
Online games and e-business:
Architecture for integrating
business models and services
into online games

&

C. E. Sharp

M. Rowe

Online games are the future of the interactive entertainment industry. The idea of

integrating business services into online games holds a number of exciting possibilities

for new business models, new markets, and new growth. We describe an architecture,

Business Integration for Games, and an implementation prototype, for integrating

online games with business services. We also describe a demonstration system that

embeds our prototype into the popular first-person-shooter game Quake IIe.

INTRODUCTION

Online games, which give the player the ability to

compete against other players over a network,

emerged seriously in the mid-90s. This rapidly

evolved from a novelty feature to an expected

function by players, and game designers adopted

this approach to build multiplayer (MP) and

massively multiplayer (MMP) genres of games.

A key difference between these genres is scale, and

with it, the associated infrastructure to support it.

The MP games confine the number of concurrent

players in a single game to somewhere between 16

and 32. Usually, the game can be played either

stand-alone or in multiplayer-network mode, and

one of the players’ machines acts as the server. The

game session is relatively short-lived (minutes to

hours). If the server crashes, the game is, at worst,

over or, at best, severely disrupted. The MMP

games, though, are a very different affair. The most

popular MMP games today have subscription bases

in the millions, with hundreds of thousands of

players online at any one time, spread over

hundreds of servers. The shared game session lasts

indefinitely. This requires a much more stable

environment; thus, these games have to run on

dedicated servers equipped with a persistent data-

base. Network bandwidth to support the game-

related traffic is also required, and all this obviously

has an associated cost.

These two different genres and their associated

infrastructure requirements and costs spawned two

different approaches to sustained revenue genera-

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHARP AND ROWE 161

tion. The first one, mostly associated with the MP

games, is based on the provision of a portal to act as

a hosting and matchmaking Web site for players of

these games. The portal site offers either a free

membership to players and generates revenue

through online advertising or a premium member-

ship, free from advertising. The members gain

access to services for locating other players and

games, league tables and high scores, patches and

add-ons, and use of the portal’s dedicated server

machines for playing games. An example of such a

portal is GameSpy.com,
1
which maintains a sub-

scription-based membership and provides an ag-

gregation point for a variety of games that run on a

variety of platforms. Some game publishers run

their own portal sites with free membership,

dedicated to hosting their own games and ensuring a

quality experience for the community of players.

The downside from the player’s perspective is that

these sites are limited to the products of the

publisher. An example of a publisher portal site is

Battle.net,
2
dedicated to games from Blizzard

Entertainment.

The second business model, associated with the

MMP games, is based on subscriptions that include

a persistent presence in the game environment. For

typically ten to fifteen U.S. dollars per month, a

player has access to a game character that may be

developed over time to accrue additional features for

a more enjoyable game experience. The reasons

players continue to subscribe include a strong

community spirit, exciting game experiences, and an

ever-increasing investment of time and money in the

game character—if you stop paying for your

subscription then your character (and all the

experience and wealth gained) is lost. It is not

uncommon for the subscription to be continually

renewed while the account is dormant.

These games belong to the role-playing game

category, and are often referred to as MMORPGs

(massively multiplayer online role-playing games).

Game characters are often involved in adventure

and exploration jointly with other players, and aim

to achieve some objective and gain rewards. The

more rewards gained, the more powerful the

character. Virtually all of these games have some

kind of embedded trading mechanism that allows

players to exchange wealth among them in the game

world. For instance, in one of the most popular

MMP games, EverQuest**
3
from Sony Online

Entertainment Inc., players assume the roles of

pseudo-medieval fantasy heroes, gaining magic and

gold in a land of dragons and wizards. Players are

able to buy and sell their virtual property in

exchange for virtual wealth, but this virtual econo-

my is confined to the game world and is not a means

by which the game service provider makes any of its

revenue. Trading virtual wealth in the game world,

however, has spawned a third business model that

is now emerging.

From the earliest use of MMPs (Ultima Online**
4
,

EverQuest, Asheron’s Call**
5
), the players in the

community have recognized a gap in the market.

Whereas some players are unable to devote the

time, or lack the skill, to develop powerful charac-

ters and gain access to the more enjoyable game

experiences, they are willing to pay real money

(above and beyond the subscription fee) in order to

acquire this virtual property. Thus, a real economy

has emerged in which artifacts of the game world,

such as magical items, weapons, or even whole

characters, are bought and sold for real-world

money. The means by which these transactions

occur are often through an external medium, such as

an online auction site like eBay.
6
The game service

providers have historically frowned upon this

practice, claiming that it is they who own the

intellectual property rights to the items being traded,

not the players, and that the trade is therefore

illegal. But despite various attempts to prevent it,

the practice is now an acknowledged side effect of

the MMP game genre, and some newer MMP

releases have attempted to build this into their

design from the outset by providing auction

functions and the ability to exchange real-world

currency for virtual in-game currency. The open

market, however, is a strong force, and this has not

really deterred players from continuing to use

external auctions and payment services.

Another reason why the game service providers

dislike this real money trade is that, if left uncon-

trolled, it can detract from the game-playing

experience, undermine overall player satisfaction,

and put the service provider’s continued revenue

stream at risk. If it ends up that the richest players

are automatically the most successful, this imbal-

ance can be very frustrating to the other players.

An obvious problem arises from this kind of external

transaction—the financial exchange is completely

SHARP AND ROWE IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006162

decoupled from the asset exchange because the two

transactions occur in totally unrelated environ-

ments, and it relies on the humans in the loop to

monitor and maintain the integrity of the two. This

has inevitably led to cheating by unscrupulous

players (and even non-players) through bogus

transactions. Clearly, this is not a new problem, but

one that is present in auction and e-commerce sites

on the Web, where the purchase and delivery of

goods are separated over time. However, the

coupling of the financial transaction and exchange

of assets in this case is eminently possible and

would make for a much safer and reliable

experience.

Meanwhile, MP games are developing further

revenue channels through the development of

‘‘episodic content’’ that can be purchased online and

used to enhance the original game experience. Since

the beginning of the MP genre, a feature of these

games has been extensibility. Players have been able

to create their own content to augment or tailor the

game. And by the same mechanisms, the game

developers create official content that is released for

sale. Systems, such as Steam**
7
from Valve

Corporation, provide a download client system to

integrate the purchase and digital delivery of the

content for incorporation into the game. However,

these transactions occur outside of the game itself

and not between players, preventing the players

from selling their own content.

Despite the two genres of MMP and MP games

exhibiting different revenue models and infrastruc-

ture requirements, they both share a common

feature. Players continue to play the game and pay

for subscriptions or add-on purchases if the experi-

ence continues to be enjoyable and is perceived to

be worth investment in the long run. If players

cannot trust the other players in the community, if

real-money trade results in a playability imbalance,

if the content does not get updated regularly, or if

the players cannot contribute to the content of the

game as a whole, they will lose interest and go

elsewhere.

This problem is very similar to that faced by Web-

based businesses, striving to make their Web sites

‘‘sticky’’ through new and interesting content and

through community participation, and it should not

be surprising that the technical challenges facing

Web portals are relevant to the evolution of online

games. However, the browser is a very different

operating environment and interactive experience

from that of a game. Early attempts to integrate e-

commerce into games used very simplistic means,

usually involving the launching of a Web browser.

