Online games and e-business:
Architecture for lntegratlng
business models and services
into online games

Online games are the future of the interactive entertainment industry. The idea of
integrating business services into online games holds a number of exciting possibilities

C. E. Sharp
M. Rowe

for new business models, new markets, and new growth. We describe an architecture,
Business Integration for Games, and an implementation prototype, for integrating

online games with business services. We also describe a demonstration system that
embeds our prototype into the popular first-person-shooter game Quake 11™.

INTRODUCTION

Online games, which give the player the ability to
compete against other players over a network,
emerged seriously in the mid-90s. This rapidly
evolved from a novelty feature to an expected
function by players, and game designers adopted
this approach to build multiplayer (MP) and
massively multiplayer (MMP) genres of games.

A key difference between these genres is scale, and
with it, the associated infrastructure to support it.
The MP games confine the number of concurrent
players in a single game to somewhere between 16
and 32. Usually, the game can be played either
stand-alone or in multiplayer-network mode, and
one of the players’ machines acts as the server. The
game session is relatively short-lived (minutes to
hours). If the server crashes, the game is, at worst,
over or, at best, severely disrupted. The MMP
games, though, are a very different affair. The most

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

popular MMP games today have subscription bases
in the millions, with hundreds of thousands of
players online at any one time, spread over
hundreds of servers. The shared game session lasts
indefinitely. This requires a much more stable
environment; thus, these games have to run on
dedicated servers equipped with a persistent data-
base. Network bandwidth to support the game-
related traffic is also required, and all this obviously
has an associated cost.

These two different genres and their associated
infrastructure requirements and costs spawned two
different approaches to sustained revenue genera-

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

SHARP AND ROWE

161

tion. The first one, mostly associated with the MP
games, is based on the provision of a portal to act as
a hosting and matchmaking Web site for players of
these games. The portal site offers either a free
membership to players and generates revenue
through online advertising or a premium member-
ship, free from advertising. The members gain
access to services for locating other players and
games, league tables and high scores, patches and
add-ons, and use of the portal’s dedicated server
machines for playing games. An example of such a
portal is GameSpy.com,1 which maintains a sub-
scription-based membership and provides an ag-
gregation point for a variety of games that run on a
variety of platforms. Some game publishers run
their own portal sites with free membership,
dedicated to hosting their own games and ensuring a
quality experience for the community of players.
The downside from the player’s perspective is that
these sites are limited to the products of the
publisher. An example of a publisher portal site is
Battle.net,2 dedicated to games from Blizzard
Entertainment.

The second business model, associated with the
MMP games, is based on subscriptions that include
a persistent presence in the game environment. For
typically ten to fifteen U.S. dollars per month, a
player has access to a game character that may be
developed over time to accrue additional features for
a more enjoyable game experience. The reasons
players continue to subscribe include a strong
community spirit, exciting game experiences, and an
ever-increasing investment of time and money in the
game character—if you stop paying for your
subscription then your character (and all the
experience and wealth gained) is lost. It is not
uncommon for the subscription to be continually
renewed while the account is dormant.

These games belong to the role-playing game
category, and are often referred to as MMORPGs
(massively multiplayer online role-playing games).
Game characters are often involved in adventure
and exploration jointly with other players, and aim
to achieve some objective and gain rewards. The
more rewards gained, the more powerful the
character. Virtually all of these games have some
kind of embedded trading mechanism that allows
players to exchange wealth among them in the game
world. For instance, in one of the most popular
MMP games, EverQuest**3 from Sony Online

162 SHARP AND ROWE

Entertainment Inc., players assume the roles of
pseudo-medieval fantasy heroes, gaining magic and
gold in a land of dragons and wizards. Players are
able to buy and sell their virtual property in
exchange for virtual wealth, but this virtual econo-
my is confined to the game world and is not a means
by which the game service provider makes any of its
revenue. Trading virtual wealth in the game world,
however, has spawned a third business model that
is now emerging.

From the earliest use of MMPs (Ultima Online**4,
EverQuest, Asheron’s Call**s), the players in the
community have recognized a gap in the market.
Whereas some players are unable to devote the
time, or lack the skill, to develop powerful charac-
ters and gain access to the more enjoyable game
experiences, they are willing to pay real money
(above and beyond the subscription fee) in order to
acquire this virtual property. Thus, a real economy
has emerged in which artifacts of the game world,
such as magical items, weapons, or even whole
characters, are bought and sold for real-world
money. The means by which these transactions
occur are often through an external medium, such as
an online auction site like eBay.6 The game service
providers have historically frowned upon this
practice, claiming that it is they who own the
intellectual property rights to the items being traded,
not the players, and that the trade is therefore
illegal. But despite various attempts to prevent it,
the practice is now an acknowledged side effect of
the MMP game genre, and some newer MMP
releases have attempted to build this into their
design from the outset by providing auction
functions and the ability to exchange real-world
currency for virtual in-game currency. The open
market, however, is a strong force, and this has not
really deterred players from continuing to use
external auctions and payment services.

Another reason why the game service providers
dislike this real money trade is that, if left uncon-
trolled, it can detract from the game-playing
experience, undermine overall player satisfaction,
and put the service provider’s continued revenue
stream at risk. If it ends up that the richest players
are automatically the most successful, this imbal-
ance can be very frustrating to the other players.

An obvious problem arises from this kind of external
transaction—the financial exchange is completely

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

decoupled from the asset exchange because the two
transactions occur in totally unrelated environ-
ments, and it relies on the humans in the loop to
monitor and maintain the integrity of the two. This
has inevitably led to cheating by unscrupulous
players (and even non-players) through bogus
transactions. Clearly, this is not a new problem, but
one that is present in auction and e-commerce sites
on the Web, where the purchase and delivery of
goods are separated over time. However, the
coupling of the financial transaction and exchange
of assets in this case is eminently possible and
would make for a much safer and reliable
experience.

Meanwhile, MP games are developing further
revenue channels through the development of
“episodic content” that can be purchased online and
used to enhance the original game experience. Since
the beginning of the MP genre, a feature of these
games has been extensibility. Players have been able
to create their own content to augment or tailor the
game. And by the same mechanisms, the game
developers create official content that is released for
sale. Systems, such as Steam**’ from Valve
Corporation, provide a download client system to
integrate the purchase and digital delivery of the
content for incorporation into the game. However,
these transactions occur outside of the game itself
and not between players, preventing the players
from selling their own content.

Despite the two genres of MMP and MP games
exhibiting different revenue models and infrastruc-
ture requirements, they both share a common
feature. Players continue to play the game and pay
for subscriptions or add-on purchases if the experi-
ence continues to be enjoyable and is perceived to
be worth investment in the long run. If players
cannot trust the other players in the community, if
real-money trade results in a playability imbalance,
if the content does not get updated regularly, or if
the players cannot contribute to the content of the
game as a whole, they will lose interest and go
elsewhere.

This problem is very similar to that faced by Web-
based businesses, striving to make their Web sites
“sticky” through new and interesting content and
through community participation, and it should not
be surprising that the technical challenges facing
Web portals are relevant to the evolution of online

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

games. However, the browser is a very different
operating environment and interactive experience
from that of a game. Early attempts to integrate e-
commerce into games used very simplistic means,
usually involving the launching of a Web browser.
But this approach has serious deficiencies, because
launching a Web browser involves a clear disruption
of the game experience and a disconnect between
the e-commerce transaction and the in-game
mechanics.

