
System-performance modeling
for massively multiplayer
online role-playing games

&

M. Ye

L. Cheng

Massively multiplayer role-playing games (MMORPGs) are among the most popular

types of online game. A successful title may have tens of thousands or even millions of

subscribers and, at any given time, may have thousands of players online. This paper

presents a method for modeling MMORPG system performance and applies it in an

analysis of two real MMORPGs. The results show that a strong linear relationship exists

between performance metrics at the server side and the number of concurrent players

online. As a result, utilization of IT resources, including network traffic and server load,

can be predicted, given the number of concurrent players. The performance model

presented here can be used for automated IT resource allocation at runtime and is

thus useful in the context of utility computing and on demand systems.

INTRODUCTION
Online games are the trend of the day. Online game

services such as PlayStation** online, Xbox** Live,

GameSpy** Arcade, and other independent PC-

based services are becoming increasingly popular.

In their 2004 prediction, International Data Corpo-

ration (IDC) estimated industry revenue to reach

$656.3 million in 2004 and grow to over $2 billion

by 2008.
1
Online games enable multiple players to

simultaneously interact in a ‘‘game world’’ to which

they connect over a network. Most online games

today follow a client/server model; research is

ongoing concerning the feasibility of other types of

architecture, such as peer-to-peer and grid architec-

tures.
2,3

PC-based online games can be classified into two

subcategories—multiplayer online games (MOGs)

and massively multiplayer online games

(MMOGs)—based on the maximum number of

simultaneous players in a single game world.

Popular MMOGs might have thousands of players

online at any given time, usually exclusively on a

company-owned server. On the other hand, MOGs

usually have less than 50 players online and are

usually played on private servers. MOGs are

frequently adopted by fast-paced game genres like

first-person-shooter (FPS) games in which response

latency is the most critical factor, aside from game

content, in the game experience. Some examples of

FPS games are Doom,** Quake,** Half-Life,** and

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 YE AND CHENG 45

Counter-Strike,
4,5

which are session-based games in

which the goal is for a player’s alter ego to

accumulate successful ‘‘kills’’ against other players.

To support more players, MOGs can scale up by

horizontally replicating the game world without

coordination or synchronization between these

worlds.

The first and most popular type of MMOG is the

massively multiplayer online role-playing game

(MMORPG) genre, which can be traced to the

nongraphical online multiuser dungeon (MUD)

games of the 1970s and became popular in the late

1990s. Reference 6 estimates that MMORPGs hold a

95.5 percent share of the MMOG market. Some

examples of MMORPGs are EverQuest**, Lineage**,

and World of Warcraft**.
7–9

MMORPGs are also

called persistent-state-world (PSW) or persistent-

world (PW) games because the game world is

normally hosted by a company and is always

available, and world events happen continually,

even while some of the players are not playing their

character. Players may retain the same title for

several years. Popular MMORPG game titles have

large numbers of subscribers. Figure 1, based on

Reference 6, shows the statistics up to May 2005.

From the figure, we can see that subscriptions to the

same title vary over time. Such dynamics of

subscription bring challenges to gaming service

providers who traditionally install a dedicated

infrastructure for each title, due to the high risk of

over- and under-allocation of resources and poten-

tially poor resource utilization. This situation may

become worse, as the number of commercially

operated game titles has increased dramatically in

recent years.

A successful gaming service provider must be able

not only to satisfy its subscribers’ demand for high

Figure 1
MMOG active subscriptions

 Reprinted with permission from B. S. Woodcock, An Analysis of MMOG Subscription Growth (May 2005)
**Trademark or registered trademark of their respective companies.

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

Jan
-9

7

Ju
l-9

7
Jan

-9
8

Ju
l-9

8

Jan
-9

9
Ju

l-9
9

Jan
-0

0

Ju
l-0

0
Jan

-0
1

Ju
l-0

1
Jan

-0
2

Ju
l-0

2
Jan

-0
3

Ju
l-0

3
Jan

-0
4

Ju
l-0

4
Jan

-0
5

Ju
l-0

5

To
ta

l C
ur

re
nt

 S
ub

sc
rib

er
s

(i
n

th
ou

sa
nd

s)
Ultima Online**

Lineage**

EverQuest**
Dark Age of Camelot**
RuneScape**

Final Fantasy XI**
Ragnarok Online (JP)**

Star Wars Galaxies**

Lineage II
City of Heroes**

EverQuest II
World of Warcraft**

YE AND CHENG IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200646

quality and attractive game content but also to

reduce the risk of high investment in game hosting

infrastructure associated with the difficulty of

predicting the success of a new game title. The

utility computing model, (also called ‘‘on de-

mand,’’
10

‘‘utility data center,’’
11

or ‘‘just in time

computing’’
12
) is believed to be the solution to this

problem from an infrastructure perspective. For

example, Shaikh et al. propose an on demand

service platform for hosting large-scale multiplayer

games.
13

The key idea proposed is sharing IT

resources across multiple game titles or customers

by dynamically provisioning and deprovisioning

resources for a title or customer from a shared

resource pool.

A critical component for these solutions is the

provisioning manager, which is responsible for

resource provisioning and deprovisioning, such as

the IBM Tivoli Intelligent Orchestrator (TIO). The

TIO is an off-the-shelf product that automatically

deploys and configures servers, software, and net-

work devices in a data center environment.
14

The

primary function of a provisioning manager is to

collect performance and availability metrics from

game servers, predict their trends, and decide how

to adjust resource allocation accordingly.

