESIGN
PATTERNS

Clearly, there is no “one size fits all” approach for
best practice implementations adopting Web Ser-
vices in all of the vertical-industry standards orga-
nizations. Instead, there are many diverse
approaches. While these divergences are significant,
a basic set of patterns has emerged in recent years.
This set of patterns is useful in understanding and

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

aiding Web Services adoption efforts by industry
standards organizations. The patterns simplify
understanding the impact of each approach and help
identify requirements that can increase the rate and
sophistication of Web Services adoption.

In the following subsections, we explore these basic
patterns for business content design: (1) Business
Content Envelope, (2) Web Services-Based Infra-
structure, (3) Wrapped Content, and (4) Top-Down
Modeling. We discuss the differences between these
patterns and describe some implementations that
use them.

Business Content Envelope pattern

In order to endure and have a high level of
insulation from change in underlying infrastructure
technology, an industry-level standard is required to
manage (at least) the basic specification of inter-
action and process indicators in a way that is
consistent with, and has some level of integration
with, the business content itself. A comprehensive
pattern integrating business information with inter-
action and process indicators is referred to as a
“Business Content Envelope” pattern. (An XML
envelope is an XML document type that is defined to
be a holder for other arbitrary XML data.) While not
new, this pattern has proven to be successful and is
currently used within various organizations. This
pattern is based on the fundamental principles of
abstraction of infrastructure and minimizing de-
pendencies on any given information-exchange
infrastructure.

The OAGIS standard uses this pattern and abides by
some foundational infrastructure-neutral principles.
OAGIS defines a Business Object Document (BOD),
a comprehensive Business Content Envelope, along
with business content. In the OAGIS envelope
architecture the business content, referred to as a
noun, is associated with multiple actions, which are
referred to as verbs. Extensibility is also supported
as a core part of the architecture. the OAGIS
Business Content Envelope is by principle and by
design independent of any specific lower-level
protocol or transport since its inception. ACORD has
also developed a Business Content Envelope.

In the following subsections, we describe in detail
the approaches used by ACORD and OAGi in
developing their Business Content Envelope
patterns.

HINKELMAN, BUDDENBAUM, AND ZHANG

375

Business Object Document (BOD)

Application Area |

Data Area
Verbs Nouns
Components
Fields |
Compounds |
Figure 1

OAGIS BOD architecture

The OAGIS envelope

Figure 1 shows the overall architecture of the OAGIS
envelope.7 OAGIS schemas specify a naming con-
vention for BODs, consisting of verbs and nouns
such as ProcessPurchaseOrder. The outer layers of
the BOD envelope identify the intentionality (i.e.,
what the message is intended to do, a verb),
business content (a noun), version identifier of the
document, release number of OAGIS, and a test/
production flag, for example:

<ProcessPurchaseOrder...versionID="..."
releaselD="..."
systemEnvironmentCode="Production">.

An Application Area contains application-specific
information common to all BODs, such as:

<ApplicationArea>
<Sender>
<logicallD>...</LogicallD>
<ComponentID> ... </ComponentID>
<TaskID>...</TaskID>
<ReferencelD> ... </ReferencelD>
<ConfirmationCode> ...
</ConfirmationCode>
<AuthorizationID> ... </AuthorizationID>
</Sender>
<CreationDateTime> ... </CreationDateTime>
<Signature ... />
<BODID ... />
<UserArea ... />
</ApplicationArea>

A Data Area carries the business content, which is
the information that is specific to each BOD

376 HINKELMAN, BUDDENBAUM, AND ZHANG

envelope, as shown in Figure 2. OAGIS further
defines the business content in a hierarchy of
elements, called components, fields, and so forth.

The Acord envelope

ACORD designed a messaging service, the Acord
Messaging Service Version 1.2, which wraps each of
the insurance industry XML standards (P&C, L&A,
and reinsurance) based on a set of horizontal
standards as shown in Figure 3. The purpose of
Acord Messaging Service Version 1.2 is to support
the transport, routing, content, and security re-
quirements of the L&A, P&C, and reinsurance
standard specifications. ACORD’s stated position is
to create similar implementation guides as technol-
ogies evolve. The approach taken for Web Services
enablement is to create an Acord Messaging Service
Version 1.2 that provides an envelope which
supports specific requirements from multiple
standard specifications in a technology-neutral way,
including message management (requiring a unique
identifier, specific message type, status, and mes-
sage signature for nonrepudiation), routing (requir-
ing sender/receiver, time stamp, and intended
application), packaging, and security.

ACORD is currently developing the next version of
the Acord Messaging Service Version 1.2 specifica-
tion, which will be called the ACORD Web Services
Profile. The profile will still be based on the
Business Content Envelope pattern, but will differ
from today’s specification by the design of the SOAP
and WSDL bindings. The goal is to align more
closely with SOA principles and enable business
services to be exposed by WSDL. This will be
enabled by profiling the latest development of Web
Service Standards (SOAP 1.2, WSDL 2.0, WS-
addressing and WS-Reliable Messaging) and pro-
moting harmonized service wrapper components
within the business payloads in each of the three
industry standards.

As an example, Figure 3 contains excerpts from the
Acord Messaging Service Version 1.2 Business
Content Envelope pattern of an ACORD message
withi% a Simple Object Access Protocol (SOAP)
body.

