System-performance modeling
for massively multiplayer
online role-playing games

Massively multiplayer role-playing games (MMORPGs) are among the most popular
types of online game. A successful title may have tens of thousands or even millions of
subscribers and, at any given time, may have thousands of players online. This paper
presents a method for modeling MMORPG system performance and applies it in an

M. Ye
L. Cheng

analysis of two real MMORPGs. The results show that a strong linear relationship exists
between performance metrics at the server side and the number of concurrent players

online. As a result, utilization of IT resources, including network traffic and server load,
can be predicted, given the number of concurrent players. The performance model
presented here can be used for automated IT resource allocation at runtime and is
thus useful in the context of utility computing and on demand systems.

INTRODUCTION

Online games are the trend of the day. Online game
services such as PlayStation** online, Xbox** Live,
GameSpy** Arcade, and other independent PC-
based services are becoming increasingly popular.
In their 2004 prediction, International Data Corpo-
ration (IDC) estimated industry revenue to reach
$656.3 million in 2004 and grow to over $2 billion
by 2008." Online games enable multiple players to
simultaneously interact in a “game world” to which
they connect over a network. Most online games
today follow a client/server model; research is
ongoing concerning the feasibility of other types of
architgcszture, such as peer-to-peer and grid architec-
tures.”

PC-based online games can be classified into two
subcategories—multiplayer online games (MOGs)
and massively multiplayer online games

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

(MMOGs)—based on the maximum number of
simultaneous players in a single game world.
Popular MMOGs might have thousands of players
online at any given time, usually exclusively on a
company-owned server. On the other hand, MOGs
usually have less than 50 players online and are
usually played on private servers. MOGs are
frequently adopted by fast-paced game genres like
first-person-shooter (FPS) games in which response
latency is the most critical factor, aside from game
content, in the game experience. Some examples of
FPS games are Doom,** Quake,** Half-Life,** and

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

YE AND CHENG

45

46

3250 . .
—e— Ultima Online*
3000 — Lineage*
—&— EverQuest™
5750 | —®— Dark Age of Camelot™
—&— RuneScape**
Final Fantasy XI**
2500 — .
A —m— Ragnarok Online (JP)**
= B, | Star Wars Galaxies*™
] g’ —&— Lineage Il
é —e— (ity of Heroes™ f/‘
= 2000 | —a— EverQuest Il =
> —m— World of Warcraft*
o 1750
o]
B
ERI500
wm
=
£ 1250
3
(o]
8 1000
'_
750
500
250
O | | -

S N PR N PP

$ 2 ¢ € < g ¢ < S
Y Y Y

I
g N D’» Dq, /Q’b ,049 ,0“ Dv
S E Y YYD

Reprinted with permission from B. S. Woodcock, An Analysis of MMOG Subscription Growth (May 2005)

**Trademark or registered trademark of their respective companies.

Figure 1
MMOG active subscriptions

Counter-Strike,”” which are session-based games in
which the goal is for a player’s alter ego to
accumulate successful “kills” against other players.
To support more players, MOGs can scale up by
horizontally replicating the game world without
coordination or synchronization between these
worlds.

The first and most popular type of MMOG is the
massively multiplayer online role-playing game
(MMORPG) genre, which can be traced to the
nongraphical online multiuser dungeon (MUD)
games of the 1970s and became popular in the late
1990s. Reference 6 estimates that MMORPGs hold a
95.5 percent share of the MMOG market. Some
examples of MMORPGs are EverQuest**, Lineage**,
and World of Warcraft**.””> MMORPGs are also
called persistent-state-world (PSW) or persistent-
world (PW) games because the game world is
normally hosted by a company and is always

YE AND CHENG

available, and world events happen continually,
even while some of the players are not playing their
character. Players may retain the same title for
several years. Popular MMORPG game titles have
large numbers of subscribers. Figure 1, based on
Reference 6, shows the statistics up to May 2005.

From the figure, we can see that subscriptions to the
same title vary over time. Such dynamics of
subscription bring challenges to gaming service
providers who traditionally install a dedicated
infrastructure for each title, due to the high risk of
over- and under-allocation of resources and poten-
tially poor resource utilization. This situation may
become worse, as the number of commercially
operated game titles has increased dramatically in
recent years.

A successful gaming service provider must be able
not only to satisfy its subscribers’ demand for high

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

quality and attractive game content but also to
reduce the risk of high investment in game hosting
infrastructure associated with the difficulty of
predicting the success of a new game title. The
utility computing model, (also called “on de-
mand,”"’ “utility data center,”' or “just in time
computing”lz) is believed to be the solution to this
problem from an infrastructure perspective. For
example, Shaikh et al. propose an on demand
service platform for hosting large-scale multiplayer
games.13 The key idea proposed is sharing IT
resources across multiple game titles or customers
by dynamically provisioning and deprovisioning
resources for a title or customer from a shared
resource pool.

A critical component for these solutions is the
provisioning manager, which is responsible for
resource provisioning and deprovisioning, such as
the IBM Tivoli Intelligent Orchestrator (TIO). The
TIO is an off-the-shelf product that automatically
deploys and configures servers, software, and net-
work devices in a data center environment.'* The
primary function of a provisioning manager is to
collect performance and availability metrics from
game servers, predict their trends, and decide how
to adjust resource allocation accordingly.