But this approach has serious deficiencies, because

launching a Web browser involves a clear disruption

of the game experience and a disconnect between

the e-commerce transaction and the in-game

mechanics.

In this paper we describe an architecture, Business

Integration for Games (BIG), for integrating business

services within online games. The work was

performed within an incubator project, called

Aspen, that was set up to investigate this architec-

ture and implement a prototype. The implementa-

tion involves three main components: a thin client

connector included in the game platform, a process

broker based on WebSphere* to act as both agent

(for the client connector) and intermediary (agent

for multiple clients), and a collection of business

services. The prototype is available on the alpha-

Works* Web site under the name Business Integra-

tion for Games.
8

To demonstrate the viability of integrating business

services with online games, we applied the BIG

technology to several games, the most notable being

Quake II**. This game, from id Software,
9
is a

benchmark for MP games and is highly representa-

tive of the genre. Moreover, its source code is

available under the GPL (GNU General Public

License) open-source license, making it suitable for

our integration experiments. Since this work was

completed, several MMP games have become

available as open-source code, making it possible to

explore the application of BIG to the MMP genre.

The rest of the paper is divided into the following

sections. First, in the ‘‘Business Integration for

Games’’ section, we review the current trends for

systems integration in the enterprise, we introduce

the programming environment for game develop-

ment, and we describe the BIG architecture. The

next three sections cover the three main compo-

nents of the BIG architecture: client connector,

process broker, and business services. Then, in the

section ‘‘Implementing the BIG architecture,’’ we

describe our prototype and its integration with

Quake II. We summarize our results in the ‘‘Con-

clusion’’ section.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHARP AND ROWE 163

BUSINESS INTEGRATION FOR GAMES

In this section, we first look at the information

technology (IT) industry and the systems integration

work in the enterprise environment and consider the

challenge of incorporating this technology into

online games. We then give an overview of the

game-technology and programming environment.

Finally, we introduce the BIG architecture and

describe its main components.

Systems integration in the enterprise and its
extension to games
Over the last few years, the IT industry as a whole

has moved to the adoption of service-oriented

architecture (SOA)
10

and a supporting infrastructure

for SOA, based on the Enterprise Service Bus (ESB)
11

and the use of Web services in particular. Reusable

function is made available to the world through

well-defined interfaces and by using open standards

and protocols, where integration can effectively be

achieved at runtime through the use of directory

services to discover and determine the integration

requirements. This should dramatically reduce

software-development and systems-integration re-

quirements and cycle times. In the traditional

enterprise world, there are many well-publicized

exploiters of the new technology. Service providers

such as eBay and Google are exposing their

application programming interfaces (APIs) by

means of Simple Object Access Protocol (SOAP) and

Web Services Description Language (WSDL) to

allow other Web sites and applications to incorpo-

rate these services into their own offerings, and

enterprises such as Charles Schwab & Co., Inc., are

using the ESB infrastructure and Web services for

enterprise integration.

Extending this approach to games, however, by

making various services available (to perform

generic functions such as payment services) through

a Web service interface is not enough to be of

immediate use to the game industry. Game devel-

opers are not interested in a new and unfamiliar

layer of complexity with which they must cope in

order to build their systems. The main technical

challenges in applying traditional enterprise inte-

gration techniques to online games can be broken

down into three categories:

� Integration Logic—The various members of the

value chain associated with the online game

service (such as providers of payment and trans-

action services, or providers of digital content

delivery and protection services) need to interact

and interoperate with each other in some way. A

truly flexible solution would not require that these

providers be already integrated or even aware of

each other.
� Business Logic—The code that embodies the

business constraints, such as terms and conditions

of interaction between various parties, is not

relevant to the game and should be separated from

the game logic.
� Security and Trust—The execution of the business

logic may involve access to private information

belonging to various parties. For example, to

transfer funds from one party to another, an

account number and PIN (personal identification

number) may be required. Consumers are reluc-

tant to have their private information configured

within the game, as they do not necessarily trust

the game code (which represents the entity that

may be actually charging them for its use) to

manage their financial transaction. This problem

is exacerbated if the transaction takes place

between players. Coupled with this issue are the

problems of protection from malicious attacks

(either from other players or from rogue service

providers) and the security of hacked games.

Each of these categories contains a complex set of

issues and, although apparently orthogonal, all

three categories must be addressed with a holistic

approach to ensure that meeting the requirements of

one category does not reduce the efficiency of

another.

Programming environment for game
development
The typical enterprise application developer usually

programs in Java, C#, or some scripting language.

Often, the code is executed in a managed environ-

ment such as a J2EE** or .NET** container. During

development the emphasis is on manageability of

the code, portability (i.e. adherence to standards),

and the business logic that the code is implement-

ing. The existence of a comprehensive container

environment means the developers need not (in-

deed, may actually be prohibited from) concern

themselves with execution details, such as network

and transport reliability, security, thread manage-

ment, and memory management. These low-level

concerns are addressed by the container itself or

other middleware components. External interactions

SHARP AND ROWE IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006164

with the code travel through many layers of infra-

structure code and typically include a Web browser

interface. These interactions may be synchronous

(where the thread blocks for the response) or

asynchronous. The code executes under the strict

control of the container environment. Unlike the

game environment, any performance concerns are

constrained to the efficiency of the business logic

and the scalability of throughput provided by the

container infrastructure. Predictable low-latency

response time is not a metric that usually concerns

the developer.

In contrast, the game developer typically programs

in C and Cþþ, and even assembly language for the

more time-critical components, and the code ex-

ecutes in the operating-system (OS) environment of

the target hardware. This environment may vary

from the OS library support environment as pro-

vided by Windows** and Linux** on PCs, to some

RTOS (real-time operating system) environment on

a console or portable device. There is no managed

container environment. The typical game is still

written as a non-threaded application with a single

main loop. The main loop must complete its cycle

with perfect regularity in order to refresh the display

in a continuous smooth flow. Any unpredictability

in display updates is obvious to the eye of the player

and severely detracts from the game experience.

Therefore, the game itself is the main execution

control engine, and all calls to other libraries and OS

services must abide by the constraints of the game

execution timing; otherwise, they impact the game

performance as a whole. The game developers need

to concern themselves with most of the low-level

details of execution, such as memory management,

thread control (if any), and network connectivity

and operation. There is an increase in the use of

networking middleware, but this is still fairly low-

level and involves packet management functions

and object propagation over UDP (User Datagram

Protocol). For MMP games, as mentioned earlier,

the game client provides the player with access to a

shared ‘‘world state’’ that is maintained and

persisted across a server infrastructure. The server

component of the game is still written largely using

the same programming paradigms, with perfor-

mance being a key issue, leading to integration of

database technology as the persistent store of the

world state with vendor-specific APIs, rather than

open, platform-independent APIs such as ODBC

(Open Database Connectivity). The database is used

both for persistence of game state and player

subscription management, including authentication

of clients to the game. However, architecturally, the

server side looks very much like a typical enterprise

Web application, consisting of edge servers acting as

gateways between the clients and the servers and

providing routing and load balancing to the servers

running the game—effectively a simulation that

tracks the state (position, orientation, velocity,

inventory, etc.) of objects, updated by inputs from

players and artificial-intelligence agents. Often, the

virtual world is either replicated horizontally across

servers (effectively a series of ‘‘parallel worlds’’) to

spread the load statically by assigning a player

subscription with a specific world. This is known as

a shard architecture—the name reflecting how the

universe is broken into shards, and players can only

explore the world on the server (or server cluster)

that they are connected to. Newer MMPs are

exploring grid architectures to distribute a single

virtual world over a number of servers by assigning

a portion of the world to each server. Here, as

players move from one portion of the world to

another, the gateway servers handle the distribution

of the player interaction with world servers accord-

ingly and route traffic to the appropriate server for

the current location of the player in the overall

virtual world’s geography.