Web Services-Based Infrastructure pattern

This pattern includes those industry-level patterns
whose infrastructure is based exclusively on Web

Services. Although consortiums following the Web
Services-Based Infrastructure pattern use Web

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

<DataArea>
<Process acknowledgeCode="Always">
<ActionCriteria>

<ActionExpression expressionlLanguage="token" actionCode="Add">token</ActionExpression>

<ChangeStatus>

<E%%ectiveDateTime>...</Effect1veDateT1me>

<ReasonCode>...</ReasonCode>

.%étateChange>

<FromStateCode>...</FromStateCode>

<ToStateCode>...</ToStateCode>

<ChangeDateTime>...</ChangeDateTime>

<UserArea/>
</StateChange>
</ChangeStatus>
<{/ActionCriteria>
</Process>
<PurchaseOrder>...</PurchaseOrder>
</DataArea>

Figure 2
Example of a data area

Services exclusively for their infrastructure, the
business content design developed by these con-
sortiums is typically developed without concern for
the low-level infrastructure details of Web Services.

Unlike the Business Content Envelope pattern, this
pattern defines “usage-context-free” instance docu-
ments (i.e., those containing no verbs, interaction
indicators, process indicators, etc.), which can be
referenced under several general operations that are
defined in the infrastructure. This is in sharp
contrast to a Business Content Envelope pattern,
which contains much more than the business
content. This content design pattern requires con-
forming instance documents to have a single specific
root element.

The architecture of MedBiquitous.org,9 a distin-
guished medical professional organization, was
defined by reference to the Web Services-Based
Infrastructure pattern. MedBiquitous.org explicitly
and solely relies on the Web Services infrastructure
to provide all interaction and process specifications
for exchanging professional business content. A
natural and complementary content design author-
ing pattern that fits well with this pattern, known in
industry by some as the “venetian blind schema”
pattern, is shown in the following example:

<xs:schema...
<xs:complexType name="InternalElementType">

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

<Xs:sequence>
<xs:element name="A"/>
</xs:sequence>
</xs:complexType>
<xs:element name="RootElement"
type="RootElementType"/>
<xs:complexType name="RootElementType">
<Xxs:sequence>
<xs:element name="InternalElement"
type="InternaltlementType"/>
</Xxs:sequence>
</xs:complexType>
</xs:schema>

Binding conventions typically use a wrapped model
for business content in which the business content
schemas are wrapped with another schema that
defines services operations. Within MedBiquitous
.org, a wrapped Doc/Lit message style (i.e., one in
which information is exchanged in a “raw” form,
without encoding or other alteration) is used within
the infrastructure layers specific to Web Services.
The business content payloads are wrapped with
request/response operation wrapper elements,
which are defined in a separate schema. No first-
class business content (i.e., actual business infor-
mation, as opposed to associated information or
metadata) is defined as part of these wrappers.10
This marks the initial separation point between
business content operations and those that are
required for interactions by means of the Web

HINKELMAN, BUDDENBAUM, AND ZHANG

377

HTTP Envelope
SOAP Envelope

SOAP Header
Security

&
g SOAP Body
= Messaging Service
§2 Work Folder
5 URI

URI
J
§ ACORD Message
=
=
L
§ /
g Attachment
=
L

Figure 3

ACORD Messaging Service Version 1.2 architecture

Services infrastructure. The wrapper schemas, one
per Web service, consist of the request and response
elements for all operations defined within the
service.

WSDL files import this schema. WSDL (e.g., the
<types> structure) is not used directly for business
content, in order to keep all business type informa-
tion independent of the Web Services interface
specification documents. This separation helps
facilitate business payload development by shield-
ing the domain experts from the details of the
underlying Web Services technology. In the case of
MedBiquitous.org, the actual payload schemas are
indirectly imported into WSDL files through the
wrapper schemas within the WSDL <types> struc-
ture, as in the following example:

<types>
<xs:schema...
(include declaration of the namespace wrapper)
<xs:include schemalocation=
(lTocation of the wrapper schema) />
</xs:schema>
</types>

Business content is not authored within the WSDL
files.

378 HINKELMAN, BUDDENBAUM, AND ZHANG

The imported wrappers then are used to define the
request and response message parts. Naming con-
ventions using WSDL operation names determine
the message names, as shown in the following
example:

<message name="OperationlInputMessage">
<part name=“Wrapper” element="operationl"/>

</message>

<message name="OperationlOutputMessage">
<part name="Wrapper" element="operationlResponse" />

</message>

This design uses an approach in which generic
interface operations are used across the entire multi-
usage payload. This shields the interface from
change over time, but necessitates constraint
checking within the business logic.

In the Web Service-Based Infrastructure pattern, the
intentionality of the message is completely deter-
mined by the choice of WSDL operation names,
unlike the Business Content Envelope pattern,
where intentionality indicators, such as verbs or
actions, typically exist as design elements integrated
with the business content architecture. This is not to
say that the business content design is completely
defined without any idea or context of how the
information is going to be used, but a Web Services-
Based Infrastructure pattern formally makes the
intentionality of the messages visible only at the
Web Services infrastructure layer.

A complementary aspect to the usage-context-free
business information modeling of this pattern lies in
how it specifies infrastructure operation granularity.
In order to avoid fragile Web service interfaces,
general operations on service interfaces are used
rather than highly specific operations. An example
of this would be the use of the well-known Create/
Read/Update/Delete (CRUD) operations rather than
operations highly specific to the business content
such as CreateCardiologist. Another complemen-
tary aspect is payload or content design authoring
specifying a highly type-based document with a
single root element, as discussed previously. The
root element can be referenced by several general
operations, as seen here:

<operation name=“Create”>

<input message=“OperationlInputMessage”/>
<output message=“OperationlOutputMessage”/>

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

<fault...
</operation>

Like almost all industry groups addressing Web
Services, interoperability is a key concern' ' for
MedBiquitous.org. The WS-I basic profile provides a
foundation for interoperability guidelines, but part
of this profile is a clarification of Web Services
specifications targeted for Web Services infrastruc-
ture developers and is not directly relevant to
vertical-industry standards organizations. In Med-
Biquitous.org, areas such as common faults for all
services operations are defined to supplement the
basic profile in the context of the Web Services
infrastructure and increase interoperability.

