
Technical context and cultural
consequences of XML

&

S. Adler

R. Cochrane

J. F. Morar

A. Spector

The Extensible Markup Language (XML) is an open standard for creating domain- and

industry-specific markup vocabularies. XML has become the predominant mechanism

for electronic data interchange between information systems and can be described as

a universally applicable, durable ‘‘Code of Integration.’’ As we celebrate its tenth

anniversary, it is appropriate to reflect on the role XML has played and the technical

ecosystem in which it functions. In this paper, we discuss both the environment from

which XML arose and its technical underpinnings, and we relate these topics to

companion papers in this issue of the IBM Systems Journal. We discuss the broad

consequences of XML and argue that XML will take its place among the technical

standards having the greatest impact on the world in which we live. We conclude with

some reflections on the significant technical, economic, and societal consequences

that XML is likely to have in the future.

INTRODUCTION

In 1996, a committee of the World Wide Web

Consortium (W3C**) began work on what became

the Extensible Markup Language (XML).
1

Based on

SGML
2

(Standard Generalized Markup Language),

XML is a general-purpose markup language that

creates domain- and industry-specific markup vo-

cabularies which share certain semantic and syn-

tactic characteristics, facilitating interoperability of

tools, techniques, and even programs. Although it is

most commonly seen to be a standard format for

delineating textual data, XML is more accurately a

technology for labeling information with descriptive

names that can be consistently used and accessed in

a multitude of applications. The original motivation

for SGML, subsequently passed on to XML, was to

ensure that the content or data residing in docu-

ments survived long after the application that

processed it became obsolete or unusable; thus no

processing or procedural information is embedded

within the content; instead, content is encoded as

clear text and available everywhere. The goal was to

bring SGML concepts to the Web. XML was designed

to be simpler than SGML and more universally

applicable, with a lower barrier to entry: users are

able to start simply and build their applications

incrementally. Any of the world’s languages can be

used for XML markup or content, due to its

incorporation of Unicode as a key component. All of

these features have resulted in the broad availability

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ADLER ET AL. 207

of a basic set of techniques and tools for processing

content. What started out as a simple standard for

electronic publishing has matured into one of the

most important and widely used paradigms in

distributed computing. The impact and influence of

the standard and the conceptual base are visible in

every area of computing today.

As we celebrate XML’s tenth anniversary, it is

appropriate to reflect on the role XML has played

and the technical ecosystem in which it functions.

XML was not conceived nor did it evolve in a

vacuum. The phenomenon of the Web and the

proliferation of HyperText Markup Language

(HTML)
3

allowed XML to emerge as the lingua

franca of the Internet. Its rapid adaptation in

conjunction with a wealth of existing technology

quickly transformed XML into a standard distrib-

uted-computing protocol that is helping to enable

many things, including a new generation of service-

oriented architectures (SOAs). In this paper, we

discuss both the environment from which XML

arose and its technical underpinnings. We introduce

the papers in this issue of the IBM Systems Journal
4

and describe and speculate on the broad conse-

quences of XML, which are significantly changing

the world in which we live.

THE BIRTH OF XML

A clear vision and a sound technical approach do

not ensure an established technology. Rather, the

establishment of a broadly accepted new technology

generally depends on many factors coming together.

In this section, we review the business environment

whose technical requirements are addressed by XML

and discuss the ecosystem in which XML was born.

This includes the role that the open-source/open-

standards movement had in defining XML, the

significant impact that the World Wide Web had on

its rapid adoption, and the technical foundations

that provided a fertile breeding ground for its

conception.

Expanding needs of business and scientific
communities
The ever-growing need of industry and government

to integrate disparate IT (information technology)

systems has resulted in interconnected networks

that can no longer be constructed, managed, or

enhanced centrally. The IT industry’s response to

this situation has been to embrace the distributed

nature of today’s computational world by allowing

for the creation and execution of products and

services that can perform effectively as components

of larger, dynamically assembled, or federated

applications. The overall stability of such systems

requires that the individual components be loosely

coupled so that they can be managed, modified, and

replaced without threatening the operational integ-

rity of the entire system. This requirement has

become equally important for both internal oper-

ations of large enterprises and business-to-business

interactions between enterprises of differing size.

The number and diversity of distributed applications

adds to the complexity of this problem. The need for

a common, self-describing, and highly dynamic

framework capable of supporting diverse domains

arose from these expanding computing

requirements.

System architects realized early that many special-

ized languages suited to specific domains were

required to represent the numerous bodies of data

used in those domains. Though the specifics of such

languages needed to be responsive to the needs of

particular domains of discourse, many common

requirements were immediately apparent:

� Each language needed well-defined and self-

consistent mechanisms for describing data, in-

cluding the naming and description of constituent

elements of the data, the expression of relation-

ships between those elements, and the capability

of verifying that the overall data was expressed in

a well-formed fashion.
� Data elements needed to be easy to transport,

transform, search, combine, extract, filter, and

view in different forms.
� The definitions of the languages themselves

needed to be easily shared and maintained by a

large body of users.

XML provided a very general approach for satisfying

these common requirements. It allowed the defini-

tion of languages in which information is encoded as

tagged text and in which different encodings and

tags support different domains of discourse.

Role of open source/open standards
To address these common requirements, a commit-

tee (more commonly referred to as a working group)

of the World Wide Web Consortium was formed in

1996. Initial discussions on developing XML, even

before the formation of the working group, focused

ADLER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006208

on the need to involve both large- and small-scale

commercial interests to create greater market value

and a base for growth. Involvement of universities

and government organizations was nurtured as the

standards evolved.

XML is rarely used alone. A body of standards

emerged around XML to support its use. The original

XML initiative included three aspects: the syntax of

the language itself, a linking component, and a style

component. As its use grew, XML extended into

other areas: graphics formats, forms, data models,

APIs for accessing XML structures, linking, query

languages, transport protocols, and finally business

processes and workflow that use XML.

The standardization of XML stimulated the estab-

lishment of a community of interests around it and

the Web, involving a large and diverse group of

individuals and organizations. Companies partici-

pated in and adopted the XML open standards and

worked on open-source technology for many rea-

sons: to gain the benefit of an open community to

supplement their own development resources, to

take advantage of the positive marketing percep-

tions surrounding the participation in nonproprie-

tary solutions, and to benefit from the vast market

opportunities created. Others simply saw this as a

tremendous intellectual and technical challenge—

the next great thing.

The availability of open-source implementations

had a profound impact on the development of open

standards and on their widespread adoption and

popularity. It quickly became economically feasible

to explore the use of the new standards in

production environments. Prototypes were simpler

and faster to develop with technology readily

available from open-source efforts such as Apache
5

and SourceForge.
6

Companies adopted open stan-

dards for similar reasons. The desire not to be left

behind the competition, customer requirements for

interoperable solutions, and the simple economics

of sharing in a common pool and community of

interests all led to the rapid development and

adoption of open standards.

The success of this community stimulated the

creation of new domains. Academic communities

began to participate as the ideas around XML took

root, realizing the potential for fruitful and innova-

tive research in areas such as algorithms, analytics,

models, and optimization. Government agencies

also increased their role over time and demanded

more functions than those achievable with SGML.

One of the most compelling aspects of this evolution

was the intense and spirited collaboration of

communities from different disciplines, each having

its own ideas of what was important and often

dismissing the requirements of other communities.

This dissension might have destroyed the entire

& XML has become one of the
most important and widely used
paradigms in distributed
computing &

experience, but perseverance defeated it. Discount-

ing the small but persistent set of detractors, the

diverse communities realized that there was much

to learn from each other and much value in

considering the broad range of requirements. The

communities began to understand that XML could

allow the integration of data-centric, document-

centric, forms-centric, protocol-centric, and process-

centric views of information and the processing they

undergo. For the first time, XML and its related

standards enabled data interoperability, content

manipulation, content sharing and reuse, document

assembly, document security and access control,

document filtering, and document formatting across

all disciplines and for all types of devices and

applications. This collaboration and discussion

continues today as work progresses on the next tier

of standards, taking into account the benefits and

risks brought by XML’s growing complexity and

diversity.