The BIG architecture
In order to take advantage of the benefits of a

service-oriented architecture using ESB and Web

services technologies in the game environment, it is

clear that some bridging technology is required. This

bridging technology could be a piece of middleware

that acts as an intermediate layer between the game

client and the intelligent infrastructure for discov-

ering, selecting, and using the externally provided

business services. However, this intermediate layer

has to adhere to the stringent operating require-

ments of the game environment.

Figure 1 illustrates the BIG architecture. The Game

Runtime Environment includes the game compo-

nent, labeled Game, and the client connector. The

game component consists of either client or server

code. The Game Runtime Environment can reside

on a PC or server platform, a game console, a mobile

phone, and so on. The game component connects to

and communicates with other components through

the client connector, which in turn connects to a

process broker (labeled Process Broker in Figure 1).

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHARP AND ROWE 165

The initial interaction between the game component

and the client connector results in the instantiation

of a session proxy (labeled Session Proxy) at the

corresponding process broker, and the allocation of

an application specific identity (ASID)—a globally

unique identifier that identifies both the game

instance and the process broker that owns the

session proxy. The ASID is the identity that game

code instances then use to refer to other game code

instances when communicating with the client

connector. This allows the distribution of client

connectors over a number of process brokers.

The session proxy, which acts as an agent on behalf

of the client connector, interacts with the process

instance component through the standard Web-

service interfaces (labeled WSDL). The session

proxy thus acts as a Web-service facade for the

client connector, to allow process instances to

interact with clients by means of a standard,

interoperable mechanism. This provides a level of

encapsulation of the client and facilitates the use of

standard process technologies, such as Business

Process Execution Language (BPEL). The process

instances also use the Web-service interface to

communicate with business services through the

ESB.

Figure 2 illustrates how the three components of the

BIG architecture can be viewed as operating within

three ‘‘planes,’’ representing three separate archi-

tectural domains: the game plane, the process

execution plane, and the business services plane.

The game components interact within the game

plane according to whatever pattern is appropriate

for that specific game, be it peer-to-peer, client/

server, grid, and so on. Within this plane, the

various instances of the game code (players and

servers) communicate according to the rules of the

game (game-state propagation, game-control up-

dates, etc.). The game components are represented

in the diagram as nodes in the game plane; the edges

joining them represent interactions between game

components. Interactions between clients and proc-

ess brokers are illustrated as arrows between the

Enterprise
Service

Bus

Figure 1
BIG architecture

Game Runtime Environment

Game

BI
G

 A
PI

Client
Connector

Repository

Process Broker

W
SD

L

ServiceSession
Proxy

Process
Instance

W
SD

L

W
SD

L

W
SD

L

WSDL Web Services Description Language

Bu
si

ne
ss

 S
er

vi
ce

s
Pl

an
e

Figure 2
BIG architectural planes

Pr
oc

es
s

Ex
ec

ut
io

n
Pl

an
e

G
am

e
Pl

an
e

SHARP AND ROWE IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006166

game and the process execution planes. In turn,

process brokers are represented as nodes in the

process execution plane, whereas edges joining

these nodes represent interactions between process

brokers.

Inevitably, the execution of business processes

requires the invocation of business services, which

operate in the business services plane.

We now examine the three architectural compo-

nents in more detail.

CLIENT CONNECTOR

As Figure 1 illustrated, the client connector compo-

nent is a thin client that presents the BIG API to the

game code and manages personal player data by

using a secure, encrypted repository. This persistent

repository is available for any game that uses the

client connector, so that players need not re-enter

data when they acquire a new game, and their

personal data is managed separately from any game.

The mechanism is effectively acting as a local ‘‘e-

wallet.’’ However, due to either consumer prefer-

ences or local storage limitations, an alternative

remote e-wallet service must also be considered.

The client connector must be efficient, as it will

reside within the game footprint and execution path.

For PC-based and console games, a native, portable

C version is required that can run in either a non-

threaded or a threaded model.

One of the primary design objectives of our project

was to hide as much complexity from the game

developer as possible. The business integration

infrastructure should be available for use by the

game code as a kind of utility that is as simple to use

as turning on a tap. To achieve this, the client

connector needs to provide business functions while

hiding the technical details of operation for these

services. We therefore decided to design the client as

a two-tiered structure, with business functions

wrapping onto a microkernel. The microkernel

provides the core asynchronous messaging and

memory management functions for the transfer of

process requests and for returning results (the

responses are presented to the game code by

handles to data structures). Because of the strict

memory footprint and timing requirements, the

client connector also provides an initialization

parameter that determines the maximum amount of

memory it may use. From our discussions with

game developers, having predictable memory usage

was as important as having predictable function

return times. As the developers write their games in

memory-constrained platforms without the benefit

of an operating system to manage memory, they

need to account for every byte used in order to fit

the executable code and digital content in memory

at once—there is no virtual memory and paging

space to help with this. Consequently, the devel-

opers need to know how much memory each library

function they use is going to consume in order to

keep track of total memory usage. Having the

libraries fence their memory usage helps in this

objective.

The messages being passed through the client

connector may become quite large, especially when

digital media content is included in the message.

Because it is not possible, even for smaller

messages, to transfer the messages with a blocking

call to the TCP/IP (Transmission Control Protocol/

Internet Protocol) stack, nonblocking sockets are

used. With large messages, even a nonblocking

socket would exceed the maximum buffer size. The

client connector kernel would therefore also be

responsible for dividing the messages into chunks

and delivering them over the network in iterated

steps; we refer to this as ‘‘chunking.’’

The requirement for a single-threaded operation

emerged from conversations with game developers

interviewed for this purpose. The reason that game

developers tend to develop games using the single-

threaded style of programming is partly historical

and partly practical. Games were originally devel-

oped on computing devices that typically did not

have an operating system—the early 8-bit and 16-bit

‘‘micros’’ and game consoles. Lacking an operating

system, the use of multiple threads was not a

practical option. Consequently, the developers opted

for the single main loop model, in which functions

to be performed—to refresh the screen, handle I/O,

advance state machines, and so on—are called in

sequence. This disciplined approach, although

limiting, leads to code whose behavior is predict-

able. Although newer operating systems now make

multithreading efficient and reliable, there are still

devices in use that do not support multithreading.

To make the code more portable, therefore, single-

threaded programming in C remains a popular

choice for programming style.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHARP AND ROWE 167

To accommodate the single-threaded-style require-

ment, the client connector ensures that its continu-

ous use of the CPU before returning control to the

game code does not surpass a specified quantum,

typically 16 ms. A ‘‘step’’ function monitors CPU use

by the client connector. The clock time on entry to

the function is recorded (the entry time), a small

unit of work is performed (‘‘small’’ being deter-

mined by our implementation), and then the current

time is compared with the entry time. If the

remaining execution time is not sufficient for

performing another unit of work, then control is

returned to the game code. The unit of work is

determined through experimentation. As a result,

the processing of the incoming messages (either

requests to the client connector or responses to

previous requests) may involve several CPU quanta.