Many studies have been performed to understand
the online game traffic model and its impact on the
Internet. According to a study on backbone traffic,"
about 3-4 percent of the traffic is generated by six
popular online games. Borella'® tried to use extreme
distribution, exponential distribution, or determin-
istic models to model the packet inter-arrival time
and packet size of Quake, a popular FPS game.
Farber'’ found that the traffic for another FPS game,
Counter-Strike, follows Borella’s findings. Later,
Feng et al.'® analyzed a 500-million-packet trace of a
Counter-Strike server and performed a similar study
for three other FPS games. Their study indicated that
game traffic is highly predictable and is character-
ized by bursts of small packets.

Chen et al."” analyzed a 1,356-million-packet trace
of a TCP (Transmission Control Protocol)-based
midsize MMORPG, which normally runs at a slower
pace than FPS games. Their analysis of selected
connections revealed that the traffic model of
MMORPG games is similar to FPS games in that it is
characterized by tiny packet size and periodicity.
The periodicity is caused by the periodic update of
global events at a frequency of once every several
minutes. They further indicate that for each con-

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

nection, the bandwidth needed is 7 Kbps at the
server side, on average. However, considering the
huge number of simultaneous players, the total
bandwidth required for the MMORPG server side is
very considerable. This study, also of a TCP-based
large-size MMORPG, found that the bandwidth
required at the server side showed a strong linear
relationship with the number of simultaneous play-
ers. Server CPU usage can also be calculated, given
the number of simultaneous players.

Although we obtained results which were compat-
ible with previous studies, our study differed from
them in focusing on the relationship between the
number of simultaneous players and required
system resource levels rather than on building a
network traffic model. The main assumption of our
study is that there should be a stable and predictable
model for that relationship in the long term although
there are bursts of small packets from time to time.
Part of the proof for this assumption comes from the
design philosophy of MMORPGs. An attempt is
typically made to design MMORPGs in a balanced
manner; that is, different kinds of actions available
to players in the game should keep some sort of
balance in resource allocation. Furthermore,
although server broadcasts for global events (e.g.,
new map, non-player character (NPC), update) are
periodically conducted, we argue that in a large
game world each game server takes care of the
global events on the portion of the game world
assigned to it, and each game server could use a
different frequency of broadcast. Hence, the traffic
for the whole game world would not show a
periodicity property, due to the diversity of global
events. Our experiment strongly supported this.
Finally, all previous studies indicated that game
traffic is predictable.w19 Although a network traffic
model and its analysis are very important for
understanding the impact of MMOG traffic on the
Internet, our study is meaningful for game service
providers in the context of resource planning and
management at runtime. Some of the results reported
in this paper were published in Reference 20.

The remainder of the paper is organized as follows.
The next section briefly reviews two popular game
world organization schemas for MMORPGs. The
third section illustrates the model used for MMORPG
system performance modeling in this paper. Ex-
periments and data analysis on two MMORPG titles

YE AND CHENG

47

48

Client

Server

Action and
Response
Multiplexor
(Proxy)

Client

Figure 2

Typical multitiered client/server architecture for MMORPGs

Internet Connection

—

‘ Access Point

are reported in the fourth section. Finally, we
conclude our discussion in the fifth section.

GAME WORLD ORGANIZATION IN MMORPGS
MMORPGs normally have a large game world,
supporting several thousand simultaneous players.
Figure 2 shows a typical multitiered client/server
architecture for MMORPGSs. A proxy server farm
communicates with all players. Usually, a load-
balancing algorithm, such as “round robin,” is used
to select a proxy for a player who wants to join the
game. Frequently, a single game server cannot

YE AND CHENG

handle all game events efficiently on such a large
scale, requiring the world to be divided into several
smaller parts which are served by a cluster of game
servers. Depending on whether the server process
boundaries are explicitly observable inside the
game, there are two types of architecture for
MMORPGs: the zoned architecture and the seamless
architecture.

The zoned architecture was pioneered by EverQuest.

In its original format, each zone runs its own
process on its own server and manages state in its

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

own memory space. Later, this design was improved
to allow a unique process to manage all zones on a
single game server but keep each zone independent
by mapping between zones and physical game
servers with a static process and using configuration
files.

The first step for a client in playing such a game is to
log on to a login server. Once authenticated, the
client is instructed to disconnect from the login
server and to connect to a “starting zone” server (for
a new player), or to the last zone server to which the
player was connected (for a returning player). When
the player switches to a different zone, the client is
again instructed to drop the current connection and
connect to the new zone server. Each zone has a
limit on how many users it will allow to connect at
once. When that limit is reached, the zone is “full”
and will not allow new players in until a current
player leaves. This puts an absolute cap on the
number of users this model can support. To deal
with this problem, Sony introduced the concept of a
shard. Each shard is a duplicated instance of the
whole game world. By replicating shards, an
MMORPG can theoretically serve an unlimited
number of players. Most current MMORPGs adopt a
zone architecture and a solution utilizing shards.