In this paper we describe an architecture, Business
Integration for Games (BIG), for integrating business
services within online games. The work was
performed within an incubator project, called
Aspen, that was set up to investigate this architec-
ture and implement a prototype. The implementa-
tion involves three main components: a thin client
connector included in the game platform, a process
broker based on WebSphere* to act as both agent
(for the client connector) and intermediary (agent
for multiple clients), and a collection of business
services. The prototype is available on the alpha-
Works* Web site under the name Business Integra-
tion for Games.®

To demonstrate the viability of integrating business
services with online games, we applied the BIG
technology to several games, the most notable being
Quake I1**. This game, from id Software,9 is a
benchmark for MP games and is highly representa-
tive of the genre. Moreover, its source code is
available under the GPL (GNU General Public
License) open-source license, making it suitable for
our integration experiments. Since this work was
completed, several MMP games have become
available as open-source code, making it possible to
explore the application of BIG to the MMP genre.

The rest of the paper is divided into the following
sections. First, in the “Business Integration for
Games” section, we review the current trends for
systems integration in the enterprise, we introduce
the programming environment for game develop-
ment, and we describe the BIG architecture. The
next three sections cover the three main compo-
nents of the BIG architecture: client connector,
process broker, and business services. Then, in the
section “Implementing the BIG architecture,” we
describe our prototype and its integration with
Quake II. We summarize our results in the “Con-
clusion” section.

SHARP AND ROWE

163

BUSINESS INTEGRATION FOR GAMES

In this section, we first look at the information
technology (IT) industry and the systems integration
work in the enterprise environment and consider the
challenge of incorporating this technology into
online games. We then give an overview of the
game-technology and programming environment.
Finally, we introduce the BIG architecture and
describe its main components.

Systems integration in the enterprise and its
extension to games

Over the last few years, the IT industry as a whole
has moved to the adoption of service-oriented
architecture (SOA)10 and a supporting infrastructure
for SOA, based on the Enterprise Service Bus (ESB)11
and the use of Web services in particular. Reusable
function is made available to the world through
well-defined interfaces and by using open standards
and protocols, where integration can effectively be
achieved at runtime through the use of directory
services to discover and determine the integration
requirements. This should dramatically reduce
software-development and systems-integration re-
quirements and cycle times. In the traditional
enterprise world, there are many well-publicized
exploiters of the new technology. Service providers
such as eBay and Google are exposing their
application programming interfaces (APIs) by
means of Simple Object Access Protocol (SOAP) and
Web Services Description Language (WSDL) to
allow other Web sites and applications to incorpo-
rate these services into their own offerings, and
enterprises such as Charles Schwab & Co., Inc., are
using the ESB infrastructure and Web services for
enterprise integration.

Extending this approach to games, however, by
making various services available (to perform
generic functions such as payment services) through
a Web service interface is not enough to be of
immediate use to the game industry. Game devel-
opers are not interested in a new and unfamiliar
layer of complexity with which they must cope in
order to build their systems. The main technical
challenges in applying traditional enterprise inte-
gration techniques to online games can be broken
down into three categories:

e Integration Logic—The various members of the
value chain associated with the online game
service (such as providers of payment and trans-

164 SHARP AND ROWE

action services, or providers of digital content
delivery and protection services) need to interact
and interoperate with each other in some way. A
truly flexible solution would not require that these
providers be already integrated or even aware of
each other.

® Business Logic—The code that embodies the
business constraints, such as terms and conditions
of interaction between various parties, is not
relevant to the game and should be separated from
the game logic.

e Security and Trust—The execution of the business
logic may involve access to private information
belonging to various parties. For example, to
transfer funds from one party to another, an
account number and PIN (personal identification
number) may be required. Consumers are reluc-
tant to have their private information configured
within the game, as they do not necessarily trust
the game code (which represents the entity that
may be actually charging them for its use) to
manage their financial transaction. This problem
is exacerbated if the transaction takes place
between players. Coupled with this issue are the
problems of protection from malicious attacks
(either from other players or from rogue service
providers) and the security of hacked games.

Each of these categories contains a complex set of
issues and, although apparently orthogonal, all
three categories must be addressed with a holistic
approach to ensure that meeting the requirements of
one category does not reduce the efficiency of
another.

Programming environment for game
development

The typical enterprise application developer usually
programs in Java, C#, or some scripting language.
Often, the code is executed in a managed environ-
ment such as a J2EE** or .NET** container. During
development the emphasis is on manageability of
the code, portability (i.e. adherence to standards),
and the business logic that the code is implement-
ing. The existence of a comprehensive container
environment means the developers need not (in-
deed, may actually be prohibited from) concern
themselves with execution details, such as network
and transport reliability, security, thread manage-
ment, and memory management. These low-level
concerns are addressed by the container itself or
other middleware components. External interactions

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

with the code travel through many layers of infra-
structure code and typically include a Web browser
interface. These interactions may be synchronous
(where the thread blocks for the response) or
asynchronous. The code executes under the strict
control of the container environment. Unlike the
game environment, any performance concerns are
constrained to the efficiency of the business logic
and the scalability of throughput provided by the
container infrastructure. Predictable low-latency
response time is not a metric that usually concerns
the developer.

In contrast, the game developer typically programs
in C and C++, and even assembly language for the
more time-critical components, and the code ex-
ecutes in the operating-system (OS) environment of
the target hardware. This environment may vary
from the OS library support environment as pro-
vided by Windows** and Linux** on PCs, to some
RTOS (real-time operating system) environment on
a console or portable device. There is no managed
container environment. The typical game is still
written as a non-threaded application with a single
main loop. The main loop must complete its cycle
with perfect regularity in order to refresh the display
in a continuous smooth flow. Any unpredictability
in display updates is obvious to the eye of the player
and severely detracts from the game experience.
Therefore, the game itself is the main execution
control engine, and all calls to other libraries and OS
services must abide by the constraints of the game
execution timing; otherwise, they impact the game
performance as a whole. The game developers need
to concern themselves with most of the low-level
details of execution, such as memory management,
thread control (if any), and network connectivity
and operation. There is an increase in the use of
networking middleware, but this is still fairly low-
level and involves packet management functions
and object propagation over UDP (User Datagram
Protocol). For MMP games, as mentioned earlier,
the game client provides the player with access to a
shared “world state” that is maintained and
persisted across a server infrastructure. The server
component of the game is still written largely using
the same programming paradigms, with perfor-
mance being a key issue, leading to integration of
database technology as the persistent store of the
world state with vendor-specific APIs, rather than
open, platform-independent APIs such as ODBC
(Open Database Connectivity). The database is used

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

both for persistence of game state and player
subscription management, including authentication
of clients to the game. However, architecturally, the
server side looks very much like a typical enterprise
Web application, consisting of edge servers acting as
gateways between the clients and the servers and
providing routing and load balancing to the servers
running the game—effectively a simulation that
tracks the state (position, orientation, velocity,
inventory, etc.) of objects, updated by inputs from
players and artificial-intelligence agents. Often, the
virtual world is either replicated horizontally across
servers (effectively a series of “parallel worlds™) to
spread the load statically by assigning a player
subscription with a specific world. This is known as
a shard architecture—the name reflecting how the
universe is broken into shards, and players can only
explore the world on the server (or server cluster)
that they are connected to. Newer MMPs are
exploring grid architectures to distribute a single
virtual world over a number of servers by assigning
a portion of the world to each server. Here, as
players move from one portion of the world to
another, the gateway servers handle the distribution
of the player interaction with world servers accord-
ingly and route traffic to the appropriate server for
the current location of the player in the overall
virtual world’s geography.