The handle-based approach to memory manage-

ment allows the game component to determine

whether the processing of the incoming message has

been completed by inspecting the status of the

handle to it. The design of the microkernel, which

manages the message processing, is based on a

simple finite state machine model.

The client connector is reliable and robust, so that

when a call from the game component to an API

function returns, the game component can depend

on the middleware (i.e., the combination of the

client connector and the process broker) to reliably

complete the invoked function. Therefore, if the

game application crashes before the result is

returned, the middleware manages the transaction

and either rolls back the transaction or stores the

result until it reconnects with the game application.

The client connector offers to the game developer a

simple API that includes meaningful business-

oriented functions, such as charge and trade.
The BIG API differs from the more traditional

middleware APIs, which present to the developer

network-oriented functions, say, for sending and

receiving messages, and leave it to the developer to

construct the right sort of messages and send them

to the right sort of network endpoints. The business-

oriented functions of the BIG API encapsulate a

number of message exchanges that are required for

performing the business function. These functions

wrap the microkernel messaging functions and

reflect the business process they are associated with.

For example, a charge function call supports the

business parameters for executing a charge trans-

action—the identities of the payer and the payee and

the amount charged in a specified currency—and

marshals these details as a request message to the

process broker. The result of processing the request,

the return value of the charge call is returned

asynchronously to the game component by a data

structure to which an access handle points.

Quite often, the business process involves the

collaboration of additional parties, not necessarily

business service providers. For example, the

charge function involves both a payer and a payee.

Clearly, it should not be possible to charge the

payer’s account without that party’s consent. Con-

sequently, the request initiated by one party may

result in a secondary request being sent by the

business process to another party’s client connector.

To allow that second party to respond to the request,

a matching accept_charge function is also

provided as a wrapping function in the client

connector. Parties receiving a charge request from a

process broker inspect the message to determine its

type and values and respond with the appropriate

function call, in this case accept_charge, passing
the message handle of the original charge request as

a key parameter.

By requesting processes to be executed through the

process broker, the client effectively interacts with

Web services asynchronously, using these Web

services to provide value-add e-business function

rather than core game logic. The business processes

with which the client connectors interact by means

of the process brokers are themselves services that

expose and utilize interfaces. It is these interfaces

that are mirrored at the client connector as the

function calls exposed to the game developer.

Figure 3 illustrates this relationship.

The diagram illustrates the process of transferring

funds between two game clients. Game client A

initiates the process by calling the charge function,

part of the payment API. This results in the client

microkernel creating a charge request message and

sending it to the process broker. The message is

received by the session proxy instance responsible

for that client. The session proxy initiates a charge

process instance by invoking the charge operation

on the process broker’s Web service interface for the

charge process.

SHARP AND ROWE IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006168

Next, the charge process seeks consent for payment

from game client B. This is achieved by the charge

process instance invoking the accept_charge
operation on the Web service interface of the session

proxy identified in the initiating charge request. This

session proxy creates an accept_charge message

to game client B. The microkernel at B receives this

message and informs the game application via the

payment API. Game client B determines whether the

response is positive (it may do this by informing its

user, the player, by some in-game dialog); then it

replies by calling the accept_charge function and

passing the original event handle as a reference.

This microkernel creates an accept_charge
message and sends it to the session proxy in the

process broker. The session proxy for B uses

the message to form the invocation of the

accept_charge operation on the Web-service

interface of the charge process.

The charge process instance then invokes the

necessary third-party payment Web service (not

shown in the diagram) to transfer funds from B to A,

and when successful, send a complete message to

both parties—via their respective session proxies—

to indicate the process has been completed.

Security and trust

The client connector is also responsible for moving

personal, sensitive data away from the game code

and client API to a place where it can be

administered and controlled by the owner of that

data, the player. This provides enhanced privacy

and anonymity for the player and engenders a level

of confidence and trust in the game infrastructure.

In a Web browser-based scenario, it is common for a

Web site to require authentication from a third party

(such as a payment service). The acquisition of

security credentials and their authentication with

the third party is done through HTTP (HyperText

Transfer Protocol) redirection followed by direct

negotiation between the client browser and the

third-party Web site, and then the transfer of the

resulting authorization token to the original Web

site. However, because the client connector con-

nects only through the process broker and has no

direct access to the third-party services, either from

a network perspective or a protocol perspective

(e.g., the third-party may use SOAP and WS-

Security
12

to facilitate authentication), the client

connector has to work through the process broker. It

is therefore necessary to establish sufficient trust

between the client connector and the process

broker, and possibly to establish separately trust, by

proxy, with third-party services.

Upon initialization and startup, the client connector

establishes a secure session with a process broker

and associates the session with the player’s identity

within the BIG infrastructure. This allows separate

player sessions to be uniquely identified for auditing

Figure 3
Client and process broker interactions

charge_handle charge(...);

response_handle accept_charge(charge_handle);

Charge Process Instance

charge

Session Proxy Session Proxy

Client
Microkernel

Payment API Payment API

accept_charge

charge_handle

request_handle getEvent();

accept_charge_response

complete

accepted_charge
operation

charge
operation

complete
operation

accept_charge
operation

complete

Game Client A Game Client BProcess broker

Client Microkernel

message

WSDL WSDL

WSDL WSDL

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHARP AND ROWE 169

purposes. The client connector is performing two

levels of authentication here. First, it is establishing

a secure messaging channel between the game code

and the process broker to ensure the confidentiality

and integrity of messages passing between them.

Initially bidirectional SSL authentication was con-

sidered for this, but no implementations were

sufficiently granular in their operation to work in

conjunction with the message-chunking approach

needed. We therefore chose a simple symmetric key

approach for our prototype implementation. The

establishment of this session results in the allocation

of an ASID that performs two functions; it acts as a

token that other clients can use to refer to each other

via the client connector APIs; and inside the process

broker that allocated it, the ASID acts as a handle to

an external address via a process broker.

The second level of authentication is between the

player and the services behind the process broker.

As previously mentioned, players are able to

configure the client connector with their own

details, such as the userid and password for their

payment provider. In our simple prototype, we

simply passed these details, encrypted, between the

client connector and process broker, for subsequent

use by that process broker for issuing a service

request, such as payment authorization, to the

relevant service provider. This is sometimes referred

to as a trusted agent model, where players provide

their credentials to the process broker to act on their

behalf. However, this is not a satisfactory approach

for a very loosely coupled environment, where a

process broker may not be trusted to the extent

required for this approach. We therefore considered

a more sophisticated approach whereby any busi-

ness service that is likely to be used behind a

process broker would provide a security mechanism

for establishing a security context with the client

connector, tunneling through the process broker,

and this context would then be used to authenticate

individual requests to the service. Although our

intention was to use the Web Services security

specifications (WS-Security, WS-SecureConversa-

tion, WS-Trust, and WS-Federation) for this, the

technology had not matured in time for our

prototype work.

Figure 4 illustrates the security and trust domains in

our implementation. The steps in the process of end-

to-end authentication are as follows:

1. The player is authenticated to the client con-

nector (passing the userid and password to

enable access to the player repository). The

encrypted player repository is now accessible to

the client connector (but no API function

directly exposes it to the game code for access).