Such a solution has some limitations. Separating
players into separate shards limits their ability to
interact. Because players are split first by zone and
then by shard, players on different zones of the
same shard can only engage in limited interaction,
such as text chatting, while players in different
shards have no chance to meet each other. This
solution also causes abnormal interruption of game
playing when the player switches to a “full” zone,
and at the moment when he or she disconnects from
the previous zone, the player cannot connect to the
new zone. In this case, the player may lose his or her
status in the game unless it is written to external
storage.

In addition, the non-Gaussian distribution of players
on each zone causes some zone servers to be
overloaded while others are idle,”’ thus inefficiently
utilizing processors. Due to the static bundle of zone
and game servers, it is impossible to address this
problem at runtime, so resources are wasted and
operation costs are increased. Reliability problems
can also be caused if players have to wait for the
entire shard to be recovered whenever a server in
the cluster breaks down or a game process crashes.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

To address the limitations of the “zoned plus shard”
solution, the seamless architecture was developed. A
seamless game world is one in which a player may
be unknowingly interacting with objects that are
actually being controlled by multiple game processes
or servers. There is no perceivable difference from
the player’s viewpoint. Like the zoned architecture,
the game world is divided into several small pieces
and managed by a cluster of game servers. The
major difference is that in a seamless architecture
game servers need to collaborate with each other to
process the game events that have impact across
process boundaries and update the status of influ-
enced avatars properly. Process boundaries become
dynamically changeable to balance the load on each
server in the game server cluster. Some designs even
go a step further to include some utility-computing
features, such as dynamic server provisioning and
deprovisioning for the server cluster.”' %

The major advantages of a seamless game world lie
in the larger contiguous game world that is
enabled. This leads to a more immersive environ-
ment for players and increases the flexibility of
game design. Load balancing at runtime increases
the scalability of the whole system. At runtime,
game processing load can be moved from either
failed servers or crashed game processes to other
servers. The major disadvantage is that this
architecture adds complexity to many aspects of
game design and implementation. For example,
players’ interaction across servers has to be
implemented asynchronously (e.g., using message
passing or shared memory). Middleware is being
developed to solve this problem and simplify such
implementations.”' ™*

A MODEL FOR MMORPG SYSTEM PERFORMANCE
Because most MMORPGs operate in client/server
mode, two performance metrics, network and server
performance, are of interest. These metrics relate to
the major cost factors of a game’s hosting infra-
structure—bandwidth and computing power.

Network traffic in MMORPGs

Game traffic includes traffic related to game logic
and to ancillary functions. Each of these traffic types
is comprised of an incoming part and an outgoing
part. Normally, updates of a player’s status are sent
not only to the player but to all other players whose
“area of interest” (AOI) includes that player.25 The
AOI of a player represents the scope of that player’s

YE AND CHENG

49

50

perceptions in the game world, according to the
game design. Most MMORPGs allow players to chat
by using text messages. Accordingly, our network
traffic model consists of three parts: the output
traffic model, the input traffic model, and chat
messages.

Output traffic model

In MMORPGs, unlike normal Web applications, the
server-side processing is based on “rounds,” that is,
the players take turns in controlling the game world.
Each round may last several hundred milliseconds.
The incoming requests from clients are first put in
an incoming queue. In each processing round, the
game server iteratively picks up requests in
sequence from the incoming queue, processes them,
and puts the outgoing messages (updates) in
another queue, the outgoing queue. Finally, the
updates in the outgoing queue are sent to interested
clients in a burst at the end of each round. It is worth
noting that even if a client does not have any update
for itself, the game server may still send it updates
about those players in its AOI as well as regular
synchronous packets to maintain the connection.
Therefore, the rate of updates is roughly propor-
tional to the number of players in the AOI.

Based on this sequence of events, the output
message traffic model can be described by:

Now (t) = p,, X n(t) (1)

where n(t) is the number of concurrent players at
time ¢, and p,, is the message size coefficient.

Input traffic model

The dominant part of all incoming traffic is the
requests from connected clients to perform some
action in the game, such as moving, fighting, or
chatting. Chatting is discussed in the next sub-
section. Another part of the incoming traffic is
composed of synchronous packets for purposes of
connection maintenance, which are either “heart-
beat” messages sent by the client when the player
does not take any action for a specific period, or
acknowledgement packets responding to a game
server’s query. Because connection maintenance is
necessary only for inactive players who comprise a
small part of all players, we can roughly estimate
that input traffic is proportional to the number of
players and the heartbeat rate. Nonetheless, as
pointed out in Reference 19, the actions of players
are often successive and bursty and exhibit temporal
locality. A more accurate model for input traffic

YE AND CHENG

requires detailed study of the behavior of game
players; our simplified treatment is open to debate,
and we will discuss it further in the next section.

Our input traffic model can be described as:
Nin(t) = Naction X 1(t) + hn X 0(2). ()

N pction 18 @ coefficient based on action messages,
which are related to the player’s action style and
distribution, and &, is the average heartbeat rate for
n players.

Chat messages

Chatting by using text messages is the most popular
collaboration mechanism for players in MMORPGs.
New types of collaboration mechanism are emerg-
ing, such as voice chat. Chat messages could be
treated as a kind of action message by the game
server or could be dispatched by a dedicated chat
server. In either case, chat messages fall into one of
three categories:

1. Peer-to-peer messages—A player sends messages
to another player. The traffic caused by such
messages can be described by Equation 3, where
d is the message size coefficient.