Many studies have been performed to understand

the online game traffic model and its impact on the

Internet. According to a study on backbone traffic,
15

about 3–4 percent of the traffic is generated by six

popular online games. Borella
16

tried to use extreme

distribution, exponential distribution, or determin-

istic models to model the packet inter-arrival time

and packet size of Quake, a popular FPS game.

Farber
17

found that the traffic for another FPS game,

Counter-Strike, follows Borella’s findings. Later,

Feng et al.
18

analyzed a 500-million-packet trace of a

Counter-Strike server and performed a similar study

for three other FPS games. Their study indicated that

game traffic is highly predictable and is character-

ized by bursts of small packets.

Chen et al.
19

analyzed a 1,356-million-packet trace

of a TCP (Transmission Control Protocol)-based

midsize MMORPG, which normally runs at a slower

pace than FPS games. Their analysis of selected

connections revealed that the traffic model of

MMORPG games is similar to FPS games in that it is

characterized by tiny packet size and periodicity.

The periodicity is caused by the periodic update of

global events at a frequency of once every several

minutes. They further indicate that for each con-

nection, the bandwidth needed is 7 Kbps at the

server side, on average. However, considering the

huge number of simultaneous players, the total

bandwidth required for the MMORPG server side is

very considerable. This study, also of a TCP-based

large-size MMORPG, found that the bandwidth

required at the server side showed a strong linear

relationship with the number of simultaneous play-

ers. Server CPU usage can also be calculated, given

the number of simultaneous players.

Although we obtained results which were compat-

ible with previous studies, our study differed from

them in focusing on the relationship between the

number of simultaneous players and required

system resource levels rather than on building a

network traffic model. The main assumption of our

study is that there should be a stable and predictable

model for that relationship in the long term although

there are bursts of small packets from time to time.

Part of the proof for this assumption comes from the

design philosophy of MMORPGs. An attempt is

typically made to design MMORPGs in a balanced

manner; that is, different kinds of actions available

to players in the game should keep some sort of

balance in resource allocation. Furthermore,

although server broadcasts for global events (e.g.,

new map, non-player character (NPC), update) are

periodically conducted, we argue that in a large

game world each game server takes care of the

global events on the portion of the game world

assigned to it, and each game server could use a

different frequency of broadcast. Hence, the traffic

for the whole game world would not show a

periodicity property, due to the diversity of global

events. Our experiment strongly supported this.

Finally, all previous studies indicated that game

traffic is predictable.
16–19

Although a network traffic

model and its analysis are very important for

understanding the impact of MMOG traffic on the

Internet, our study is meaningful for game service

providers in the context of resource planning and

management at runtime. Some of the results reported

in this paper were published in Reference 20.

The remainder of the paper is organized as follows.

The next section briefly reviews two popular game

world organization schemas for MMORPGs. The

third section illustrates the model used for MMORPG

system performance modeling in this paper. Ex-

periments and data analysis on two MMORPG titles

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 YE AND CHENG 47

are reported in the fourth section. Finally, we

conclude our discussion in the fifth section.

GAME WORLD ORGANIZATION IN MMORPGS

MMORPGs normally have a large game world,

supporting several thousand simultaneous players.

Figure 2 shows a typical multitiered client/server

architecture for MMORPGs. A proxy server farm

communicates with all players. Usually, a load-

balancing algorithm, such as ‘‘round robin,’’ is used

to select a proxy for a player who wants to join the

game. Frequently, a single game server cannot

handle all game events efficiently on such a large

scale, requiring the world to be divided into several

smaller parts which are served by a cluster of game

servers. Depending on whether the server process

boundaries are explicitly observable inside the

game, there are two types of architecture for

MMORPGs: the zoned architecture and the seamless

architecture.

The zoned architecture was pioneered by EverQuest.

In its original format, each zone runs its own

process on its own server and manages state in its

Figure 2
Typical multitiered client/server architecture for MMORPGs

Access Point

Action and
Response
Multiplexor
(Proxy)

Client

Message Dispatch

Game World

Client Account DatabaseAccount Management

Map Map Map Map

Chat

Game
Server

Internet Connection

Player
Action

A.I.

YE AND CHENG IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200648

own memory space. Later, this design was improved

to allow a unique process to manage all zones on a

single game server but keep each zone independent

by mapping between zones and physical game

servers with a static process and using configuration

files.

The first step for a client in playing such a game is to

log on to a login server. Once authenticated, the

client is instructed to disconnect from the login

server and to connect to a ‘‘starting zone’’ server (for

a new player), or to the last zone server to which the

player was connected (for a returning player). When

the player switches to a different zone, the client is

again instructed to drop the current connection and

connect to the new zone server. Each zone has a

limit on how many users it will allow to connect at

once. When that limit is reached, the zone is ‘‘full’’

and will not allow new players in until a current

player leaves. This puts an absolute cap on the

number of users this model can support. To deal

with this problem, Sony introduced the concept of a

shard. Each shard is a duplicated instance of the

whole game world. By replicating shards, an

MMORPG can theoretically serve an unlimited

number of players. Most current MMORPGs adopt a

zone architecture and a solution utilizing shards.