Figure 4
Security and trust domains

Publisher controlled Third-party controlled

1

Player controlled

2 3#1234 #6789

4

5
6,7

8

9

10

11

IdP

Player Repository

ID

user/pwd

Game
Server

BIG Client
Connector

Game
Server

Game
Client

BIG Client
Connector

Process
Broker

Payment
service

WSDL

WSDL

SHARP AND ROWE IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006170

2. The client connector sets up a secure session

with the process broker (based on encrypted

game credentials, such as use of the symmetric

key algorithm), and ASID #1234 is allocated.

3. The same activity occurs for game server code.

ASID #6789 is allocated.

4. The client connector requests the public key of

the identity provider service (IdP). The client

connector sends a request to the process broker

to request a session token for principal ‘‘Chris’’

(identified in the player repository) to IdP. IdP

returns a challenge nonce encrypted with a

symmetric key for Chris, and the process broker

returns to the client connector (a nonce is an

arbitrary number generated for security purpo-

ses and used only once in a security session).

The client connector decrypts the nonce, signs

it, and sends it to the process broker for

response to IdP. IdP sends a session token back,

encrypted with the symmetric key for Chris.

5. The game server requests payment from player

#1234 (Chris). The client connector at the game

server issues the request to the process broker.

6. The charge process executed by the process

broker requires Payment Service authorization

from client connector #1234 and sends a charge

event to the client connector. The client con-

nector for Chris indicates an incoming event to

the game code. The game code inspects the

message and sees it is a charge request from

#6789.

7. Chris’s game client makes an accept_charge
call on the client connector. The client connector

issues signed proof over a time stamp plus data

to the process broker by using a session token

from step 4.

8. The process broker uses this to request

SecurityToken from the identity service for

Payment Service. The request is issued based on

the signature from step 7 on behalf of principal

Chris. IdP responds with a session token for

Payment Service.

9. The process broker uses this to authorize

payment. It requests an authorized charging

session token from Payment Service, using the

token from step 8 as authentication.

10. Payment Service may check authorization of the

principal with the IdP attribute service.

11. The payment security token is discarded (stale).

It is hoped that in the future this mechanism will be

fairly easily implemented by using a combination of

Web Services protocols and the client-connector-to-

process-broker security mechanisms.

PROCESS BROKER

The client connector needs to establish a session

with a process broker before any business processes

can be invoked. The process broker is intended to be

as stateless as possible, effectively acting as an edge

server for the execution of generic business pro-

cesses; a large, distributed network of process

brokers is envisaged to provide a localized and load-

balanced point of entry for a client connector into

the process execution plane.

Figure 5 shows how a network of process brokers

may support the interaction between game compo-

nents and service providers. Each game component,

which connects to a unique process broker, is

allocated a globally unique ID (the aforementioned

ASID) so that the clients may refer to each other in

function calls to the BIG API. The dotted arrows

between process brokers in Figure 5 represent

logical interactions between these components as

process instances are created. These logical inter-

actions, however, are carried out via communica-

tion lines depicted as solid lines. Effectively, from

the perspective of any one process broker, other

process brokers (and the process instances and

session proxies within them) appear as services

supported by the ESB.

Considering the charge example, a game client in

Figure 5 may initiate a request to transfer funds (a

payment for a game asset, for instance) to another

game client, supplying the two ASIDs as parameters.

The identity of the Payment Service provider is

retrieved from the appropriate client connector’s

repository, and that client’s process broker initiates

the request for service.

The process brokers act as neutral intermediaries

that coordinate message exchanges between client

connectors, whether they are player-to-player or

player-to-game-server interactions. In some re-

spects, they act as a generalized escrow service

brokering the information associated with the

transactions, and they are responsible for the

reliable execution of the process and persistence of

any data over long-running transactions.

The process brokers also contain the business and

integration logic required to interact with the service

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHARP AND ROWE 171

providers, such as a full Web services stack, insulat-

ing the game developer and code from service details

and the need to perform business logic at the client.

This partitioning of game logic from business logic,

both in terms of programming model and execution

environment, is quite different from the current game

architectures,where businessmodels and policies are

coded directly into the game code.

Because games are eminently susceptible to hack-

ing, any business logic embedded in the game client

is likely to be compromised. It is common practice,

therefore, to locate business logic in the game

server. However, this is only practical for games that

have a permanent, trusted server infrastructure,

such as MMP games have. For the peer-to-peer MP

architecture games, this makes the embedding of

any business-critical code in the client very prob-

lematic. The model that BIG provides, where the

execution of business logic is separated into a third-

party service (the process broker) that is orthogonal

to the infrastructure of a particular game, is an

innovative approach to solving this problem. The

only code in the client, therefore, is the code that

handles the initiating of requests and responses

between other parties via the process broker, and

only the data sensitive to that client flows in and out

of that individual’s client connector. Any hacking

would not reveal any secrets unknown to the

hacker, and tampering with the message handling

would only interfere with the message flows to the

process broker—which would likely result in the

relevant business process not being completed.

Because there is also an interprocess communica-

tion going on between the two interacting parties

within the game’s own architecture, any successful

hacks to obviate the execution of a business process

would need to be carried out at both parties’ clients.

Effectively, the BIG process brokers are acting as the

mutually trusted intermediary infrastructure that is

missing in the peer-to-peer game architecture.

The business logic is encapsulated within the

process brokers as modular components that can be

composed into hierarchical business processes.

Although we just coded these business processes in

Java** for the prototype, the intention was to use

BPEL (Business Process Execution Language) to

model these processes; however, the WebSphere

Process Choreographer technology (IBM’s BPEL

engine) became available too late for our project to

recode the prototype.

BUSINESS SERVICES

Business services are required to support the

execution of business processes within process

brokers. These services are expected to be provided

as reusable business functions and implemented as

Game

Game Process
Broker

Process
Broker

Figure 5
Network topology in a BIG implementation

Game

Game

Game Process
Broker

Security
Reputation
Payment
Content Distribution
Message Distribution
DRM
e-commerce

Security

WSDL
WSDL

WSDL
WSDL

WSDL
WSDL

WSDL

Services

Services:

Enterprise
Service

Bus

SHARP AND ROWE IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006172

Web services. The BIG architecture provides a

framework for connecting the various participating

members of a value chain required for a given game

scenario. These services can be thought of as plug-

ins to this framework, and it is therefore expected

that well-defined interfaces for well-defined busi-

ness services will be needed to populate the frame-

work.

Wherever possible, existing standards specifying

service provider function should be used. For

instance, the PayCircle
13

initiative is one standard

that defines how a payment service provider should

present its interfaces with Web services and Java

interfaces. However, when these standards either do

not exist or have not been widely adopted,

alternatives must be sought. These can be either

generic interface definitions that attempt to make

likely function for a given service type canonical

(e.g., payment service, asset service, security

service, etc.) or specific integration logic for a

specific service provider. The use of the ESB

architecture can facilitate all of these different

integration approaches in a single coherent admin-

istrative manner.

We now describe the service types that we defined

in the initial architecture. These are basic types that

can be used in combination to support complex

business processes, such as trading of digital assets

protected by a digital rights management (DRM)

system in return for payment.

Payment service

The payment service is used whenever a payment is

made by one party to another. When an exchange of

funds takes place between two players (we refer to it

as the peer-to-peer charging model), there is manual

intervention at both ends. In the traditional con-

sumer-merchant exchange of funds, the merchant

end may be automated. Various commercial insti-

tutions are competing to provide payment services:

telephone companies and mobile network operators,

prepay card-system providers, Internet service

providers, utility companies, credit/debit card ser-

vices, and so on.