A ramification of general purpose operations typical
of the Web Services-Based Infrastructure pattern as
described here is that Web Services faults that are
specific to the business content are typically not
defined—hence, the need for general error defini-
tions, such as those defined in MedBiquitous.org.
One such error is a ‘business rule’ fault to
accommodate an error associated with the business
content, which is specified for every Web Services
operation, and can be specified with the syntax
<fault name=“BusinessRuleFault” message=.../>.

From an overall organizational and architectural
view, the Web Services-Based Infrastructure pattern
is arguably more efficient than the Business Content
Envelope pattern, positioning an organization to
take full advantage of the present and future
functions of the Web Services infrastructure. Relying
solely on the Web Services infrastructure eliminates
concerns about infrastructure abstractions in higher-
level designs. However, defining the infrastructure
in a concrete way specific to a given infrastructure
technology like Web Services means that when an
alternative infrastructure emerges, significant
wholesale replacement must be defined at the lower
levels as there are no integrated interaction ab-
stractions and process indications at the upper
layers.

Wrapped Content pattern

The Wrapped Content pattern, similar to the
comprehensive Business Content Envelope pattern,
allows an organization to remain independent of a
given message exchange infrastructure; it also
requires some level of definition for interaction and
process indication. The Wrapped Content pattern is

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

limited and is based on wrapping primary business
content with a single style of interaction such as
request/response. There is no overall design of
sections to contain information for specific purpos-
es. In contrast, a Business Content Envelope pattern
is robust and takes on many abstractions including
processing actions (verbs), acknowledgements and
confirmations, and an overall compartmentalized
extensible stucture for containment of different
information used for different purposes.

Some industry organizations, in addition to defining
reusable business content, define a common set of
reusable process indicators that are integrated with
interaction exchange structures used as wrappers for
the industry-specific business content. These pro-
cess indicators are similar to the metadata defined in
full Business Content Envelope patterns. In its most
basic form, the business information is contained
within an exchange structure such as a message
request and a message response. ACORD, within its
overall design and methodology, defines request/
response interaction exchange structures.

The OpenTravel Alliance'” (OTA), a well-respected
pioneering organization for the travel industry, also
uses this design approach. OTA has standardized a
set of common attributes and indicators that may
appear on the request/response interaction-ex-
change-structure root element for all OTA message
payloads.13

OpenTravel Alliance and the Wrapped Content
pattern

OTA predates current distributed infrastructures
such as Web Services infrastructures. To illustrate
the use of process indicators for this pattern, we use
examples from OTA’s “common types” schema and
define partial example instances. The travel industry
specifies many industry-specific reusable types
within this schema, such as LoyallLevel and
HotelReference, by using process indicators. OTA
provides several indicators within its specifications
to accommodate usages that are current in this
industry.

An indicator may be specified when a requesting
host indicates that the receiving host should include
an ‘echo token’ of the same value in the response.
Process indicators may be used to indicate the
processing model (test or production) of the

HINKELMAN, BUDDENBAUM, AND ZHANG 379

<OTA_AirAvailRQ

xmlns=http://www.opentravel.org/0TA/2003/05

xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance"

EchoToken="12345"
TimeStamp="2003-07-17T709:30:47-05:00"
Target="Production"
Version="2.001"
SequenceNmbr="1"
PrimarylLangID="en-us"
MaxResponses="10"
DirectFlightsOnly="false"
TransactionStatusCode="Continuation"
Transactionldentifier="224">
<POS>
<Source AgentSine="BSIA1234PM"
PseudoCityCode="2U8"
IS0Country="US"
ISOCurrency="USD">
<RequestorID URL=

"http://www.//providerl.org" Type="5" ID="123"/>

</Source>
</POS>
<OriginDestinationInformation>

<DepartureDateTime>2003-08-13</DepartureDateTime>

<OriginlLocation LocationCode="LHR"/>

<{DestinationlLocation LocationCode="LAX"/>

</0OriginDestinationInformation>
<TravelPreferences...
</OTA_AirAvailRQ>

Figure 4
Example of OTA Air Availability request instance

receiving node. The version of the message may also
be indicated.

A unique identifier may indicate that all messages
sent in a set of request and response messages are
part of a single ongoing transaction, and a message
sequence number can be used to identify the
number of the transaction as assigned by the
sending system. This numbering allows an applica-
tion to process messages in a certain order or to
request a resynchronization of messages in the
event that a system has been offline and needs to
retrieve messages that were missed.

A transaction status code may be defined to indicate
where a specific message lies within a sequence of
messages. The code may take the values Start, End,
Rollback, InSeries, and Continuation. A process
indicator may be defined to indicate the desired
version of the payload response message. This
requirement for specifying one of several non-error
responses may provide a challenge when mappings
to Web Services interfaces and operations are
defined.

380 HINKELMAN, BUDDENBAUM, AND ZHANG

OTA’s 2005A Air Availability schemas provide a
comprehensive view of business content wrapped
within an interaction exchange structure along with
associated process indicators. These schemas spec-
ify the availability of flights between a pair of cities
on a specific date for a specific type and number of
passengers, as in Figure 4. Many of the previous
indicators are exemplified here within this Wrapped
Content message.