Technical ecosystem and foundations
In addition to the requirements that provided fertile

ground for its invention and the standards and open-

source communities that converged to bring XML to

fruition, XML was born into a very rich and exciting

technical ecosystem that contributed to its rapid

adoption and provided a foundation upon which

XML tooling and technology could be built and

extended.

XML could not have happened without the World

Wide Web. The Web has become a universal

mechanism to deliver information to consumers and

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ADLER ET AL. 209

increasingly, to applications as well. XML gained

notoriety in the heyday of the ‘‘dot-com’’ frenzy, but

it continues today because it worked and created

vast new opportunities. It enabled information reuse

by integrating text and data from different sources

and by searching and linking across these sources,

thereby breaking down traditional silos, which were

barriers to information sharing. The Web became a

vortex for this confluence of forces and allowed

people to get a glimpse of the tremendous potential

of universal access to information. It simply and

easily provided the proof-of-concept, the business

case, and the funds to enable development. XML

started simply, matured, endured after the dot-com

bubble, and spread.

XML also could not have had such impact without a

diverse collection of tremendous advances in com-

puter science made over approximately a 50-year

period. XML quickly found a home with many of

these technologies, which thus contributed to its

widespread adoption. Of particular applicability to

XML were seven categories in which there were

significant advances and substantial technical

agreement:

1. The value of information hiding, generalization,

encapsulation, and reuse in programming lan-

guages and methodologies—This work began in

the early 1960s with the advent of such languages

as Algol and Pascal, followed by the object-

oriented approaches of Simula, Smalltalk, Cþþ,

Modula, Java**, and C#. XML is a superb,

common approach for defining interfaces to

encapsulate abstractions.

2. The value of search and information extraction on

relatively unstructured information, even when it

crosses multiple abstraction layers to access low-

level data—In contrast to information-hiding

approaches, some problems benefit from direct

use of information, despite operating across

multiple levels of an abstraction hierarchy. XML

provides a rich data representation, with signifi-

cant opportunities for high-value semantic tag-

ging, which can provide superior support for

information retrieval and related activities. This

approach is not entirely new. The Lisp language

introduced the concept of an attribute list (known

as an ‘‘a-list’’) that allowed data structures to

have auxiliary lists of pairs of attributes and

values. These lists could represent a variety of

concepts, from uninterpreted data, in which the

list contained arbitrary content, to conventional

lists in which the order in the list had some

meaning (i.e., the third element was always the

maximum size), to self-defining structures.

3. A standardized nonprocedural, high-performance

approach to storage and retrieval of structured

information—Relational databases
7

possessing a

powerful data model, underlying concurrency

control, integrity and performance benefits, and a

consistent Structured Query Language (SQL)
8

interface were a great advance of the 1970s and

1980s. Relational structures provided a rich set of

storage and manipulation mechanisms, but their

true value across applications was realized when

database administrators could define agreed-to

data dictionaries. There have been several pro-

posals for semantic data models
9

and standards

developed for object-oriented databases.
10–12

None of these models and systems predominated

over relational systems. Those that work in

conjunction with the relational model are still not

ubiquitous because they add yet another layer of

programming language to the already cumber-

some task of getting data from the application

layer into and out of the persistence framework.

XML provides an opportunity to augment struc-

tured relational systems with increased capabil-

ities, at the same time permitting them to become

more integrated with the surrounding technical

ecosystem.

4. The utility of simple key-value pair tagging and its

application to providing metadata through anno-

tations—With GML (Generalized Markup Lan-

guage)
13

in the late 1970s and then SGML, which

was standardized in 1986, there was a clear

understanding of the importance of applying tags

to documents and using these tags to provide

semantic information. XML is a tagging architec-

ture which grew from SGML. Another example

(from the distributed computing/protocol do-

main) is the Multipurpose Internet Extensions

(MIME)
14

tagged architecture for delineating

objects in e-mail, invented in 1992. MIME set a

precedent for the utility of an extensible tagged,

object-definition capability for the Internet.

5. A consensus on a layered-protocol stack for

network communication, which standardizes not

only layered protocols but also the interfaces to

those layers—ISO (International Organization for

Standardization) OSI (Open Systems Intercon-

nect) provided a well-regarded conceptual seven-

layer reference document. TCP (Transport Con-

ADLER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006210

trol Protocol) introduced reliable streams with

commonly used socket interfaces. This was

another great advance, as were the various efforts

to make remote procedure invocation both

efficient and common.
15–18

The importance of the

presentation layer was also understood. XML is

clearly an advanced presentation layer protocol,

but as stated in item 1, it is also a valuable

mechanism for defining interfaces for supporting

method invocation.

6. The necessity and practicality of sophisticated user

interfaces programmed with very high-level tech-

niques—Metaphor-based interfaces (i.e., those in

which the target audience interacts with aesthetic

concepts familiar to their area of expertise)

became significantly better understood as did

both component-based and nonprocedural spec-

ification of those interfaces. XML is a natural tool

for specifying an extremely wide class of human

interfaces to systems, even ones that are multi-

modal in nature.

7. Performance and bandwidth—Relative to opti-

mized binary formats, XML is expensive to

process (parse) and transmit and would not have

been practical without the many decades during

which processor performance and network

bandwidth have been accelerating according to

Moore’s law. While it remains the case that

XML’s processing requirements limit its use in

low-power computers, there is a vast domain

today in which XML’s use is feasible. Addition-

ally, the W3C is looking at this problem to

determine if further work is necessary in this

context.
19

The Web’s coming of age ushered in new technol-

ogies that were born of necessity and continue to

fulfill enduring needs of large distributed environ-

ments. One of the hallmarks of the Web is that the

parts must work together, even though they were

not designed to do so. Nowhere is this more evident

than in the handling of documents and data. On the

Web, this information is transported, transformed,

searched, combined, and subdivided in any desired

manner. Once it has been suitably transformed, it is

displayed, packaged, streamed, archived, and used

by people and processes. XML provides a very

general approach for defining rich vocabularies to

support this semantic interoperability. The vocab-

ularies defined in XML can share many common

engines, tools, and practices, such as tools for

language creation, data manipulation, and

personalization.

By virtue of using the common framework that XML

provides, many aspects of programming, unstruc-

tured and structured information storage and

retrieval, networking and integration, and user-

interface design and implementation can be ad-

vanced. XML solutions to these diverse problems

emerge as coherent and consistent techniques, with

many resultant benefits. It is remarkable that one

technology, based on a fairly straightforward con-

cept, is having such a big impact.

KEY XML TECHNOLOGY AND JOURNAL PREVIEW
Although it started simply, an extensive and com-

plex set of standards emerged as XML evolved. Just

as Ted Codd’s invention of the relational database

proved to be only the tip of the iceberg, which

required ‘‘hundreds of thousands (sic) of algorith-

mic innovations to make it work,’’
20

the success of

XML has required several standards bodies (as

previously discussed) and countless tools, algorith-

mic innovations, and clever add-ons to make it a

success.

This section describes many of the key XML

technologies
21

that are instrumental in facilitating its

further development and use and contributing to its

ubiquity as its evolution progresses. This section

also serves as a preview of the papers in this issue,

which present advances in some of these key

technologies. The categories into which the papers

of this issue are grouped are: core XML technologies,

connecting to business data, connecting data to

applications, mapping technologies, and connecting

business to business with Web Services.

Core XML technologies

This section describes a number of significant

technologies central to XML and how they are used

for information modeling, processing, and trans-

formation.

Modeling and creating data in XML

XML provides a means to impose structure on

content by bracketing it with ‘‘begin’’ and ‘‘end’’ tags

that create named constructs called elements.

Element names (e.g., ‘‘part number’’) are not limited

by XML, but are chosen by the content provider and

normally provide some indication of the meaning of

the content. Elements can be nested to form

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ADLER ET AL. 211

arbitrarily complex trees. Attributes are optionally

associated with elements to carry further informa-

tion about the content, such as access control,

security levels, data type, revision dates, and usage

properties. These simple constructs form a founda-

tion for exposing content—previously available only

as a ‘‘blob’’ of text—as data. The refined granularity

that the markup provides makes the content more

accessible. Furthermore, this structure provides a

means for easily associating metadata with the

content, which can be used for a variety of purposes,

including interpretation, authorization, and person-

alized rendering. XML documents support flexible

and late-bound reuse and error checking. This

greatly enhances the use of XML in every domain.

