S. Adler
R. Cochrane

Technical context and cultural
consequences of XML

The Extensible Markup Language (XML) is an open standard for creating domain- and
industry-specific markup vocabularies. XML has become the predominant mechanism
for electronic data interchange between information systems and can be described as
a universally applicable, durable “Code of Integration.” As we celebrate its tenth

anniversary, it is appropriate to reflect on the role XML has played and the technical
ecosystem in which it functions. In this paper, we discuss both the environment from

J. F. Morar
A. Spector

which XML arose and its technical underpinnings, and we relate these topics to
companion papers in this issue of the IBM Systems Journal. We discuss the broad

consequences of XML and argue that XML will take its place among the technical
standards having the greatest impact on the world in which we live. We conclude with
some reflections on the significant technical, economic, and societal consequences
that XML is likely to have in the future.

INTRODUCTION

In 1996, a committee of the World Wide Web
Consortium (W3C**) began work on what became
the Extensible Markup Language (XML).1 Based on
SGML’ (Standard Generalized Markup Language),
XML is a general-purpose markup language that
creates domain- and industry-specific markup vo-
cabularies which share certain semantic and syn-
tactic characteristics, facilitating interoperability of
tools, techniques, and even programs. Although it is
most commonly seen to be a standard format for
delineating textual data, XML is more accurately a
technology for labeling information with descriptive
names that can be consistently used and accessed in
a multitude of applications. The original motivation
for SGML, subsequently passed on to XML, was to
ensure that the content or data residing in docu-
ments survived long after the application that

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

processed it became obsolete or unusable; thus no
processing or procedural information is embedded
within the content; instead, content is encoded as
clear text and available everywhere. The goal was to
bring SGML concepts to the Web. XML was designed
to be simpler than SGML and more universally
applicable, with a lower barrier to entry: users are
able to start simply and build their applications
incrementally. Any of the world’s languages can be
used for XML markup or content, due to its
incorporation of Unicode as a key component. All of
these features have resulted in the broad availability

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

ADLER ET AL.

207

of a basic set of techniques and tools for processing
content. What started out as a simple standard for
electronic publishing has matured into one of the
most important and widely used paradigms in
distributed computing. The impact and influence of
the standard and the conceptual base are visible in
every area of computing today.

As we celebrate XML’s tenth anniversary, it is
appropriate to reflect on the role XML has played
and the technical ecosystem in which it functions.
XML was not conceived nor did it evolve in a
vacuum. The phenomenon of the Web and the
proliferation of HyperText Markup Language
(HTML)3 allowed XML to emerge as the lingua
franca of the Internet. Its rapid adaptation in
conjunction with a wealth of existing technology
quickly transformed XML into a standard distrib-
uted-computing protocol that is helping to enable
many things, including a new generation of service-
oriented architectures (SOAs). In this paper, we
discuss both the environment from which XML
arose and its technical underpinnings. We introduce
the papers in this issue of the IBM Systems Journal'
and describe and speculate on the broad conse-
quences of XML, which are significantly changing
the world in which we live.

THE BIRTH OF XML

A clear vision and a sound technical approach do
not ensure an established technology. Rather, the
establishment of a broadly accepted new technology
generally depends on many factors coming together.
In this section, we review the business environment
whose technical requirements are addressed by XML
and discuss the ecosystem in which XML was born.
This includes the role that the open-source/open-
standards movement had in defining XML, the
significant impact that the World Wide Web had on
its rapid adoption, and the technical foundations
that provided a fertile breeding ground for its
conception.

Expanding needs of business and scientific
communities

The ever-growing need of industry and government
to integrate disparate IT (information technology)
systems has resulted in interconnected networks
that can no longer be constructed, managed, or
enhanced centrally. The IT industry’s response to
this situation has been to embrace the distributed
nature of today’s computational world by allowing

208 ADLER ET AL

for the creation and execution of products and
services that can perform effectively as components
of larger, dynamically assembled, or federated
applications. The overall stability of such systems
requires that the individual components be loosely
coupled so that they can be managed, modified, and
replaced without threatening the operational integ-
rity of the entire system. This requirement has
become equally important for both internal oper-
ations of large enterprises and business-to-business
interactions between enterprises of differing size.
The number and diversity of distributed applications
adds to the complexity of this problem. The need for
a common, self-describing, and highly dynamic
framework capable of supporting diverse domains
arose from these expanding computing
requirements.

System architects realized early that many special-
ized languages suited to specific domains were
required to represent the numerous bodies of data
used in those domains. Though the specifics of such
languages needed to be responsive to the needs of
particular domains of discourse, many common
requirements were immediately apparent:

* Each language needed well-defined and self-
consistent mechanisms for describing data, in-
cluding the naming and description of constituent
elements of the data, the expression of relation-
ships between those elements, and the capability
of verifying that the overall data was expressed in
a well-formed fashion.

* Data elements needed to be easy to transport,
transform, search, combine, extract, filter, and
view in different forms.

* The definitions of the languages themselves
needed to be easily shared and maintained by a
large body of users.

XML provided a very general approach for satisfying
these common requirements. It allowed the defini-
tion of languages in which information is encoded as
tagged text and in which different encodings and
tags support different domains of discourse.

Role of open source/open standards

To address these common requirements, a commit-
tee (more commonly referred to as a working group)
of the World Wide Web Consortium was formed in
1996. Initial discussions on developing XML, even
before the formation of the working group, focused

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

on the need to involve both large- and small-scale

commercial interests to create greater market value
and a base for growth. Involvement of universities
and government organizations was nurtured as the
standards evolved.

XML is rarely used alone. A body of standards
emerged around XML to support its use. The original
XML initiative included three aspects: the syntax of
the language itself, a linking component, and a style
component. As its use grew, XML extended into
other areas: graphics formats, forms, data models,
APIs for accessing XML structures, linking, query
languages, transport protocols, and finally business
processes and workflow that use XML.

The standardization of XML stimulated the estab-
lishment of a community of interests around it and
the Web, involving a large and diverse group of
individuals and organizations. Companies partici-
pated in and adopted the XML open standards and
worked on open-source technology for many rea-
sons: to gain the benefit of an open community to
supplement their own development resources, to
take advantage of the positive marketing percep-
tions surrounding the participation in nonproprie-
tary solutions, and to benefit from the vast market
opportunities created. Others simply saw this as a
tremendous intellectual and technical challenge—
the next great thing.

The availability of open-source implementations
had a profound impact on the development of open
standards and on their widespread adoption and
popularity. It quickly became economically feasible
to explore the use of the new standards in
production environments. Prototypes were simpler
and faster to develop with technology readily
available from open-source efforts such as Apache5
and SourceForge.6 Companies adopted open stan-
dards for similar reasons. The desire not to be left
behind the competition, customer requirements for
interoperable solutions, and the simple economics
of sharing in a common pool and community of
interests all led to the rapid development and
adoption of open standards.

The success of this community stimulated the
creation of new domains. Academic communities
began to participate as the ideas around XML took
root, realizing the potential for fruitful and innova-
tive research in areas such as algorithms, analytics,

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

models, and optimization. Government agencies
also increased their role over time and demanded
more functions than those achievable with SGML.

One of the most compelling aspects of this evolution
was the intense and spirited collaboration of
communities from different disciplines, each having
its own ideas of what was important and often
dismissing the requirements of other communities.
This dissension might have destroyed the entire

m XML has become one of the
most important and widely used
paradigms in distributed
computing m

experience, but perseverance defeated it. Discount-
ing the small but persistent set of detractors, the
diverse communities realized that there was much
to learn from each other and much value in
considering the broad range of requirements. The
communities began to understand that XML could
allow the integration of data-centric, document-
centric, forms-centric, protocol-centric, and process-
centric views of information and the processing they
undergo. For the first time, XML and its related
standards enabled data interoperability, content
manipulation, content sharing and reuse, document
assembly, document security and access control,
document filtering, and document formatting across
all disciplines and for all types of devices and
applications. This collaboration and discussion
continues today as work progresses on the next tier
of standards, taking into account the benefits and
risks brought by XML’s growing complexity and
diversity.