Such a solution has some limitations. Separating

players into separate shards limits their ability to

interact. Because players are split first by zone and

then by shard, players on different zones of the

same shard can only engage in limited interaction,

such as text chatting, while players in different

shards have no chance to meet each other. This

solution also causes abnormal interruption of game

playing when the player switches to a ‘‘full’’ zone,

and at the moment when he or she disconnects from

the previous zone, the player cannot connect to the

new zone. In this case, the player may lose his or her

status in the game unless it is written to external

storage.

In addition, the non-Gaussian distribution of players

on each zone causes some zone servers to be

overloaded while others are idle,
21

thus inefficiently

utilizing processors. Due to the static bundle of zone

and game servers, it is impossible to address this

problem at runtime, so resources are wasted and

operation costs are increased. Reliability problems

can also be caused if players have to wait for the

entire shard to be recovered whenever a server in

the cluster breaks down or a game process crashes.

To address the limitations of the ‘‘zoned plus shard’’

solution, the seamless architecture was developed. A

seamless game world is one in which a player may

be unknowingly interacting with objects that are

actually being controlled by multiple game processes

or servers. There is no perceivable difference from

the player’s viewpoint. Like the zoned architecture,

the game world is divided into several small pieces

and managed by a cluster of game servers. The

major difference is that in a seamless architecture

game servers need to collaborate with each other to

process the game events that have impact across

process boundaries and update the status of influ-

enced avatars properly. Process boundaries become

dynamically changeable to balance the load on each

server in the game server cluster. Some designs even

go a step further to include some utility-computing

features, such as dynamic server provisioning and

deprovisioning for the server cluster.
21–23

The major advantages of a seamless game world lie

in the larger contiguous game world that is

enabled. This leads to a more immersive environ-

ment for players and increases the flexibility of

game design. Load balancing at runtime increases

the scalability of the whole system. At runtime,

game processing load can be moved from either

failed servers or crashed game processes to other

servers. The major disadvantage is that this

architecture adds complexity to many aspects of

game design and implementation. For example,

players’ interaction across servers has to be

implemented asynchronously (e.g., using message

passing or shared memory). Middleware is being

developed to solve this problem and simplify such

implementations.
21–24

A MODEL FOR MMORPG SYSTEM PERFORMANCE

Because most MMORPGs operate in client/server

mode, two performance metrics, network and server

performance, are of interest. These metrics relate to

the major cost factors of a game’s hosting infra-

structure—bandwidth and computing power.

Network traffic in MMORPGs
Game traffic includes traffic related to game logic

and to ancillary functions. Each of these traffic types

is comprised of an incoming part and an outgoing

part. Normally, updates of a player’s status are sent

not only to the player but to all other players whose

‘‘area of interest’’ (AOI) includes that player.
25

The

AOI of a player represents the scope of that player’s

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 YE AND CHENG 49

perceptions in the game world, according to the

game design. Most MMORPGs allow players to chat

by using text messages. Accordingly, our network

traffic model consists of three parts: the output

traffic model, the input traffic model, and chat

messages.

Output traffic model

In MMORPGs, unlike normal Web applications, the

server-side processing is based on ‘‘rounds,’’ that is,

the players take turns in controlling the game world.

Each round may last several hundred milliseconds.

The incoming requests from clients are first put in

an incoming queue. In each processing round, the

game server iteratively picks up requests in

sequence from the incoming queue, processes them,

and puts the outgoing messages (updates) in

another queue, the outgoing queue. Finally, the

updates in the outgoing queue are sent to interested

clients in a burst at the end of each round. It is worth

noting that even if a client does not have any update

for itself, the game server may still send it updates

about those players in its AOI as well as regular

synchronous packets to maintain the connection.

Therefore, the rate of updates is roughly propor-

tional to the number of players in the AOI.

Based on this sequence of events, the output

message traffic model can be described by:

NOutðtÞ ¼ ln 3nðtÞ ð1Þ

where n(t) is the number of concurrent players at

time t, and l
n
is the message size coefficient.

Input traffic model

The dominant part of all incoming traffic is the

requests from connected clients to perform some

action in the game, such as moving, fighting, or

chatting. Chatting is discussed in the next sub-

section. Another part of the incoming traffic is

composed of synchronous packets for purposes of

connection maintenance, which are either ‘‘heart-

beat’’ messages sent by the client when the player

does not take any action for a specific period, or

acknowledgement packets responding to a game

server’s query. Because connection maintenance is

necessary only for inactive players who comprise a

small part of all players, we can roughly estimate

that input traffic is proportional to the number of

players and the heartbeat rate. Nonetheless, as

pointed out in Reference 19, the actions of players

are often successive and bursty and exhibit temporal

locality. A more accurate model for input traffic

requires detailed study of the behavior of game

players; our simplified treatment is open to debate,

and we will discuss it further in the next section.

Our input traffic model can be described as:

NInðtÞ ¼ gAction 3nðtÞ þ hn 3nðtÞ: ð2Þ

g
Action

is a coefficient based on action messages,

which are related to the player’s action style and

distribution, and h
n
is the average heartbeat rate for

n players.

Chat messages

Chatting by using text messages is the most popular

collaboration mechanism for players in MMORPGs.

New types of collaboration mechanism are emerg-

ing, such as voice chat. Chat messages could be

treated as a kind of action message by the game

server or could be dispatched by a dedicated chat

server. In either case, chat messages fall into one of

three categories:

1. Peer-to-peer messages—A player sends messages

to another player. The traffic caused by such

messages can be described by Equation 3, where

] is the message size coefficient.

