MPI microtask for programming
the Cell Broadband Engine™

processor

The Cell Broadband Engine™ processor employs multiple accelerators, called

synergistic processing elements (SPEs), for high performance. Each SPE has a high-

speed local store attached to the main memory through direct memory access (DMA),
but a drawback of this design is that the local store is not large enough for the entire
application code or data. It must be decomposed into pieces small enough to fit into
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local memory, and they must be replaced through the DMA without losing the
performance gain of multiple SPEs. We propose a new programming model, MP/
microtask, based on the standard Message Passing Interface (MPI) programming
model for distributed-memory parallel machines. In our new model, programmers do
not need to manage the local store as long as they partition their application into a

collection of small microtasks that fit into the local store. Furthermore, the
preprocessor and runtime in our microtask system optimize the execution of
microtasks by exploiting explicit communications in the MPI model. We have created a
prototype that includes a novel static scheduler for such optimizations. Our initial
experiments have shown some encouraging results.

INTRODUCTION

The Cell Broadband Engine** (BE) processor1 is an
asymmetric multicore processor that combines a
general-purpose IBM PowerPC* processor element
(PPE) and eight synergistic processor elements
(SPES).2 From an architectural standpoint, this
processor has a high peak performance because the
SPE is simpler and more efficient than general-
purpose processors in terms of the micro and
memory architecture.” One architectural aspect is
the small high-speed local store at each SPE.
Because the size of the local store is limited to a
range of L2-cache sizes—256 KB for the first-
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generation Cell BE processor—many real-world
applications do not fit in the local store. While
conventional microprocessors have a hardware
cache to manage such a small local store, the Cell BE
processor must rely on a software mechanism to
manage it. This requirement for software manage-
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ment could impose significant challenges to pro-
grammers, but at the same time it offers significant
opportunities for the software to take advantage of
the raw performance of the Cell BE processor.

The microtask we propose here provides a pro-
gramming model that frees programmers from local-
store management and enables the preprocessor and
runtime system to optimize the scheduling of
computations and communications by taking ad-
vantage of the explicit communication model in the
Message Passing Interface (MPI).4’5 In the microtask
model, programmers are still responsible for parti-
tioning the application into multiple microtasks.
Each microtask is essentially a virtualized SPE that
uses the MPI to communicate with other microtasks.

We have chosen MPI as a communication applica-
tion programming interface (API) for the following
two reasons. First, the Cell BE processor adopts a
distributed-memory model; the PPE and SPEs use
direct memory access (DMA) operations for com-
munications. Thus, the overhead due to a message-
passing layer can be inherently small because of the
commonality between the native hardware and the
message-passing model. The model, moreover, can
hide hardware details from programmers. Second,
and perhaps more important, the message-passing
model allows us to analyze the dependency between
microtasks by examining message APIs. Such
dependency information is essential for various
optimizations in task and communication manage-
ment. Among existing message-passing interfaces,
we selected MPI because it is widely used as a
standard interface.

Our microtask system provides a preprocessor that
transforms a microtask program in the message-
passing model to one in a streaming model” that the
Cell BE processor can execute efficiently. To do this,
the preprocessor first divides each microtask into a
collection of basic tasks, each of which represents a
unit of computation that causes communication
only at its beginning and end. Thus, each basic task
corresponds to a computation kernel in stream
programming languageSG’7 in the sense that the
concept of the basic task separates computation
from communication. This separation allows the
preprocessor to schedule basic tasks in such a way
that data streams through SPEs over high-speed, on-
chip DMA channels.

OHARA ET AL.

To make the streaming model effective, the prepro-
cessor then puts basic tasks with strong depen-
dencies together as a cluster and applies a heuristic
algorithm to schedule clusters. The cluster-schedul-
ing algorithm creates a precedence graph of clusters
in a series-parallel form® and then applies a dynamic
programming algorithm. The nested structure of the
series-parallel graph allows the dynamic program-
ming algorithm to reuse partially scheduled results
to reduce scheduling time. The preprocessor stat-
ically computes runtime parameters, such as the
message buffer address, for each message-passing
operation so that the runtime system can avoid the
overhead of computing them.

While a number of scheduling algorithms for
distributed memory systems have been studied,9
they are not directly applicable to the Cell BE
processor. This is because of key differences in the
architectural characteristics; that is, existing algo-
rithms assume loosely coupled coarse-grain multi-
processors, where each processor has a large local
memory but the communication latency between
processors is very large. The Cell BE processor, on
the other hand, is a tightly coupled fine-grain
multicore processor where each SPE has a small
local memory but the communication latency
between SPEs is very small. These differences have
led us to a new clustering approach in our static
scheduling algorithm.

The contribution of this paper is twofold. First, we
propose a microtask model for the Cell BE proces-
sor. It frees programmers from explicit local-store
management, which could be a significant burden
for them. Second, we propose a novel scheduling
algorithm that converts a microtask program into
one for a streaming model which the Cell BE
processor can execute efficiently.

RELATED WORK

The microtask model is compared with other
programming models proposed for the Cell BE
processor and similar architectures, and related
work in static scheduling algorithms is discussed.