Data processing using SAX and DOM

Simple syntax and structure are not the only factors

that have contributed to the widespread adoption of

XML. They are accompanied by two widely sup-

ported APIs for working with XML documents: the

Document Object Model (DOM)
22

and the Simple

API for XML (SAX).
23

These APIs provide the ability

to programmatically process the tree structure of

XML. DOM is a W3C recommendation which

& An extensive and complex set
of standards emerged as XML
evolved &

provides an in-memory tree-structured view of an

XML document. Using DOM interfaces, the applica-

tion processes XML by ‘‘walking’’ the nodes of the

DOM tree. SAX, on the other hand, provides a

means for the application to process XML as a

stream. It offers events to the application as the SAX

processor parses the document. In contrast with

DOM, SAX is not a standard, but was developed by a

community of early XML developers. It provides a

compact parser, making minimal demands on

system resources. Both SAX and DOM APIs were

widely supported and readily available to run on

multiple platforms early in the evolution of XML,

greatly enabling its rapid adoption.

Transforming XML with XPath and XSLT

Although SAX and DOM provide procedural mech-

anisms to work with XML documents, developers

also needed declarative mechanisms to provide

granular access to content. Extensible Stylesheet

Language Transformation (XSLT)
24

began life pri-

marily as a styling language, but evolved to provide

an XML native method for XML-to-HTML and XML-

to-XML conversion. Because XSLT is itself XML, all

XML tooling (editors, parsers, XPath) can be used in

the creation and manipulation of XSLT style sheets

and transforms.

XPath
25,26

is the predominant language used to

navigate the tree structure of XML content and was

designed as an integral part of XSLT. As such, it

forms the foundation for XML query languages.

XPath is a language on its own and is used by

several W3C recommendations, including the W3C

Schema language and XForms
27

; it is also inter-

woven into XSLT 2.0,
28

XQuery,
29

and hence,

SQL/XML.
30

XPath is declarative in that its results

are insensitive to how the XML tree is materialized.

Using a very small subset of XPath, an application

can accomplish most of what it needs in querying

the contents of documents; XSLT, XQuery and SQL/

XML were introduced to provide more intuitive

query capabilities for their respective communities.

Schemas and namespaces

XML relies on user communities creating domain-

and industry-specific vocabularies, which were

initially expressed using DTDs (Document Type

Definitions). As XML grew in popularity, commu-

nities defined sets of element names, types, and

interpretations for XML structures, which greatly

enhanced interoperability between the applications

used by those communities. Two related XML

technologies, XML Schema and XML Namespaces,

are used extensively to allow industries to define

their semantics.

XML Schema
31

is the standard that emerged for

defining XML structure and type information. XML

Namespaces
32

is the standard that was created to

facilitate the reuse of documents and document

fragments. The basic objective of Namespaces is to

resolve the inevitable naming conflicts that arise in

the sharing of documents and fragments among

various communities. More sophisticated use of this

standard allows the same data format for a

structure, such as a book description, to be used in

several other structures, such as purchase orders,

publisher’s inventories, and card catalogs. The

common data format enables the modular repur-

posing of individual data instances and the creation

ADLER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006212

of modular software components that work on such

reusable document fragments.

Paper preview

As XML has matured, many techniques have been

developed for processing it; early techniques in-

cluded open-source XML parsers (e.g., Xerces) and

XPath/XSLT processors (e.g., Xalan and Saxon). The

beauty of XML is that it is ubiquitous and, to a

significant degree, self-describing. This self-describ-

ing nature supports flexible and late-bound reuse

and error checking, but, with this flexibility there

came inherent performance issues.

XML parsing is a critical aspect of XML processing

performance. The ubiquity of XML allows it to be

parsed anywhere by anything, but to increase

performance, parser techniques need to be ex-

tended. Perkins et al. in ‘‘Generation of efficient

parsers through direct compilation of XML schema’’

present the next advance in parsing technology, one

which makes industry-strength enterprise deploy-

ment possible.

Connecting to business data
The papers in this section discuss the ways in which

query languages for XML have developed and how

businesses can use these languages with structured

and unstructured XML data.

Evolution of XML query languages

As the popularity of HTML grew, users wanted first

to be able to render their business data, stored in

relational databases, into HTML. They were not

satisfied with simply presenting and viewing static

HTML; they wanted to be able to connect their

databases to the Web so that people could query

them. The Common Gateway Interface (CGI)
33

is a

standard interface that provides exactly this func-

tionality within HTML, and although this is a

relatively simple idea, it is frequently difficult to

implement.

With the advent of XML and XML’s close relation-

ship to HTML, it became apparent that an important

usage scenario was to make data from databases

available on the Web. One technique relied on

translating relational data into XML for rendering as

HTML. In response to this need, the SQL language

was extended to provide a bridge between the SQL

and XML worlds. Initial versions of these extensions

primarily focused on providing a set of functions for

publishing relational data in an XML format.

In contrast, as the use of XML matured, it became

evident that a query language intended from the

beginning to work with databases was needed.

Although very expressive for navigating within an

XML document and isolating elements and attri-

butes that satisfy a given search criterion, XPath was

not designed originally as a stand-alone language.

For example, it relies on XSLT to construct new XML

documents. Similarly, XSLT was designed primarily

for style transformations. Although it is very

powerful, its recursive pattern-matching paradigm

(which is needed for document processing) is

difficult to optimize, particularly in a database

context. Clearly, relational database concepts were

needed for commerce and transactions. These

evolving requirements gave rise to the formulation

of the W3C XQuery working group in 1999, which

was chartered to work closely with the XSLT

working group to jointly design the next version of

XPath and other supporting specifications, which

formed the basis for XQuery. XQuery and SQL/XML

emerged to provide full query capabilities for XML,

while maintaining compatibility with XPath and

XSLT.

Querying structured and unstructured content

As XML became a de facto standard for representing

business artifacts and as investment increased in

XML technology and products and in the deploy-

ment of relational systems, there was an obvious

need for interoperability between XML data, rela-

tional-database systems, and text search. Businesses

require the ability to seamlessly query a collection of

documents that include structured and unstructured

data, using query functionality traditionally avail-

able only in relational systems or information-

retrieval systems.

When XML arrived on the scene, structured and

unstructured documents were typically processed by

two independent systems. Consequently, early

deployments of XML treated data either as struc-

tured data, represented by an inexact, parsed

representation in a relational database, or as

unstructured data, stored as a ‘‘blob’’ in a file system

or content management system. Although the

former representation enabled leveraging the full

support of data mining and business-intelligence

reporting tools, it fell short for applications with

complex schemas such those in the Health Care and

Life Sciences (HCLS) industry. The latter represen-

tation allowed the association of valuable metadata

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ADLER ET AL. 213

with the content, but the naı̈ve search did not

distinguish between markup and content. Addition-

ally, there was a growing need to leverage inter-

operability with relational data.

Three things have happened to rectify this isolation

of technologies. First, relational systems began to

adopt more features of full-text, such as SQL/MM.
34

Second, technology was developed to merge XML

with relational systems. This integration of XML

with SQL provides the power of navigation with a

set-oriented query language, and leverages the full

power of the widespread adoption of search engines

such as AltaVista** and Google**. As this trend

continues, users have higher expectations for fuzzy

searching, and language features supporting such

semantics are being integrated into the XML query

languages. Third, there has also been progress in

architectural support in systems that allows combi-

nations of semantic annotators to process docu-

ments and generate metadata that makes the

documents more searchable and more useful. This

automatically generated metadata can populate XML

documents or database, search engine, or knowl-

edge-base indexes. IBM has proposed the unstruc-

tured information management architecture
24

(UIMA)
35

as a standard structure for supporting

componentized, reusable annotators; it has also

contributed the UIMA toolkit to the open-source

community
36

to facilitate the broad adoption of

UIMA. These efforts can help bridge the gap

between semantically enriched XML and otherwise

semantically impoverished unstructured data.