NP2PðtÞ ¼]3nðtÞ: ð3Þ

2. Broadcast messages—A player broadcasts mes-

sages to all the other players. It is obvious that

the traffic caused by a single broadcast message is

proportional to the number of concurrent players:

one incoming message and n(t) � 1 outgoing

messages. Hence the entire traffic caused by

broadcast chatting is proportional to the square of

the number of concurrent players, where b is the

message size coefficient.

NBroadcastðtÞ ¼ b3nðtÞ2: ð4Þ

3. Multicast chat messages—A player sends mes-

sages to a group of players. Because the size of

the group is relatively small, the model can be

simplified to Equation 3, resulting in

NChat ¼ NP2P þ NBroadcast:

Putting all of these factors together, we have:

NðtÞ ¼ NOutðtÞ þ NInðtÞ þ NChatðtÞ: ð5Þ

As mentioned in the last section, both incoming

traffic and chat traffic depend on the behavior of

players. For example, when players fight each other

YE AND CHENG IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200650

or nonplayer characters in a battlefield, the coef-

ficient in Equation 2 is fairly high. However,

according to the design philosophy of MMORPGs, a

good game should be a balanced one, that is, one in

which the different kinds of action available keep

some sort of balance. In our case, we noticed that

large-scale battlefields are the territories of senior

players who are more powerful, whereas junior

players, who make up the largest portion of the

population, are busy self-training individually or

playing in small groups to improve their skills.

Hence, we can roughly assume that each individual

player’s behavior is independent of that of the other

players in this study. Furthermore, as we discussed

in the introduction, the traffic for a game shard does

not show an apparent periodicity property due to the

diversity of global-event update frequency. Thus,

from the overall game world and statistic perspec-

tive, the user-behavior-related coefficients g
Action

and] should be constant. This allows the traffic

model in MMORPG to be simplified to:

NðtÞ ¼ NOutðtÞ þ NInðtÞ þ NChatðtÞ

¼ ðln þ gAction þ hn þ]Þ3nðtÞ þ b3nðtÞ2

¼ uk 3nðtÞ þ b3nðtÞ2; ð6Þ

where uk and b are the coefficients which should be

constant at the game shard level. Equation 6 could

be further simplified if the traffic caused by broad-

cast chat is small and thus negligible to:

NðtÞ ¼ NOutðtÞ þ NInðtÞ þ NChatðtÞ

¼ uk 3nðtÞ þ b3nðtÞ2

’uk 3nðtÞ: ð7Þ

Thus, network traffic can be modeled by the number

of concurrent players.

Server performance in MMORPGs
It is well known that in traditional Web applications,

server performance can be modeled by the arrival

rate.
26

For most Internet applications, this model

can be expressed as a linear function:

UðtÞ ¼ kðtÞ � uk þ b; ð8Þ

where U(t) is the resource utilization rate, k(t) is the
arrival rate at time t, usually defined as the number

of requests from clients, b stands for the server

resources used by the functions deployed at the

server side that are not related to any requests, and

uk is the resource utilization rate for one request. In

our study, b and uk represent the CPU usage rate of

the game servers.

Although the pattern of MMORPG network traffic is

quite different from that of Web applications,

Equation 8 can be used to determine the resource

utilization rate at the server side for the following

reasons. First, the design of game servers follows the

producer-consumer pattern in which incoming

requests from clients are first put into the incoming

queue, and in each round of processing, the game

server iteratively picks up requests in sequence from

the incoming queue and processes them. Whereas in

a given processing round the number of incoming

requests could differ from the number of processed

requests (e.g., in the statistically unlikely event of

queue overflow), under normal conditions the game

server should process all requests. Second, as

shown in Equation 2, the incoming requests are

proportional to the number of players, and thus the

arrival rate of incoming messages can be repre-

sented by the number of concurrent players.

Another factor that would undermine the linear

relationship between server performance and num-

ber of concurrent players is the load-balancing

algorithm. The number of concurrent players is

defined as the number of players in an entire game

world, and these players are distributed to each

proxy server and game server by the load balancer.

If we tokenize the number of players on each game

server as ki
gðtÞ; and the number of players on each

proxy server as ki
pðtÞ; we get the total number of

players at time t:

kðtÞ ¼
XN

i¼1

ki
gðtÞ ¼

XN

i¼1

ki
pðtÞ; ð9Þ

where k(t) is the total number of players at time t

and N is the total number of game servers. Because

the number of proxy servers is the same as the

number of game servers, the total number of proxy

servers is also N. In the game system that we

analyzed, N ¼ 4. Therefore, a point that needs to be

considered is: How does the load balancer distribute

the players to each server? If the load balancer

distributes the players to each server randomly, it

cannot be guaranteed that the data will exhibit a

linear relationship, even if each of them follows

Equation 10, where ki
gðtÞ is the number of players on

game server i at time t, U(t)
i
is the resource

utilization rate of server i, b
i
indicates the server

resources used by the functions deployed at the

server side that are not related to any requests, and

uki
is the resource utilization rate used by one

request of server i:

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 YE AND CHENG 51

kiðtÞ ¼ UðtÞi=uki � bi=uki: ð10Þ

We define a load balancer to be proportion-

consistent if the algorithm used by it dispatches the

traffic to each resource proportionally and the

proportion does not change over time. Using this

definition, we can state that if each server’s

performance has a linear relationship to the number

of players on this server and the load balancer is

proportion-consistent, then every server’s perfor-

mance also has a linear relationship with the

number of players in the entire game world. Because

the proof of this is straightforward, it is omitted

here. The load balancer in our system uses a WRR

(weighted round robin) algorithm to dispatch the

players, so it is clearly proportion-consistent.