The BIG architecture

In order to take advantage of the benefits of a
service-oriented architecture using ESB and Web
services technologies in the game environment, it is
clear that some bridging technology is required. This
bridging technology could be a piece of middleware
that acts as an intermediate layer between the game
client and the intelligent infrastructure for discov-
ering, selecting, and using the externally provided
business services. However, this intermediate layer
has to adhere to the stringent operating require-
ments of the game environment.

Figure 1 illustrates the BIG architecture. The Game
Runtime Environment includes the game compo-
nent, labeled Game, and the client connector. The
game component consists of either client or server
code. The Game Runtime Environment can reside
on a PC or server platform, a game console, a mobile
phone, and so on. The game component connects to
and communicates with other components through
the client connector, which in turn connects to a
process broker (labeled Process Broker in Figure 1).

SHARP AND ROWE

165

WSDL | Web Services Description Language

Enterprise
Service "
Process Bus Service
A | Instance | A | =
[%2] w < L Y]
= = =
. F

Game Runtime Environment PSS Balar

Game _ | Client Session
& | Connector Proxy B |
(@) < v |«
= =

I
Repository
Figure 1

BIG architecture

The initial interaction between the game component
and the client connector results in the instantiation
of a session proxy (labeled Session Proxy) at the
corresponding process broker, and the allocation of
an application specific identity (ASID)—a globally
unique identifier that identifies both the game
instance and the process broker that owns the
session proxy. The ASID is the identity that game
code instances then use to refer to other game code
instances when communicating with the client
connector. This allows the distribution of client
connectors over a number of process brokers.

—
ﬁ
ﬁ

Game Plane

Figure 2
BIG architectural planes

166 SHARP AND ROWE

The session proxy, which acts as an agent on behalf
of the client connector, interacts with the process
instance component through the standard Web-
service interfaces (labeled WSDL). The session
proxy thus acts as a Web-service facade for the
client connector, to allow process instances to
interact with clients by means of a standard,
interoperable mechanism. This provides a level of
encapsulation of the client and facilitates the use of
standard process technologies, such as Business
Process Execution Language (BPEL). The process
instances also use the Web-service interface to
communicate with business services through the
ESB.

Figure 2 illustrates how the three components of the
BIG architecture can be viewed as operating within
three “planes,” representing three separate archi-
tectural domains: the game plane, the process
execution plane, and the business services plane.
The game components interact within the game
plane according to whatever pattern is appropriate
for that specific game, be it peer-to-peer, client/
server, grid, and so on. Within this plane, the
various instances of the game code (players and
servers) communicate according to the rules of the
game (game-state propagation, game-control up-
dates, etc.). The game components are represented
in the diagram as nodes in the game plane; the edges
joining them represent interactions between game
components. Interactions between clients and proc-
ess brokers are illustrated as arrows between the

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

game and the process execution planes. In turn,
process brokers are represented as nodes in the
process execution plane, whereas edges joining
these nodes represent interactions between process
brokers.

Inevitably, the execution of business processes
requires the invocation of business services, which
operate in the business services plane.

We now examine the three architectural compo-
nents in more detail.

CLIENT CONNECTOR

As Figure 1 illustrated, the client connector compo-
nent is a thin client that presents the BIG API to the
game code and manages personal player data by
using a secure, encrypted repository. This persistent
repository is available for any game that uses the
client connector, so that players need not re-enter
data when they acquire a new game, and their
personal data is managed separately from any game.
The mechanism is effectively acting as a local “e-
wallet.” However, due to either consumer prefer-
ences or local storage limitations, an alternative
remote e-wallet service must also be considered.
The client connector must be efficient, as it will
reside within the game footprint and execution path.
For PC-based and console games, a native, portable
C version is required that can run in either a non-
threaded or a threaded model.

One of the primary design objectives of our project
was to hide as much complexity from the game
developer as possible. The business integration
infrastructure should be available for use by the
game code as a kind of utility that is as simple to use
as turning on a tap. To achieve this, the client
connector needs to provide business functions while
hiding the technical details of operation for these
services. We therefore decided to design the client as
a two-tiered structure, with business functions
wrapping onto a microkernel. The microkernel
provides the core asynchronous messaging and
memory management functions for the transfer of
process requests and for returning results (the
responses are presented to the game code by
handles to data structures). Because of the strict
memory footprint and timing requirements, the
client connector also provides an initialization
parameter that determines the maximum amount of
memory it may use. From our discussions with

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

game developers, having predictable memory usage
was as important as having predictable function
return times. As the developers write their games in
memory-constrained platforms without the benefit
of an operating system to manage memory, they
need to account for every byte used in order to fit
the executable code and digital content in memory
at once—there is no virtual memory and paging
space to help with this. Consequently, the devel-
opers need to know how much memory each library
function they use is going to consume in order to
keep track of total memory usage. Having the
libraries fence their memory usage helps in this
objective.

The messages being passed through the client
connector may become quite large, especially when
digital media content is included in the message.
Because it is not possible, even for smaller
messages, to transfer the messages with a blocking
call to the TCP/IP (Transmission Control Protocol/
Internet Protocol) stack, nonblocking sockets are
used. With large messages, even a nonblocking
socket would exceed the maximum buffer size. The
client connector kernel would therefore also be
responsible for dividing the messages into chunks
and delivering them over the network in iterated
steps; we refer to this as “chunking.”

The requirement for a single-threaded operation
emerged from conversations with game developers
interviewed for this purpose. The reason that game
developers tend to develop games using the single-
threaded style of programming is partly historical
and partly practical. Games were originally devel-
oped on computing devices that typically did not
have an operating system—the early 8-bit and 16-bit
“micros” and game consoles. Lacking an operating
system, the use of multiple threads was not a
practical option. Consequently, the developers opted
for the single main loop model, in which functions
to be performed—to refresh the screen, handle 1/0,
advance state machines, and so on—are called in
sequence. This disciplined approach, although
limiting, leads to code whose behavior is predict-
able. Although newer operating systems now make
multithreading efficient and reliable, there are still
devices in use that do not support multithreading.
To make the code more portable, therefore, single-
threaded programming in C remains a popular
choice for programming style.

SHARP AND ROWE

167

To accommodate the single-threaded-style require-
ment, the client connector ensures that its continu-
ous use of the CPU before returning control to the
game code does not surpass a specified quantum,
typically 16 ms. A “step” function monitors CPU use
by the client connector. The clock time on entry to
the function is recorded (the entry time), a small
unit of work is performed (“small” being deter-
mined by our implementation), and then the current
time is compared with the entry time. If the
remaining execution time is not sufficient for
performing another unit of work, then control is
returned to the game code. The unit of work is
determined through experimentation. As a result,
the processing of the incoming messages (either
requests to the client connector or responses to
previous requests) may involve several CPU quanta.
The handle-based approach to memory manage-
ment allows the game component to determine
whether the processing of the incoming message has
been completed by inspecting the status of the
handle to it. The design of the microkernel, which
manages the message processing, is based on a
simple finite state machine model.