In effect, UIMA facilitates a fluidity which enables

documents that contain significant amounts of raw

text, audio, image, and video to be semantically

enriched with tags through automatic or semi-

automatic annotation. This information can then be

represented as XML and manipulated with the vast

array of XML tools and methodologies. In all, there

is the prospect of having access to record-level

relational data, XML data, and unstructured data by

using a combination of ‘‘best of breed’’ technologies,

with XML providing a structure for semantic

encoding. Academic, government, and commercial

sources have shown interest in this approach by

developing many solutions with compliant annota-

tors that generate semantic content.

Early attempts to merge XML and relational tech-

nology provided XML views of relational data, so

that XML tooling could access relational data, or

provided relational storage of XML data, so that

relational techniques could be used to process XML

data. These early convergences inspired and drove

yet more demands for further integration. XML

views of relational data fell short in their ability to

fully and efficiently translate XML queries into SQL

queries. Various attempts to store XML data in

relational tables resulted in the inability to store and

retrieve the XML data in its original form as well as

the inability to adapt to the dynamic schema

changes expected in XML. As a result, many

relational vendors have been active in the XQuery

and SQL/XML efforts and have produced systems

that integrate XML and relational data and support

the ability to query both simultaneously.
37

Paper previews

Several of the papers in this issue describe XML

native extensions that will be available in the

upcoming Version 9.1 release of DB2* Universal

Database* for Linux**, Unix**, and Windows**.

These extensions are commonly referred to as DB2

XML. ‘‘Integration of SQL and XQuery in DB2 XML’’

by Özcan et al. is a recommended starting point, as

its focus is primarily on the externals for defining

and querying XML data in DB2. It contains a brief

history of the evolution from XPath to XQuery and a

detailed comparison between the foundations of

SQL and XQuery. The main part of the paper gives a

comprehensive description of the SQL/XML features

and functions from a standards perspective, details

how these features manifest themselves in DB2

XML, and overviews DB2’s approach to integrating

XQuery and SQL/XML, which has enabled inter-

operability between the languages. This integration

differentiates IBM from other major vendors in this

field. The paper concludes with a discussion of the

syntactic and semantic challenges of integrating SQL

and XQuery.

In ‘‘DB2 goes hybrid: Integrating native XML and

XQuery with relational data and SQL,’’ Beyer et al.

describe an architecture for fully integrating native

XML support in an industrial-strength database

engine such as DB2. The rationale behind the tight

integration of these systems is given, details of the

architecture are provided, and the decision points

for each of the system components are discussed.

DB2 XML’s support for XML schema, how applica-

tions interface with DB2 to query and process XML

query results, and the extensions to the DBMS

ADLER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006214

(database management system) utilities and tools to

support native XML data are also described.

Optimizations are critical to the success of any XML

repository and query processing system. In ‘‘Cost-

based optimization in DB2 XML,’’ Balmin et al.

describe a type of optimization that has yielded

significant performance gains. This paper presents

the extensions made to the DB2 UDB (DB2 Universal

Database) compiler and its cost-based query opti-

mizer to support XQuery and SQL/XML queries.

A native XML data store system, Natix, is the

underlying system for the paper ‘‘The importance of

sibling clustering for efficient bulkload of XML

document trees’’ by Kanne and Moerkotte. As the

title suggests, this paper discusses requirements for

a bulkload component. It derives new algorithms for

use in the bulkload operation specific to XML and

presents the design of this component in the context

of Natix.

To address the need to seamlessly query over both

the structure and the text content of XML docu-

ments, the W3C is specifying full-text search

querying in XML by adding extensions to XQuery

and XPath. These extensions supplement the struc-

tured search inherent in XQuery with a wide range

of full-text search primitives, such as phrase

matching, keyword proximity, stemming, thesaurus,

ranking, and scoring. The emerging Recommenda-

tion, XQuery 1.0 and XPath 2.0 Full-Text (XQFT),
38

adds full-text extensions to XQuery and XPath. As its

title suggests, the paper ‘‘XQuery Full-Text exten-

sions explained’’ by Amer-Yahia et al. explains the

evolution and design principles behind this emerg-

ing Recommendation and illustrates its core fea-

tures. The paper ‘‘Enhancing XML search with

XQuery 1.0 and XPath 2.0 Full-Text’’ by Case

provides further support for XQuery Full-Text from

an end-user point of view. It provides the motivation

for the XQFT extensions and describes how these

extensions apply to a search system at the Library of

Congress.

Connecting data to applications
In this category, we discuss the XML infrastructure

that enables data from one application to be used or

manipulated by another application.

The use of XML for industry-specific languages

Applications need semantic interoperability, that is,

the ability for one application to operate on another

application’s data as if the data were its own.

Although XML does not have semantics per se, it

does provide the common infrastructure on which

semantics are easily standardized and conveyed in a

real application. Using this infrastructure and

building on the core XML standards, a second tier of

standards has emerged, which defines industry-

specific languages consisting of sets of common data

types. The XML Schema and Namespaces standards

were instrumental in enabling the definition of

semantics for the various industries. XML standards

are being developed for almost all vertical indus-

tries, such as banking, biology, defense, insurance,

and retail. XML.org lists a variety of vertical

industries that use XML,
39

and more than 400

vertical and horizontal XML standards were listed

on ZapThink’s XML Standards Watch.
40

Paper previews

As the title implies, the paper ‘‘Revolutionary impact

of XML on biomedical information interoperability’’

by Shabo et al. describes the considerable impact

that XML is having on the HCLS industry. It

describes how XML is used to represent clinical

data, clinical-trial data, and genomic data and how

the use of XML is enabling integration across these

three domains.

In ‘‘Emerging patterns in the use of XML for

information modeling in vertical industries,’’ Hin-

kelman et al. discuss the impact of XML on vertical

industries and describe a set of XML usage patterns

that has emerged based on the history of the

industry in data interchange. They explore the use of

XML for a sample set of industry-level standards: the

Open Application Group incorporated (OAGi),

& One of the most compelling
aspects of XML’s evolution was
the intense and spirited
collaboration of communities
from different disciplines &

which defines a Business Object Document; the

Association for Cooperative Operations Research

and Development (ACORD),
41

which is a leader in

global insurance standards; MedBiquitous (Med-

Biq), which is an distinguished organization in

professional medicine; the Open Travel Alliance

(OTA),
42

an organization in the travel industry; and

Health Level 7 (HL7)
43

for the HCLS.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ADLER ET AL. 215

Mapping technologies

The attempts to provide interoperability through

integrated systems and industry standards notwith-

standing, there is still a need for mapping repre-

sentations between XML formats and between

legacy data and XML. XML is the de facto standard

for heterogeneous data exchange, representing

diverse kinds of information, but it will not always

be possible, or even desirable, to modify applica-

tions so that they work on the same format. There

will always be autonomous sources of data for

which governing standards bodies do not exist, and

new applications will be developed with a unique

view of the data. In Enterprise Information Integra-

tion (EII) and service-oriented architecture (SOA),

these data sources and applications will evolve to

interoperate with other data sources and applica-

tions, exchanging and operating on the same data.

Furthermore, XML data and tooling must interop-

erate with legacy data.

Paper previews

Two papers in this issue address the issues of

mapping data formats to XML and connecting to

non-XML data. ‘‘XML mapping technology: making

connections in an XML-centric world’’ by Roth et al.

defines an extensible, model-driven architecture for

mapping technology that enables the capturing,

recording, and reuse of integration activity, while

providing a rich platform for further research

challenges in this area. This architecture is the

foundation for the IBM Rational* Data Architect and

satisfies requirements derived from EII and SOA

examples, which are also presented in the paper.

‘‘Virtual XML: A toolbox and use cases for the XML

world view’’ by Rose et al. supports the querying of

non-XML data from a variety of formats as if they

were XML. Virtual XML separates the concerns of

representation from those pertaining to a common

processing model. This paper gives an overview of

how virtual XML can be realized. It describes the

architectural components that enable applications to

work with either XML or virtual XML and provides

use cases demonstrating the applicability of virtual

XML.

Connecting business to business with Web
Services

As the use of IT in business has matured over the

years, there has been a desire and a need to connect

disparate systems and to take advantage of the

functionality of legacy systems in modern-day

applications. The ubiquity of XML and its ability to

be used as an underlying specification language

enabled a new generation of application-to-applica-

tion communication, supporting flexible integration

of heterogeneous systems in a variety of domains.