Npgp(t) =9 X n(t). (3)

2. Broadcast messages—A player broadcasts mes-
sages to all the other players. It is obvious that
the traffic caused by a single broadcast message is
proportional to the number of concurrent players:
one incoming message and n(t) — 1 outgoing
messages. Hence the entire traffic caused by
broadcast chatting is proportional to the square of
the number of concurrent players, where f is the
message size coefficient.

NBroadcast(t) = /3 X n(t)z- (4)

3. Multicast chat messages—A player sends mes-
sages to a group of players. Because the size of
the group is relatively small, the model can be
simplified to Equation 3, resulting in
Ncnat = Np2p + Nproadcast -

Putting all of these factors together, we have:
N(t) = Nou(t) + Np(t) + Nepar (1) (5)

As mentioned in the last section, both incoming
traffic and chat traffic depend on the behavior of
players. For example, when players fight each other

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

or nonplayer characters in a battlefield, the coef-
ficient in Equation 2 is fairly high. However,
according to the design philosophy of MMORPGs, a
good game should be a balanced one, that is, one in
which the different kinds of action available keep
some sort of balance. In our case, we noticed that
large-scale battlefields are the territories of senior
players who are more powerful, whereas junior
players, who make up the largest portion of the
population, are busy self-training individually or
playing in small groups to improve their skills.
Hence, we can roughly assume that each individual
player’s behavior is independent of that of the other
players in this study. Furthermore, as we discussed
in the introduction, the traffic for a game shard does
not show an apparent periodicity property due to the
diversity of global-event update frequency. Thus,
from the overall game world and statistic perspec-
tive, the user-behavior-related coefficients n,_ ;.
and 9 should be constant. This allows the traffic
model in MMORPG to be simplified to:

N(t) = Nowt(t) + Nin(t) + Nenar (t)
= (Hn + Naction +In +9) Xn(t) + X Tl(t)z
=@, Xn(t) + pXn(t), (6)

where ¢, and f are the coefficients which should be
constant at the game shard level. Equation 6 could
be further simplified if the traffic caused by broad-
cast chat is small and thus negligible to:

N(t) - NOut(t) + Nln(t) + NChat(t)
=, Xn(t)+ fxn(t)?
~ @; X n(t). (7)

Thus, network traffic can be modeled by the number
of concurrent players.

Server performance in MMORPGs

It is well known that in traditional Web applications,
server performance can be modeled by the arrival
rate.”® For most Internet applications, this model
can be expressed as a linear function:

U(t) = A(t) - u; + b, (8)

where U(t) is the resource utilization rate, A(t) is the
arrival rate at time t, usually defined as the number
of requests from clients, b stands for the server
resources used by the functions deployed at the
server side that are not related to any requests, and
u, is the resource utilization rate for one request. In
our study, b and u, represent the CPU usage rate of
the game servers.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Although the pattern of MMORPG network traffic is
quite different from that of Web applications,
Equation 8 can be used to determine the resource
utilization rate at the server side for the following
reasons. First, the design of game servers follows the
producer-consumer pattern in which incoming
requests from clients are first put into the incoming
queue, and in each round of processing, the game
server iteratively picks up requests in sequence from
the incoming queue and processes them. Whereas in
a given processing round the number of incoming
requests could differ from the number of processed
requests (e.g., in the statistically unlikely event of
queue overflow), under normal conditions the game
server should process all requests. Second, as
shown in Equation 2, the incoming requests are
proportional to the number of players, and thus the
arrival rate of incoming messages can be repre-
sented by the number of concurrent players.

Another factor that would undermine the linear
relationship between server performance and num-
ber of concurrent players is the load-balancing
algorithm. The number of concurrent players is
defined as the number of players in an entire game
world, and these players are distributed to each
proxy server and game server by the load balancer.
If we tokenize the number of players on each game
server as ié(t), and the number of players on each
Proxy server as)»fu(t), we get the total number of
players at time t:

N .
ZOEDIVACES

i=1

M=

Zp(8), 9)
1

where A(t) is the total number of players at time t
and N is the total number of game servers. Because
the number of proxy servers is the same as the
number of game servers, the total number of proxy
servers is also N. In the game system that we
analyzed, N = 4. Therefore, a point that needs to be
considered is: How does the load balancer distribute
the players to each server? If the load balancer
distributes the players to each server randomly, it
cannot be guaranteed that the data will exhibit a
linear relationship, even if each of them follows
Equation 10, where),é,(t) is the number of players on
game server [at time ¢, U(t), is the resource
utilization rate of server i, b, indicates the server
resources used by the functions deployed at the
server side that are not related to any requests, and
u, . is the resource utilization rate used by one
request of server i:

YE AND CHENG

51

52

Table 1 Linear relationship and parameters of
network traffic and number of concurrent players

Metric name Cov ?, 1/,

Bytes per second 0.8834 714.29 0.0014

Packets per second 0.8459 7.57 0.1321
A1) = U(t),/wz — b/ (10)

We define a load balancer to be proportion-
consistent if the algorithm used by it dispatches the
traffic to each resource proportionally and the
proportion does not change over time. Using this
definition, we can state that if each server’s
performance has a linear relationship to the number
of players on this server and the load balancer is
proportion-consistent, then every server’s perfor-
mance also has a linear relationship with the
number of players in the entire game world. Because
the proof of this is straightforward, it is omitted
here. The load balancer in our system uses a WRR
(weighted round robin) algorithm to dispatch the
players, so it is clearly proportion-consistent.