PPE-centric versus SPE-centric programming
models

Kahle et al.” proposed two approaches to map
application programs to the Cell BE processor:
function offload and computational acceleration
models. The function offload model is a PPE-centric
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approach in which the main application program
runs on the PPE and performance-critical functions
in the program are offloaded to SPEs. Typically,
programmers are responsible for identifying func-
tions to be offloaded to SPEs and for modifying the
original program in such a way that the main
program on the PPE uses SPE functions through a
remote procedure call. This model has been popular
because programmers can usually port existing
single-thread programs without changing their main
application logic.

The computational acceleration model, on the other
hand, is an SPE-centric approach, where the main
program runs on SPEs in parallel, and service
functions for SPEs are performed on the PPE. Thus,
this model uses SPEs in a more integrated fashion
than the function offload model. Typically pro-
grammers parallelize the program manually to map
it to the PPE and SPEs.

The microtask model can be considered as an SPE-
centric computational acceleration model; it allows
programmers to parallelize the main program by
using MPI. It extends the computational acceleration
model through an asymmetric thread runtime
rnodel,2 which allows multiple SPE threads to run
on a physical SPE. The preprocessor of the micro-
task program, furthermore, converts microtask
applications to those for a streaming model, which
allows the multiple SPEs to execute the computation
kernels through which the data flows as a stream. In
particular, the static scheduler, a part of the
preprocessor, optimizes such a conversion.

Shared-memory versus message-passing
programming models

Application programs on the Cell BE processor can
use a shared memory or message-passing program-
ming model. When they use a message-passing
model, each of the SPEs and the PPE has, from the
perspective of the application, a separate memory
space. The message-passing model makes sense
because DMA operations can efficiently transfer
messages between two local stores and also between
the system memory and a local store. For example,
an SPE can transfer a message directly between
user-level buffers on a different local store. Histor-
ically, the IBM System/390* coupling facility ap-
plied similar techniques to implement message
passing.10
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When applications use a shared-memory model, the
PPE and SPEs share the off-chip system memory.
SPEs can access the system memory by using DMA
operations in a cache-coherent Way.2 The shared-
memory approach makes sense because the memory
access latency via DMA is comparable with that of
L2-cache misses of conventional shared memory
multicore processors and also because the PPE and
SPEs can share a common effective-address space.
To run conventional shared memory programs on
SPEs, however, one must modify them because SPEs

m While conventional
microprocessors have a
hardware cache to manage a
small local store, the Cell BE
processor must rely on a
software mechanism to
manage it. m

can access the shared memory only by using DMA
operations but not by using load/store operations.

Eichenberger et al."! implemented an OpenMP
compiler and its runtime to provide a shared
memory programming model. By utilizing a com-
piler-controlled data cache, this implementation
generates DMA transfers only when a cache miss
occurs. It also can be viewed as an extended
function offload model, where programmers use
OpenMP directives to specify functions to be off-
loaded from the PPE to SPEs.” Those offloaded
functions, however, may or may not fit into the local
store of the SPE. Thus, the OpenMP implementation
employs a compiler-controlled code-partitioning
mechanism in addition to the compiler-controlled
software data cache; these mechanisms allow the
SPE to fetch the overflowed code and data from the
system memory. The OpenMP implementation
applies compilation techniques to reduce the num-
ber of cache directory lookups, which are the major
performance overhead caused by the software data
cache."’

The OpenMP approach is, in fact, quite contrastive
with the microtask approach. While the OpenMP
approach is based on a shared memory model, the
microtask approach is based on a message-passing
model. While the OpenMP approach relies on
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software-managed data-cache and code-overlay
mechanisms to make each task fit into the local
store, the microtask approach relies on program-
mers to partition the computation into a collection of
microtasks, each of which fits into the local store.
Both approaches rely heavily on compilation tech-
niques, but for different purposes. In the OpenMP
approach, compilation techniques are important to
reduce the performance impact caused by software-
managed data-cache and code-overlay mechanisms,
while in the microtask approach, compilation
techniques are important to efficiently schedule
communications and computations on physical
SPEs. Such communications include data transfers
caused by context switches.

It is too early to compare the two approaches
quantitatively in terms of their programmability and
performance for realistic applications. One can
perhaps argue that the OpenMP approach attempts
to apply a traditional symmetric-multiprocessing
programming model to the Cell BE processor by
providing compiler-controlled software functions to
make up for the lack of certain hardware functions,
such as hardware cache memory. The microtask
approach also applies the traditional message-pass-
ing programming model to the Cell BE processor by
providing an efficient message-passing runtime. The
execution model for the microtask is, however,
more optimized than that for traditional message-
passing models because it translates the microtask
program into a form that stream processing hard-
ware can execute efficiently.