Technical ecosystem and foundations

In addition to the requirements that provided fertile
ground for its invention and the standards and open-
source communities that converged to bring XML to
fruition, XML was born into a very rich and exciting
technical ecosystem that contributed to its rapid
adoption and provided a foundation upon which
XML tooling and technology could be built and
extended.

XML could not have happened without the World

Wide Web. The Web has become a universal
mechanism to deliver information to consumers and

ADLER ET AL.

209

increasingly, to applications as well. XML gained
notoriety in the heyday of the “dot-com” frenzy, but
it continues today because it worked and created
vast new opportunities. It enabled information reuse
by integrating text and data from different sources
and by searching and linking across these sources,
thereby breaking down traditional silos, which were
barriers to information sharing. The Web became a
vortex for this confluence of forces and allowed
people to get a glimpse of the tremendous potential
of universal access to information. It simply and
easily provided the proof-of-concept, the business
case, and the funds to enable development. XML
started simply, matured, endured after the dot-com
bubble, and spread.

XML also could not have had such impact without a
diverse collection of tremendous advances in com-
puter science made over approximately a 50-year
period. XML quickly found a home with many of
these technologies, which thus contributed to its
widespread adoption. Of particular applicability to
XML were seven categories in which there were
significant advances and substantial technical
agreement:

1. The value of information hiding, generalization,
encapsulation, and reuse in programming lan-
guages and methodologies—This work began in
the early 1960s with the advent of such languages
as Algol and Pascal, followed by the object-
oriented approaches of Simula, Smalltalk, C++,
Modula, Java**, and C#. XML is a superb,
common approach for defining interfaces to
encapsulate abstractions.

2. The value of search and information extraction on
relatively unstructured information, even when it
crosses multiple abstraction layers to access low-
level data—In contrast to information-hiding
approaches, some problems benefit from direct
use of information, despite operating across
multiple levels of an abstraction hierarchy. XML
provides a rich data representation, with signifi-
cant opportunities for high-value semantic tag-
ging, which can provide superior support for
information retrieval and related activities. This
approach is not entirely new. The Lisp language
introduced the concept of an attribute list (known
as an “a-list”) that allowed data structures to
have auxiliary lists of pairs of attributes and
values. These lists could represent a variety of
concepts, from uninterpreted data, in which the

210 ADLER ET AL

list contained arbitrary content, to conventional
lists in which the order in the list had some
meaning (i.e., the third element was always the
maximum size), to self-defining structures.

3. A standardized nonprocedural, high-performance
approach to storage and retrieval of structured
information—Relational databases’ possessing a
powerful data model, underlying concurrency
control, integrity and performance benefits, and a
consistent Structured Query Language (SQL)8
interface were a great advance of the 1970s and
1980s. Relational structures provided a rich set of
storage and manipulation mechanisms, but their
true value across applications was realized when
database administrators could define agreed-to
data dictionaries. There have been several pro-
posals for semantic data models’ and standards
developed for object-oriented databases. * "
None of these models and systems predominated
over relational systems. Those that work in
conjunction with the relational model are still not
ubiquitous because they add yet another layer of
programming language to the already cumber-
some task of getting data from the application
layer into and out of the persistence framework.
XML provides an opportunity to augment struc-
tured relational systems with increased capabil-
ities, at the same time permitting them to become
more integrated with the surrounding technical
ecosystem.

4. The utility of simple key-value pair tagging and its
application to providing metadata through anno-
tations—With GML (Generalized Markup Lan-
guage)13 in the late 1970s and then SGML, which
was standardized in 1986, there was a clear
understanding of the importance of applying tags
to documents and using these tags to provide
semantic information. XML is a tagging architec-
ture which grew from SGML. Another example
(from the distributed computing/protocol do-
main) is the Multipurpose Internet Extensions
(MIME)"* tagged architecture for delineating
objects in e-mail, invented in 1992. MIME set a
precedent for the utility of an extensible tagged,
object-definition capability for the Internet.

5. A consensus on a layered-protocol stack for
network communication, which standardizes not
only layered protocols but also the interfaces to
those layers—ISO (International Organization for
Standardization) OSI (Open Systems Intercon-
nect) provided a well-regarded conceptual seven-
layer reference document. TCP (Transport Con-

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

trol Protocol) introduced reliable streams with
commonly used socket interfaces. This was
another great advance, as were the various efforts
to make remote procedure invocation both
efficient and common."> *® The importance of the
presentation layer was also understood. XML is
clearly an advanced presentation layer protocol,
but as stated in item 1, it is also a valuable
mechanism for defining interfaces for supporting
method invocation.

6. The necessity and practicality of sophisticated user
interfaces programmed with very high-level tech-
niques—Metaphor-based interfaces (i.e., those in
which the target audience interacts with aesthetic
concepts familiar to their area of expertise)
became significantly better understood as did
both component-based and nonprocedural spec-
ification of those interfaces. XML is a natural tool
for specifying an extremely wide class of human
interfaces to systems, even ones that are multi-
modal in nature.

7. Performance and bandwidth—Relative to opti-
mized binary formats, XML is expensive to
process (parse) and transmit and would not have
been practical without the many decades during
which processor performance and network
bandwidth have been accelerating according to
Moore’s law. While it remains the case that
XML’s processing requirements limit its use in
low-power computers, there is a vast domain
today in which XML’s use is feasible. Addition-
ally, the W3C is looking at this problem to
determine if further work is necessary in this
context."”

The Web’s coming of age ushered in new technol-
ogies that were born of necessity and continue to
fulfill enduring needs of large distributed environ-
ments. One of the hallmarks of the Web is that the
parts must work together, even though they were
not designed to do so. Nowhere is this more evident
than in the handling of documents and data. On the
Web, this information is transported, transformed,
searched, combined, and subdivided in any desired
manner. Once it has been suitably transformed, it is
displayed, packaged, streamed, archived, and used
by people and processes. XML provides a very
general approach for defining rich vocabularies to
support this semantic interoperability. The vocab-
ularies defined in XML can share many common
engines, tools, and practices, such as tools for

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

language creation, data manipulation, and
personalization.

By virtue of using the common framework that XML
provides, many aspects of programming, unstruc-
tured and structured information storage and
retrieval, networking and integration, and user-
interface design and implementation can be ad-
vanced. XML solutions to these diverse problems
emerge as coherent and consistent techniques, with
many resultant benefits. It is remarkable that one
technology, based on a fairly straightforward con-
cept, is having such a big impact.

KEY XML TECHNOLOGY AND JOURNAL PREVIEW
Although it started simply, an extensive and com-
plex set of standards emerged as XML evolved. Just
as Ted Codd’s invention of the relational database
proved to be only the tip of the iceberg, which
required “hundreds of thousands (sic) of algorith-
mic innovations to make it work,”20 the success of
XML has required several standards bodies (as
previously discussed) and countless tools, algorith-
mic innovations, and clever add-ons to make it a
success.

This section describes many of the key XML
technologies21 that are instrumental in facilitating its
further development and use and contributing to its
ubiquity as its evolution progresses. This section
also serves as a preview of the papers in this issue,
which present advances in some of these key
technologies. The categories into which the papers
of this issue are grouped are: core XML technologies,
connecting to business data, connecting data to
applications, mapping technologies, and connecting
business to business with Web Services.

Core XML technologies

This section describes a number of significant
technologies central to XML and how they are used
for information modeling, processing, and trans-
formation.

Modeling and creating data in XML

XML provides a means to impose structure on
content by bracketing it with “begin” and “end” tags
that create named constructs called elements.
Element names (e.g., “part number”) are not limited
by XML, but are chosen by the content provider and
normally provide some indication of the meaning of
the content. Elements can be nested to form

ADLER ET AL.

211

arbitrarily complex trees. Attributes are optionally
associated with elements to carry further informa-
tion about the content, such as access control,
security levels, data type, revision dates, and usage
properties. These simple constructs form a founda-
tion for exposing content—previously available only
as a “blob” of text—as data. The refined granularity
that the markup provides makes the content more
accessible. Furthermore, this structure provides a
means for easily associating metadata with the
content, which can be used for a variety of purposes,
including interpretation, authorization, and person-
alized rendering. XML documents support flexible
and late-bound reuse and error checking. This
greatly enhances the use of XML in every domain.