The client connector is reliable and robust, so that
when a call from the game component to an API
function returns, the game component can depend
on the middleware (i.e., the combination of the
client connector and the process broker) to reliably
complete the invoked function. Therefore, if the
game application crashes before the result is
returned, the middleware manages the transaction
and either rolls back the transaction or stores the
result until it reconnects with the game application.

The client connector offers to the game developer a
simple API that includes meaningful business-
oriented functions, such as charge and trade.
The BIG API differs from the more traditional
middleware APIs, which present to the developer
network-oriented functions, say, for sending and
receiving messages, and leave it to the developer to
construct the right sort of messages and send them
to the right sort of network endpoints. The business-
oriented functions of the BIG API encapsulate a
number of message exchanges that are required for
performing the business function. These functions
wrap the microkernel messaging functions and
reflect the business process they are associated with.
For example, a charge function call supports the
business parameters for executing a charge trans-

168 SHARP AND ROWE

action—the identities of the payer and the payee and
the amount charged in a specified currency—and
marshals these details as a request message to the
process broker. The result of processing the request,
the return value of the charge call is returned
asynchronously to the game component by a data
structure to which an access handle points.

Quite often, the business process involves the
collaboration of additional parties, not necessarily
business service providers. For example, the
charge function involves both a payer and a payee.
Clearly, it should not be possible to charge the
payer’s account without that party’s consent. Con-
sequently, the request initiated by one party may
result in a secondary request being sent by the
business process to another party’s client connector.
To allow that second party to respond to the request,
a matching accept_charge function is also
provided as a wrapping function in the client
connector. Parties receiving a charge request from a
process broker inspect the message to determine its
type and values and respond with the appropriate
function call, in this case accept_charge, passing
the message handle of the original charge request as
a key parameter.

By requesting processes to be executed through the
process broker, the client effectively interacts with
Web services asynchronously, using these Web
services to provide value-add e-business function
rather than core game logic. The business processes
with which the client connectors interact by means
of the process brokers are themselves services that
expose and utilize interfaces. It is these interfaces
that are mirrored at the client connector as the
function calls exposed to the game developer.
Figure 3 illustrates this relationship.

The diagram illustrates the process of transferring
funds between two game clients. Game client A
initiates the process by calling the charge function,
part of the payment API. This results in the client
microkernel creating a charge request message and
sending it to the process broker. The message is
received by the session proxy instance responsible
for that client. The session proxy initiates a charge
process instance by invoking the charge operation
on the process broker’s Web service interface for the
charge process.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

charge_handle charge(...);
Charge Process Instance

charge
operation

] [

Payment API I

!

response_handle accept_charge(charge_handle);

request_handle getEvent();

accepted_charge I
operation

Payment API

I charge_handle I I

Client Microkernel | charge accept_charge Client

______ - P m—mme— =2 ——» Microkernel

complete accept_charge complete
= ———— operation operation
complete .
Session Proxy Session Proxy accept_charge_response
Game Client A Process broker Game Client B
______ » Message

Figure 3

Client and process broker interactions

Next, the charge process seeks consent for payment
from game client B. This is achieved by the charge
process instance invoking the accept_charge
operation on the Web service interface of the session
proxy identified in the initiating charge request. This
session proxy creates an accept_charge message
to game client B. The microkernel at B receives this
message and informs the game application via the
payment API. Game client B determines whether the
response is positive (it may do this by informing its
user, the player, by some in-game dialog); then it
replies by calling the accept_charge function and
passing the original event handle as a reference.
This microkernel creates an accept_charge
message and sends it to the session proxy in the
process broker. The session proxy for B uses

the message to form the invocation of the
accept_charge operation on the Web-service
interface of the charge process.

The charge process instance then invokes the
necessary third-party payment Web service (not
shown in the diagram) to transfer funds from B to A,
and when successful, send a comp1ete message to
both parties—via their respective session proxies—
to indicate the process has been completed.

Security and trust

The client connector is also responsible for moving
personal, sensitive data away from the game code
and client API to a place where it can be

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

administered and controlled by the owner of that
data, the player. This provides enhanced privacy
and anonymity for the player and engenders a level
of confidence and trust in the game infrastructure.

In a Web browser-based scenario, it is common for a
Web site to require authentication from a third party
(such as a payment service). The acquisition of
security credentials and their authentication with
the third party is done through HTTP (HyperText
Transfer Protocol) redirection followed by direct
negotiation between the client browser and the
third-party Web site, and then the transfer of the
resulting authorization token to the original Web
site. However, because the client connector con-
nects only through the process broker and has no
direct access to the third-party services, either from
a network perspective or a protocol perspective
(e.g., the third-party may use SOAP and WS-
Security12 to facilitate authentication), the client
connector has to work through the process broker. It
is therefore necessary to establish sufficient trust
between the client connector and the process
broker, and possibly to establish separately trust, by
proxy, with third-party services.

Upon initialization and startup, the client connector
establishes a secure session with a process broker

and associates the session with the player’s identity
within the BIG infrastructure. This allows separate
player sessions to be uniquely identified for auditing

SHARP AND ROWE

169

user/pwd l 1

Player controlled Publisher controlled Third-party controlled

Game Game Payment
Client Server service
) — . BIG Client BIG Client WSDL
ID Connector Connector A
2 | #1234 3| #6789 9 .
Player Repository 5 |
6,7 110
i
1
Process :
Broker v
Game
Server

Figure 4
Security and trust domains

; SN

purposes. The client connector is performing two
levels of authentication here. First, it is establishing
a secure messaging channel between the game code
and the process broker to ensure the confidentiality
and integrity of messages passing between them.
Initially bidirectional SSL authentication was con-
sidered for this, but no implementations were
sufficiently granular in their operation to work in
conjunction with the message-chunking approach
needed. We therefore chose a simple symmetric key
approach for our prototype implementation. The
establishment of this session results in the allocation
of an ASID that performs two functions; it acts as a
token that other clients can use to refer to each other
via the client connector APIs; and inside the process
broker that allocated it, the ASID acts as a handle to
an external address via a process broker.

The second level of authentication is between the
player and the services behind the process broker.
As previously mentioned, players are able to
configure the client connector with their own
details, such as the userid and password for their
payment provider. In our simple prototype, we
simply passed these details, encrypted, between the
client connector and process broker, for subsequent
use by that process broker for issuing a service
request, such as payment authorization, to the
relevant service provider. This is sometimes referred

170 SHARP AND ROWE

to as a trusted agent model, where players provide
their credentials to the process broker to act on their
behalf. However, this is not a satisfactory approach
for a very loosely coupled environment, where a
process broker may not be trusted to the extent
required for this approach. We therefore considered
a more sophisticated approach whereby any busi-
ness service that is likely to be used behind a
process broker would provide a security mechanism
for establishing a security context with the client
connector, tunneling through the process broker,
and this context would then be used to authenticate
individual requests to the service. Although our
intention was to use the Web Services security
specifications (WS-Security, WS-SecureConversa-
tion, WS-Trust, and WS-Federation) for this, the
technology had not matured in time for our
prototype work.