EXPERIMENTS AND ANALYSIS

In this section, we present our experimental and
analytical results for a zoned MMORPG and a
seamless MMORPG.

Experimental results for a zoned MMORPG

A zoned MMORPG game, which is one of the most
popular titles in China, was analyzed by using the
model described in the previous section. In this
game, players were indirectly connected to game
servers through proxy servers. In each shard, there
were four proxy servers that had full connections to
four game servers. The configuration of a shard was
composed of four proxy servers and four game
servers. Every server had a Pentium** 4 1.8Hz CPU,
2 GB of RAM, and ran Windows 2000**. A “sniffer”
was attached to the network to track all network
traffic. Each shard had an Internet connection with a
bandwidth of 32Mb.

Network traffic in a zoned MMORPG

In order to analyze network performance, a heavily
loaded shard was selected for monitoring, having a
number of concurrent players which varied from
1500 to 2500. By associating it with the number of
concurrent players calculated from the log informa-
tion in the database, their interrelationship could be

YE AND CHENG

found. First, a linear model was evaluated by
calculating the linear correlation coefficient Cov
between the number of concurrent players and the
network traffic, according to Equation 11,

Cov[n(t),N(t)]

_ D _{[n(e) = E(u(e))] - [N (1) — E(N(1)]} an
Din(t)] DIN(1)] ’
in which D(x) = m- Y (x?) — (3. x)* and m is the

number of data points.

Next, a robust regression algorithm was used to
obtain the parameter ¢, in Equation 7. The two
curves N(t) and n(t) - ¢ , could then be plotted
together and compared. A detailed discussion of the
algorithm used can be found in Reference 27.

Two network traffic metrics were analyzed: bytes
per second and packets per second. Table 1 shows
the results, a strong linear relationship between
these metrics. Cov is the correlation coefficient
calculated according to Equation 11, and ¢, is the
parameter in Equation 7 estimated by the robust
regression algorithm.

Figure 3 shows the robust regression results. The x-
axis represents time, using a sample rate of 30
minutes. The dark purple line is the concurrent
player number, and the green line is mapped from the
packet traffic to the concurrent player number as
mp(t) -0.132, where mp(t) is the packet traffic.
Similarly, the red line is mapped from the byte traffic
to the number of concurrent players as m, (t) - 0.0014,
where m, () is the byte traffic.

Although network traffic fluctuated significantly, its
relationship with the number of concurrent players
strongly followed Equation 7.

Server performance in a zoned MMORPG

In order to evaluate the server performance model,
the Windows** Performance Monitor was used to
record the CPU utilization of the related game
processes every 5 seconds. These results were then
summed to obtain the entire utilization on each
server.

Two metrics, server performance and number of
players, were analyzed (with a sample rate of one
hour to smooth out disturbances), and the server
performance was averaged during the interval. The
procedure was similar to that of the network traffic

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

2500

2000

RAVEAVEE
ek

L |

Number of Concurrent Players

1000

Number of Concurrent Players
500 — Bytes B
Packets
0 \ \ \ \ \
0 50 100 150 200 250 300
Time (in 30-minute units)
Figure 3

Robust regression results for network traffic and number of concurrent players

analysis: first, a correlation value Cov(A(t),U(t))
between CPU utilization and number of concurrent
players was calculated; next, the robust regression
algorithm was used to find the parameters of
Equation 12, which is a transformation of Equation
8, in order to plot the lines in the same figure:

At) = U(t)/u; — b/u,. (12)

In this equation, U(¢) the server performance, u,
represents the server’s CPU utilization cost per
player, and b represents the resources consumed by
non-game-related processes or daemons. As in
Equation 8, b and u, are the coordinates of the CPU
usage rate of game servers. Once U(t) is obtained,
the number of concurrent players A(t) can be
calculated by performing integration (see Equation
12).

Table 2 summarizes the results, which show that
almost all of the servers have a strong linear
relationship with the number of concurrent players
except game server 4. Figure 4 plots the robust

Table 2 Server performance vs number of concurrent
players using robust regression algorithm to esti-
mate parameters of Equation 8

Server ID Cov 1/u, —b/u,
Game server 1 0.648 394 —2561.1
Game server 2 0.6258 45.7 —2827.2
Game server 3 0.6049 9.388 698.44
Game server 4 0.3491 76.7 —6599

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

regression result of the servers. It can be seen that
although the correlation coefficient of game server 4
is 0.3491, its server performance still fits Equation 8
very well. If some outlying points, less than 5
percent of the original data set, are removed, game
server 4 also exhibits a high linear relationship with
the concurrent player number with a correlation
value of 0.6731.