Data processing using SAX and DOM

Simple syntax and structure are not the only factors
that have contributed to the widespread adoption of
XML. They are accompanied by two widely sup-
ported APIs for working with XML documents: the
Document Object Model (DOM)** and the Simple
API for XML (SAX).>’ These APIs provide the ability
to programmatically process the tree structure of
XML. DOM is a W3C recommendation which

m An extensive and complex set
of standards emerged as XML
evolved m

provides an in-memory tree-structured view of an
XML document. Using DOM interfaces, the applica-
tion processes XML by “walking” the nodes of the
DOM tree. SAX, on the other hand, provides a
means for the application to process XML as a
stream. It offers events to the application as the SAX
processor parses the document. In contrast with
DOM, SAX is not a standard, but was developed by a
community of early XML developers. It provides a
compact parser, making minimal demands on
system resources. Both SAX and DOM APIs were
widely supported and readily available to run on
multiple platforms early in the evolution of XML,
greatly enabling its rapid adoption.

Transforming XML with XPath and XSLT

Although SAX and DOM provide procedural mech-
anisms to work with XML documents, developers
also needed declarative mechanisms to provide
granular access to content. Extensible Stylesheet

212 ADLER ET AL

Language Transformation (XSLT)24 began life pri-
marily as a styling language, but evolved to provide
an XML native method for XML-to-HTML and XML-
to-XML conversion. Because XSLT is itself XML, all
XML tooling (editors, parsers, XPath) can be used in
the creation and manipulation of XSLT style sheets
and transforms.

XPath®? is the predominant language used to
navigate the tree structure of XML content and was
designed as an integral part of XSLT. As such, it
forms the foundation for XML query languages.
XPath is a language on its own and is used by
several W3C recommendations, including the W3C
Schema language and XForms®’; it is also inter-
woven into XSLT 2.0,28 XQuery,29 and hence,
SQL/XML.30 XPath is declarative in that its results
are insensitive to how the XML tree is materialized.
Using a very small subset of XPath, an application
can accomplish most of what it needs in querying
the contents of documents; XSLT, XQuery and SQL/
XML were introduced to provide more intuitive
query capabilities for their respective communities.

Schemas and namespaces

XML relies on user communities creating domain-
and industry-specific vocabularies, which were
initially expressed using DTDs (Document Type
Definitions). As XML grew in popularity, commu-
nities defined sets of element names, types, and
interpretations for XML structures, which greatly
enhanced interoperability between the applications
used by those communities. Two related XML
technologies, XML Schema and XML Namespaces,
are used extensively to allow industries to define
their semantics.

XML Schema’' is the standard that emerged for
defining XML structure and type information. XML
Namespaces32 is the standard that was created to
facilitate the reuse of documents and document
fragments. The basic objective of Namespaces is to
resolve the inevitable naming conflicts that arise in
the sharing of documents and fragments among
various communities. More sophisticated use of this
standard allows the same data format for a
structure, such as a book description, to be used in
several other structures, such as purchase orders,
publisher’s inventories, and card catalogs. The
common data format enables the modular repur-
posing of individual data instances and the creation

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

of modular software components that work on such
reusable document fragments.

Paper preview

As XML has matured, many techniques have been
developed for processing it; early techniques in-
cluded open-source XML parsers (e.g., Xerces) and
XPath/XSLT processors (e.g., Xalan and Saxon). The
beauty of XML is that it is ubiquitous and, to a
significant degree, self-describing. This self-describ-
ing nature supports flexible and late-bound reuse
and error checking, but, with this flexibility there
came inherent performance issues.

XML parsing is a critical aspect of XML processing
performance. The ubiquity of XML allows it to be
parsed anywhere by anything, but to increase
performance, parser techniques need to be ex-
tended. Perkins et al. in “Generation of efficient
parsers through direct compilation of XML schema”
present the next advance in parsing technology, one
which makes industry-strength enterprise deploy-
ment possible.

Connecting to business data

The papers in this section discuss the ways in which
query languages for XML have developed and how
businesses can use these languages with structured
and unstructured XML data.

Evolution of XML query languages

As the popularity of HTML grew, users wanted first
to be able to render their business data, stored in
relational databases, into HTML. They were not
satisfied with simply presenting and viewing static
HTML; they wanted to be able to connect their
databases to the Web so that people could query
them. The Common Gateway Interface (CGI)33 is a
standard interface that provides exactly this func-
tionality within HTML, and although this is a
relatively simple idea, it is frequently difficult to
implement.

With the advent of XML and XML’s close relation-
ship to HTML, it became apparent that an important
usage scenario was to make data from databases
available on the Web. One technique relied on
translating relational data into XML for rendering as
HTML. In response to this need, the SQL language
was extended to provide a bridge between the SQL
and XML worlds. Initial versions of these extensions
primarily focused on providing a set of functions for
publishing relational data in an XML format.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

In contrast, as the use of XML matured, it became
evident that a query language intended from the
beginning to work with databases was needed.
Although very expressive for navigating within an
XML document and isolating elements and attri-
butes that satisfy a given search criterion, XPath was
not designed originally as a stand-alone language.
For example, it relies on XSLT to construct new XML
documents. Similarly, XSLT was designed primarily
for style transformations. Although it is very
powerful, its recursive pattern-matching paradigm
(which is needed for document processing) is
difficult to optimize, particularly in a database
context. Clearly, relational database concepts were
needed for commerce and transactions. These
evolving requirements gave rise to the formulation
of the W3C XQuery working group in 1999, which
was chartered to work closely with the XSLT
working group to jointly design the next version of
XPath and other supporting specifications, which
formed the basis for XQuery. XQuery and SQL/XML
emerged to provide full query capabilities for XML,
while maintaining compatibility with XPath and
XSLT.

Querying structured and unstructured content

As XML became a de facto standard for representing
business artifacts and as investment increased in
XML technology and products and in the deploy-
ment of relational systems, there was an obvious
need for interoperability between XML data, rela-
tional-database systems, and text search. Businesses
require the ability to seamlessly query a collection of
documents that include structured and unstructured
data, using query functionality traditionally avail-
able only in relational systems or information-
retrieval systems.

When XML arrived on the scene, structured and
unstructured documents were typically processed by
two independent systems. Consequently, early
deployments of XML treated data either as struc-
tured data, represented by an inexact, parsed
representation in a relational database, or as
unstructured data, stored as a “blob” in a file system
or content management system. Although the
former representation enabled leveraging the full
support of data mining and business-intelligence
reporting tools, it fell short for applications with
complex schemas such those in the Health Care and
Life Sciences (HCLS) industry. The latter represen-
tation allowed the association of valuable metadata

ADLER ET AL.

213

with the content, but the naive search did not
distinguish between markup and content. Addition-
ally, there was a growing need to leverage inter-
operability with relational data.

Three things have happened to rectify this isolation
of technologies. First, relational systems began to
adopt more features of full-text, such as SQL/MM.34
Second, technology was developed to merge XML
with relational systems. This integration of XML
with SQL provides the power of navigation with a
set-oriented query language, and leverages the full
power of the widespread adoption of search engines
such as AltaVista** and Google**. As this trend
continues, users have higher expectations for fuzzy
searching, and language features supporting such
semantics are being integrated into the XML query
languages. Third, there has also been progress in
architectural support in systems that allows combi-
nations of semantic annotators to process docu-
ments and generate metadata that makes the
documents more searchable and more useful. This
automatically generated metadata can populate XML
documents or database, search engine, or knowl-
edge-base indexes. IBM has proposed the unstruc-
tured information management architecture”*
(UIMA)35 as a standard structure for supporting
componentized, reusable annotators; it has also
contributed the UIMA toolkit to the open-source
comrnunity36 to facilitate the broad adoption of
UIMA. These efforts can help bridge the gap
between semantically enriched XML and otherwise
semantically impoverished unstructured data.