This new generation of XML-centric interactions led

to the birth of the Web Services platform, whose

goal is to better take advantage of existing compo-

nent frameworks, distributed services, and platform

and network engineering resources.
44

The Web Services technology suite is also an

important enabler of the SOAs that are now being

embraced by the entire IT industry. SOA is an

abstract architectural concept founded on the idea of

building software systems with uniformly described,

discoverable services that interact in a loosely

coupled way and can be composed.

The success of Web Services in this arena can be

attributed to the nonproprietary nature of the

underlying technologies as well as the loose

coupling supported by the technology. Web Services

specifications are being developed through industry

partnerships and broad consortia such as W3C and

OASIS (Organization for the Advancement of Struc-

tured Information Standards), and are thus based on

standards and technology that are the foundation of

the Internet, such as XML and HTTP (HyperText

Transport Protocol). Furthermore, the participants

in Web Services communications are loosely

coupled and need only agree on the format of

messages and their semantics. In contrast, prior

technology (such as CORBA [Common Object

Request Broker Architecture], DCOM [Distributed

Component Object Model], and RMI [Remote

Method Invocation]) required that communicating

partners agree on an object model and significant

aspects of an object management runtime.

Web Services had their beginnings in mid to late

2000 with the introduction of the Simple Object

Access Protocol (SOAP),
45

Web Service Description

Language (WSDL),
46,47

and Universal Description,

Discovery and Integration (UDDI).
48

XML and HTTP

are two basic technologies supporting the Web

Services framework of specifications. In addition to

its intrinsic relevance, XML is also the underlying

specification language for all Web Services stan-

dards: XML provides the interoperable format to

describe message content between Web Services,

and is the basic language in which Web Services

ADLER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006216

specifications are defined.
49

SOAP, WSDL and UDDI

form the initial set of specifications.

SOAP is an XML messaging protocol for basic

service interoperability. It provides a uniform

mechanism for exchanging structural and typed

information encoded as XML. Hence, SOAP inherits

the self-descriptive properties of XML. As such, XML

supports communication between parties that have

imperfect agreement on the format of messages and

documents. Software can discover that the docu-

ment being processed is almost what was expected

and can adjust. Indeed, generic processing may be

possible even on unexpected parts of the data. Web

Services support communication on a global scale

among parties that cannot always simultaneously

revise their software to adjust to the evolution of

data formats. XML’s explicit tagging provides ro-

bustness in the face of changing versions, although

this is an area where the technology is still maturing.

Although HTTP provides a commonly used inter-

operable protocol for SOAP, it works with any

underlying communication protocol. Sending mes-

sages as plain XML ensures interoperability, requir-

ing only that the processing middleware have basic

abilities to parse and serialize XML. SOAP also

provides much richer and more robust protocol

extensibility based on XML and namespaces; that

extensibility has been the basis for much of the rich

function provided by other layers of the WS* stack

(e.g., those enabling application-level security,

reliable delivery, and long-running transactions).

The result has been far greater interoperability of

middleware platforms and the ability to scale to the

wider networks enabled by the World Wide Web.

SOAP provides only the protocol for exchanging

self-describing messages between services, but by

itself does not provide any information about the

services. WSDL is a common grammar for providing

design-time description of services and messages. It

defines a template to encode the information

required by service clients to access and interact

with the service. It describes what a Web service

does, where it resides, and how it should be

invoked.

UDDI provides a mechanism for clients to dynam-

ically find other Web services, allowing businesses

to dynamically connect to services provided by

external business partners. UDDI assumes that

requests and responses are UDDI objects that are

communicated as SOAP messages.

SOAP, together with WSDL and UDDI, addressed

many fundamental challenges of distributed com-

puting by providing a uniform way of describing,

locating, and accessing components or services

within a network. The difference between Web

Services and traditional approaches is primarily in

the use of self-describing, platform-independent

messages to enable loose coupling of aspects of the

architecture, making the approach more dynamic

and adaptable to change. However, these core

& Early attempts to merge XML
and relational technology
provided XML views of
relational data or relational
storage of XML data &

technologies are only the beginning, and there are

high expectations for the maturity of Web Services

beyond basic message exchange, service descrip-

tion, and discovery. The interoperability of Web

Services is being raised to a higher level of

infrastructure services by the introduction of several

other horizontal standards. Some of these new

standards such as WS-Policy,
50

which adds to

WSDL, extend the WS description specifications.

Others, such as WS-Addressing,
51

WS-Security,
52

WS-Transactions,
53

and WS-ReliableMessaging
54

are protocol extensions built on SOAP.

Paper preview

As mentioned previously, one important feature of

Web Services is their ability to be composed.

BPEL4WS (Business Process Execution Language for

Web Services), or BPEL
55,56

for short, provides a

language for specifying how Web Services can be

composed following a business-process-centric ap-

proach. BPEL supports two types of processes.

Executable processes provide a full implementation

of a service composition, which can be executed by

any compliant process engine. Abstract processes

use the same notation to specify only the mutually

visible message-exchange behavior of the services

without revealing their internal implementation.

BPEL extends the Web Services interaction model,

building on top of the WSDL service-interface

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ADLER ET AL. 217

model, but does not specify the use of a particular

protocol or discovery mechanism. BPEL is layered

on top of several XML specifications, including

WSDL 1.1, XML Schema 1.0, XPath 1.0, and WS-

Addressing.

The paper ‘‘Business processes for Web Services:

Principles and applications’’ by Khalaf et al.

describes an example of what XML has enabled. It

contains a brief overview of BPEL, focusing on the

architectural drivers, usage, and kinds of applica-

tions (beyond traditional workflow) that XML has

enabled. It discusses the potential of using abstract

BPEL processes and presents case studies where

these have been used, including ‘‘people-facing’’

workflows, grid computing, and automatic comput-

ing, specifically for dynamic provisioning.

In this section we have taken a very brief tour of the

underlying technologies that are being developed to

support XML processing as presented in the papers

composing this issue. In the next section of the

paper, we will look at the impact that XML and its

enabling technologies are having and promise to

have on society.

TECHNICAL AND CULTURAL CONSEQUENCES

The world in which we live is strongly affected, if

not dominated, by a collection of amazingly varied

and powerful technical, economic, political, and

cultural norms and standards. Although it is easy to

forget the impact of technological standards, their

importance is recalled merely by contemplating the

significance of agreements to drive on the same side

of the road, standardized weights and measures,

standards for a common electrical power grid, or

TCP/IP. If we eliminated even a small number of

technology standards, the world would be a very

different place.

With respect to XML, we hope this paper, the others

in this issue of the Systems Journal, and voluminous

additional literature and experience establish that

(1) XML is itself the product of a long history, (2)

XML has very broad applicability, and (3) XML is

achieving its potential through broad usage. In light

of this, we contend that XML will take its place

among the technical standards having the greatest

import to the world. The authors believe that many

computer scientists would agree with this observa-

tion.

Why do we think XML is so important? Perhaps, this

is because we can describe XML as a universally

applicable, durable ‘‘Code of Integration’’; that is, a

broadly applicable language for creating, storing,

transmitting, accessing, and transforming informa-

tion from a multitude of sources. It also naturally

leads to a set of extensions which support seman-

tically rich, tagged interchange and storage stan-

dards. Even though we would postulate that the von

Neumann computing architecture, the techniques

for analyzing algorithms, and the elegant structures

that fuse complexity theory, formal language theory,

compilers, and programming languages may be

more important to computer science, and are in

some sense considerably deeper accomplishments,

the Code of Integration may be of comparable

importance. This is because a Code of Integration

can be applied coherently to a wide range of

technical problems with a number of benefits, the

most significant of which are the following:

1. A consistent programming paradigm—As pro-

gramming involves the expression of rich inter-

faces and the techniques for manipulating

information, the XML Code of Integration can be

a basis for significant consistency, automation,

and reuse in expressing software processes.

Although XML does not purport to solve all

problems, it does provide the language in which

solutions can be expressed. This will increasingly

improve the economics of IT-based automation.

2. Simplicity of integration—A Code of Integration

can greatly reduce the cost of integrating and

processing information. Just as common lan-

guages and vocabulary are among the most

important cultural bases of civilization, agree-

ment on a standardized form for defining

information is exceedingly valuable to enable

knowledge synthesis and systems integration.