Figure 4 illustrates the security and trust domains in
our implementation. The steps in the process of end-
to-end authentication are as follows:

1. The player is authenticated to the client con-
nector (passing the userid and password to
enable access to the player repository). The
encrypted player repository is now accessible to
the client connector (but no API function
directly exposes it to the game code for access).

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

2. The client connector sets up a secure session
with the process broker (based on encrypted
game credentials, such as use of the symmetric
key algorithm), and ASID #1234 is allocated.

3. The same activity occurs for game server code.
ASID #6789 is allocated.

4. The client connector requests the public key of
the identity provider service (IdP). The client
connector sends a request to the process broker
to request a session token for principal “Chris”
(identified in the player repository) to IdP. IdP
returns a challenge nonce encrypted with a
symmetric key for Chris, and the process broker
returns to the client connector (a nonce is an
arbitrary number generated for security purpo-
ses and used only once in a security session).
The client connector decrypts the nonce, signs
it, and sends it to the process broker for
response to IdP. IdP sends a session token back,
encrypted with the symmetric key for Chris.

5. The game server requests payment from player
#1234 (Chris). The client connector at the game
server issues the request to the process broker.

6. The charge process executed by the process
broker requires Payment Service authorization
from client connector #1234 and sends a charge
event to the client connector. The client con-
nector for Chris indicates an incoming event to
the game code. The game code inspects the
message and sees it is a charge request from
#6789.

7. Chris’s game client makes an accept_charge
call on the client connector. The client connector
issues signed proof over a time stamp plus data
to the process broker by using a session token
from step 4.

8. The process broker uses this to request
SecurityToken from the identity service for
Payment Service. The request is issued based on
the signature from step 7 on behalf of principal
Chris. IdP responds with a session token for
Payment Service.

9. The process broker uses this to authorize
payment. It requests an authorized charging
session token from Payment Service, using the
token from step 8 as authentication.

10. Payment Service may check authorization of the
principal with the IdP attribute service.
11. The payment security token is discarded (stale).

It is hoped that in the future this mechanism will be
fairly easily implemented by using a combination of

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Web Services protocols and the client-connector-to-
process-broker security mechanisms.

PROCESS BROKER

The client connector needs to establish a session
with a process broker before any business processes
can be invoked. The process broker is intended to be
as stateless as possible, effectively acting as an edge
server for the execution of generic business pro-
cesses; a large, distributed network of process
brokers is envisaged to provide a localized and load-
balanced point of entry for a client connector into
the process execution plane.

Figure 5 shows how a network of process brokers
may support the interaction between game compo-
nents and service providers. Each game component,
which connects to a unique process broker, is
allocated a globally unique ID (the aforementioned
ASID) so that the clients may refer to each other in
function calls to the BIG API. The dotted arrows
between process brokers in Figure 5 represent
logical interactions between these components as
process instances are created. These logical inter-
actions, however, are carried out via communica-
tion lines depicted as solid lines. Effectively, from
the perspective of any one process broker, other
process brokers (and the process instances and
session proxies within them) appear as services
supported by the ESB.

Considering the charge example, a game client in
Figure 5 may initiate a request to transfer funds (a
payment for a game asset, for instance) to another
game client, supplying the two ASIDs as parameters.
The identity of the Payment Service provider is
retrieved from the appropriate client connector’s
repository, and that client’s process broker initiates
the request for service.

The process brokers act as neutral intermediaries
that coordinate message exchanges between client
connectors, whether they are player-to-player or
player-to-game-server interactions. In some re-
spects, they act as a generalized escrow service
brokering the information associated with the
transactions, and they are responsible for the
reliable execution of the process and persistence of
any data over long-running transactions.

The process brokers also contain the business and
integration logic required to interact with the service

SHARP AND ROWE

171

Game

Game /_\ Process
/\ Broker
Services
- -v
PR
Celrts E;gﬁg?s Enterprise
—_ < » Service
Bus
WSDL
<
Game Te~s <> .
Game Process
\/ Broker Security
Reputation
Payment
Content Distribution
Message Distribution
DRM
Fi e-commerce
igure 5

Network topology in a BIG implementation

providers, such as a full Web services stack, insulat-
ing the game developer and code from service details
and the need to perform business logic at the client.
This partitioning of game logic from business logic,
both in terms of programming model and execution
environment, is quite different from the current game
architectures, where business models and policies are
coded directly into the game code.

Because games are eminently susceptible to hack-
ing, any business logic embedded in the game client
is likely to be compromised. It is common practice,
therefore, to locate business logic in the game
server. However, this is only practical for games that
have a permanent, trusted server infrastructure,
such as MMP games have. For the peer-to-peer MP
architecture games, this makes the embedding of
any business-critical code in the client very prob-
lematic. The model that BIG provides, where the
execution of business logic is separated into a third-
party service (the process broker) that is orthogonal
to the infrastructure of a particular game, is an
innovative approach to solving this problem. The
only code in the client, therefore, is the code that
handles the initiating of requests and responses
between other parties via the process broker, and
only the data sensitive to that client flows in and out
of that individual’s client connector. Any hacking
would not reveal any secrets unknown to the

172 SHARP AND ROWE

hacker, and tampering with the message handling
would only interfere with the message flows to the
process broker—which would likely result in the
relevant business process not being completed.
Because there is also an interprocess communica-
tion going on between the two interacting parties
within the game’s own architecture, any successful
hacks to obviate the execution of a business process
would need to be carried out at both parties’ clients.
Effectively, the BIG process brokers are acting as the
mutually trusted intermediary infrastructure that is
missing in the peer-to-peer game architecture.

The business logic is encapsulated within the
process brokers as modular components that can be
composed into hierarchical business processes.
Although we just coded these business processes in
Java** for the prototype, the intention was to use
BPEL (Business Process Execution Language) to
model these processes; however, the WebSphere
Process Choreographer technology (IBM’s BPEL
engine) became available too late for our project to
recode the prototype.

BUSINESS SERVICES

Business services are required to support the
execution of business processes within process
brokers. These services are expected to be provided
as reusable business functions and implemented as

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Web services. The BIG architecture provides a
framework for connecting the various participating
members of a value chain required for a given game
scenario. These services can be thought of as plug-
ins to this framework, and it is therefore expected
that well-defined interfaces for well-defined busi-
ness services will be needed to populate the frame-
work.

Wherever possible, existing standards specifying
service provider function should be used. For
instance, the PayCircle13 initiative is one standard
that defines how a payment service provider should
present its interfaces with Web services and Java
interfaces. However, when these standards either do
not exist or have not been widely adopted,
alternatives must be sought. These can be either
generic interface definitions that attempt to make
likely function for a given service type canonical
(e.g., payment service, asset service, security
service, etc.) or specific integration logic for a
specific service provider. The use of the ESB
architecture can facilitate all of these different
integration approaches in a single coherent admin-
istrative manner.

We now describe the service types that we defined
in the initial architecture. These are basic types that
can be used in combination to support complex
business processes, such as trading of digital assets
protected by a digital rights management (DRM)
system in return for payment.

Payment service

The payment service is used whenever a payment is
made by one party to another. When an exchange of
funds takes place between two players (we refer to it
as the peer-to-peer charging model), there is manual
intervention at both ends. In the traditional con-
sumer-merchant exchange of funds, the merchant
end may be automated. Various commercial insti-
tutions are competing to provide payment services:
telephone companies and mobile network operators,
prepay card-system providers, Internet service
providers, utility companies, credit/debit card ser-
vices, and so on.