In effect, UIMA facilitates a fluidity which enables
documents that contain significant amounts of raw
text, audio, image, and video to be semantically
enriched with tags through automatic or semi-
automatic annotation. This information can then be
represented as XML and manipulated with the vast
array of XML tools and methodologies. In all, there
is the prospect of having access to record-level
relational data, XML data, and unstructured data by
using a combination of “best of breed” technologies,
with XML providing a structure for semantic
encoding. Academic, government, and commercial
sources have shown interest in this approach by
developing many solutions with compliant annota-
tors that generate semantic content.

Early attempts to merge XML and relational tech-
nology provided XML views of relational data, so

214 ADLER ET AL

that XML tooling could access relational data, or
provided relational storage of XML data, so that
relational techniques could be used to process XML
data. These early convergences inspired and drove
yet more demands for further integration. XML
views of relational data fell short in their ability to
fully and efficiently translate XML queries into SQL
queries. Various attempts to store XML data in
relational tables resulted in the inability to store and
retrieve the XML data in its original form as well as
the inability to adapt to the dynamic schema
changes expected in XML. As a result, many
relational vendors have been active in the XQuery
and SQL/XML efforts and have produced systems
that integrate XML and relational data and support
the ability to query both simultaneously.37

Paper previews

Several of the papers in this issue describe XML
native extensions that will be available in the
upcoming Version 9.1 release of DB2* Universal
Database* for Linux**, Unix**, and Windows**.
These extensions are commonly referred to as DB2
XML. “Integration of SQL and XQuery in DB2 XML”
by Ozcan et al. is a recommended starting point, as
its focus is primarily on the externals for defining
and querying XML data in DB2. It contains a brief
history of the evolution from XPath to XQuery and a
detailed comparison between the foundations of
SQL and XQuery. The main part of the paper gives a
comprehensive description of the SQL/XML features
and functions from a standards perspective, details
how these features manifest themselves in DB2
XML, and overviews DB2’s approach to integrating
XQuery and SQL/XML, which has enabled inter-
operability between the languages. This integration
differentiates IBM from other major vendors in this
field. The paper concludes with a discussion of the
syntactic and semantic challenges of integrating SQL
and XQuery.

In “DB2 goes hybrid: Integrating native XML and
XQuery with relational data and SQL,” Beyer et al.
describe an architecture for fully integrating native
XML support in an industrial-strength database
engine such as DB2. The rationale behind the tight
integration of these systems is given, details of the
architecture are provided, and the decision points
for each of the system components are discussed.
DB2 XML’s support for XML schema, how applica-
tions interface with DB2 to query and process XML
query results, and the extensions to the DBMS

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

(database management system) utilities and tools to
support native XML data are also described.
Optimizations are critical to the success of any XML
repository and query processing system. In “Cost-
based optimization in DB2 XML,” Balmin et al.
describe a type of optimization that has yielded
significant performance gains. This paper presents
the extensions made to the DB2 UDB (DB2 Universal
Database) compiler and its cost-based query opti-
mizer to support XQuery and SQL/XML queries.

A native XML data store system, Natix, is the
underlying system for the paper “The importance of
sibling clustering for efficient bulkload of XML
document trees” by Kanne and Moerkotte. As the
title suggests, this paper discusses requirements for
a bulkload component. It derives new algorithms for
use in the bulkload operation specific to XML and
presents the design of this component in the context
of Natix.

To address the need to seamlessly query over both
the structure and the text content of XML docu-
ments, the W3C is specifying full-text search
querying in XML by adding extensions to XQuery
and XPath. These extensions supplement the struc-
tured search inherent in XQuery with a wide range
of full-text search primitives, such as phrase
matching, keyword proximity, stemming, thesaurus,
ranking, and scoring. The emerging Recommenda-
tion, XQuery 1.0 and XPath 2.0 Full-Text (XQFT),”®
adds full-text extensions to XQuery and XPath. As its
title suggests, the paper “XQuery Full-Text exten-
sions explained” by Amer-Yahia et al. explains the
evolution and design principles behind this emerg-
ing Recommendation and illustrates its core fea-
tures. The paper “Enhancing XML search with
XQuery 1.0 and XPath 2.0 Full-Text” by Case
provides further support for XQuery Full-Text from
an end-user point of view. It provides the motivation
for the XQFT extensions and describes how these
extensions apply to a search system at the Library of
Congress.

Connecting data to applications

In this category, we discuss the XML infrastructure
that enables data from one application to be used or
manipulated by another application.

The use of XML for industry-specific languages
Applications need semantic interoperability, that is,
the ability for one application to operate on another
application’s data as if the data were its own.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

Although XML does not have semantics per se, it
does provide the common infrastructure on which
semantics are easily standardized and conveyed in a
real application. Using this infrastructure and
building on the core XML standards, a second tier of
standards has emerged, which defines industry-
specific languages consisting of sets of common data
types. The XML Schema and Namespaces standards
were instrumental in enabling the definition of
semantics for the various industries. XML standards
are being developed for almost all vertical indus-
tries, such as banking, biology, defense, insurance,
and retail. XML.org lists a variety of vertical
industries that use XML,”” and more than 400
vertical and horizontal XML standards were listed
on ZapThink’s XML Standards Watch.*

Paper previews

As the title implies, the paper “Revolutionary impact
of XML on biomedical information interoperability”
by Shabo et al. describes the considerable impact
that XML is having on the HCLS industry. It
describes how XML is used to represent clinical
data, clinical-trial data, and genomic data and how
the use of XML is enabling integration across these
three domains.

In “Emerging patterns in the use of XML for
information modeling in vertical industries,” Hin-
kelman et al. discuss the impact of XML on vertical
industries and describe a set of XML usage patterns
that has emerged based on the history of the
industry in data interchange. They explore the use of
XML for a sample set of industry-level standards: the
Open Application Group incorporated (OAGi),

m One of the most compelling
aspects of XML's evolution was
the intense and spirited
collaboration of communities
from different disciplines m

which defines a Business Object Document; the
Association for Cooperative Operations Research
and Development (ACORD),41 which is a leader in
global insurance standards; MedBiquitous (Med-
Biq), which is an distinguished organization in
professional medicine; the Open Travel Alliance
(OTA) ,42 an organization in the travel industry; and
Health Level 7 (HL7)43 for the HCLS.

ADLER ET AL.

215

Mapping technologies

The attempts to provide interoperability through
integrated systems and industry standards notwith-
standing, there is still a need for mapping repre-
sentations between XML formats and between
legacy data and XML. XML is the de facto standard
for heterogeneous data exchange, representing
diverse kinds of information, but it will not always
be possible, or even desirable, to modify applica-
tions so that they work on the same format. There
will always be autonomous sources of data for
which governing standards bodies do not exist, and
new applications will be developed with a unique
view of the data. In Enterprise Information Integra-
tion (EII) and service-oriented architecture (SOA),
these data sources and applications will evolve to
interoperate with other data sources and applica-
tions, exchanging and operating on the same data.
Furthermore, XML data and tooling must interop-
erate with legacy data.

Paper previews

Two papers in this issue address the issues of
mapping data formats to XML and connecting to
non-XML data. “XML mapping technology: making
connections in an XML-centric world” by Roth et al.
defines an extensible, model-driven architecture for
mapping technology that enables the capturing,
recording, and reuse of integration activity, while
providing a rich platform for further research
challenges in this area. This architecture is the
foundation for the IBM Rational* Data Architect and
satisfies requirements derived from EII and SOA
examples, which are also presented in the paper.
“Virtual XML: A toolbox and use cases for the XML
world view” by Rose et al. supports the querying of
non-XML data from a variety of formats as if they
were XML. Virtual XML separates the concerns of
representation from those pertaining to a common
processing model. This paper gives an overview of
how virtual XML can be realized. It describes the
architectural components that enable applications to
work with either XML or virtual XML and provides
use cases demonstrating the applicability of virtual
XML.