EXPERIMENTS AND ANALYSIS

In this section, we present our experimental and

analytical results for a zoned MMORPG and a

seamless MMORPG.

Experimental results for a zoned MMORPG

A zoned MMORPG game, which is one of the most

popular titles in China, was analyzed by using the

model described in the previous section. In this

game, players were indirectly connected to game

servers through proxy servers. In each shard, there

were four proxy servers that had full connections to

four game servers. The configuration of a shard was

composed of four proxy servers and four game

servers. Every server had a Pentium** 4 1.8Hz CPU,

2 GB of RAM, and ran Windows 2000**. A ‘‘sniffer’’

was attached to the network to track all network

traffic. Each shard had an Internet connection with a

bandwidth of 32Mb.

Network traffic in a zoned MMORPG

In order to analyze network performance, a heavily

loaded shard was selected for monitoring, having a

number of concurrent players which varied from

1500 to 2500. By associating it with the number of

concurrent players calculated from the log informa-

tion in the database, their interrelationship could be

found. First, a linear model was evaluated by

calculating the linear correlation coefficient Cov

between the number of concurrent players and the

network traffic, according to Equation 11,

Cov½nðtÞ;NðtÞ�

¼
X

½nðtÞ � EðnðtÞÞ� � ½NðtÞ � EðNðtÞÞ�f g
ffi
D½nðtÞ� D½NðtÞ�

p ; ð11Þ

in which DðxÞ ¼ m �
P

ðx2Þ � ð
P

xÞ2 and m is the

number of data points.

Next, a robust regression algorithm was used to

obtain the parameter uk in Equation 7. The two

curves N(t) and n(t) � uk could then be plotted

together and compared. A detailed discussion of the

algorithm used can be found in Reference 27.

Two network traffic metrics were analyzed: bytes

per second and packets per second. Table 1 shows

the results, a strong linear relationship between

these metrics. Cov is the correlation coefficient

calculated according to Equation 11, and uk is the

parameter in Equation 7 estimated by the robust

regression algorithm.

Figure 3 shows the robust regression results. The x-

axis represents time, using a sample rate of 30

minutes. The dark purple line is the concurrent

player number, and the green line is mapped from the

packet traffic to the concurrent player number as

m
p
(t) � 0.132, where m

p
(t) is the packet traffic.

Similarly, the red line is mapped from the byte traffic

to the number of concurrent players asm
b
(t) � 0.0014,

where m
b
(t) is the byte traffic.

Although network traffic fluctuated significantly, its

relationship with the number of concurrent players

strongly followed Equation 7.

Server performance in a zoned MMORPG

In order to evaluate the server performance model,

the Windows** Performance Monitor was used to

record the CPU utilization of the related game

processes every 5 seconds. These results were then

summed to obtain the entire utilization on each

server.

Two metrics, server performance and number of

players, were analyzed (with a sample rate of one

hour to smooth out disturbances), and the server

performance was averaged during the interval. The

procedure was similar to that of the network traffic

Table 1 Linear relationship and parameters of

network traffic and number of concurrent players

Metric name Cov uk 1/uk

Bytes per second 0.8834 714.29 0.0014
Packets per second 0.8459 7.57 0.1321

YE AND CHENG IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200652

analysis: first, a correlation value Cov(k(t),U(t))
between CPU utilization and number of concurrent

players was calculated; next, the robust regression

algorithm was used to find the parameters of

Equation 12, which is a transformation of Equation

8, in order to plot the lines in the same figure:

kðtÞ ¼ UðtÞ=uk � b=uk: ð12Þ

In this equation, U(t) the server performance, uk

represents the server’s CPU utilization cost per

player, and b represents the resources consumed by

non-game-related processes or daemons. As in

Equation 8, b and uk are the coordinates of the CPU

usage rate of game servers. Once U(t) is obtained,

the number of concurrent players k(t) can be

calculated by performing integration (see Equation

12).

Table 2 summarizes the results, which show that

almost all of the servers have a strong linear

relationship with the number of concurrent players

except game server 4. Figure 4 plots the robust

regression result of the servers. It can be seen that

although the correlation coefficient of game server 4

is 0.3491, its server performance still fits Equation 8

very well. If some outlying points, less than 5

percent of the original data set, are removed, game

server 4 also exhibits a high linear relationship with

the concurrent player number with a correlation

value of 0.6731.