We expect that a single payment service would be
the player’s preferred means of making payments
for items such as subscription fees and content or
premium services, so that all charges can be
consolidated to a single payment channel for the

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

player’s convenience. The player could choose a
preferred service provider, establish an account with
this provider through some external means, and
then configure the client connector repository with
the account and security details.

Commerce service

The commerce service provides the functionality of
a Web-based store and catalog service, which
typically allows customers to browse catalogs,
choose items for purchase, and use shopping-cart
facilities to make purchases. This functionality is
stripped of nonessential details and integrated into
the game environment, resulting in simple function
calls that drive shopping-cart and catalog-browsing
processes.

Because the BIG API implements an abstracted
notion of a store, both virtual and real purchases
are possible from within the game. For instance, an
online store that allows the download and purchase
of digital game content can be integrated into the
game environment so that in a first-person shooting
game the store appears in 3D graphics as a game
entity with shelves stacked with weapons, ammu-
nition, and armor. An item picked from the shelf by
the player is placed in the “shopping cart.” Upon
leaving the store, the player pays for the contents,
which are subsequently added to the player’s
assets.

An online store that sells physical goods, such as
branded merchandise, pizza, and so on, also can be
embedded in the game in exactly the same way. The
delivery of purchases, however, is by shipment to
the player’s home.

Content service

The content service is responsible for storing and
managing the digital content within the network.
For example, games may inject content and make it
available to other game clients and servers.

Figure 6 shows two game clients and a game server
interacting via a process broker. New content
injected into the game environment is made
available to other clients and servers through the
process broker, which uses a content management
system exposed as a service. The details of how the
actual content is stored and retrieved are not visible
to the users of the service, so that a content
repository of choice can be used to actually store the
digital content. Because the game server controls

SHARP AND ROWE

173

check/control
content access

Game
Server
e 4 Content
inject Distribution
new content
Game WSDL
Client
v
Process / Enterprise Streaming
Broker Service Content
\ Bus
Burst
) Content
retrieve
content
Game
Client DRM
WSDL
Figure 6

Content services

174

access to the media, the game developer is able to
offload the content-management and distribution
problem to the middleware infrastructure. Because
digital assets are handled like any other artifact by
the middleware, they can be manipulated in
conjunction with other artifacts in the same trans-
action. For example, the game client can retrieve
content in return for payment, handled in a single
function call. The function call results in the process
broker executing a process that groups an asset
manipulation by the content service with a financial
transaction by the payment service.

A separate DRM service can be used to deal with
ownership issues, key exchanges, and so on, and a
separate DRM clearing house can be implemented.
Due to resource constraints, we did not get a chance
to investigate this very interesting set of services in
our prototype effort but believe this area is a very
rich one for future research.

Message service

The message service is an abstraction of a message
distribution hub, or message broker, that enables

SHARP AND ROWE

applications and data to be loosely coupled via a
publish/subscribe message distribution pattern.
This service is a built-in feature of an ESB and a
natural extension of the BIG architecture.

Within the publish/subscribe messaging pattern,
messages are associated with topics. This is essen-
tially a hierarchical namespace with some semantics
implicitly associated with it (known as a topic
space). A message broker provides a logical “cloud”
that represents the topic space of all topics. Entities
using this cloud can either produce or consume
messages, and they do this by publishing a message
to a topic, or subscribing to a topic. The use of
wildcards is permitted when referring to topic
names. Entities are unaware of each other’s exis-
tence, and they are only concerned with the topic
space to which they are publishing or subscribing.
Each entity may actually interact with the topic
space over a different mechanism, but these details
are hidden from the consumers of messages.

For example, using a live tennis tournament
scenario, one entity may publish messages (some-
times called events) to a topic /Sports/Tennis/
Events/Wimbledon/Matches/Henman that contains
the current scores for tennis player Tim Henman in
an ongoing series of matches at the Wimbledon
tennis tournament. Another entity may subscribe to
the topic /Sports/Tennis/Events/Wimbledon/* and
get all messages published about any of the players
in any of the matches in the Wimbledon tourna-
ment. Figure 7 illustrates how an event distribution
service connects producers and consumers of
events, such as live sporting events or Web
applications, within game environments.

At the far right of the diagram we see a variety of
devices producing and consuming event-related
messages through the event distribution service.
Remote sensor and telemetry devices report infor-
mation such as location, orientation, and velocity of
objects, such as a racing car or tennis ball, in a live
sporting event. Mobile phones receive important
status messages about events within an ongoing
MMP (e.g., “Your castle is being raided by the
goblins”) in which the user is not currently
participating. Data from an ongoing MP tournament
(e.g., current number of players and game statistics)
are fed to a Web application and then rendered to
the user by a browser.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

publisher/

subscriber
Game W7
Server '®
i)
Game
Client Game state data/...
events events
publisher Enterprise
Process Service Event
Broker P Bus . | Distribution
WSDL
WS-Notification
Game \\
Client events N
subscriber
Figure 7

Event distribution service

The game code can either produce events by
publishing to the publish/subscribe “cloud” or listen
for events by subscribing to specific topics. This way
a game could take the feed of telemetry data from
racing cars via trackside sensors in a live motor-
racing event and use them to simulate the actual
event, without needing to understand how to
interface with that particular telemetry feed.

Using the paradigm in the opposite direction to push
virtual environment events out to the real world,
games with multiplayer attributes such as tourna-
ment games could publish the current in-game
statistics, such as current scores, player health,
location, and so on, and other applications such as
Web sites could subscribe and make use of this data.

This kind of integration is sometimes known as an
event-driven architecture, and it is a complementary
approach to SOAs. As an adjunct to our prototype
work, we sponsored a project (called Event Hori-
zon) involving college students who looked at
enabling the virtualization of a topic space over a
number of message brokers and the appropriate
exposure of a messaging service at the client
connector. The students involved in the project
developed a very innovative real time strategy (RTS)
game that uses the topic space as a mechanism of

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

sharing game state, not only between instances of
the same game, but also between instances of
different games. It thus provides a higher-level
strategy game that involves the players coordinating
and deploying troops and resources over a battle-
field map. Individual skirmishes between opposing
troops are then realized by instances of a first-
person-shooter game, such as Quake II. This was
achieved by instrumenting Quake II to expose its
configuration and state via topics. The high-level
RTS game inspects the progress of Quake II
instances and configures new ones based on actions
in the RTS, via the appropriate topics.

This approach to game development and the inter-
locking of actual instances of different games is
certainly a very radical departure from current
practice, and we feel this also presents a very rich
vein of research.

Clearly many other kinds of service could be defined
and integrated into the middleware, and then
combined with each other to provide value-add
processes usable from within the game environ-
ment. The set of services described in this section is
a first pass at what might be of immediate value, but
imagination within the game industry can help to
define further service types.