Connecting business to business with Web
Services

As the use of IT in business has matured over the
years, there has been a desire and a need to connect
disparate systems and to take advantage of the
functionality of legacy systems in modern-day

216 ADLER ET AL

applications. The ubiquity of XML and its ability to
be used as an underlying specification language
enabled a new generation of application-to-applica-
tion communication, supporting flexible integration
of heterogeneous systems in a variety of domains.
This new generation of XML-centric interactions led
to the birth of the Web Services platform, whose
goal is to better take advantage of existing compo-
nent frameworks, distributed services, and platform
and network engineering resources.”*

The Web Services technology suite is also an
important enabler of the SOAs that are now being
embraced by the entire IT industry. SOA is an
abstract architectural concept founded on the idea of
building software systems with uniformly described,
discoverable services that interact in a loosely
coupled way and can be composed.

The success of Web Services in this arena can be
attributed to the nonproprietary nature of the
underlying technologies as well as the loose
coupling supported by the technology. Web Services
specifications are being developed through industry
partnerships and broad consortia such as W3C and
OASIS (Organization for the Advancement of Struc-
tured Information Standards), and are thus based on
standards and technology that are the foundation of
the Internet, such as XML and HTTP (HyperText
Transport Protocol). Furthermore, the participants
in Web Services communications are loosely
coupled and need only agree on the format of
messages and their semantics. In contrast, prior
technology (such as CORBA [Common Object
Request Broker Architecture], DCOM [Distributed
Component Object Model], and RMI [Remote
Method Invocation]) required that communicating
partners agree on an object model and significant
aspects of an object management runtime.

Web Services had their beginnings in mid to late
2000 with the introduction of the Simple Object
Access Protocol (SOAP) ,45 Web Service Description
Language (WSDL),%’47 and Universal Description,
Discovery and Integration (UDDI) *® XML and HTTP
are two basic technologies supporting the Web
Services framework of specifications. In addition to
its intrinsic relevance, XML is also the underlying
specification language for all Web Services stan-
dards: XML provides the interoperable format to
describe message content between Web Services,
and is the basic language in which Web Services

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

specifications are defined.”’ SOAP, WSDL and UDDI
form the initial set of specifications.

SOAP is an XML messaging protocol for basic
service interoperability. It provides a uniform
mechanism for exchanging structural and typed
information encoded as XML. Hence, SOAP inherits
the self-descriptive properties of XML. As such, XML
supports communication between parties that have
imperfect agreement on the format of messages and
documents. Software can discover that the docu-
ment being processed is almost what was expected
and can adjust. Indeed, generic processing may be
possible even on unexpected parts of the data. Web
Services support communication on a global scale
among parties that cannot always simultaneously
revise their software to adjust to the evolution of
data formats. XML’s explicit tagging provides ro-
bustness in the face of changing versions, although
this is an area where the technology is still maturing.

Although HTTP provides a commonly used inter-
operable protocol for SOAP, it works with any
underlying communication protocol. Sending mes-
sages as plain XML ensures interoperability, requir-
ing only that the processing middleware have basic
abilities to parse and serialize XML. SOAP also
provides much richer and more robust protocol
extensibility based on XML and namespaces; that
extensibility has been the basis for much of the rich
function provided by other layers of the WS* stack
(e.g., those enabling application-level security,
reliable delivery, and long-running transactions).
The result has been far greater interoperability of
middleware platforms and the ability to scale to the
wider networks enabled by the World Wide Web.

SOAP provides only the protocol for exchanging
self-describing messages between services, but by
itself does not provide any information about the
services. WSDL is a common grammar for providing
design-time description of services and messages. It
defines a template to encode the information
required by service clients to access and interact
with the service. It describes what a Web service
does, where it resides, and how it should be
invoked.

UDDI provides a mechanism for clients to dynam-
ically find other Web services, allowing businesses
to dynamically connect to services provided by
external business partners. UDDI assumes that

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

requests and responses are UDDI objects that are
communicated as SOAP messages.

SOAP, together with WSDL and UDDI, addressed
many fundamental challenges of distributed com-
puting by providing a uniform way of describing,
locating, and accessing components or services
within a network. The difference between Web
Services and traditional approaches is primarily in
the use of self-describing, platform-independent
messages to enable loose coupling of aspects of the
architecture, making the approach more dynamic
and adaptable to change. However, these core

m Early attempts to merge XML
and relational technology
provided XML views of
relational data or relational
storage of XML data m

technologies are only the beginning, and there are
high expectations for the maturity of Web Services
beyond basic message exchange, service descrip-
tion, and discovery. The interoperability of Web
Services is being raised to a higher level of
infrastructure services by the introduction of several
other horizontal standards. Some of these new
standards such as WS-Policy,50 which adds to
WSDL, extend the WS description specifications.
Others, such as WS-Addressing,51 WS-Security,52
WS-Transactions,” and WS—ReliableMessaging54
are protocol extensions built on SOAP.

Paper preview

As mentioned previously, one important feature of
Web Services is their ability to be composed.
BPEL4AWS (Business Process Execution Language for
Web Services), or BPEL>>° for short, provides a
language for specifying how Web Services can be
composed following a business-process-centric ap-
proach. BPEL supports two types of processes.
Executable processes provide a full implementation
of a service composition, which can be executed by
any compliant process engine. Abstract processes
use the same notation to specify only the mutually
visible message-exchange behavior of the services
without revealing their internal implementation.
BPEL extends the Web Services interaction model,
building on top of the WSDL service-interface

ADLER ET AL.

217

model, but does not specify the use of a particular
protocol or discovery mechanism. BPEL is layered
on top of several XML specifications, including
WSDL 1.1, XML Schema 1.0, XPath 1.0, and WS-
Addressing.

The paper “Business processes for Web Services:
Principles and applications” by Khalaf et al.
describes an example of what XML has enabled. It
contains a brief overview of BPEL, focusing on the
architectural drivers, usage, and kinds of applica-
tions (beyond traditional workflow) that XML has
enabled. It discusses the potential of using abstract
BPEL processes and presents case studies where
these have been used, including “people-facing”
workflows, grid computing, and automatic comput-
ing, specifically for dynamic provisioning.

In this section we have taken a very brief tour of the
underlying technologies that are being developed to
support XML processing as presented in the papers
composing this issue. In the next section of the
paper, we will look at the impact that XML and its
enabling technologies are having and promise to
have on society.

TECHNICAL AND CULTURAL CONSEQUENCES
The world in which we live is strongly affected, if
not dominated, by a collection of amazingly varied
and powerful technical, economic, political, and
cultural norms and standards. Although it is easy to
forget the impact of technological standards, their
importance is recalled merely by contemplating the
significance of agreements to drive on the same side
of the road, standardized weights and measures,
standards for a common electrical power grid, or
TCP/IP. If we eliminated even a small number of
technology standards, the world would be a very
different place.

With respect to XML, we hope this paper, the others
in this issue of the Systems Journal, and voluminous
additional literature and experience establish that
(1) XML is itself the product of a long history, (2)
XML has very broad applicability, and (3) XML is
achieving its potential through broad usage. In light
of this, we contend that XML will take its place
among the technical standards having the greatest
import to the world. The authors believe that many
computer scientists would agree with this observa-
tion.

218 ADLER ET AL

Why do we think XML is so important? Perhaps, this
is because we can describe XML as a universally
applicable, durable “Code of Integration”; that is, a
broadly applicable language for creating, storing,
transmitting, accessing, and transforming informa-
tion from a multitude of sources. It also naturally
leads to a set of extensions which support seman-
tically rich, tagged interchange and storage stan-
dards. Even though we would postulate that the von
Neumann computing architecture, the techniques
for analyzing algorithms, and the elegant structures
that fuse complexity theory, formal language theory,
compilers, and programming languages may be
more important to computer science, and are in
some sense considerably deeper accomplishments,
the Code of Integration may be of comparable
importance. This is because a Code of Integration
can be applied coherently to a wide range of
technical problems with a number of benefits, the
most significant of which are the following:

1. A consistent programming paradigm—As pro-
gramming involves the expression of rich inter-
faces and the techniques for manipulating
information, the XML Code of Integration can be
a basis for significant consistency, automation,
and reuse in expressing software processes.
Although XML does not purport to solve all
problems, it does provide the language in which
solutions can be expressed. This will increasingly
improve the economics of IT-based automation.