OTA has not published formal binding specifications
for a Web Services infrastructure. At present, only
information for the June 2005 ebXML Message
Service speciﬁcation14 (ebMS) is documented. Def-
inition of the mapping to alternative infrastructure
technologies is currently under development. How-
ever, OTA’s robust interaction Wrapped Content
pattern along with its process indicators would
provide a comprehensive source for successful
mapping to the evolving Web Services infrastructure
with its increasing transactional and state-full
capabilities, considering OTA’s already defined
transaction status codes and identifiers.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

ACORD and Wrapped Content

ACORD XML for L&A products is based on the
ACORD Life Data Model and provides a robust,
industry-tested XML vocabulary. ACORD P&C is
similar in many respects. An ACORD L&A XML
document is built around a request/response model.
The processing mode can be either synchronous or
asynchronous (the response may include a “notify”
statement as a trigger to the receiver that additional
interaction is possible). The processing model is
based upon a pair of messages (request and
response) and uses the framework shown next:

<xsd:complexType name="TXLife_Type">
<xschoice>
<xsd:sequence>
<xsd:element ref="UserAuthRequest"
minOccurs=+0" />
<xsd:element ref="TXLifeRequest"
minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
<xsd:sequence>
<xsd:element ref="UserAuthResponse"
minOccurs="0" />
<xsd:element ref="TXLifeResponse"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element ref="TXLifeNotify"
minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:choice>
<xsd:attribute name="Version" type="xsd:string" />
</xsd:complexType>

Requests can be submitted together within a single
file or envelope as a single stream, and in this case
will receive a single response stream although
transaction order is not maintained. Not all re-
sponses can be generated in real time; if they
cannot, a notification response message is used to
alert client applications to the processing of an
outstanding transaction. Notification is continuously
sent with other transaction response messages by a
server to a client application while the response
remains outstanding.

Some examples of ACORD XML for L&A processing
indicators include requests for a response correla-
tion identifier (used to determine the matching
response), requests for a response indicator (used to
indicate if the requestor wants notification of

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

outstanding delayed responses), and requests for a
transmission mode indicator (to indicate how a
request should be treated in the context of other
requests, such as a request that is an update or a
replacement of another request).

Other processing indicators define the transaction to
be processed or allow a requestor to dictate the
nature of the results returned by the service
provider, such as the data scope to return (Object,
Object and related Objects, etc.), the start record for
a search, or the maximum number of records to
return. Still other indicators define how to specify
the relationships between the message and multiple
possible attachments.

Top-Down Modeling pattern

Formal modeling patterns, in contrast with ad hoc
development, are used by some organizations for
developing standard messages. Such formal Top-
Down Modeling patterns are emerging within
vertical-industry organizations. In these patterns,
message specifications are developed with increased
rigor, based on some form of information model.
The technology, methodologies, and tools so devel-
oped may be accompanied by training classes to
ensure consistency. In such environments, a large
portion of the effort is spent on defining require-
ments, use cases and roles, and the information
model. A Unified Modeling Language** (UML**)
profile is often used.

This pattern provides the opportunity for stan-
dardization of elements that may be more difficult to
standardize in less formal environments. A rigorous
methodology can facilitate the specification of the
usage of the information, and this has ramifications
on the inclusion of the information elements, their
cardinality, and even their semantics. As a natural
consequence of this rigor, library and registry
considerations arise that play a key role in the
assembly of information and the definition of usage
contexts.

Health Level 7 and the Top-Down Modeling pattern
One of several organizations employing such a Top-
Down Modeling pattern is the advanced Health
Level 7' (HL?7) organization, a health-care infor-
mation standard in which, increasingly, XML is
viewed primarily as an encoding technology rather
than a source information model. This pattern holds
much promise for increasing the precision of
standards required to promote interoperability

HINKELMAN, BUDDENBAUM, AND ZHANG

381

between businesses, reducing ambiguity and leading
to reduced complexity and cost.

Version 3.0 of the HL7 standard represents an
evolution in several ways. While HL7 messages
have moved to XML encoding as an “implementable
technology specification” (ITS), this version of HL7
introduces the strategic Reference Information
Model (RIM), the Message Development Framework
methodology, and the accompanying UML profile
containing hierarchical message definitions (HMDs).

These features, along with HL7’s Model Interchange
Format (MIF), have resulted in the generation of the
implementation layer (such as XML encoding)
through tooling. HL7’s MIF is a set of related
schemas that define the set of primary artifacts that
may be developed or exchanged as part of this
standard. These artifacts provide a common ex-
change format for use between tools and reposito-
ries. Although this methodology is central to HL?,
this standard continues to evolve, and its compo-
nents are not fully integrated, requiring further
testing.

The HL7 Clinical Document Architecture (CDA) is a
document markup standard (currently in produc-
tion) that specifies the structure and semantics of
clinical documents for the purpose of information
exchange. The CDA document source is currently
encoded in XML with “derived meaning” from the
HL7 RIM. It is intended that if and when alternate
implementations are feasible, future technology
encodings will not be limited to XML.

Information modeling through message structure
definition

Organizations like HL7 employing a Top-Down
Modeling pattern (using some form of information
domain model) typically specify classes of informa-
tion required and the properties of those classes,
including attributes, relationships, and so forth, by
use of a UML profile. HL7 Version 3.0 uses data type
specifications, vocabulary specifications, and a RIM
to derive technology-level message specifications.