We expect that a single payment service would be

the player’s preferred means of making payments

for items such as subscription fees and content or

premium services, so that all charges can be

consolidated to a single payment channel for the

player’s convenience. The player could choose a

preferred service provider, establish an account with

this provider through some external means, and

then configure the client connector repository with

the account and security details.

Commerce service
The commerce service provides the functionality of

a Web-based store and catalog service, which

typically allows customers to browse catalogs,

choose items for purchase, and use shopping-cart

facilities to make purchases. This functionality is

stripped of nonessential details and integrated into

the game environment, resulting in simple function

calls that drive shopping-cart and catalog-browsing

processes.

Because the BIG API implements an abstracted

notion of a store, both virtual and real purchases

are possible from within the game. For instance, an

online store that allows the download and purchase

of digital game content can be integrated into the

game environment so that in a first-person shooting

game the store appears in 3D graphics as a game

entity with shelves stacked with weapons, ammu-

nition, and armor. An item picked from the shelf by

the player is placed in the ‘‘shopping cart.’’ Upon

leaving the store, the player pays for the contents,

which are subsequently added to the player’s

assets.

An online store that sells physical goods, such as

branded merchandise, pizza, and so on, also can be

embedded in the game in exactly the same way. The

delivery of purchases, however, is by shipment to

the player’s home.

Content service
The content service is responsible for storing and

managing the digital content within the network.

For example, games may inject content and make it

available to other game clients and servers.

Figure 6 shows two game clients and a game server

interacting via a process broker. New content

injected into the game environment is made

available to other clients and servers through the

process broker, which uses a content management

system exposed as a service. The details of how the

actual content is stored and retrieved are not visible

to the users of the service, so that a content

repository of choice can be used to actually store the

digital content. Because the game server controls

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHARP AND ROWE 173

access to the media, the game developer is able to

offload the content-management and distribution

problem to the middleware infrastructure. Because

digital assets are handled like any other artifact by

the middleware, they can be manipulated in

conjunction with other artifacts in the same trans-

action. For example, the game client can retrieve

content in return for payment, handled in a single

function call. The function call results in the process

broker executing a process that groups an asset

manipulation by the content service with a financial

transaction by the payment service.

A separate DRM service can be used to deal with

ownership issues, key exchanges, and so on, and a

separate DRM clearing house can be implemented.

Due to resource constraints, we did not get a chance

to investigate this very interesting set of services in

our prototype effort but believe this area is a very

rich one for future research.

Message service

The message service is an abstraction of a message

distribution hub, or message broker, that enables

applications and data to be loosely coupled via a

publish/subscribe message distribution pattern.

This service is a built-in feature of an ESB and a

natural extension of the BIG architecture.

Within the publish/subscribe messaging pattern,

messages are associated with topics. This is essen-

tially a hierarchical namespace with some semantics

implicitly associated with it (known as a topic

space). A message broker provides a logical ‘‘cloud’’

that represents the topic space of all topics. Entities

using this cloud can either produce or consume

messages, and they do this by publishing a message

to a topic, or subscribing to a topic. The use of

wildcards is permitted when referring to topic

names. Entities are unaware of each other’s exis-

tence, and they are only concerned with the topic

space to which they are publishing or subscribing.

Each entity may actually interact with the topic

space over a different mechanism, but these details

are hidden from the consumers of messages.

For example, using a live tennis tournament

scenario, one entity may publish messages (some-

times called events) to a topic /Sports/Tennis/

Events/Wimbledon/Matches/Henman that contains

the current scores for tennis player Tim Henman in

an ongoing series of matches at the Wimbledon

tennis tournament. Another entity may subscribe to

the topic /Sports/Tennis/Events/Wimbledon/* and

get all messages published about any of the players

in any of the matches in the Wimbledon tourna-

ment. Figure 7 illustrates how an event distribution

service connects producers and consumers of

events, such as live sporting events or Web

applications, within game environments.

At the far right of the diagram we see a variety of

devices producing and consuming event-related

messages through the event distribution service.

Remote sensor and telemetry devices report infor-

mation such as location, orientation, and velocity of

objects, such as a racing car or tennis ball, in a live

sporting event. Mobile phones receive important

status messages about events within an ongoing

MMP (e.g., ‘‘Your castle is being raided by the

goblins’’) in which the user is not currently

participating. Data from an ongoing MP tournament

(e.g., current number of players and game statistics)

are fed to a Web application and then rendered to

the user by a browser.

Enterprise
Service

Bus

Burst
Content

Figure 6
Content services

check/control
content access

inject
new content

retrieve
content

Streaming
Content

Game
Server

WSDL

Content
Distribution

WSDL

DRM
Game
Client

Process
Broker

Game
Client

SHARP AND ROWE IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006174

The game code can either produce events by

publishing to the publish/subscribe ‘‘cloud’’ or listen

for events by subscribing to specific topics. This way

a game could take the feed of telemetry data from

racing cars via trackside sensors in a live motor-

racing event and use them to simulate the actual

event, without needing to understand how to

interface with that particular telemetry feed.

Using the paradigm in the opposite direction to push

virtual environment events out to the real world,

games with multiplayer attributes such as tourna-

ment games could publish the current in-game

statistics, such as current scores, player health,

location, and so on, and other applications such as

Web sites could subscribe and make use of this data.

This kind of integration is sometimes known as an

event-driven architecture, and it is a complementary

approach to SOAs. As an adjunct to our prototype

work, we sponsored a project (called Event Hori-

zon) involving college students who looked at

enabling the virtualization of a topic space over a

number of message brokers and the appropriate

exposure of a messaging service at the client

connector. The students involved in the project

developed a very innovative real time strategy (RTS)

game that uses the topic space as a mechanism of

sharing game state, not only between instances of

the same game, but also between instances of

different games. It thus provides a higher-level

strategy game that involves the players coordinating

and deploying troops and resources over a battle-

field map. Individual skirmishes between opposing

troops are then realized by instances of a first-

person-shooter game, such as Quake II. This was

achieved by instrumenting Quake II to expose its

configuration and state via topics. The high-level

RTS game inspects the progress of Quake II

instances and configures new ones based on actions

in the RTS, via the appropriate topics.

This approach to game development and the inter-

locking of actual instances of different games is

certainly a very radical departure from current

practice, and we feel this also presents a very rich

vein of research.

Clearly many other kinds of service could be defined

and integrated into the middleware, and then

combined with each other to provide value-add

processes usable from within the game environ-

ment. The set of services described in this section is

a first pass at what might be of immediate value, but

imagination within the game industry can help to

define further service types.

Enterprise
Service

Bus

Game
Server

WSDL

Event
Distribution

Game
Client

Game
Client

Figure 7
Event distribution service

events

events events

WS-Notification

publisher/
subscriber

publisher

subscriber

Publisher/Subscriber
Topic Space:
Live sports data/
Game state data/...

Process
Broker

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHARP AND ROWE 175

IMPLEMENTING THE BIG ARCHITECTURE

In this section we discuss our implementation of the

BIG architecture. In order to verify our implemen-

tation of the architecture and to demonstrate that it

can be successfully integrated into computer games,

we also describe a demo that integrates the popular

first-person-shooter game Quake II into BIG.