With a common way to express semantic

information, there will be more (albeit incom-

plete) standardization of semantic information,

paving the way to numerous benefits: informa-

tion fusion, totally automated or semiautomated

assembly of systems, greatly increased use of

machine learning, computer-based reasoning,

and more.

3. Economies of scale—Because of the universality

of the Code of Integration, skills related to its use

are widely useful. Significant investment can

wisely be made in its implementations, leading to

a high degree of optimization. Examples of this

ADLER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006218

include significant investments in high-perfor-

mance XML software
57

and hardware (e.g., IBM’s

recent DataPower acquisition).
58

Even beyond the probable importance of the XML

Code of Integration as a primary technical standard,

XML will become a defining element (albeit one that

is behind the scenes) of economics, politics, and

culture.

Economic impact

Because XML will become the key enabler of an

economic system having vastly reduced transaction

costs and economic rigidities, an ever more com-

plete integration of markets and productive capa-

bilities should be enabled. Distance, time, language

and communication barriers will be vastly reduced.

Although IT has served to integrate production

capabilities previously, the cost has been high

enough that only very large firms with great scale

(e.g., Wal-Mart) could initially afford it. The

development of HTTP and HTML over TCP/IP

began the democratization process, yet many

integration problems in business and government

(e.g., health-care-related technology) are still ex-

ceedingly expensive to solve. XML and standards

built on XML should make these problems tractable

at a far more reasonable cost. To name just two

effects, XML will accelerate the creation of new

global markets, such as that created by eBay, and

make the operation of worldwide supply chains far

more comprehensive and efficient.

With IT becoming a very significant part of the

world’s capital stock (approaching 15 percent in the

United States), it now has enormous leverage over

the world’s productive systems. Hence, integrating

computerized processes and information will permit

the creation of hybrid products and services that

yield new innovations, higher quality, and lower

costs. As one example of this, health-care systems

are approaching a universal strategy for integrating

information, resulting in the decline of duplicative

care and medical errors.
59

The most significant

factor in addressing this problem is the Code of

Integration, due to the immense breadth and

dynamism of the health-care challenge.

Some real-life implementations illustrate how the

health-care industry is using XML. HL7, the most

important standard for representing both clinical

and administrative health-care data, uses XML. The

Center for Information Technology Leadership at

Partners Healthcare System has defined a model of

the economic value of increasing interoperability by

use of the health-care information exchange and

interoperability (HIEI) model. The model predicts

the value of different levels of information integra-

tion and defines ‘‘Level 4 HIEI’’ as machine-

interpretable data that ‘‘uses the same messaging,

format, and content standards, removing the need

for customized interfaces.’’
60

The detailed, bottom-

up analysis performed by the Center shows direct

economic benefits of nearly $80 billion per year in

the steady state, when the system has been opera-

tional long enough to recover from transient start-up

costs. Although many of the standards referenced

use XML as a basis, the medical community must do

even more to create and deploy the higher-level

semantic standards built on XML.

As a second example, we believe that more and

more types of economic systems, whether large or

small, will be able to adapt the principle of

‘‘continual optimization’’; that is, systems will be

able to gather input parameters needed for excellent

decision making ever more easily, effect change to

optimize behavior ever more cheaply, and close the

feedback loop. High-performance computing is

needed to achieve this, as is excellent mathematics,

but the greatest challenge is the cost-effective ability

to integrate and fuse information. As information is

ever more consistently represented in XML and

standardized XML schemas are created, the cost of

information integration will drop greatly, facilitating

optimization to the point where it can be performed

ever more universally and continually.

In their book Let Go To Grow,
61

Sanford and Taylor

look at the business implications of IT’s ability to

support the componentization of business. They

make strong arguments that the ability of a business

to disassemble itself into a collection of services that

can be flexibly applied to numerous problems is a

significant ‘‘game changer’’ for business.

Political impact
If economics and business are impacted as we have

described, we believe this inevitably will have a

political impact. Changes in wealth, the global

distribution of wealth, the operation of markets, and

the makeup of goods and services have political

impacts. One can see just a few of these impacts in

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ADLER ET AL. 219

the rapidly developing worlds of India and China

(and the impacts of that development worldwide),

on current thoughts relating to free trade in the

services economy, in the tax system’s ability to

handle taxation in a global economy, and elsewhere.

These are clearly political impacts, and XML is likely

to accelerate them.

Cultural impact

Culture is defined as ‘‘the concepts, habits, skills,

arts, instruments, institutions, and so forth, of a

given people in a given period.’’
62

It is arguable that

the aforementioned economic and political impacts

constitute cultural impact. Change of this magnitude

in issues related to wealth and globalization

significantly impacts the habits and institutions of

the many. The Code of Integration is likely to have

many other societal impacts as well.

The codification of information will allow for much

greater and more effective computer- and network-

based instruction. For example, many believe there

will be modularized educational modules, known as

learning objects. The expression of these objects in

the Code of Integration will permit each object to be

well-integrated with other objects and customized to

a student’s needs.
63

The opportunity to provide

highly configurable, customized education to

everyone is world-changing.

Many problems traditionally in the sphere of

artificial intelligence seem to require the creation

and association of semantics with information. It is

becoming clearer that semantics will come from

multiple sources and that there will be many

ontologies that provide useful meanings. As men-

tioned earlier, the Code of Integration provides a

basis for handling large amounts of semantic

tagging, with the strong possibility that the com-

bined use of all the semantics may lead to break-

throughs in document understanding and reasoning.

This is sometimes called the ‘‘combination hypoth-

esis.’’
64

The Code of Integration can lead to vast

increases in the domains to which computers are

applied, making them an even more integral part of

human discourse.

With the right language definitions, policies (within

and among organizations) and even societal regu-

lations and laws might come to be expressed

formally, providing for much greater efficiency

throughout society. If the tax code
65

or traffic

regulations were formally expressed in XML, many

cumbersome processes would be amenable to

automation. Although this may seem unlikely, it is

safe to predict that there will be a progression of

automated expression of policy, and ultimately

some aspects of law, over time. XML will almost

certainly be at the center of this progression, as has

already been demonstrated for defining policies
66

and regulations.
67

The technical, economic, and societal consequences

(as exemplified in the preceding discussion) will

engender significant change in society. These con-

sequences have sufficient substance and potential

impact for us to conclude that XML is a technology

and standard that will engender significant cultural

impact.

CONCLUSIONS

XML is a technology with a profound opportunity to

affect the world in which we live. It provides a

catalyst for achieving semantic interoperability

between systems and businesses, which could lead

to a new generation of products, services, and

information dissemination. Together with its asso-

ciated tools, XML provides an infrastructure in

which the standards and open-source communities,

industry, and academia can define the semantics

needed to provide this interoperability. If XML

achieves its promise, it will take its place among the

great technical milestones of computer science.

XML’s potential, however, has only begun to be

realized, and there are many issues yet to be

resolved and risks to be avoided in order for XML to

fulfill its promise. First, although standards are vital

to the success of XML, any technology can collapse

under the weight of too many standards being

developed too soon. There must be a balance

between simplicity and functionality and between

hardening the standards and letting the usage of a

technology dictate its priorities. As XML matures,

the standards bodies must selectively focus their

efforts on identifying the right set of standards, both

for the core technology and for the industry-specific

and domain-specific vocabularies. There are key

issues in XML core technology, such as versioning,

that must be solved in order to provide long-term

scalability and flexibility. Furthermore, XML usage

communities must define a cogent and architectur-

ally sensible collection of worthwhile schemas that

define the vocabularies of interchange to achieve the

ADLER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006220

promise of semantic interoperability. As work

progresses on the next tier of standards, the benefits

and risks brought by XML’s growing complexity and

diversity must be considered.

Second, systems that implement the tooling required

to process and query XML must address inherent

performance problems without destroying the re-

quirement for ubiquity. Ubiquity provides a low

barrier to entry, enabling implementors to rapidly

prototype ideas within days. However, building

implementations that are scalable, robust, and

flexible enough to work across all types of applica-

tions still requires significant invention and devel-

opment.

Finally, the deployment of XML must be done

sensibly and realistically. XML is not meant to

replace rich application modeling, nor should

applications immediately convert their legacy data

to XML when real-time performance is required and

interoperability is not important.