The intention of HL7’s MIF is to specify an XML
Schema representation consistent with its UML
profile, comprised of health-system-wide informa-
tion structures from which ITSes are derived to
define lower-level implementation technology. HL7
defines a suite of implementation tools supporting

382 HINKELMAN, BUDDENBAUM, AND ZHANG

its Top-Down Modeling pattern, which includes
repository interface tools, terminology table tools,
modeling and message tools, schema transformation
tools, and so forth.

Schema generation uses serialized MIF models.
Though the MIF is still evolving, it has already had a
significant impact on the direction and development
of HL7 tools and plays a central role in schema
generation.

WEB SERVICES BINDINGS

In the following three subsections, we describe the
approach taken for Web Services bindings by the
OAGi, ACORD, and HL7 organizations.

OAGIS Web Services binding

The OAGIS BOD architecture predates Web Services
specifications and is independent of any communi-
cation mechanism. It can be used with simple
transport protocols such as HyperText Transfer
Protocol (HTTP) and SMTP (Simple Mail Transfer
Protocol), but it also can be used with more complex
transport protocols such as SOAP, ebMS, or any
other EAI (enterprise application integration)
system.

Mapping the OAGIS BOD architecture to Web
Services technology occurs largely at the WSDL
abstract layer.16 WSDL’s “binding” layer is accom-
modated by using naming conventions to define a
SOAP binding specifying a WSDL document/literal
encoding style, and WSDL’s “service” structure is
also accommodated by naming conventions. All
OAGIS mappings to Web Services use a request/
response exchange pattern and define mappings for
an “asynchronous push” model and a “synchro-
nous” model."”

The WSDL <types> structure imports all of the
envelope schemas for given business content. Busi-
ness content is not authored inside the WSDL
<types> structure, as shown in the following
example:

<types>

<xs:schema elementFormDefault="qualified"
targetNamespace=
"http://www.openapplications.org/oagis/8.0/ws">
<xs:include schemalocation=
".../xsd/MessageResponse.xsd" />
<xs:include schemalocation=
".../.../0AGIS/B0Ds/AddPurchaseOrder.xsd"/>

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

</xs:schema>
</types>

The name of every root envelope BOD element
defines a single WSDL <message> structure with a
single <part>, which references the top-level
element, as in the following example:

<message name="AddPurchaseOrder">

<part name="Message" element="0a:AddPurchaseOrder" />
</message>
<message name="CancelPurchaseOrder">

<part name="Message"

element="oa:CancelPurchaseOrder"/>

</message>
<message name="ChangePurchaseOrder">

The naming convention for a portType dictates the
use of the noun name, preceded by Request,
Response, or Sync, and followed by PortType.
Within the portType, for asynchronous push re-
quests and synchronous request/responses, WSDL
operations are defined and named by using enve-
lope root-element names typical of the seller side of
an interaction for the given business content, as in
the following example:

<portType name=“RequestPurchaseOrderPortType”>
<operation name=“AddPurchaseOrder”>
<input message=“oagws:AddPurchaseOrder”/>
</operation>
<operation name=“CancelPurchaseOrder”>
<input message=“oagws:CancelPurchaseOrder”/>
</operation>

</portType>

Within the portType, WSDL operations are defined
by using the envelope root element names typical of
the buyer side of an interaction for the given
business content, as in the following example:

<portType name=“ResponsePurchaseOrderPortType”>

<operation name=“ShowPurchaseOrder”>
<input message=“oaws:ShowPurchaseOrder”/>

</operation>

<operation name=“ListPurchaseOrder”>
<input message=“oaws:ListPurchaseOrder”/>

</operation>

<operation name=“ConfirmB0D”>

</portType>

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

OAGIS includes process indicators within its BOD
architecture, such as a confirmB0D indicator indicat-
ing the confirmation of BOD reception, as in the
following example:

<portType name=“SyncPurchaseOrderPortType”>

<operation name=“CancelPurchaseOrder”>
<input message=“oaws:CancelPurchaseQrder”/>
<output message=<oaws:ConfirmB0OD”/>
</operation>

<operation name=“GetPurchaseOrder”>
<input message=“oaws:GetPurchaseOrder”/>
<output message=“oaws:ShowPurchaseOrder”/>
</operation>
<operation name=“GetListPurchaseOrder”>
<input message=“0oaws:GetlListPurchaseOrder”/>
<output message="oaws:ListPurchaseOrder”/>
</operation>

<operation name=“ProcessPurchaseOrder”>
<input message=“0aws:ProcessPurchaseOrder”/>
<output message=“oaws:ConfirmB0OD”/>
</operation>
</portType>

ACORD Web Services binding

Because ACORD insurance specifications predate
Web Services standards, much of their interaction
design and supporting process indicators are im-
plemented within the messaging content (see the
section “Wrapped Content pattern”). As a result, the
ACORD Web Services binding is a mapping exercise
intended to address specific requirements, given the
capabilities of available horizontal standards.