Because each game server is associated with some

zones of the game world, the number of players on

each server is equal to the number of players on

those zones in the server. Therefore, whether the

load-balancing algorithm for the game server is

proportion-consistent is decided by the geographical

distribution of players. This is why the correlation

coefficients of game servers are poorer than those of

proxy servers (see Table 2). On the other hand, if

every server followed Equation 10, the number of

concurrent players for the entire game world would

follow Equation 13. Table 3 shows the results for

the entire game world. Cov(k0, k) indicates that the

linear relationship is improved (see the brown line

in Figure 4).

kðtÞ0 ¼
X4

i¼1

UðtÞi=uki �
X4

i¼1

bi=uki ð13Þ

Experimental results for a seamless MMORPG
To evaluate our performance model with a seamless

MMORPG, an open-source MMORPG game, Cross-

Fire,
28

was selected and modified with our

MMORPG middleware.
22

It then had most of the

Figure 3
Robust regression results for network traffic and number of concurrent players

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300
Time (in 30-minute units)

N
um

be
r o

f C
on

cu
rre

nt
 P

la
ye

rs

Number of Concurrent Players
Bytes
Packets

Table 2 Server performance vs number of concurrent

players using robust regression algorithm to esti-

mate parameters of Equation 8

Server ID Cov 1/uk �b/uk

Game server 1 0.648 39.4 �2561.1
Game server 2 0.6258 45.7 �2827.2
Game server 3 0.6049 9.388 698.44
Game server 4 0.3491 76.7 �6599

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 YE AND CHENG 53

features of a seamless MMORPG, including a

contiguous game world and runtime load balancer.

With the code of CrossFire in hand, more probes

were set to capture further information, such as the

CPU utilization rate of each game server, number of

players, network data flow, and so forth. To

compare it with the zoned game, we adopted a

similar infrastructure deployment schema, including

four game servers and one proxy server. Each server

used the Red Hat** 9.0 operating system, a 2.8 GHz

CPU, and 512 MB of RAM. A simulation ‘‘robot’’ was

developed for the client side of CrossFire to simulate

the online game player’s behavior, such as walking

and fighting with other players. The robot connected

to the game servers indirectly through the proxy.

Server performance in a seamless MMORPG

In order to evaluate the server performance model,

the CPU utilization of the related game processes

was logged every 1 second; these results were then

summed to obtain the entire utilization, as we did

for the zoned MMORPG.

According to Equation 11, the linear model was

evaluated by calculating the correlation coefficient

between the number of players and CPU utilization.

Then the regression algorithm was used to find the

parameters of Equation 12.

Figure 5 shows the relationship between the

number of concurrent players and CPU utilization

for all four game servers. Unlike the previous

experiment on zoned MMORPGs, we can obtain

each server’s number of players and CPU in this case

and display them separately. Because the simulation

robot keeps adding avatars into the game world, in

the following figures the number of players is

always increasing during the test period. From these

figures, a strong linear relationship between the

number of concurrent players and the CPU utiliza-

tion can be clearly seen. Table 4 summarizes the

results, which show that all of the servers have a

strong linear relationship with the number of

concurrent players.

We also summed the total number of players for the

four game servers and evaluated the relationship

between the total number of players and CPU

utilization. We found that they exhibited a strong

linear relationship as well, with a relationship

coefficient of 0.9907.

Figure 4
Linear relationship between server performance and number of concurrent players

N
um

be
r o

f C
on

cu
rre

nt
 P

la
ye

rs

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30 35 40

Number of Concurrent Players
Game Server 1
Game Server 2

Time (in hours)

Game Server 3
Game Server 4
Integrated Function

Table 3 Linear relationship between the integrated results and the number of concurrent players

Server group Cov(k, k0) 1/uk1 1/uk2 1/uk3 1/uk4
�
X4

i¼1

bi=uki

Game servers 0.81 32.8 10.4 6.9 19 �1554.9

YE AND CHENG IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200654

Figure 5
CPU utilization vs number of concurrent players for four game servers

0

1

2

3

4

5

6

7

8
9

0 10 20 30 40 50 60 70
Number of Concurrent Players

C
PU

 U
til

iz
at

io
n

0

5

10

15

20

25

0 50 100 150 200 250 300
Number of Concurrent Players

C
PU

 U
til

iz
at

io
n

0

1

2

3

4

5

6

7

8
9

Number of Concurrent Players

C
PU

 U
til

iz
at

io
n

0 10 20 30 40 50 60 70 80

C
PU

 U
til

iz
at

io
n

0

5

15

10

20

25

0 50 100 150 200 250
Number of Concurrent Players

Game Server 1

Game Server 2

Game Server 3

Game Server 4

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 YE AND CHENG 55

In order to analyze the impact on the performance of

agents, we also compared the total number of

players and agents with CPU utilization. Table 5

shows the results. Comparing Tables 4 and 5, we

can see that the linear relationship between the

number of players and CPU utilization is a little

stronger than the relationship between the CPU

utilization and the total number of players and

agents. We can thus conclude that the number of

players is a good parameter with which to model the

server’s performance.

Network traffic in a seamless MMORPG

Another important performance metric is network

traffic. Two network traffic metrics were analyzed:

the input traffic, which is the traffic from the

simulation robot to the game server (e.g., the

player’s commands); and the output traffic, which is

the data flow from the game server to the robot (e.g.,

the game server’s update messages to the client). As

was the case for the zoned experiments, traffic was

divided into bytes per second and packets per

second. Figure 6 shows the relationship between

the number of concurrent players and the number of

input packets, input bytes, output packets, and

output bytes. From the figure, we can see that the

network traffic’s relationship with the number of

concurrent players strongly follows Equation 7.