2. Simplicity of integration—A Code of Integration
can greatly reduce the cost of integrating and
processing information. Just as common lan-
guages and vocabulary are among the most
important cultural bases of civilization, agree-
ment on a standardized form for defining
information is exceedingly valuable to enable
knowledge synthesis and systems integration.
With a common way to express semantic
information, there will be more (albeit incom-
plete) standardization of semantic information,
paving the way to numerous benefits: informa-
tion fusion, totally automated or semiautomated
assembly of systems, greatly increased use of
machine learning, computer-based reasoning,
and more.

3. Economies of scale—Because of the universality
of the Code of Integration, skills related to its use
are widely useful. Significant investment can
wisely be made in its implementations, leading to
a high degree of optimization. Examples of this

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

include significant investments in high-perfor-

mance XML software’’ and hardware (e.g., IBM’s
c e 58

recent DataPower acquisition).

Even beyond the probable importance of the XML
Code of Integration as a primary technical standard,
XML will become a defining element (albeit one that
is behind the scenes) of economics, politics, and
culture.

Economic impact

Because XML will become the key enabler of an
economic system having vastly reduced transaction
costs and economic rigidities, an ever more com-
plete integration of markets and productive capa-
bilities should be enabled. Distance, time, language
and communication barriers will be vastly reduced.
Although IT has served to integrate production
capabilities previously, the cost has been high
enough that only very large firms with great scale
(e.g., Wal-Mart) could initially afford it. The
development of HTTP and HTML over TCP/IP
began the democratization process, yet many
integration problems in business and government
(e.g., health-care-related technology) are still ex-
ceedingly expensive to solve. XML and standards
built on XML should make these problems tractable
at a far more reasonable cost. To name just two
effects, XML will accelerate the creation of new
global markets, such as that created by eBay, and
make the operation of worldwide supply chains far
more comprehensive and efficient.

With IT becoming a very significant part of the
world’s capital stock (approaching 15 percent in the
United States), it now has enormous leverage over
the world’s productive systems. Hence, integrating
computerized processes and information will permit
the creation of hybrid products and services that
yield new innovations, higher quality, and lower
costs. As one example of this, health-care systems
are approaching a universal strategy for integrating
information, resulting in the decline of duplicative
care and medical errors.” The most significant
factor in addressing this problem is the Code of
Integration, due to the immense breadth and
dynamism of the health-care challenge.

Some real-life implementations illustrate how the
health-care industry is using XML. HL7, the most
important standard for representing both clinical

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

and administrative health-care data, uses XML. The
Center for Information Technology Leadership at
Partners Healthcare System has defined a model of
the economic value of increasing interoperability by
use of the health-care information exchange and
interoperability (HIEI) model. The model predicts
the value of different levels of information integra-
tion and defines “Level 4 HIEI” as machine-
interpretable data that “uses the same messaging,
format, and content standards, removing the need
for customized interfaces.” The detailed, bottom-
up analysis performed by the Center shows direct
economic benefits of nearly $80 billion per year in
the steady state, when the system has been opera-
tional long enough to recover from transient start-up
costs. Although many of the standards referenced
use XML as a basis, the medical community must do
even more to create and deploy the higher-level
semantic standards built on XML.

As a second example, we believe that more and
more types of economic systems, whether large or
small, will be able to adapt the principle of
“continual optimization”; that is, systems will be
able to gather input parameters needed for excellent
decision making ever more easily, effect change to
optimize behavior ever more cheaply, and close the
feedback loop. High-performance computing is
needed to achieve this, as is excellent mathematics,
but the greatest challenge is the cost-effective ability
to integrate and fuse information. As information is
ever more consistently represented in XML and
standardized XML schemas are created, the cost of
information integration will drop greatly, facilitating
optimization to the point where it can be performed
ever more universally and continually.

In their book Let Go To Grow,61 Sanford and Taylor
look at the business implications of IT’s ability to
support the componentization of business. They
make strong arguments that the ability of a business
to disassemble itself into a collection of services that
can be flexibly applied to numerous problems is a
significant “game changer” for business.

Political impact

If economics and business are impacted as we have
described, we believe this inevitably will have a
political impact. Changes in wealth, the global
distribution of wealth, the operation of markets, and
the makeup of goods and services have political
impacts. One can see just a few of these impacts in

ADLER ET AL.

219

the rapidly developing worlds of India and China
(and the impacts of that development worldwide),
on current thoughts relating to free trade in the
services economy, in the tax system’s ability to
handle taxation in a global economy, and elsewhere.
These are clearly political impacts, and XML is likely
to accelerate them.

Cultural impact

Culture is defined as “the concepts, habits, skills,
arts, instruments, institutions, and so forth, of a
given people in a given period.”62 It is arguable that
the aforementioned economic and political impacts
constitute cultural impact. Change of this magnitude
in issues related to wealth and globalization
significantly impacts the habits and institutions of
the many. The Code of Integration is likely to have
many other societal impacts as well.

The codification of information will allow for much
greater and more effective computer- and network-
based instruction. For example, many believe there
will be modularized educational modules, known as
learning objects. The expression of these objects in
the Code of Integration will permit each object to be
well-integrated with other objects and customized to
a student’s needs.”’ The opportunity to provide
highly configurable, customized education to
everyone is world-changing.

Many problems traditionally in the sphere of
artificial intelligence seem to require the creation
and association of semantics with information. It is
becoming clearer that semantics will come from
multiple sources and that there will be many
ontologies that provide useful meanings. As men-
tioned earlier, the Code of Integration provides a
basis for handling large amounts of semantic
tagging, with the strong possibility that the com-
bined use of all the semantics may lead to break-
throughs in document understanding and reasoning.
This is sometimes called the “combination hypoth-
esis.”®* The Code of Integration can lead to vast
increases in the domains to which computers are
applied, making them an even more integral part of
human discourse.

With the right language definitions, policies (within
and among organizations) and even societal regu-
lations and laws might come to be expressed
formally, providing for much greater efficiency
throughout society. If the tax code® or traffic

220 ADLER ET AL

regulations were formally expressed in XML, many
cumbersome processes would be amenable to
automation. Although this may seem unlikely, it is
safe to predict that there will be a progression of
automated expression of policy, and ultimately
some aspects of law, over time. XML will almost
certainly be at the center of this progression, as has
already been demonstrated for defining policies66
and regulations.67

The technical, economic, and societal consequences
(as exemplified in the preceding discussion) will
engender significant change in society. These con-
sequences have sufficient substance and potential
impact for us to conclude that XML is a technology
and standard that will engender significant cultural
impact.

CONCLUSIONS

XML is a technology with a profound opportunity to
affect the world in which we live. It provides a
catalyst for achieving semantic interoperability
between systems and businesses, which could lead
to a new generation of products, services, and
information dissemination. Together with its asso-
ciated tools, XML provides an infrastructure in
which the standards and open-source communities,
industry, and academia can define the semantics
needed to provide this interoperability. If XML
achieves its promise, it will take its place among the
great technical milestones of computer science.

XML’s potential, however, has only begun to be
realized, and there are many issues yet to be
resolved and risks to be avoided in order for XML to
fulfill its promise. First, although standards are vital
to the success of XML, any technology can collapse
under the weight of too many standards being
developed too soon. There must be a balance
between simplicity and functionality and between
hardening the standards and letting the usage of a
technology dictate its priorities. As XML matures,
the standards bodies must selectively focus their
efforts on identifying the right set of standards, both
for the core technology and for the industry-specific
and domain-specific vocabularies. There are key
issues in XML core technology, such as versioning,
that must be solved in order to provide long-term
scalability and flexibility. Furthermore, XML usage
communities must define a cogent and architectur-
ally sensible collection of worthwhile schemas that
define the vocabularies of interchange to achieve the

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

promise of semantic interoperability. As work
progresses on the next tier of standards, the benefits
and risks brought by XML’s growing complexity and
diversity must be considered.

Second, systems that implement the tooling required
to process and query XML must address inherent
performance problems without destroying the re-
quirement for ubiquity. Ubiquity provides a low
barrier to entry, enabling implementors to rapidly
prototype ideas within days. However, building
implementations that are scalable, robust, and
flexible enough to work across all types of applica-
tions still requires significant invention and devel-
opment.