Because each game server is associated with some
zones of the game world, the number of players on
each server is equal to the number of players on
those zones in the server. Therefore, whether the
load-balancing algorithm for the game server is
proportion-consistent is decided by the geographical
distribution of players. This is why the correlation
coefficients of game servers are poorer than those of
proxy servers (see Table 2). On the other hand, if
every server followed Equation 10, the number of
concurrent players for the entire game world would
follow Equation 13. Table 3 shows the results for
the entire game world. Cov(//, 1) indicates that the
linear relationship is improved (see the brown line
in Figure 4).

ZU Wi — Zbi/ll/u (13)
=1

=1

Experimental results for a seamless MMORPG
To evaluate our performance model with a seamless
MMORPG, an open-source MMORPG game, Cross-
Fire,28 was selected and modified with our
MMORPG middleware.** It then had most of the

YE AND CHENG

53

54

3500

Number of Concurrent Players ~ ———~ Game Server 3

3000 N ———- Game Server 1 — ———~ Game Server 4 i
0 ,’ \ Game Server 2 Integrated Function
£2500 -
=] r\\
52000 /AN
O =
E CAZ 3N /) = ;" - ‘ m—"% (
€ 1500 [/ NiZ - A
S XX
]
5 1000
t
= 500
0 | | | | | | | |
0 5 10 15 20 25 30 35 40
Time (in hours)
Figure 4

Linear relationship between server performance and number of concurrent players

features of a seamless MMORPG, including a
contiguous game world and runtime load balancer.
With the code of CrossFire in hand, more probes
were set to capture further information, such as the
CPU utilization rate of each game server, number of
players, network data flow, and so forth. To
compare it with the zoned game, we adopted a
similar infrastructure deployment schema, including
four game servers and one proxy server. Each server
used the Red Hat** 9.0 operating system, a 2.8 GHz
CPU, and 512 MB of RAM. A simulation “robot” was
developed for the client side of CrossFire to simulate
the online game player’s behavior, such as walking
and fighting with other players. The robot connected
to the game servers indirectly through the proxy.

Server performance in a seamless MMORPG

In order to evaluate the server performance model,
the CPU utilization of the related game processes
was logged every 1 second; these results were then
summed to obtain the entire utilization, as we did
for the zoned MMORPG.

According to Equation 11, the linear model was
evaluated by calculating the correlation coefficient
between the number of players and CPU utilization.

Then the regression algorithm was used to find the
parameters of Equation 12.

Figure 5 shows the relationship between the
number of concurrent players and CPU utilization
for all four game servers. Unlike the previous
experiment on zoned MMORPGs, we can obtain
each server’s number of players and CPU in this case
and display them separately. Because the simulation
robot keeps adding avatars into the game world, in
the following figures the number of players is
always increasing during the test period. From these
figures, a strong linear relationship between the
number of concurrent players and the CPU utiliza-
tion can be clearly seen. Table 4 summarizes the
results, which show that all of the servers have a
strong linear relationship with the number of
concurrent players.

We also summed the total number of players for the
four game servers and evaluated the relationship
between the total number of players and CPU
utilization. We found that they exhibited a strong
linear relationship as well, with a relationship
coefficient of 0.9907.

Table 3 Linear relationship between the integrated results and the number of concurrent players

Server group Cov(4, ') 1/u

21

4
=Y bijuy
1 /u/'»z 1 /ul3 1 /u/l4 i=1

Game servers 0.81 32.8

10.4 6.9 19 —1554.9

YE AND CHENG

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Game Server 1

25

250

200

150

00

1

50

Game Server 2

70
300

60

50

40

30

20

10

Game Server 3
Game Server 4

o N~ O 1 < M AN

_

o

o
Do N~ O I T M N — O

Figure 5

CPU utilization vs number of concurrent players for four game servers

55

YE AND CHENG

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Table 4 Server performance and number of con-
current players

Table 5 Server performance and number of con-
current players and agents

In order to analyze the impact on the performance of
agents, we also compared the total number of
players and agents with CPU utilization. Table 5
shows the results. Comparing Tables 4 and 5, we
can see that the linear relationship between the
number of players and CPU utilization is a little
stronger than the relationship between the CPU
utilization and the total number of players and
agents. We can thus conclude that the number of
players is a good parameter with which to model the
server’s performance.

Network traffic in a seamless MMORPG
Another important performance metric is network
traffic. Two network traffic metrics were analyzed:

Server ID Cov 1/u, —b/u, Server ID Cov 1/u, —b/u,

Game server 1 0.9573 9.5329 —40.2860 Game server 1 0.9567 11.6822 —42.1659

Game server 2 0.9786 10.1730 6.2004 Game server 2 0.9594 15.0376 5.0075

Game server 3 0.9834 8.1566 1.5212 Game server 3 0.9649 11.4025 —2.6249

Game server 4 0.9851 13.2100 —25.4584 Game server 4 0.9819 15.4083 —33.0385

Total Number of Total 0.9877 13.5501 —61.0840
Concurrent Players 0.9907 10.8225 —48.5844

the input traffic, which is the traffic from the
simulation robot to the game server (e.g., the
player’s commands); and the output traffic, which is
the data flow from the game server to the robot (e.g.,
the game server’s update messages to the client). As
was the case for the zoned experiments, traffic was
divided into bytes per second and packets per
second. Figure 6 shows the relationship between
the number of concurrent players and the number of
input packets, input bytes, output packets, and
output bytes. From the figure, we can see that the
network traffic’s relationship with the number of
concurrent players strongly follows Equation 7.