SHARP AND ROWE

175

IMPLEMENTING THE BIG ARCHITECTURE

In this section we discuss our implementation of the
BIG architecture. In order to verify our implemen-
tation of the architecture and to demonstrate that it
can be successfully integrated into computer games,
we also describe a demo that integrates the popular
first-person-shooter game Quake II into BIG.
Although, given its “fast and furious” nature, Quake
II was not necessarily the best vehicle for demon-
strating the BIG concepts (some sort of MMP game
might have been a more suitable choice), Quake II
had the advantage of being immediately recogniz-
able, and, more important, its source code was
available under the GPL license. This made it
possible not only for BIG technology to be integrated
into the game, but also for the game to be modified
to properly exploit that technology, and, in doing so,
to demonstrate a number of potential business
models.

Of most immediate importance to the game devel-
oper, and from an integration point of view, are the
BIG APIs. As discussed previously, these are a set of
process-oriented APIs, each of which provides
access to one of the business services described
earlier, and each of which uses a small set of simple
verbs to provide access to the complex functionality
offered by those services. The focus of the incuba-
tor-funded project was on the payment and com-
merce aspects of the business processes, and so the
APIs that were developed concentrated on these
areas. The resulting APIs use very simple but
powerful process-oriented verbs (such as, simply
charge on the Payment Service API) that allow the
game developer to access the back-end services with
minimal effort and without having to worry about
the underlying business and integration logic for
those services.

Given the implementation requirements just de-
scribed, and because C was the programming
language of choice (or at least the lowest common
denominator) for most game developers at the time,
the APIs were written in C. Due to the previously
described constraints of running in a high-perfor-
mance gaming environment, all but the most basic
API functions were designed to behave in an
asynchronous manner, so as to not interfere with
the flow of execution within the game.

Providing the actual implementation of the APIs is
the client connector. Given both the performance

176 SHARP AND ROWE

and language-support requirements, this was im-
plemented in C as a thin client with an unthreaded,
finite state machine-based design. In order to not
interfere with game performance, the client con-
nector also uses its own memory heap, which is
configurable by the game developer. To further
reduce performance overhead, the client connector
also contains no real business logic; instead, its
main role is to offload the work generated by calls to
the API onto the process broker.

The process broker itself was implemented to run
within WebSphere and included support for the
payment and commerce service functionality de-
scribed by the client-side APIs. Although integration
with real-world payment and commerce services
had been achieved, for stand-alone demonstration
purposes simple payment and commerce services
were also implemented as EJBs** and run within
WebSphere.

Integration with Quake II

Given that the Quake II source code was available,
integrating Quake II was a relatively simple matter,
which was performed by just adding the necessary
API calls at the appropriate locations in the code.
However, given the “jump in and start shooting”
style of game play, modifications to the game engine
were required in order to restructure the game play,
and to allow the necessary business logic to be
inserted. This was, perhaps, slightly inelegant, but
ideally, any real-world game developer would not be
attempting to retrofit business logic to their (poten-
tially unsuitable) games; instead, they would design
their game with the business models in mind from
the start. Along with the necessary code modifica-
tions, a custom “map” (i.e., the metadata describing
a game level) was also constructed, which allowed
the desired business models to be demonstrated in a
visually clear manner.

The Quake II demo contains a number of business
models, all of which were implemented mainly for
illustrative purposes. It is not suggested that all (or,
indeed, any) online games should actually imple-
ment the same configuration of business models
described here. Nor are these the only business
models that can be implemented. Rather, these are
examples of what can be achieved using the BIG
approach, demonstrated within the familiar setting
of Quake II.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

We modified Quake II by having the player enter the
game world without any weapons or usable items,
and thus without the ability to actually enter
combat—players arrive in an area (a central tower)
isolated from the main combat arena. This is akin to
the manner in which most MMPs begin, in which a
player’s character begins with no assets and must be
built up over the course of the game. Starting the
game in an isolated tower is also similar to the
concept of first entering a “lobby” and chatting with
other players (to discuss strategy, say) before
joining the game proper. This is also the starting
point for demonstrating the business models in-
corporated into the demo.

Content purchases

Because Quake II is a combat-based game, entering
the game with no weapons or equipment puts the
player at a severe disadvantage. To rectify this,
contained within the tower is a “store,” from which
players are able to purchase weapons and equip-
ment before entering the tournament game.

Upon entering the store, players are given the
opportunity to purchase weapons, ammunition for
those weapons, and other miscellaneous items (such
as armor). The contents of the store are populated
by making use of the BIG commerce API to query a
commerce service, which maintains a “catalog” of
the items that are available for purchase. As the
player wanders around the store in the 3D game
environment and selects items, these are added to
the player’s “shopping basket,” ready to be pur-
chased. In much the same way as online stores such
as Amazon.com, Inc. work today, the items are not
actually purchased until the player confirms that he
or she wishes to purchase the contents of the
shopping basket.

Of course, the ability (or necessity) to purchase
weapons and equipment within the gaming world
would perhaps be off-putting in a real game—
games could soon degenerate into “survival of the
richest.” Nevertheless, there is plenty of in-game
content that it would make sense to charge for; for
example, access to new “levels” within a game,
rather than having to purchase the latest expansion
pack from a physical, real-world store. Additionally,
there is a fast-growing trend in consumers wishing
to customize their experiences, as seen in the
enormous mobile phone ring-tone business, where
content is readily purchased for small sums of

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

money in order to tailor the appearance of the
player in the game.

More important, this shows that the purchase of
content can be made within the gaming world,
without having to leave the game (to use a Web
browser to make the purchase), and therefore
without having to destroy the immersive experience
that the gaming world provides.

Furthermore, the purchase of content need not be
limited to digital items. Because the BIG commerce
API is merely retrieving a list of items for purchase
from a commerce service, it is perfectly feasible for
that commerce service to be selling real-world items.
For example, as demonstrated by Sony’s recent
updates to EverQuest 2, the commerce service could
be providing access to a store like Pizza Hut, Inc.,
thus allowing players to purchase a pizza and have
it delivered to their home without having to
disengage from the game at all.

Thus, not only is it possible for online commerce to
be seamlessly integrated into the gaming world, it
also becomes possible for any item—be it physical
or digital—to be purchased from within that gaming
world.

Pay to play

Having selected weapons and other necessary items,
the player is about to enter the gaming arena itself.
In order to gain access to the arena and be able to
play the game itself, the player must pay an access
fee to the game service provider. From the store the
player steps through a door that leads to the game
arena and at this time is shown the charges that
must be agreed to before he or she can join the
game. Both the game entry fee and the store
purchases are paid for, and the appropriate amounts
for each are debited from the player’s business
account by means of the business services provided
by the BIG APIs. This is just a feature of the
implementation of the demo, and there is no reason
why the purchase for the items from the store may
not be made before players make their decision to
actually enter the game. Furthermore, despite
appearing on the same display screen, the two
different purchases are indeed handled differently.

Once the user decides to accept the total charge, two

different charges are made (and two separate charge
processes are initiated). The first charge is made via

SHARP AND ROWE

177

the commerce API, which invokes a commerce
service. For the second charge, the one-time game
entry fee, the payment API is used instead.

This separation of the various charge types demon-
strates a degree of revenue-splitting capability. In
this demonstration, although the user only makes
one charge, the payment is actually sent to two
different parties: the first part of the payment is
received by the commerce service provider in
exchange for items purchased in the store; the
second part of the payment is received by the game
service provider. These two services therefore need
not be provided by the same entity.