An example of this is the Acord Messaging Service
Version 1.2 mapping based on SOAP 1.1 (document
mode), WSDL 1.1, and the WS-I 1.0 basic profile
(WSI-BP). When Acord Messaging Service was built,
ACORD and its membership evaluated available
Web Services capabilities and adoption in the
context of insurance-industry requirements with the
objective of preserving compatibility with existing
insurance-industry messaging standards. As a re-
sult, Acord Messaging Service Version 1.2 ap-
proached areas of concern such as document and
attachment management, routing, session handling,
and reliability by designing support for them in the
Acord Messaging Service wrapper and interaction
design itself. The Acord Messaging Service Version
1.2 approach is to support the breadth of insurance-

HINKELMAN, BUDDENBAUM, AND ZHANG

383

<wsdl:types>
<{schema

targetNamespace="http://www.ACORD.org/Standards/AcordMsgSvc/1.1.0"

xmlns="http://www.w3.0rg/2001/XMLSchema">

<!--Inbox port messages-->

<{xs:element name="ListInRq" type="xs:anyType"/>
{xs:element name="ListInRs" type="xs:anyType"/>
<{xs:element name="PostRq" type="xs:anyType"/>
{xs:element name="PostRs" type="xs:anyType"/>
<{xs:element name="StatusInRq" type="xs:anyType"/>
{xs:element name="StatusInRs" type="xs:anyType"/>

<!--Qutbox port messages-->

<{xs:element name="ListOutRs" type="xs:anyType"/>
<xs:element name="ListOutRq" type="xs:anyType"/>

<!--Céii port messages-->

<{xs:element name="CallRq" type="xs:anyType"/>
{xs:element name="CallRs" type="xs:anyType"/>

</schema>
<{schema targetNamespace=

"http://schemas.xmlsoap.org/soap/envelope">
{xs:element name="Fault" type="xs:anyType"/>

</schema>
</wsdl:types>

Figure 5

Generic WSDL: types element overloaded with ACORD message structure

industry standards by providing four generic modes
of interaction: one-way business-message push and
pull, business-message request/response, and re-
quest/response without a business message.

The binding to SOAP is thus designed to support the
defined message exchange. The approach to map-
ping the architecture of the ACORD insurance-
industry standard to Web Services technology is
evident at the WSDL abstract layer. WSDL’s binding
layer is accommodated by using conventions to
define a SOAP binding specifying a document/literal
encoding style; WSDL’s service structure is accom-
modated by a set of predefined functions; and the
WSDL types structure is used to name a “generic”
element that can be overloaded with any ACORD
message structure as required, as shown in

Figure 5.

Specific element names are provided as interaction
proxies and are used as a means of attaching a
message specification from one of the standards:

<wsdl:message name=“PostRequest”>
<wsdl:part element=‘ac:PostInRg”
name=“PostRqPart”/>
</wsdl:message>

384 HINKELMAN, BUDDENBAUM, AND ZHANG

The required message interaction patterns are then
generically invoked by using conventions for a set of
predefined ports as required to satisfy an interaction
with a partner. The convention for using the ports is
defined in the Acord Messaging Service Version 1.2
specification. The WSDL for the ports supporting
ACORD message exchange patterns is shown in
Figure 6.

The Acord Messaging Service Version 1.2 approach
uses a combination of specific message element
content and protocol design to provide support for a
range of requirements. Acord Messaging Service
Version 1.2 and specific protocol instructions within
the specification are intended to provide indicators
for support of reliable and sequenced interactions,
notification capabilities, and indication of “in
process” status, as well as standard request/
response processing.

The application element contains information in-
dicating the ACORD standard defining the content
(L&A, P&C, or reinsurance), and the version of the
associated specification that defines the content.

The following code shows how Acord Messaging
Service Version 1.2 introduced SOAP body Sender/

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

<wsdl:portType name="AcordMsgSvcInbox">

<wsdl:operation name="Post">
<wsdl:input message="ac:PostRequest" name="PostRq"/>
<wsdl:output message="ac:PostResponse" name="PostRs"/>
<wsdl:fault message="soap:SO0APFault" name="SOAPFault"/>
</wsdl:operation>

<wsdl:operation name="StatusIn">
<wsdl:input message="ac:StatusInRequest"
name="StatusInRq"/>
<wsdl:output message="ac:StatusInResponse"
name="StatusInRs"/>
<wsdl:fault message="soap:SO0APFault" name="SOAPFault"/>
</wsdl:operation>

<wsdl:operation name="ListIn">
<wsdl:input message="ac:ListInRequest" name="ListInRq"/>
<wsdl:output message="ac:ListInResponse"
name="ListInRs"/>
<wsdl:fault message="soap:SO0APFault" name="SOAPFault"/>
</wsdl:operation>

</wsdl:portType>
<wsdl:portType name="AcordMsgSvcOutbox">

<wsdl:operation name="Retrieve">
<wsdl:input message="ac:RetrieveRequest"
name="RetrieveRq"/>
<wsdl:output message="ac:RetrieveResponse"
name="RetrieveRs"/>
<wsdl:fault message="soap:SO0APFault" name="SOAPFault"/>
</wsdl:operation>

<wsdl:operation name="StatusOut">
%)Wsd]:operation>
</wsdl:portType>
<wsdl:portType name="AcordMsgSvcCall">
<wsdl:operation name="Call">
<wsdl:input message="ac:CallRequest" name="CallRq"/>
<wsdl:output message="ac:CallResponse"” name="CallRs"/>
<wsdl:fault message="soap:SO0APFault" name="SOAPFault"/>
</wsdl:operation>

</wsdl:portType>

Figure 6

WSDL for ports supporting ACORD message exchange patterns
I
Receiver/Msgld elements to define the routing <ac:PartyRoleCd>11
context for a message: </ac:PartyRoleCd>

</ac:Sender>

<ac:PostRg> <ac:Receiver>

<ac:Sender> <ac:Partyld>urn:duns:912345678
<ac:Partyld>urn:duns:123456789 </ac:Partyld>
</ac:Partyld> <ac:PartyRoleCd>87

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 HINKELMAN, BUDDENBAUM, AND ZHANG

385

</ac:PartyRoleCd>

</ac:Receiver>

<ac:Msgltem>
<ac:Msgld>01ff00cl-ed48e-4cch-b26c-8fc210
</ac:Msgld>
<ac:MsgTypeCd>TXLifeRequest:204
</ac:MsgTypeCd>