Although, given its ‘‘fast and furious’’ nature, Quake

II was not necessarily the best vehicle for demon-

strating the BIG concepts (some sort of MMP game

might have been a more suitable choice), Quake II

had the advantage of being immediately recogniz-

able, and, more important, its source code was

available under the GPL license. This made it

possible not only for BIG technology to be integrated

into the game, but also for the game to be modified

to properly exploit that technology, and, in doing so,

to demonstrate a number of potential business

models.

Of most immediate importance to the game devel-

oper, and from an integration point of view, are the

BIG APIs. As discussed previously, these are a set of

process-oriented APIs, each of which provides

access to one of the business services described

earlier, and each of which uses a small set of simple

verbs to provide access to the complex functionality

offered by those services. The focus of the incuba-

tor-funded project was on the payment and com-

merce aspects of the business processes, and so the

APIs that were developed concentrated on these

areas. The resulting APIs use very simple but

powerful process-oriented verbs (such as, simply

charge on the Payment Service API) that allow the

game developer to access the back-end services with

minimal effort and without having to worry about

the underlying business and integration logic for

those services.

Given the implementation requirements just de-

scribed, and because C was the programming

language of choice (or at least the lowest common

denominator) for most game developers at the time,

the APIs were written in C. Due to the previously

described constraints of running in a high-perfor-

mance gaming environment, all but the most basic

API functions were designed to behave in an

asynchronous manner, so as to not interfere with

the flow of execution within the game.

Providing the actual implementation of the APIs is

the client connector. Given both the performance

and language-support requirements, this was im-

plemented in C as a thin client with an unthreaded,

finite state machine-based design. In order to not

interfere with game performance, the client con-

nector also uses its own memory heap, which is

configurable by the game developer. To further

reduce performance overhead, the client connector

also contains no real business logic; instead, its

main role is to offload the work generated by calls to

the API onto the process broker.

The process broker itself was implemented to run

within WebSphere and included support for the

payment and commerce service functionality de-

scribed by the client-side APIs. Although integration

with real-world payment and commerce services

had been achieved, for stand-alone demonstration

purposes simple payment and commerce services

were also implemented as EJBs** and run within

WebSphere.

Integration with Quake II

Given that the Quake II source code was available,

integrating Quake II was a relatively simple matter,

which was performed by just adding the necessary

API calls at the appropriate locations in the code.

However, given the ‘‘jump in and start shooting’’

style of game play, modifications to the game engine

were required in order to restructure the game play,

and to allow the necessary business logic to be

inserted. This was, perhaps, slightly inelegant, but

ideally, any real-world game developer would not be

attempting to retrofit business logic to their (poten-

tially unsuitable) games; instead, they would design

their game with the business models in mind from

the start. Along with the necessary code modifica-

tions, a custom ‘‘map’’ (i.e., the metadata describing

a game level) was also constructed, which allowed

the desired business models to be demonstrated in a

visually clear manner.

The Quake II demo contains a number of business

models, all of which were implemented mainly for

illustrative purposes. It is not suggested that all (or,

indeed, any) online games should actually imple-

ment the same configuration of business models

described here. Nor are these the only business

models that can be implemented. Rather, these are

examples of what can be achieved using the BIG

approach, demonstrated within the familiar setting

of Quake II.

SHARP AND ROWE IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006176

We modified Quake II by having the player enter the

game world without any weapons or usable items,

and thus without the ability to actually enter

combat—players arrive in an area (a central tower)

isolated from the main combat arena. This is akin to

the manner in which most MMPs begin, in which a

player’s character begins with no assets and must be

built up over the course of the game. Starting the

game in an isolated tower is also similar to the

concept of first entering a ‘‘lobby’’ and chatting with

other players (to discuss strategy, say) before

joining the game proper. This is also the starting

point for demonstrating the business models in-

corporated into the demo.

Content purchases

Because Quake II is a combat-based game, entering

the game with no weapons or equipment puts the

player at a severe disadvantage. To rectify this,

contained within the tower is a ‘‘store,’’ from which

players are able to purchase weapons and equip-

ment before entering the tournament game.

Upon entering the store, players are given the

opportunity to purchase weapons, ammunition for

those weapons, and other miscellaneous items (such

as armor). The contents of the store are populated

by making use of the BIG commerce API to query a

commerce service, which maintains a ‘‘catalog’’ of

the items that are available for purchase. As the

player wanders around the store in the 3D game

environment and selects items, these are added to

the player’s ‘‘shopping basket,’’ ready to be pur-

chased. In much the same way as online stores such

as Amazon.com, Inc. work today, the items are not

actually purchased until the player confirms that he

or she wishes to purchase the contents of the

shopping basket.

Of course, the ability (or necessity) to purchase

weapons and equipment within the gaming world

would perhaps be off-putting in a real game—

games could soon degenerate into ‘‘survival of the

richest.’’ Nevertheless, there is plenty of in-game

content that it would make sense to charge for; for

example, access to new ‘‘levels’’ within a game,

rather than having to purchase the latest expansion

pack from a physical, real-world store. Additionally,

there is a fast-growing trend in consumers wishing

to customize their experiences, as seen in the

enormous mobile phone ring-tone business, where

content is readily purchased for small sums of

money in order to tailor the appearance of the

player in the game.

More important, this shows that the purchase of

content can be made within the gaming world,

without having to leave the game (to use a Web

browser to make the purchase), and therefore

without having to destroy the immersive experience

that the gaming world provides.

Furthermore, the purchase of content need not be

limited to digital items. Because the BIG commerce

API is merely retrieving a list of items for purchase

from a commerce service, it is perfectly feasible for

that commerce service to be selling real-world items.

For example, as demonstrated by Sony’s recent

updates to EverQuest 2, the commerce service could

be providing access to a store like Pizza Hut, Inc.,

thus allowing players to purchase a pizza and have

it delivered to their home without having to

disengage from the game at all.

Thus, not only is it possible for online commerce to

be seamlessly integrated into the gaming world, it

also becomes possible for any item—be it physical

or digital—to be purchased from within that gaming

world.

Pay to play

Having selected weapons and other necessary items,

the player is about to enter the gaming arena itself.

In order to gain access to the arena and be able to

play the game itself, the player must pay an access

fee to the game service provider. From the store the

player steps through a door that leads to the game

arena and at this time is shown the charges that

must be agreed to before he or she can join the

game. Both the game entry fee and the store

purchases are paid for, and the appropriate amounts

for each are debited from the player’s business

account by means of the business services provided

by the BIG APIs. This is just a feature of the

implementation of the demo, and there is no reason

why the purchase for the items from the store may

not be made before players make their decision to

actually enter the game. Furthermore, despite

appearing on the same display screen, the two

different purchases are indeed handled differently.

Once the user decides to accept the total charge, two

different charges are made (and two separate charge

processes are initiated). The first charge is made via

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHARP AND ROWE 177

the commerce API, which invokes a commerce

service. For the second charge, the one-time game

entry fee, the payment API is used instead.

This separation of the various charge types demon-

strates a degree of revenue-splitting capability. In

this demonstration, although the user only makes

one charge, the payment is actually sent to two

different parties: the first part of the payment is

received by the commerce service provider in

exchange for items purchased in the store; the

second part of the payment is received by the game

service provider. These two services therefore need

not be provided by the same entity.