Furthermore, it is quite possible—and, indeed,
preferable—for more complicated revenue splitting
to occur in the back-end services. Although not
demonstrated here, it is possible for the simple, one-
time charge via the payment API to actually be split
by some business process hosted by the process
broker, with various percentages of the profit being
sent to various parties (e.g., developers, publishers,
etc.). This is where the real value of the BIG APIs
would become evident—the game developer need
add one simple verb (e.g., charge) into the game
code, without needing to worry at all about the
business logic controlling which entity receives
which percentage of the actual payment. What’s
more, that business logic could actually change (by
altering the functionality and behavior of the
services offered by the process broker) without
actually having to change game code.

Tournament play (winner takes all)

One final business model illustrated by the Quake II
demo involves rewarding the winning player in
some way. In this case, the reward is financial, with
the winner receiving a percentage of the total
tournament revenue received by the game-hosting
service (and obtained from charges made upon
players wishing to join the game). In the demo, the
winning player receives 90 percent of the takings,
and the game-hosting server keeps the remaining 10
percent as profit. This provides players with an
incentive for joining a particular game, simultane-
ously allowing the game host to make a profit.

Once again, the actual business logic that controls
the percentage of the initial takings that players
receive as their winnings may be completely
contained within the process broker. Furthermore,

178 SHARP AND ROWE

the fact that two different APIs are used to charge
the player—and two completely independent ser-
vices utilized—means that the winner’s prize need
only be contributed to by those parties that actually
wish to. For example, whereas the host of the game
service wishes to provide players with an incentive
to play on his or her server in order to obtain a
source of income, the commerce service provider
has no such concerns because that income is
obtained from the sale of necessary in-game items
(such as weapons). The use of two different APIs
means that the two charges are completely separate
and that the commerce service provider may there-
fore keep all of the profit from the sale of in-game
items. Thus, there are many ways of splitting
revenue streams and separating the various finan-
cial concerns of all parties involved.

Overall, the Quake II demo demonstrates that, not
only is it possible to bridge the programming and
operating gap between current game development
methodologies and enterprise computing, it is also
possible to make the new environment easy to use.
The demo also indicates that third-party service
providers might find it easier to expose their services
to other markets by integration with an open,
standards-based integration framework.

CONCLUSION

In this paper we describe an architecture, Business
Integration for Games, and a corresponding imple-
mentation for integrating online games with busi-
ness services. We also describe a demo that
integrates the popular first-person-shooter game
Quake II into the BIG implementation.

Throughout the course of the project, we made some
interesting discoveries about the game industry,
such as the variety of business models they employ
today and the evolutionary period the industry is
going through that will necessitate new and more
flexible business models in the future. As an
industry, it is an intriguing hybrid, an offshoot of the
IT and entertainment industries, and it has close
affinities with both, but it is also unique. It is also a
relatively young industry, and its rapid expansion
over the last decade is accompanied by a shift from
the custom software industry to online services.

Since we performed the work described here,

Microsoft'* and Sony Online Entertainment'” an-
nounced game-related support for e-commerce

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

systems that are consistent with our approach. It is
not clear that they have gone as far, however, to
build an open, standards-based framework to
support a dynamic business environment.

The seamless integration of real world commerce
with the fantasy environment of a game, which
players are attracted to by the very fact that it is not
the real world, involves a delicate balance to be
kept. An enjoyable game experience is the critical
success factor for any online game, and if the
insertion of business aspects into the game scenario
detracts from this experience by jarring the “sus-
pension of disbelief” in the narrative, then it is
counterproductive. This is similar to the challenge in
the film industry in the way corporate sponsorship
of products needs to be very carefully and sensi-
tively dealt with in the context of any given film.
The challenge of attaining a smooth integration of
business function and online games is one that faces
game designers and one that we do not address in
this work.

ACKNOWLEDGMENTS

The authors would like to thank Rob Smith, Andrew
Reynolds, Brian Innes, Arthur Barr and Steve Wallin
for their tireless efforts in the Aspen Project, and
James Russell for his vision and support of the project
as a Software Group Incubator. The authors would
also like to thank the Hursley Laboratory for
supporting the project in its initial exploratory stages.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc., Microsoft, Electronic Arts, Inc., id Soft-
ware, Inc., Sony Computer Entertainment America, Inc.,
Turbine, Inc., Linus Torvalds, or Valve Corporation in the
United States, other countries, or both.

CITED REFERENCES AND NOTE
1. GameSpy, IGN Entertainment Inc., http://www.gamespy.
com.

2. Battle.net, Blizzard Entertainment, Inc., http://www.
battle.net.

3. EverQuest, Sony Online Entertainment Inc., http://eqlive.
station.sony.com.

4. Ultima Online, Electronic Arts Inc., http://www.uo.com/.

S. Asheron’s Call, Turbine Inc., http://ac.turbinegames.
com/index.php.

6. eBay, eBay Inc., http://www.ebay.com.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

7. Steam Content Distribution, Valve Corporation, http://
www.steampowered.com/.

8. Business Integration for Games, IBM Corporation (2003),
http://www.alphaworks.ibm.com/tech/big/.

9. Quake II, id Software Inc., http://www.idsoftware.com.

10. See, for example, SOA and Web Services, IBM Corpo-
ration, http://www.ibm.com/developerworks/
webservices/ and IBM Systems Journal 44, No. 4 (2005).

11. M.-T. Schmidt, B. Hutchison, P. Lambros, and R.
Phippen, “The Enterprise Service Bus: Making Service-
Oriented Architecture Real,” IBM Systems Journal 44,
No. 4, 781-798 (2005).

12. Web Services Security: SOAP Message Security 1.0 (WS-
Security 2004), A. Nadalin, C. Kaler, P Hallam-Baker, and
R. Monzillo, Editors, OASIS Standard 200401 (March
2004), http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-soap-message-security-1.0.pdf.

13. PayCircle Consortium, http://www.paycircle.org/.

14. Xbox 360, Microsoft Corp., http://www.xbox.com/
en-US/xbox360/.

15. Station Exchange, Sony Online Entertainment Inc.,
http://stationexchange.station.sony.com/.

Accepted for publication September 1, 2005.
Published online January 18, 2006.

C. E. Sharp (Chris)

IBM Software Group, Hursley Park, Winchester, Hampshire,
SO21 2JN, UK (sharpc@uk.ibm.com). Mr. Sharp is a Senior
Technical Staff Member in the WebSphere organization within
Software Group; he is a Master Inventor and a member of the
IBM Academy of Technology. He works as a software architect
on WebSphere product support for Web services and has
extensive experience in business integration technologies and
issues. For his work in the field of Web services, he received
an IBM Outstanding Technical Achievement award in 2004.
He led the team that developed the Business Integration for
Games middleware, a prototype technology that integrates
online games and e-business and that is available on the
alphaWorks® Web site. He is a Fellow of the British Computer
Society.

Martin Rowe

IBM Software Group, Hursley Park, Winchester, Hampshire,
SO21 2JN, UK (mrowe@uk.ibm.com). Mr. Rowe is a software
engineer at IBM’s Hursley Laboratory and is currently working
on the SCORE project, a document management system that
supports compliance with governmental regulations in the life
sciences. Prior to this he worked on the IBM Business
Integration for Games project, in which he was responsible for
developing the client-side APIs and the client connector and
supporting Quake II™ integration efforts. M

SHARP AND ROWE

179