0
—— Number of Concurrent Players
0 —— —— Mapped function of Input Packets
~ Mapped function of Input Bytes
— Mapped function of Output Packets h
00 |

— — Mapped function of Output Bytes

0 A

1 19 37 55 73 91 109 127 145

163 181

199 217 235 253 271 289 307 325

Figure 6

Network traffic vs number of concurrent players for Server 1

YE AND CHENG

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Table 6 Linear relationship and parameters of network traffic and the number of concurrent players for (a)

Server 1; (b) Server 2; (c) Server 3; and (d) Server 4.

(a) Server 1 Cov ®, (b) Server 2 Cov 0,

Input packets 0.9331 1.4758 Input packets 0.9546 1.4213
Input bytes 0.9299 24.273 Input bytes 0.9544 14.589
Output packets 0.9504 21.377 Output packets 0.9556 23.438
Output bytes 0.9283 770.74 Output bytes 0.8765 654.62
(c) Server 3 Cov ?, (d) Server 4 Cov 0,

Input packets 0.9681 1.4308 Input packets 0.9723 1.3736
Input bytes 0.9686 23.619 Input bytes 0.99723 22.655
Output packets 0.9685 18.481 Output packets 0.9613 25.16
Output bytes 0.9226 884.45 Output bytes 0.9719 639.42

Table 6 shows the results for all four game servers,
indicating a strong linear relationship between
them. Cov is the correlation coefficient calculated
according to Equation 11, and ¢, is the parameter in
Equation 7 estimated by the regression algorithm.
As before, in order to analyze the impact on agent
performance, we compared the total number of
players and agents with network performance.
Table 7 shows the results.

From Tables 6 and 7, we can see that there is a
stronger linear relationship between the number of
players and the CPU utilization than pertains for
the total number of players and agents. We can
conclude from this that the number of players is a
good parameter with which to model the server
performance.

SUMMARY AND FUTURE WORK

This study has proposed a performance model for
MMORPGs. By evaluating two MMORPGs with
different game-world organization mechanisms, we
demonstrated that the performance metrics at the
server side have a strong linear relationship with
the number of concurrent players. The results
make it is easy and straightforward for MMORPG
service providers to predict resource requirements
for their gaming infrastructure at runtime in an
automated way. Though the scope of our study
was limited to two MMORPGs, we believe the
results can be generalized to other MMORPGs with
similar themes and styles.

As mentioned in our discussion, game design and
player behavior have significant impact on the

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Table 7 Network traffic and total number of players
and agents

Input Input Output Output
Server ID packets bytes packets bytes
Game server 1 0.9275 0.9243 0.9452 0.9247
Game server 2 0.9421 0.9423 0.9455 0.8692
Game server 3 0.9531 0.9536 0.9551 0.9165
Game server 4 0.9703 0.9702 0.9595 0.9712

traffic model and resource usage model at the
server end. As the MMORPG is quickly evolving in
terms of adopting features of other game genres,
the game system will definitely become more
complicated, as will the behavior of players. In our
future work, we plan further study of the changes
taking place in both the design pattern of
MMORPGs and user behavior and the development
of a more accurate model for the purposes of
prediction.

ACKNOWLEDGMENTS

The authors would like to thank Sheng Lu for his
valuable comments in the discussion of this paper’s
topics, and Ligin Shen, Ling Shao, and Jun Liu for
their assistance and encouragement in this study. The
authors also acknowledge the anonymous reviewers
for their constructive criticism.

**Trademark, service mark, or registered trademark of
Microsoft Corporation, Sony Computer Entertainment, Inc.,
GameSpy Industries, Inc., Intel Corporation, Id Software, Inc.,
Valve Corporation, NCsoft Corporation, Blizzard Entertain-
ment, Inc., or Red Hat, Inc. in the United States, other
countries, or both.

YE AND CHENG

57

58

CITED REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

US Online PC Gaming 2004-2008 Forecast and Analysis:
Growth Continues, International Data Corp. (IDC) (De-
cember 2004), http://www.idc.com/getdoc.
jsp?containerld=32473.

T. limura, H. Hazeyama, and Y. Kadobayashi, “Zoned
Federation of Game Servers: A Peer-to-Peer Approach to
Scalable Multi-player Online Games,” Proceedings of
ACM SIGCOMM 2004 Workshops on NetGames ‘04, ACM
Press, New York (2004), pp. 116-120, http://portal.acm.
org/citation.cfm?id=1016549&coll=GUIDE&dl=
GUIDE&CFID=52856997&CFTOKEN=73726409.

P. Rosedale and C. Ondrejka, “Enabling Player-Created
Online Worlds with Grid Computing and Streaming”
(September 2003), http://www.gamasutra.com/
resource_guide/20030916/rosedale_01.shtml.

1d Software, http://www.idsoftware.com/.
Valve Corporation, http://www.valvesoftware.com/.

B. S. Woodcock, “An Analysis of MMOG Subscription
Growth-Version 18.0,” MMOGCHART.COM online pub-
lication (October 2005), http://www.mmogchart.com/.