</ac:Msgltem>

</ac:PostRg>

Content packaging is of particular concern. Insur-
ance business interactions generally require docu-
mentation, which can be varied and copious. Acord
Messaging Service Version 1.2 aggregated the
requirements from the wrapped specifications by
providing a WorkFolder construct that acts as a
manifest for the set of attached messages, as seen in
the next example:

<ac:PostRg>
<ac:WorkFolder>
<ac:MsgFile>
<ac:Fileld>cid:A01EFAE7-5490-43D0-DC
</ac:Fileld>
<ac:FileFormatCd>text/xml
</ac:FileFormatCd>
</ac:MsgFile>
</ac:WorkFolder>
</ac:PostRg>

Security functions in ACORD Web Services bindings
use the standard SOAP recommendations. However,
given the Acord Messaging Service Version 1.2
approach, ACORD created an additional set of
security profiles that describe different levels of
protection.18 These profiles describe usage of Acord
Messaging Service Version 1.2 extensions for the
ACORD Referred Message Signature, the ACORD file
digest, the ACORD file signature, and the ACORD
file cipher.

Aspects of messaging and the infrastructure
binding layer in HL7

HL7’s messaging components exemplify the infra-
structure binding layers within a Top-Down Model-
ing pattern. Just as high-level HMDs are exposed as
XML, lower levels of messaging detail are similarly
defined. At this level, the methodology includes
storyboards and use cases, which define the
application roles and the purpose of the information
exchanged between health-care applications, and
trigger events defining what prompts information

386 HINKELMAN, BUDDENBAUM, AND ZHANG

exchange. Defining the information message content
in the context of an ITS (e.g., the XML ITS), the
required set of classes, attributes, and associations
are used to develop an HMD, which provides a base
template for a specific “message type”—essentially a
unique set of constraints for an XML schema.

A message using the XML ITS is wrapped in SOAP
and transported using secure HTTP over the
Internet. The use of SOAP+WSDL is defined in a
Web Services proﬁle.19 HL7 has announced the
approval of Draft Standards for Trial Use (DSTUs)
built around the HL7 RIM and has clarified its
methodology from modeling to message definition
and ultimately to an XML syntax representation.

Use of WSDL with the HL7 XML ITS for early
industry prototypes revealed tooling issues due to
the complexity of the XML ITS schemas. Typical
Web Services tooling implementations using stubs
and skeletons (i.e., software that is generated from
service descriptions) result in the total encompass-
ing of the content along with any ITS transmission
wrappers. This is often not consistent with the
domain-level application’s programming model,
which is not concerned with transmission wrapper
semantics or processing of its constructs. This
highlights the difficulties and ramifications of using
differing approaches in industry-specific specifica-
tions of process indicators, such as acknowledge-
ments, which are not specific to any industry and
can be accommodated either by infrastructure
technologies or a widespread higher-level standard.
In the future, this may be done by a common cross-
industry envelope architecture. Increased common-
ality in the area of content wrappers and envelopes
across industries will provide off-the-shelf and open-
tooling packages with increased efficiency for
domain application development.

Because the Top Down Modeling pattern lacks a
layered processing model and support for multiple
constraint mechanisms, it is inevitable that cus-
tomized code will be used when infrastructure
bindings are implemented. The use of wrappers and
envelopes at the technology layer does not cleanly
match the classic usage of the Web Services infra-
structure tooling implementation built around stub
and skeleton code generation. This presents a
challenging area for future work in both the
information-modeling layer architecture and the
infrastructure.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

CONCLUSIONS AND DIRECTIONS

We have presented a set of emerging design patterns
within vertical-industry standards organizations.
Experience, heritage, organizational principles, es-
tablished standards, support for deployed products,
and changing technology all play a role in defining
differences between these patterns and the orga-
nizations using them, and defining how the patterns
map to the evolving Web Services infrastructure.
Although these patterns have, in some cases,
significant differences that must be accommodated
and considered when used in a Web Services
environment, their small number (four) is encour-
aging. It is most likely that the number of patterns
that will emerge across industries will be of the
same order, suggesting that Web Services provides a
viable strategy for a commercial infrastructure for
industry-level standards organizations. Continued
examination of patterns associated with industry-
level standards development provides a unique
opportunity for the Web Services infrastructure,
because the resulting pattern-related best practices
hold the potential for providing a standardized
means of optimizing the adoption of the Web
Services infrastructure.

**Trademark, service mark, or registered trademark of

Massachusetts Institute of Technology, Object Management
Group, Inc., Open Applications Group, Inc., or OpenTravel
Alliance, Inc. in the United States, other countries, or both.

CITED REFERENCES
1. World Wide Web Consortium, http://www.w3.o0rg.

2. Extensible Markup Language (XML) 1.0, W3C Recom-
mendation (February 1998), http://www.w3.org/TR/
1998/REC-xml-19980210.

3. Open Applications Group, http://www.openapplications.
org/index.htm.

4. Association for Cooperative Operations Research and
Development, http://www.acord.org/home.aspx.

5. ACORD Messaging Service XML Specification and SOAP
Implementation Guide Version 1.2.0, Association for
Cooperative Operations Research and Development
(April 2005).

6. R. Bilorusets, D. Box, L. F. Cabrera, D. Davis,

D. Ferguson, C. Ferris, T. Freund, M. A. Hondo,

J. Ibbotson, L. Jin, C. Kaler, D. Langworthy, A. Lewis,
R. Limprecht, S. Lucco, D. Mullen, A. Nadalin,

M. Nottingham, D. Orchard, J. Roots, S. Samdarshi,

J. Shewchuk, and T. Storey, Web Services Reliable
Messaging Protocol (February 2005), http://specs.
xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf.