Table 4 Server performance and number of con-

current players

Server ID Cov 1/uk �b/uk

Game server 1 0.9573 9.5329 �40.2860
Game server 2 0.9786 10.1730 6.2004
Game server 3 0.9834 8.1566 1.5212
Game server 4 0.9851 13.2100 �25.4584
Total Number of
Concurrent Players 0.9907 10.8225 �48.5844

Table 5 Server performance and number of con-

current players and agents

Server ID Cov 1/uk �b/uk

Game server 1 0.9567 11.6822 �42.1659
Game server 2 0.9594 15.0376 5.0075
Game server 3 0.9649 11.4025 �2.6249
Game server 4 0.9819 15.4083 �33.0385
Total 0.9877 13.5501 �61.0840

0

50

100

150

200

250

300

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289 307 325
Time (in minutes)

N
um

be
r o

f C
on

cu
rre

nt
 P

la
ye

rs

Figure 6
Network traffic vs number of concurrent players for Server 1

Number of Concurrent Players

Mapped function of Input Packets

Mapped function of Input Bytes

Mapped function of Output Packets

Mapped function of Output Bytes

YE AND CHENG IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200656

Table 6 shows the results for all four game servers,

indicating a strong linear relationship between

them. Cov is the correlation coefficient calculated

according to Equation 11, and uk is the parameter in

Equation 7 estimated by the regression algorithm.

As before, in order to analyze the impact on agent

performance, we compared the total number of

players and agents with network performance.

Table 7 shows the results.

From Tables 6 and 7, we can see that there is a

stronger linear relationship between the number of

players and the CPU utilization than pertains for

the total number of players and agents. We can

conclude from this that the number of players is a

good parameter with which to model the server

performance.

SUMMARY AND FUTURE WORK

This study has proposed a performance model for

MMORPGs. By evaluating two MMORPGs with

different game-world organization mechanisms, we

demonstrated that the performance metrics at the

server side have a strong linear relationship with

the number of concurrent players. The results

make it is easy and straightforward for MMORPG

service providers to predict resource requirements

for their gaming infrastructure at runtime in an

automated way. Though the scope of our study

was limited to two MMORPGs, we believe the

results can be generalized to other MMORPGs with

similar themes and styles.

As mentioned in our discussion, game design and

player behavior have significant impact on the

traffic model and resource usage model at the

server end. As the MMORPG is quickly evolving in

terms of adopting features of other game genres,

the game system will definitely become more

complicated, as will the behavior of players. In our

future work, we plan further study of the changes

taking place in both the design pattern of

MMORPGs and user behavior and the development

of a more accurate model for the purposes of

prediction.

ACKNOWLEDGMENTS
The authors would like to thank Sheng Lu for his

valuable comments in the discussion of this paper’s

topics, and Liqin Shen, Ling Shao, and Jun Liu for

their assistance and encouragement in this study. The

authors also acknowledge the anonymous reviewers

for their constructive criticism.

**Trademark, service mark, or registered trademark of
Microsoft Corporation, Sony Computer Entertainment, Inc.,
GameSpy Industries, Inc., Intel Corporation, Id Software, Inc.,
Valve Corporation, NCsoft Corporation, Blizzard Entertain-
ment, Inc., or Red Hat, Inc. in the United States, other
countries, or both.

Table 6 Linear relationship and parameters of network traffic and the number of concurrent players for (a)

Server 1; (b) Server 2; (c) Server 3; and (d) Server 4.

(a) Server 1 Cov uk (b) Server 2 Cov uk

Input packets 0.9331 1.4758 Input packets 0.9546 1.4213
Input bytes 0.9299 24.273 Input bytes 0.9544 14.589
Output packets 0.9504 21.377 Output packets 0.9556 23.438
Output bytes 0.9283 770.74 Output bytes 0.8765 654.62

(c) Server 3 Cov uk (d) Server 4 Cov uk

Input packets 0.9681 1.4308 Input packets 0.9723 1.3736
Input bytes 0.9686 23.619 Input bytes 0.99723 22.655
Output packets 0.9685 18.481 Output packets 0.9613 25.16
Output bytes 0.9226 884.45 Output bytes 0.9719 639.42

Table 7 Network traffic and total number of players

and agents

Server ID
Input
packets

Input
bytes

Output
packets

Output
bytes

Game server 1 0.9275 0.9243 0.9452 0.9247
Game server 2 0.9421 0.9423 0.9455 0.8692
Game server 3 0.9531 0.9536 0.9551 0.9165
Game server 4 0.9703 0.9702 0.9595 0.9712

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 YE AND CHENG 57

CITED REFERENCES
1. US Online PC Gaming 2004–2008 Forecast and Analysis:

Growth Continues, International Data Corp. (IDC) (De-
cember 2004), http://www.idc.com/getdoc.
jsp?containerId¼32473.

2. T. Iimura, H. Hazeyama, and Y. Kadobayashi, ‘‘Zoned
Federation of Game Servers: A Peer-to-Peer Approach to
Scalable Multi-player Online Games,’’ Proceedings of
ACM SIGCOMM 2004 Workshops on NetGames ‘04, ACM
Press, New York (2004), pp. 116–120, http://portal.acm.
org/citation.cfm?id¼1016549&coll¼GUIDE&dl¼
GUIDE&CFID¼52856997&CFTOKEN¼73726409.

3. P. Rosedale and C. Ondrejka, ‘‘Enabling Player-Created
Online Worlds with Grid Computing and Streaming’’
(September 2003), http://www.gamasutra.com/
resource_guide/20030916/rosedale_01.shtml.

4. Id Software, http://www.idsoftware.com/.

5. Valve Corporation, http://www.valvesoftware.com/.

6. B. S. Woodcock, ‘‘An Analysis of MMOG Subscription
Growth–Version 18.0,’’ MMOGCHART.COM online pub-
lication (October 2005), http://www.mmogchart.com/.