Welcome to Station.com, Sony Online Entertainment
(SOE), http://www.station.sony.com/en/.

NcSoft Corporation, http://www.ncsoft.com/eng/index.
asp.

Blizzard Entertainment, http://www.blizzard.com/.

On Demand Business, IBM Corporation, http://www.
ibm.com/ondemand.

HP Utility Data Center: Enabling Enhanced Data Center
Agility, International Data Corp. (IDC) (May 2003),
http://www.hp.com/large/globalsolutions/ae/pdfs/
udc_enabling.pdf.

NI™ Grid Technology—Just In Time Computing, Sun
Microsystems (2003), http://www.sun.com/software/
solutions/n1/wp-nl.pdf

A. Shaikh, S. Sahu, M. Rosu, M. Shea, and D. Saha,
“Implementation of a Service Platform for Online
Games,” Proceedings of ACM SIGCOMM 2004 Workshops
on NetGames ‘04, ACM Press, New York (2004), pp. 106-
110.

IBM Tivoli Intelligent Orchestrator, IBM Corporation
(2004), http://www-306.ibm.com/software/tivoli/
products/intell-orch.

S. McCreary and K. Claffy, “Trends in Wide Area IP
Traffic Patterns: A View from Ames Internet Exchange,”
Proceedings of 13th ITC Specialist Seminar on IP Traffic
Measurement, Modeling, and Management (2000),
http://www.caida.org/outreach/papers/2000/AIX0005/.

M. S. Borella, J. Farber, W. Feng, and K. Chen, “Source
Models of Network Game Traffic,” Computer Communi-
cations, 23, No. 4, 403-410 (February 2000).

J. Farber, “Network Game Traffic Modelling,” Proceedings
of the First Workshop on Network and System Support for
Games, ACM Press, New York (2002), pp. 53-57.

W. C. Feng, F. Chang, W. C. Feng, and J. Walpole, “A
Traffic Characterization of Popular On-line Games,”
IEEE/ACM Transactions on Networking 13, No. 3, 151-
156 (June 2005).

K. Chen, P. Huang, C.-Y. Huang, and C.-L. Lei, “Game
Traffic Analysis: An MMORPG Perspective,” Proceedings
of the International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV),
pp. 19-24 (2005).

YE AND CHENG

20. G. Huang, M. Ye, and L. Cheng, “Modeling System
Performance in MMORPGs,” Proceedings of the 1st IEEE
International Workshop on Networking Issues in Multi-
media Entertainment NIME’ 04 at IEEE GlobeCom (2004),
pp. 512-518, http://huang_gao.nease.net/research/
msp_mmorrg.pdf.

21. Sun Game Server Technology: An Executive Overview, Sun
Microsystems (June 2004), http://developers.sun.com/
techtopics/gametech/reference/docs/
simserverwp052604.pdf.

22. M. Ye and L. Cheng, iMMOG Design Report, IBM China
Research Lab (2004).

23. BigWorld Technology (2004), http://www.bigworldtech.
com/introduction.php.

24. Product Review: Massively Multiplayer Online Game
Middleware, Gamasutra (January 2003), http://www.
gamasutra.com/features/20030115/ferguson_01.htm.

25. J. Smed, T. Kaukoranta, and H. Hakonen, A Review on
Networking and Multiplayer Computer Games, Technical
Report 454, University of Turku Centre for Computer
Science (2002), http://staff.cs.utu.fi/staff/jouni.smed/
papers/TR454.pdf.

26. D. A. Menascé and V. A. F. Almeida, Capacity Planning
for Web Performance: Metrics, Models, & Methods,
Prentice Hall PTR, Upper Saddle River, NJ (1998).

27. P.J. Rousseeuw and A. M. Leroy, Robust Regression and
Outlier Detection, John Wiley & Sons, Hoboken, NJ
(1987).

28. CrossFire—The Multiplayer Adventure Game, Real Time
Enterprise Ltd., http://crossfire.real-time.com/.

Accepted for publication September 2, 2005.
Published online January 20, 2006.

Meng Ye

IBM Research Division, China Research Laboratory, Building
19, Zhongguancun Software Park, 8 Dongbeiwang West Road,
Haidan Dist., Beijing 100094, People’s Republic of China
(yemeng@cn.ibm.com). Mr. Ye is a research staff member in
the High Performance Computing group at IBM’s China
Research Laboratory. He received a B.S. degree in computer
software from Sichuan University, Chengdu, China in 1991, an
M.S. degree in computer science from Southwest Jiaotong
University, Chengdu, China in 1994, and an M.Phil. degree in
information systems from City University of Hong Kong in
1999. He worked for the Institute of Computing Technology of
the China Academy of Science before joining IBM in 1999.

Long Cheng

IBM Research Division, China Research Laboratory, Building
19, Zhongguancun Software Park, 8 Dongbeiwang West Road,
Haidan Dist., Beijing 100094, People’s Republic of China
(lcheng@cn.ibm.com). Mr. Cheng is a research and
development engineer in the High Performance Computing
group at IBM’s China Research Laboratory. After receiving a
Ph.D. degree from NanKai University, TianJin, China in 2003,
he joined the IBM China Research Laboratory. W

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