7. Business Object Document Architecture, OAGIS Release
6.2, http://lists.ebxml.org/archives/ebxml-transport/
200003 /doc00006.doc.

8. Simple Object Access Protocol Specifications, World Wide
Web Consortium http://www.w3.org/TR/soap12-partl/.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

9. TheMedBiquitous Consortium, http://www.medbiq.org/.

10. MedBiquitous Web Services Design Guidelines, Version
1.0, Medbiquitous Technical Steering Committee (April
2004), http://www.medbiq.org/technology/
tech_architecture/webservicesguidelines.pdf.

11. Web Services Interoperability Organization Basic Profile
1.1, Web Services Interoperability Organization (August
2004), http://www.ws-i.org/Profiles/BasicProfile-1.
1-2004-08-24. .html.

12. Open Travel Alliance, http://opentravel.org/.

13. OpenTravel Alliance Release OTA2005A Common Types
Schema—OTA_CommonTypes.xsd, OpenTravel Alliance,
Inc. (2005), http://www.opentravel.org/2005A/
OTA_CommonTypes.xsd.

14. OASIS ebXML Message Service Specification Version 2.0,
Organization for the Advancement of Structured Infor-
mation Standards (April 2002), http://www.oasis-open.
org/committees/ebxml-msg/documents/ebMS_v2_0.pdf.

15. Health Level Seven, http://www.hl7.org/.

16. Web Services Description Language 1.1, World Wide Web
Consortium (March 2001) http://www.w3.org/TR/wsdl.

17. OAGIS Web Services Work Group, Open Applications
Group (October 28, 2003), http://www.openapplications.
org/wg/WebServices.htm.

18. Security Profiles for the ACORD Messaging Service Version
1.0.0, Association for Cooperative Operations Research
and Development (April 2005).

19. R. Ruggeri, M. de Graauw, L. F. Cabrera, M. Regio,
G. Grieve, A. Julian, J. Larson, D. Pratt, and R. Spronk,
HL7 Version 3 Standard: Transport Specification—Web
Services Profile, Release 2, http://www.hl7.org/v3ballot/
html/infrastructure/transport/transport-wsprofiles.htm.

Accepted for publication December 16, 2005.
Published online May 18, 2006.

Scott R. Hinkelman

IBM Software Group, 11501 Burnet Road, Austin, Texas 78758
(sth@us.ibm.com). Mr. Hinkelman is a senior software
engineer whose work is focused on industry-level standards
organizations and alignment with service-oriented
architectures (SOAs). He serves on IBM’s Emerging
Technology team, helping set strategy in engagements with
industry organizations and has been working on service-
oriented software for over five years. While working with the
OpenTravel Alliance, Mr. Hinkelman was elected to its
interoperability committee and provided the technical
foundation for the initial definition of XML B2B message
architecture for the travel industry. He has served as the Chief
eBusiness Architect for IBM’s Travel Industry Solution unit.
He is currently the MedBiquitous.org Web Services architect,
serving on its technical steering committee, and the leader for
the quality of service area in RosettaNet’s WS-I Web Services
profile work. He has been instrumental in many industry-wide
and international standards organizations and initiatives. An
accomplished Java and XML expert, he represented IBM for
the JAX-RPC 1.0 specification, which defined the client
programming model for Java Web services. He has published
numerous articles, chaired standards conferences, and holds
patents in distributed computing. Mr. Hinkelman’s interests
are focused on consistency in SOA design across industry
standards.

Donald Buddenbaum

IBM Software Group, 4205 South Miami Blvd, Durham, North
Carolina 27703 (buddenba@us.ibm.com). Mr. Buddenbaum

HINKELMAN, BUDDENBAUM, AND ZHANG

387

is a software engineer concentrating on emerging standards
and vertical-industry standards organizations. He has helped
leverage IBM middleware as the basis for finanical service
solutions, serving for a time as the Chief Architect for IBM’s
Software Group insurance solutions. Before joining IBM, he
spent time designing and implementing solutions in the life
insurance industry at various independent software vendors
and insurance companies. His current work targets the
adoption of horizontal standards within vertical-industry
standards organizations, such as ACORD.

Liang-Jie Zhang

IBM Research Division, 19 Skyline Drive, Hawthorne, New York
10532 (zhangli@us.ibm.com). Dr. Zhang is a research staff
member and the chair of the Services Computing Professional
Interest Community at the Watson Research Center. He has
been leading service-oriented architecture (SOA) services
research since 2001. He was the Chief Architect of industrial
standards at IBM. He has filed more than 30 patent
applications in the areas of e-business, Web Services, rich
media, data management, and information appliances and has
published more than 80 technical papers in journals, book
chapters, and conference proceedings. Dr. Zhang chairs the
IEEE Computer Society Technical Committee on Services
Computing and serves as editor-in-chief of the International
Journal of Web Services Research (JWSR), which has been
included in the Engineering Index Compendex database since
2005. He was the general co-chair of the 2005 IEEE
International Conference on Web Services (ICWS 2005) and
the 2005 IEEE International Conference on Services
Computing (SCC 2005). Dr. Zhang received a B.S. degree in
Electrical Engineering from Xidian University in 1990, an M.S.
degree in electrical engineering from Xi’an Jiaotong University
in 1992, and a Ph.D. degree in computer engineering from
Tsinghua University in 1996. M

388 HINKELMAN, BUDDENBAUM, AND ZHANG IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