Finally, the deployment of XML must be done
sensibly and realistically. XML is not meant to
replace rich application modeling, nor should
applications immediately convert their legacy data
to XML when real-time performance is required and
interoperability is not important.

Despite these issues, XML and its related standards
and tools are already for the first time significantly
enabling data interoperability, content manipula-
tion, content sharing and reuse, document assem-
bly, document security and access control,
document filtering, and document formatting for all
types of devices and applications. As such, XML is
already having significant technical, economic, and
societal consequences. We are pleased to present
this special issue of the IBM Systems Journal,
highlighting this important and fascinating technol-
ogy, and we are grateful to have had some impact on
its creation and growth.

ACKNOWLEDGMENTS

We gratefully acknowledge the assistance of the
following people in IBM in reviewing this paper
(listed in alphabetical order): Anders Berglund, Paco
Curbera, Andrew Eisenberg, Dave Ferrucci, Brent
Hailpern, Noah Mendelsohn, and Yael Ravin. Thanks
are also due to Michael Sperberg-McQueen of the
W3C.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Massachusetts Institute of Technology, Sun Microsystems,
Inc., Overture Services, Inc., Google, Linus Torvalds, The
Open Group, or Microsoft Corporation in the United States,
other countries, or both.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

CITED REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Extensible Markup Language (XML) 1.0 (Third Edition),
W3C Recommendation (February 4, 2004), http://www.
w3.org/TR/REC-xml/.

. Information Processing—Text and Office Systems—Stan-

dard Generalized Markup Language (SGML), I1SO
8879:1986 (August 13, 2001), http://www.iso.org/iso/
en/CatalogueDetailPage.CatalogueDetai?CSNUMBER=
16387&ICS1=35&ICS2=240&ICS3=30.

HyperText Markup Language (HTML) Home Page, W3C
Interaction Domain, http://www.w3.org/MarkUp/.

IBM Systems Journal 45, No. 2 (2006, this issue).

Apache.com—Providing Web Server and Network Se-
curity Resources, http://www.apache.com.

SourceForge.net, http://www.sourceforge.net.

E. F. Codd, “A Relational Model of Data for Large Shared
Data Banks,” Communications of the ACM 13, No. 6,
377-387 (July 1970).

JCC’s SQL Standards Page, JCC Consulting, Inc., http://
www.jcc.com/sql.htm.

. J. Peckham and F. Maryanski, Semantic Data Models,

ACM Computing Surveys, 20, No. 3, 153-189 (September
1988).

R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D.
Jordan, C. Russell, O. Schadow, T. Stanienda, and F.
Velez, The Object Data Standard: ODMG 3.0 Morgan
Kaufmann Publishers, San Francisco, CA (January 2000).

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl,
“From Structured Documents to Novel Query Facilities,”
Proceedings of the ACM SIGMOD International Conference
on Management of Data (May 1994), pp. 313-324.

T. Yan and J. Annevelink, “Integrating a Structured Text
Retrieval System with an Object-Oriented Database

System,” Proceedings of the 20th International Conference
on Very Large Data Bases (September 1994), pp. 740-749.

Charles F. Goldfarb, “A Generalized Approach to Docu-
ment Markup,” SIGPLAN Notices 16, No. 6, 68-73 (June
1981).

RFC 2045-Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies, N. Freed
and N. Borenstein, Editors, Network Working Group,
Internet Engineering Task Force (November 1996),
http://rfc.sunsite.dk/rfc/rfc2045.html.

B. J. Nelson, Remote Procedure Call, Ph.D. Dissertation,
Report CMU-CS-81-119, Carnegie-Mellon University,
Pittsburgh, PA (1981).

Common Object Request Broker: Architecture and Speci-
fication, Revision 1.2, OMG TC Document 93-12-43, The
Object Management Group, Framingham, MA (1993).

W. Rosenberry, D. Kenney, and G. Fisher, Understanding
DCE, O’Reilly & Associates (1992).

D. Reilly, “Introduction to Java RML” Online publication
(October 1998), http://www.javacoffeebreak.com/
articles/javarmi/javarmi.html.

Report From the W3C Workshop on Binary Interchange of
XML Information Item Sets, W3C Architecture Domain
(September 2003), http://www.w3.0rg/2003/08/
binary-interchange-workshop/Report.html/.

A. Orlowski, “Bruce Lindsay on Codd’s Relational
Legacy,” The Register (April 25, 2003), http://www.
theregister.co.uk/2003/04/25/
bruce_lindsay_on_codds_relational/.

ADLER ET AL.

221

21.

22.

23.
24.

25.

20.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

E. R. Harold and W. S. Means, XML in a Nutshell, Third
Edition, O’Reilly Media, Sebastopol, CA (September
2004).

Document Object Model (DOM) Level 1 Specification,
W3C Recommendation (October 1, 1998), http://www.
w3.0rg/TR/1998/REC-DOM-Level-1-19981001/.

SAX official website, http://www.saxproject.org/.

XSL Transformations (XSLT) Version 1.0, W3C Recom-
mendation (November 16, 1999), http://www.w3.org/
TR/xslt.

XML Path Language (XPath) Version 1.0, W3C Recom-
mendation (November 16, 1999), http://www.w3.org/
TR/xpath.

XML Path Language (XPath) Version 2.0, W3C Candidate
Recommendation (November 3, 2005), http://www.w3.
org/TR/xpath20/.

XForms 1.0 (Second Edition) W3C Recommendation
(March 14, 2006), http://www.w3.org/TR/2006/
REC-xforms-20060314/.

XSL Transformations (XSLT) Version 2.0, W3C Candidate
Recommendation (November 3, 2005), http://www.w3.
org/TR/xslt20/.

XQuery 1.0—An XML Query Language, W3C Candidate
Recommendation (November 3, 2005), http://www.w3.
org/TR/xquery/.

Information Technology—Database Languages—SQL—
Part 14: XML-Related Specifications (SQL/XML), Interna-
tional Organization for Standarization (December 15,
2003), http://www.iso.org/iso/en/CatalogueDetailPage.
CatalogueDetai?CSNUMBER = 35341.

XML Schema, World Wide Web Architecture Domain,
http://www.w3.org/XML/Schema.

Namespaces in XML, World Wide Web Consortium
Recommendation (January 14, 1999), http://www.w3.
org/TR/1999/REC-xml-names-19990114/.

The Common Gateway Interface (CGI), http://hoohoo.
ncsa.uiuc.edu/cgi.

Database Language SQL, http://www.itl.nist.gov/
div897/ctg/dm/sql_info.html.

D. Ferrucci and A. Lally, “Building an Example Applica-
tion with the Unstructured Information Management
Architecture,” IBM Systems Journal 43, No. 3, 455-475
(2004).

T. R. Weiss, “IBM Releases Unstructured Data Frame-
work Code As Open Source,” Computerworld (January
23, 2006).

M. Rys, D. Chamberlin, D. Florescu, N. Agarwal,

V. Arora, K. Beyer, S. Chandrasekar, D. Kossmann,

S. Kotsovolos, V. Krishnamurthy, M. Krishnaprasad,

Z. H. Liu, R. Murthy, F. Ozcan, S. Saiprasad, E. Sedlar,
A.-T. Tran, and B. Van der Linden, “XML and Relational
Database Management Systems: The Inside Story,”
Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data (2005), pp. 945-947,
http://portal.acm.org/citation.cfm?id=1066157.1066298.

XQuery 1.0 and XPath 2.0 Full-Text, W3C Working Draft
(April 4, 2005), http://www.w3.org/TR/2005/
WD-xquery-full-text-20050404.

XML.org Focus Areas, http://www.xml.org/xml/
focus_areas.shtml.

“BizTalk Talks Up Vertical Standards,” eBizQ.net (June
11, 2001), http://www.zapthink.com/news.html?id=18.

222 ADLER ET AL

41.

42.
43.
44.

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

ACORD Global Insurance Standards, Association for
Cooperative Operations Research and Development,
http://www.acord.org/home.aspx.