7. Welcome to Station.com, Sony Online Entertainment
(SOE), http://www.station.sony.com/en/.

8. NcSoft Corporation, http://www.ncsoft.com/eng/index.
asp.

9. Blizzard Entertainment, http://www.blizzard.com/.

10. On Demand Business, IBM Corporation, http://www.
ibm.com/ondemand.

11. HP Utility Data Center: Enabling Enhanced Data Center
Agility, International Data Corp. (IDC) (May 2003),
http://www.hp.com/large/globalsolutions/ae/pdfs/
udc_enabling.pdf.

12. N1e Grid Technology—Just In Time Computing, Sun
Microsystems (2003), http://www.sun.com/software/
solutions/n1/wp-n1.pdf

13. A. Shaikh, S. Sahu, M. Rosu, M. Shea, and D. Saha,
‘‘Implementation of a Service Platform for Online
Games,’’ Proceedings of ACM SIGCOMM 2004 Workshops
on NetGames ‘04, ACM Press, New York (2004), pp. 106–
110.

14. IBM Tivoli Intelligent Orchestrator, IBM Corporation
(2004), http://www-306.ibm.com/software/tivoli/
products/intell-orch.

15. S. McCreary and K. Claffy, ‘‘Trends in Wide Area IP
Traffic Patterns: A View from Ames Internet Exchange,’’
Proceedings of 13th ITC Specialist Seminar on IP Traffic
Measurement, Modeling, and Management (2000),
http://www.caida.org/outreach/papers/2000/AIX0005/.

16. M. S. Borella, J. Farber, W. Feng, and K. Chen, ‘‘Source
Models of Network Game Traffic,’’ Computer Communi-
cations, 23, No. 4, 403–410 (February 2000).

17. J. Farber, ‘‘Network Game Traffic Modelling,’’ Proceedings
of the First Workshop on Network and System Support for
Games, ACM Press, New York (2002), pp. 53–57.

18. W. C. Feng, F. Chang, W. C. Feng, and J. Walpole, ‘‘A
Traffic Characterization of Popular On-line Games,’’
IEEE/ACM Transactions on Networking 13, No. 3, 151–
156 (June 2005).

19. K. Chen, P. Huang, C.-Y. Huang, and C.-L. Lei, ‘‘Game
Traffic Analysis: An MMORPG Perspective,’’ Proceedings
of the International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV),
pp. 19–24 (2005).

20. G. Huang, M. Ye, and L. Cheng, ‘‘Modeling System
Performance in MMORPGs,’’ Proceedings of the 1st IEEE
International Workshop on Networking Issues in Multi-
media Entertainment NIME’04 at IEEE GlobeCom (2004),
pp. 512–518, http://huang_gao.nease.net/research/
msp_mmorrg.pdf.

21. Sun Game Server Technology: An Executive Overview, Sun
Microsystems (June 2004), http://developers.sun.com/
techtopics/gametech/reference/docs/
simserverwp052604.pdf.

22. M. Ye and L. Cheng, iMMOG Design Report, IBM China
Research Lab (2004).

23. BigWorld Technology (2004), http://www.bigworldtech.
com/introduction.php.

24. Product Review: Massively Multiplayer Online Game
Middleware, Gamasutra (January 2003), http://www.
gamasutra.com/features/20030115/ferguson_01.htm.

25. J. Smed, T. Kaukoranta, and H. Hakonen, A Review on
Networking and Multiplayer Computer Games, Technical
Report 454, University of Turku Centre for Computer
Science (2002), http://staff.cs.utu.fi/staff/jouni.smed/
papers/TR454.pdf.

26. D. A. Menascé and V. A. F. Almeida, Capacity Planning
for Web Performance: Metrics, Models, & Methods,
Prentice Hall PTR, Upper Saddle River, NJ (1998).

27. P. J. Rousseeuw and A. M. Leroy, Robust Regression and
Outlier Detection, John Wiley & Sons, Hoboken, NJ
(1987).

28. CrossFire—The Multiplayer Adventure Game, Real Time
Enterprise Ltd., http://crossfire.real-time.com/.

Accepted for publication September 2, 2005.

Meng Ye
IBM Research Division, China Research Laboratory, Building
19, Zhongguancun Software Park, 8 Dongbeiwang West Road,
Haidan Dist., Beijing 100094, People’s Republic of China
(yemeng@cn.ibm.com). Mr. Ye is a research staff member in
the High Performance Computing group at IBM’s China
Research Laboratory. He received a B.S. degree in computer
software from Sichuan University, Chengdu, China in 1991, an
M.S. degree in computer science from Southwest Jiaotong
University, Chengdu, China in 1994, and an M.Phil. degree in
information systems from City University of Hong Kong in
1999. He worked for the Institute of Computing Technology of
the China Academy of Science before joining IBM in 1999.

Long Cheng
IBM Research Division, China Research Laboratory, Building
19, Zhongguancun Software Park, 8 Dongbeiwang West Road,
Haidan Dist., Beijing 100094, People’s Republic of China
(lcheng@cn.ibm.com). Mr. Cheng is a research and
development engineer in the High Performance Computing
group at IBM’s China Research Laboratory. After receiving a
Ph.D. degree from NanKai University, TianJin, China in 2003,
he joined the IBM China Research Laboratory. &

YE AND CHENG IBM SYSTEMS JOURNAL, VOL 45, NO 1, 200658

Published online January 20, 2006.