Furthermore, it is quite possible—and, indeed,

preferable—for more complicated revenue splitting

to occur in the back-end services. Although not

demonstrated here, it is possible for the simple, one-

time charge via the payment API to actually be split

by some business process hosted by the process

broker, with various percentages of the profit being

sent to various parties (e.g., developers, publishers,

etc.). This is where the real value of the BIG APIs

would become evident—the game developer need

add one simple verb (e.g., charge) into the game

code, without needing to worry at all about the

business logic controlling which entity receives

which percentage of the actual payment. What’s

more, that business logic could actually change (by

altering the functionality and behavior of the

services offered by the process broker) without

actually having to change game code.

Tournament play (winner takes all)

One final business model illustrated by the Quake II

demo involves rewarding the winning player in

some way. In this case, the reward is financial, with

the winner receiving a percentage of the total

tournament revenue received by the game-hosting

service (and obtained from charges made upon

players wishing to join the game). In the demo, the

winning player receives 90 percent of the takings,

and the game-hosting server keeps the remaining 10

percent as profit. This provides players with an

incentive for joining a particular game, simultane-

ously allowing the game host to make a profit.

Once again, the actual business logic that controls

the percentage of the initial takings that players

receive as their winnings may be completely

contained within the process broker. Furthermore,

the fact that two different APIs are used to charge

the player—and two completely independent ser-

vices utilized—means that the winner’s prize need

only be contributed to by those parties that actually

wish to. For example, whereas the host of the game

service wishes to provide players with an incentive

to play on his or her server in order to obtain a

source of income, the commerce service provider

has no such concerns because that income is

obtained from the sale of necessary in-game items

(such as weapons). The use of two different APIs

means that the two charges are completely separate

and that the commerce service provider may there-

fore keep all of the profit from the sale of in-game

items. Thus, there are many ways of splitting

revenue streams and separating the various finan-

cial concerns of all parties involved.

Overall, the Quake II demo demonstrates that, not

only is it possible to bridge the programming and

operating gap between current game development

methodologies and enterprise computing, it is also

possible to make the new environment easy to use.

The demo also indicates that third-party service

providers might find it easier to expose their services

to other markets by integration with an open,

standards-based integration framework.

CONCLUSION

In this paper we describe an architecture, Business

Integration for Games, and a corresponding imple-

mentation for integrating online games with busi-

ness services. We also describe a demo that

integrates the popular first-person-shooter game

Quake II into the BIG implementation.

Throughout the course of the project, we made some

interesting discoveries about the game industry,

such as the variety of business models they employ

today and the evolutionary period the industry is

going through that will necessitate new and more

flexible business models in the future. As an

industry, it is an intriguing hybrid, an offshoot of the

IT and entertainment industries, and it has close

affinities with both, but it is also unique. It is also a

relatively young industry, and its rapid expansion

over the last decade is accompanied by a shift from

the custom software industry to online services.

Since we performed the work described here,

Microsoft
14

and Sony Online Entertainment
15

an-

nounced game-related support for e-commerce

SHARP AND ROWE IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006178

systems that are consistent with our approach. It is

not clear that they have gone as far, however, to

build an open, standards-based framework to

support a dynamic business environment.

The seamless integration of real world commerce

with the fantasy environment of a game, which

players are attracted to by the very fact that it is not

the real world, involves a delicate balance to be

kept. An enjoyable game experience is the critical

success factor for any online game, and if the

insertion of business aspects into the game scenario

detracts from this experience by jarring the ‘‘sus-

pension of disbelief’’ in the narrative, then it is

counterproductive. This is similar to the challenge in

the film industry in the way corporate sponsorship

of products needs to be very carefully and sensi-

tively dealt with in the context of any given film.

The challenge of attaining a smooth integration of

business function and online games is one that faces

game designers and one that we do not address in

this work.

ACKNOWLEDGMENTS
The authors would like to thank Rob Smith, Andrew

Reynolds, Brian Innes, Arthur Barr and Steve Wallin

for their tireless efforts in the Aspen Project, and

James Russell for his vision and support of the project

as a Software Group Incubator. The authors would

also like to thank the Hursley Laboratory for

supporting the project in its initial exploratory stages.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc., Microsoft, Electronic Arts, Inc., id Soft-
ware, Inc., Sony Computer Entertainment America, Inc.,
Turbine, Inc., Linus Torvalds, or Valve Corporation in the
United States, other countries, or both.

CITED REFERENCES AND NOTE
1. GameSpy, IGN Entertainment Inc., http://www.gamespy.

com.

2. Battle.net, Blizzard Entertainment, Inc., http://www.
battle.net.

3. EverQuest, Sony Online Entertainment Inc., http://eqlive.
station.sony.com.

4. Ultima Online, Electronic Arts Inc., http://www.uo.com/.

5. Asheron’s Call, Turbine Inc., http://ac.turbinegames.
com/index.php.

6. eBay, eBay Inc., http://www.ebay.com.

7. Steam Content Distribution, Valve Corporation, http://
www.steampowered.com/.

8. Business Integration for Games, IBM Corporation (2003),
http://www.alphaworks.ibm.com/tech/big/.

9. Quake II, id Software Inc., http://www.idsoftware.com.

10. See, for example, SOA and Web Services, IBM Corpo-
ration, http://www.ibm.com/developerworks/
webservices/ and IBM Systems Journal 44, No. 4 (2005).

11. M.-T. Schmidt, B. Hutchison, P. Lambros, and R.
Phippen, ‘‘The Enterprise Service Bus: Making Service-
Oriented Architecture Real,’’ IBM Systems Journal 44,
No. 4, 781–798 (2005).

12. Web Services Security: SOAP Message Security 1.0 (WS-
Security 2004), A. Nadalin, C. Kaler, P Hallam-Baker, and
R. Monzillo, Editors, OASIS Standard 200401 (March
2004), http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0.pdf.

13. PayCircle Consortium, http://www.paycircle.org/.

14. Xbox 360, Microsoft Corp., http://www.xbox.com/
en-US/xbox360/.

15. Station Exchange, Sony Online Entertainment Inc.,
http://stationexchange.station.sony.com/.

Accepted for publication September 1, 2005.

C. E. Sharp (Chris)
IBM Software Group, Hursley Park, Winchester, Hampshire,
SO21 2JN, UK (sharpc@uk.ibm.com). Mr. Sharp is a Senior
Technical Staff Member in the WebSphere organization within
Software Group; he is a Master Inventor and a member of the
IBM Academy of Technology. He works as a software architect
on WebSphere product support for Web services and has
extensive experience in business integration technologies and
issues. For his work in the field of Web services, he received
an IBM Outstanding Technical Achievement award in 2004.
He led the team that developed the Business Integration for
Games middleware, a prototype technology that integrates
online games and e-business and that is available on the
alphaWorkst Web site. He is a Fellow of the British Computer
Society.

Martin Rowe
IBM Software Group, Hursley Park, Winchester, Hampshire,
SO21 2JN, UK (mrowe@uk.ibm.com). Mr. Rowe is a software
engineer at IBM’s Hursley Laboratory and is currently working
on the SCORE project, a document management system that
supports compliance with governmental regulations in the life
sciences. Prior to this he worked on the IBM Business
Integration for Games project, in which he was responsible for
developing the client-side APIs and the client connector and
supporting Quake IIe integration efforts. &

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 SHARP AND ROWE 179

Published online January 1 , 2006.8