Despite these issues, XML and its related standards

and tools are already for the first time significantly

enabling data interoperability, content manipula-

tion, content sharing and reuse, document assem-

bly, document security and access control,

document filtering, and document formatting for all

types of devices and applications. As such, XML is

already having significant technical, economic, and

societal consequences. We are pleased to present

this special issue of the IBM Systems Journal,

highlighting this important and fascinating technol-

ogy, and we are grateful to have had some impact on

its creation and growth.

ACKNOWLEDGMENTS
We gratefully acknowledge the assistance of the

following people in IBM in reviewing this paper

(listed in alphabetical order): Anders Berglund, Paco

Curbera, Andrew Eisenberg, Dave Ferrucci, Brent

Hailpern, Noah Mendelsohn, and Yael Ravin. Thanks

are also due to Michael Sperberg-McQueen of the

W3C.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Massachusetts Institute of Technology, Sun Microsystems,
Inc., Overture Services, Inc., Google, Linus Torvalds, The
Open Group, or Microsoft Corporation in the United States,
other countries, or both.

CITED REFERENCES
1. Extensible Markup Language (XML) 1.0 (Third Edition),

W3C Recommendation (February 4, 2004), http://www.
w3.org/TR/REC-xml/.

2. Information Processing—Text and Office Systems—Stan-
dard Generalized Markup Language (SGML), ISO
8879:1986 (August 13, 2001), http://www.iso.org/iso/
en/CatalogueDetailPage.CatalogueDetail?CSNUMBER¼
16387&ICS1¼35&ICS2¼240&ICS3¼30.

3. HyperText Markup Language (HTML) Home Page, W3C
Interaction Domain, http://www.w3.org/MarkUp/.

4. IBM Systems Journal 45, No. 2 (2006, this issue).

5. Apache.com—Providing Web Server and Network Se-
curity Resources, http://www.apache.com.

6. SourceForge.net, http://www.sourceforge.net.

7. E. F. Codd, ‘‘A Relational Model of Data for Large Shared
Data Banks,’’ Communications of the ACM 13, No. 6,
377–387 (July 1970).

8. JCC’s SQL Standards Page, JCC Consulting, Inc., http://
www.jcc.com/sql.htm.

9. J. Peckham and F. Maryanski, Semantic Data Models,
ACM Computing Surveys, 20, No. 3, 153–189 (September
1988).

10. R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D.
Jordan, C. Russell, O. Schadow, T. Stanienda, and F.
Velez, The Object Data Standard: ODMG 3.0 Morgan
Kaufmann Publishers, San Francisco, CA (January 2000).

11. V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl,
‘‘From Structured Documents to Novel Query Facilities,’’
Proceedings of the ACM SIGMOD International Conference
on Management of Data (May 1994), pp. 313–324.

12. T. Yan and J. Annevelink, ‘‘Integrating a Structured Text
Retrieval System with an Object-Oriented Database
System,’’ Proceedings of the 20th International Conference
on Very Large Data Bases (September 1994), pp. 740–749.

13. Charles F. Goldfarb, ‘‘A Generalized Approach to Docu-
ment Markup,’’ SIGPLAN Notices 16, No. 6, 68–73 (June
1981).

14. RFC 2045–Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies, N. Freed
and N. Borenstein, Editors, Network Working Group,
Internet Engineering Task Force (November 1996),
http://rfc.sunsite.dk/rfc/rfc2045.html.

15. B. J. Nelson, Remote Procedure Call, Ph.D. Dissertation,
Report CMU-CS-81-119, Carnegie-Mellon University,
Pittsburgh, PA (1981).

16. Common Object Request Broker: Architecture and Speci-
fication, Revision 1.2, OMG TC Document 93-12-43, The
Object Management Group, Framingham, MA (1993).

17. W. Rosenberry, D. Kenney, and G. Fisher, Understanding
DCE, O’Reilly & Associates (1992).

18. D. Reilly, ‘‘Introduction to Java RMI,’’ Online publication
(October 1998), http://www.javacoffeebreak.com/
articles/javarmi/javarmi.html.

19. Report From the W3C Workshop on Binary Interchange of
XML Information Item Sets, W3C Architecture Domain
(September 2003), http://www.w3.org/2003/08/
binary-interchange-workshop/Report.html/.

20. A. Orlowski, ‘‘Bruce Lindsay on Codd’s Relational
Legacy,’’ The Register (April 25, 2003), http://www.
theregister.co.uk/2003/04/25/
bruce_lindsay_on_codds_relational/.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ADLER ET AL. 221

21. E. R. Harold and W. S. Means, XML in a Nutshell, Third
Edition, O’Reilly Media, Sebastopol, CA (September
2004).

22. Document Object Model (DOM) Level 1 Specification,
W3C Recommendation (October 1, 1998), http://www.
w3.org/TR/1998/REC-DOM-Level-1-19981001/.

23. SAX official website, http://www.saxproject.org/.

24. XSL Transformations (XSLT) Version 1.0, W3C Recom-
mendation (November 16, 1999), http://www.w3.org/
TR/xslt.

25. XML Path Language (XPath) Version 1.0, W3C Recom-
mendation (November 16, 1999), http://www.w3.org/
TR/xpath.

26. XML Path Language (XPath) Version 2.0, W3C Candidate
Recommendation (November 3, 2005), http://www.w3.
org/TR/xpath20/.

27. XForms 1.0 (Second Edition) W3C Recommendation
(March 14, 2006), http://www.w3.org/TR/2006/
REC-xforms-20060314/.

28. XSL Transformations (XSLT) Version 2.0, W3C Candidate
Recommendation (November 3, 2005), http://www.w3.
org/TR/xslt20/.

29. XQuery 1.0—An XML Query Language, W3C Candidate
Recommendation (November 3, 2005), http://www.w3.
org/TR/xquery/.

30. Information Technology—Database Languages—SQL—
Part 14: XML-Related Specifications (SQL/XML), Interna-
tional Organization for Standarization (December 15,
2003), http://www.iso.org/iso/en/CatalogueDetailPage.
CatalogueDetail?CSNUMBER=35341.

31. XML Schema, World Wide Web Architecture Domain,
http://www.w3.org/XML/Schema.

32. Namespaces in XML, World Wide Web Consortium
Recommendation (January 14, 1999), http://www.w3.
org/TR/1999/REC-xml-names-19990114/.

33. The Common Gateway Interface (CGI), http://hoohoo.
ncsa.uiuc.edu/cgi.

34. Database Language SQL, http://www.itl.nist.gov/
div897/ctg/dm/sql_info.html.

35. D. Ferrucci and A. Lally, ‘‘Building an Example Applica-
tion with the Unstructured Information Management
Architecture,’’ IBM Systems Journal 43, No. 3, 455–475
(2004).

36. T. R. Weiss, ‘‘IBM Releases Unstructured Data Frame-
work Code As Open Source,’’ Computerworld (January
23, 2006).

37. M. Rys, D. Chamberlin, D. Florescu, N. Agarwal,
V. Arora, K. Beyer, S. Chandrasekar, D. Kossmann,
S. Kotsovolos, V. Krishnamurthy, M. Krishnaprasad,
Z. H. Liu, R. Murthy, F. Özcan, S. Saiprasad, E. Sedlar,
A.-T. Tran, and B. Van der Linden, ‘‘XML and Relational
Database Management Systems: The Inside Story,’’
Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data (2005), pp. 945–947,
http://portal.acm.org/citation.cfm?id¼1066157.1066298.

38. XQuery 1.0 and XPath 2.0 Full-Text, W3C Working Draft
(April 4, 2005), http://www.w3.org/TR/2005/
WD-xquery-full-text-20050404.

39. XML.org Focus Areas, http://www.xml.org/xml/
focus_areas.shtml.

40. ‘‘BizTalk Talks Up Vertical Standards,’’ eBizQ.net (June
11, 2001), http://www.zapthink.com/news.html?id¼18.

41. ACORD Global Insurance Standards, Association for
Cooperative Operations Research and Development,
http://www.acord.org/home.aspx.