Open Travel Alliance, http://opentravel.org.
Health Level Seven, http://www.hl7.org.

R. Lai, “J2EE Platform Web Services,” in Web Services
Architecture and Best Practices, Addison Wesley, Read-
ing, MA (2003).

Latest SOAP Versions, http://www.w3.org/TR/
soapl2-partl/.

Web Services Description Language (WSDL) 1.1, W3C
Note (March 15, 2001), http://www.w3.org/TR/2001/
NOTE-wsdl-20010315.

Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language, W3C Candidate Recommendation
(March 27, 2006), http://www.w3.org/TR/wsdl20/.

OASIS UDDI, http://www.uddi.org/.

S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and
D. F. Ferguson, Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More, Prentice Hall PTR, Upper
Saddle River, NJ (2005).

Web Services Policy Framework (March 2006), http://
www-128.ibm.com/developerworks/webservices/
library/specification/ws-polfram/.

M. Gudgin, M. Hadley, and T. Rogers, Web Services
Addressing 1.0—Core, W3C Proposed Redommendation
(March 21, 2006), http://www.w3.org/TR/2006/
PR-ws-addr-core-20060321/.

Web Services Security: SOAP Message Security 1.1 (WS-
Security 2004), OASIS Standard Specification (February 1,
2006), http://www.oasis-open.org/committees/
download.php/16790/wss-v1.
1-spec-0s-SOAPMessageSecurity.pdf.

Web Services Transactions specifications (August 16,
2005), http://www-128.ibm.com/developerworks/
webservices/library/specification/ws-tx/.

Web Services Reliable Messaging (February 2005), http://
www-128.ibm.com/developerworks/webservices/
library/specification/ws-rm/.

OASIS Web Services Business Process Execution Lan-
guage (WSBPEL) Technical Comittee, http://www.
oasis-open.org/committees/tc_home.
php?wg_abbrev=wsbpel.

Business Process Execution Language for Web Services
Version 1.1, http://www-128.ibm.com/developerworks/
webservices/library/specification/ws-bpel/.

XML Software Guide: Specialized XML Software, http://
www.wdvl.com/Software/XML/special.html.

Datapower—SOA Appliances, http://www.datapower.
com/.

Crossing the Quality Chasm: A New Health System for the
21st Century, National Academy Press, Washington, D.C.
(2000), http://www.iom.edu/Object.File/Master/27/
184/Chasm-8pager.pdf.

J. Walker, E. Pan, D. Johnston, J. Adler-Milstein, D. W.
Bates, and B. Middleton, “The Value of Health Care
Information Exchange and Interoperability,” Health
Affairs, Web Exclusive (January 19, 2005), http://
content.healthaffairs.org/cgi/content/abstract/hlthaff.
w5.10.

L. S. Sanford and D. Taylor, Let Go to Grow, Prentice Hall,
Upper Saddle River, NJ (2005).

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

62. Webster’s New World Dictionary, College Edition, World
Publishing, NY (1966).

63. “The Instructional Use of Learning Objects,” David Wiley
(Editor), Online Version (2001), http://www.reusability.
org/read/.

64. A.Z. Spector, “Architecting Knowledge Middleware,”
WWW2002 Keynote Address (2002), http://www2002.
org/spector.pdf.

65. US Internal Revenue Service and SGML/XML for Tax
Filing (May 5, 2003), http://xml.coverpages.org/irs.html.

66. D. Agrawal, K.-W. Lee, and J. Lobo, “Policy-Based
Management of Networked Computing Systems,” IEEE
Communications 43, No. 10, 69-75 (October 2005).

67. C.Giblin, A. Y. Liu, S. Miiller, B. Pfitzmann, and X. Zhou,
“Regulations Expressed as Logical Models (REALM),”
Proceedings of the 18th Annual Conference on Legal
Knowledge and Information Systems (JURIX 2005), 10S
Press, Amsterdam (2005), pp. 37-48.

Accepted for publication February 13, 2006.
Published online June 1, 2006.

Sharon Adler

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, New York 10532 (sca@us.ibm.
com). Ms. Adler is a senior manager at IBM Research in
Hawthorne, New York. Her teams focus on research topics
related to XML standards and Web Services. Before she
rejoined IBM in 1999, she was a director of product
management for publishing tools for Inso Corporation in
Providence, Rhode Island. From 1985 to 1992, Ms. Adler held
several key positions with IBM in Boulder, Colorado, where
she was involved with the development of standards-based
authoring and document management tools. Prior to that, she
was a senior manager for Boeing Computer Services in
Vienna, Virginia. Ms. Adler has been instrumental in the
development of international computer standards for more
than 25 years. She served on multiple ANSI/ISO standards
committees, producing specifications such as ISO 8879 SGML
and ISO/IEC 10179 DSSSL. From 1997 to the present, she has
been chair of the XSL Working Group of the W3C, which
produced the XSLT/XPath and related specifications as well as
the XSL Formatting Objects specification. She also sits on the
XML Coordination Group of the W3C and is a member of the
board of directors of Idealliance, an industry association
responsible for notable XML conferences held each year
internationally.

Roberta Cochrane

IBM Software Group, 294 Route 100, Somers, New York 10589-
0100 (bobbiec@almaden.ibm.com). Dr. Cochrane is a Senior
Technical Staff Member in IBM’s Software Group Strategy
division. She is a leader in the delivery of advanced query
technology to IBM’s database products, providing many new
advanced features over the last 15 years, including
materialized views, triggers and constraints. She has
conducted extensive research in active database systems and
played a major role in the definition of the SQL3 standard for
triggers and constraints. Dr. Cochrane is a member of the IBM
Academy of Technology, a Master Inventor, and was one of
IBM’s 2002 YWCA TWIN awardees, honoring women in
industry. She received a B.S. degree in computer science and
mathematics from James Madison University in Virginia and a
Ph.D. degree in computer science from the University of
Maryland at College Park.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006

John F. Morar

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, New York 10532
(morar@watson.ibm.com). Dr. Morar received a Ph.D. degree
in experimental solid-state physics from the University of
Maryland in 1982. After joining IBM, he spent two years in
residence at the National Synchrotron Light Source project at
Brookhaven National Laboratory, where he used soft X-ray
spectroscopy to probe the outer few atomic layers of
semiconductors. Over the following eight years, he did
research on metastable semiconductors using molecular beam
epitaxy. Dr. Morar spent seven years in computer virus
research, managing the Anti-Virus Technology and Systems
group. He contributed to numerous releases of the IBM Anti-
Virus and Digital Inmune System software, which was built to
find, analyze, and automatically distribute cures for new
computer viruses faster than the virus itself could spread. He
has written 70 articles in peer-reviewed scientific journals and
has contributed to IBM’s patent portfolio in the areas of device
processing, computer virus detection, Web services, and
economic systems. Dr. Morar currently manages a group that
focuses on the application of service-oriented architectures
and the use of Web services both within and between
enterprises.

Alfred Spector

IBM Software Group, 294 Route 100, Somers, New York 10589
(aspector@us.ibm.com). Dr. Spector is Vice President of
Strategy and Technology for the IBM Software Group, where
he is responsible for such diverse activities as standards,
software-development methodologies, advanced technology,
leading-edge technical engagements, and strategy. Previously,
he was a vice president in the Research Division, where he
was responsible for setting IBM’s worldwide services and
software research strategy and overseeing the work of more
than 1300 researchers worldwide. In previous assignments
within IBM, he was the general manager of marketing and
strategy for IBM’s middleware business and the general
manager of IBM’s transaction software business. Dr. Spector
was also founder and CEO of Transarc Corporation, a pioneer
in distributed transaction processing and wide-area file
systems, and a tenured faculty member of the Carnegie Mellon
University computer science department. He received a Ph.D.
degree in computer science from Stanford University and an
A.B. degree in Applied Mathematics from Harvard University.
He is a member of the National Academy of Engineering, and
he is recognized for his contributions to the design,
implementation, and commercialization of reliable, scalable
architectures for distributed file systems, transaction systems,
and other applications. Dr. Spector is also an IEEE Fellow and
the recipient of the IEEE Kanai Award in distributed
computing. W

ADLER ET AL.