42. Open Travel Alliance, http://opentravel.org.

43. Health Level Seven, http://www.hl7.org.

44. R. Lai, ‘‘J2EE Platform Web Services,’’ in Web Services
Architecture and Best Practices, Addison Wesley, Read-
ing, MA (2003).

45. Latest SOAP Versions, http://www.w3.org/TR/
soap12-part1/.

46. Web Services Description Language (WSDL) 1.1, W3C
Note (March 15, 2001), http://www.w3.org/TR/2001/
NOTE-wsdl-20010315.

47. Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language, W3C Candidate Recommendation
(March 27, 2006), http://www.w3.org/TR/wsdl20/.

48. OASIS UDDI, http://www.uddi.org/.

49. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and
D. F. Ferguson, Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More, Prentice Hall PTR, Upper
Saddle River, NJ (2005).

50. Web Services Policy Framework (March 2006), http://
www-128.ibm.com/developerworks/webservices/
library/specification/ws-polfram/.

51. M. Gudgin, M. Hadley, and T. Rogers, Web Services
Addressing 1.0—Core, W3C Proposed Redommendation
(March 21, 2006), http://www.w3.org/TR/2006/
PR-ws-addr-core-20060321/.

52. Web Services Security: SOAP Message Security 1.1 (WS-
Security 2004), OASIS Standard Specification (February 1,
2006), http://www.oasis-open.org/committees/
download.php/16790/wss-v1.
1-spec-os-SOAPMessageSecurity.pdf.

53. Web Services Transactions specifications (August 16,
2005), http://www-128.ibm.com/developerworks/
webservices/library/specification/ws-tx/.

54. Web Services Reliable Messaging (February 2005), http://
www-128.ibm.com/developerworks/webservices/
library/specification/ws-rm/.

55. OASIS Web Services Business Process Execution Lan-
guage (WSBPEL) Technical Comittee, http://www.
oasis-open.org/committees/tc_home.
php?wg_abbrev¼wsbpel.

56. Business Process Execution Language for Web Services
Version 1.1, http://www-128.ibm.com/developerworks/
webservices/library/specification/ws-bpel/.

57. XML Software Guide: Specialized XML Software, http://
www.wdvl.com/Software/XML/special.html.

58. Datapower—SOA Appliances, http://www.datapower.
com/.

59. Crossing the Quality Chasm: A New Health System for the
21st Century, National Academy Press, Washington, D.C.
(2000), http://www.iom.edu/Object.File/Master/27/
184/Chasm-8pager.pdf.

60. J. Walker, E. Pan, D. Johnston, J. Adler-Milstein, D. W.
Bates, and B. Middleton, ‘‘The Value of Health Care
Information Exchange and Interoperability,’’ Health
Affairs, Web Exclusive (January 19, 2005), http://
content.healthaffairs.org/cgi/content/abstract/hlthaff.
w5.10.

61. L. S. Sanford and D. Taylor, Let Go to Grow, Prentice Hall,
Upper Saddle River, NJ (2005).

ADLER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006222

62. Webster’s New World Dictionary, College Edition, World
Publishing, NY (1966).

63. ‘‘The Instructional Use of Learning Objects,’’ David Wiley
(Editor), Online Version (2001), http://www.reusability.
org/read/.

64. A. Z. Spector, ‘‘Architecting Knowledge Middleware,’’
WWW2002 Keynote Address (2002), http://www2002.
org/spector.pdf.

65. US Internal Revenue Service and SGML/XML for Tax
Filing (May 5, 2003), http://xml.coverpages.org/irs.html.

66. D. Agrawal, K.-W. Lee, and J. Lobo, ‘‘Policy-Based
Management of Networked Computing Systems,’’ IEEE
Communications 43, No. 10, 69–75 (October 2005).

67. C. Giblin, A. Y. Liu, S. Müller, B. Pfitzmann, and X. Zhou,
‘‘Regulations Expressed as Logical Models (REALM),’’
Proceedings of the 18th Annual Conference on Legal
Knowledge and Information Systems (JURIX 2005), IOS
Press, Amsterdam (2005), pp. 37–48.

Accepted for publication February 13, 2006.

Sharon Adler
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, New York 10532 (sca@us.ibm.
com). Ms. Adler is a senior manager at IBM Research in
Hawthorne, New York. Her teams focus on research topics
related to XML standards and Web Services. Before she
rejoined IBM in 1999, she was a director of product
management for publishing tools for Inso Corporation in
Providence, Rhode Island. From 1985 to 1992, Ms. Adler held
several key positions with IBM in Boulder, Colorado, where
she was involved with the development of standards-based
authoring and document management tools. Prior to that, she
was a senior manager for Boeing Computer Services in
Vienna, Virginia. Ms. Adler has been instrumental in the
development of international computer standards for more
than 25 years. She served on multiple ANSI/ISO standards
committees, producing specifications such as ISO 8879 SGML
and ISO/IEC 10179 DSSSL. From 1997 to the present, she has
been chair of the XSL Working Group of the W3C, which
produced the XSLT/XPath and related specifications as well as
the XSL Formatting Objects specification. She also sits on the
XML Coordination Group of the W3C and is a member of the
board of directors of Idealliance, an industry association
responsible for notable XML conferences held each year
internationally.

Roberta Cochrane
IBM Software Group, 294 Route 100, Somers, New York 10589-
0100 (bobbiec@almaden.ibm.com). Dr. Cochrane is a Senior
Technical Staff Member in IBM’s Software Group Strategy
division. She is a leader in the delivery of advanced query
technology to IBM’s database products, providing many new
advanced features over the last 15 years, including
materialized views, triggers and constraints. She has
conducted extensive research in active database systems and
played a major role in the definition of the SQL3 standard for
triggers and constraints. Dr. Cochrane is a member of the IBM
Academy of Technology, a Master Inventor, and was one of
IBM’s 2002 YWCA TWIN awardees, honoring women in
industry. She received a B.S. degree in computer science and
mathematics from James Madison University in Virginia and a
Ph.D. degree in computer science from the University of
Maryland at College Park.

John F. Morar
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, New York 10532
(morar@watson.ibm.com). Dr. Morar received a Ph.D. degree
in experimental solid-state physics from the University of
Maryland in 1982. After joining IBM, he spent two years in
residence at the National Synchrotron Light Source project at
Brookhaven National Laboratory, where he used soft X-ray
spectroscopy to probe the outer few atomic layers of
semiconductors. Over the following eight years, he did
research on metastable semiconductors using molecular beam
epitaxy. Dr. Morar spent seven years in computer virus
research, managing the Anti-Virus Technology and Systems
group. He contributed to numerous releases of the IBM Anti-
Virus and Digital Immune System software, which was built to
find, analyze, and automatically distribute cures for new
computer viruses faster than the virus itself could spread. He
has written 70 articles in peer-reviewed scientific journals and
has contributed to IBM’s patent portfolio in the areas of device
processing, computer virus detection, Web services, and
economic systems. Dr. Morar currently manages a group that
focuses on the application of service-oriented architectures
and the use of Web services both within and between
enterprises.

Alfred Spector
IBM Software Group, 294 Route 100, Somers, New York 10589
(aspector@us.ibm.com). Dr. Spector is Vice President of
Strategy and Technology for the IBM Software Group, where
he is responsible for such diverse activities as standards,
software-development methodologies, advanced technology,
leading-edge technical engagements, and strategy. Previously,
he was a vice president in the Research Division, where he
was responsible for setting IBM’s worldwide services and
software research strategy and overseeing the work of more
than 1300 researchers worldwide. In previous assignments
within IBM, he was the general manager of marketing and
strategy for IBM’s middleware business and the general
manager of IBM’s transaction software business. Dr. Spector
was also founder and CEO of Transarc Corporation, a pioneer
in distributed transaction processing and wide-area file
systems, and a tenured faculty member of the Carnegie Mellon
University computer science department. He received a Ph.D.
degree in computer science from Stanford University and an
A.B. degree in Applied Mathematics from Harvard University.
He is a member of the National Academy of Engineering, and
he is recognized for his contributions to the design,
implementation, and commercialization of reliable, scalable
architectures for distributed file systems, transaction systems,
and other applications. Dr. Spector is also an IEEE Fellow and
the recipient of the IEEE Kanai Award in distributed
computing. &

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 ADLER ET AL. 223

Published online June 1, 2006.