Stream versus message-passing programming
models

Several languages that directly express stream
processing have been proposed. The most recent
ones include Brook® and Streamlt.” All these
languages define several constructs that allow
programmers to explicitly define a set of arithmetic-
intensive computation kernels, their communica-
tion, and their data parallelism. Although each
stream programming language defines a set of
different language constructs for a different target
hardware structure, they generally share the fol-
lowing two goals.12 First, they make data and
pipeline parallelism visible to the compiler, which
can exploit multiple functional units or processing
elements. Second, they separate communication
from computation to allow the compiler to minimize
the performance impact of communication latencies.
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To this extent, the microtask model shares these two
goals. Owing to the fact that it is based on a
message-passing model, application programs can
make both data and pipeline parallelism visible to
the compiler in the form of tasks and their depen-
dencies through messaging. In other words, explicit
communications in the message-passing model
make it easier for the compiler to separate commu-
nications from computation.

Because message-passing models are more expres-
sive in terms of the application algorithm than
stream programming models, they need extra
compilation techniques to fully optimize the sched-
uling of communications and computation. More
specifically, message-passing models differ from
stream programming models in the following two
aspects.

First, the two models are different with respect to
the degree that computation is separated from
communication. Stream programming models de-
fine communication between computation kernels
outside the definition of computation kernels and
thus separate communication from computation at
the language construct level. Message-passing
models, on the other hand, generally allow pro-
grammers to mix communications and computation
in the task definition. Thus, unlike a computation
kernel in stream programming models, a task in MPI
generally interacts with other tasks to proceed and
thus does not represent a unit of computation that
can run without interacting with other tasks. The
static scheduler for the microtask, consequently,
divides each task into a set of basic tasks, which
corresponds to the computation kernel in stream
programming languages, as mentioned earlier. In
other words, stream programming languages require
programmers to decompose their application to the
computation kernel level, whereas the microtask
model requires them to decompose it only to the
microtask level, and the static scheduler further
decomposes each microtask to the computation
kernel level.

Second, the two models are different with respect
to exposing data parallelism. In stream program-
ming models, computation kernels and streams
naturally represent data parallelism when kernels do
not have internal states. In Brook, for example, a
kernel call represents a do-a11 parallel loop for each
element of input streams.’ In message-passing
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models, on the other hand, an input message
generally affects the processing of future input
messages through some internal states of the task,
and thus input messages cannot be processed
independently. Unlike stream programming models,
message-passing models typically use a single-
program multiple-data (SPMD) programming style4
to represent data parallelism. In the microtask
model, furthermore, the scheduler identifies basic
tasks that can be executed independently by
examining their dependencies. Internal states in the
task actually impose another challenge for the
microtask model. Because the number of tasks is
typically much larger than that of physical processor
cores, a context switch may occur at a basic task
boundary. Such a context switch typically requires
save and restore operations of internal states as the
task context. Thus, one of the important roles that
the static scheduler must play is to reduce the
number of context switches.

Static scheduling for parallel programs in
message-passing models

Kwok et al.” compared 27 static scheduling algo-
rithms. Among them, two classes of algorithms—
unbounded number of clusters (UNC) and bounded
number of processors (BNP)—are most relevant to
our discussion. In this section, we discuss potential
issues that could occur when we apply those two
algorithms to the Cell BE processor.

The UNC method consists of two scheduling phases.
In the first phase, the number of processors is
assumed to be infinite, and a set of tasks is
clustered as a unit of computation on a processor.
In the second phase, those task clusters are
scheduled onto a finite number of processors. While
there are several variations in the clustering
algorithm, all of them basically attempt to pack
tightly communicating tasks into a single cluster. As
a result, each cluster represents a coarse-grain
computation assigned for each processor. This
approach is suitable for coarse-grain parallel sys-
tems, such as clustered workstations. However, it is
not suitable for fine-grain multicore processors. This
is because coarse-grain tasks can cause frequent
context switches, which are relatively expensive for
the SPE. Our scheduling scheme is similar to the
UNC method in the sense that it includes a
clustering phase. Nevertheless, it is significantly
different from the UNC method in the characteristics
of the clusters; that is, the clustering phase in our

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

approach attempts to identify a set of tasks that can
run on multiple SPEs in a gang fashion without
causing context switches, where SPEs can commu-
nicate with each other efficiently. In contrast, the
clustering phase in the UNC method attempts to
identify a set of tasks that can run on a single
general-purpose processor, where each processor
can access a large system memory efficiently. As a
result, if one applies the UNC method for our case,
clusters would cause frequent context switches,

m From a programmer’s
perspective, each microtask

is simply a small MPI task that
fits in the local store. m

which would consume the limited off-chip band-
width without exploiting the large on-chip band-
width among SPEs.

The BNP method, on the other hand, is a list
scheduling algorithm. This method computes a
priority for each task based on a critical-path length,
which can be informally defined as an estimated
execution time between the beginning of the task
and the end of the last task when the number of
processors is infinite. This method selects a task of
the highest priority first and statically schedules it at
the earliest time that the constraints of the task are
met. Many highly parallel applications tend to have
multiple critical paths with a similar length. As a
result, the BNP method tends to schedule several
tasks from different critical paths onto the same
physical processor in an interleaved fashion. Thus,
it tends to cause frequent context switches between
those tasks. This is a serious problem for the SPE
because a context switch operation is relatively
expensive for SPEs. Our scheduling scheme is
advantageous when compared with the BNP method
because of our clustering algorithm, which leads to
fewer context switches than the BNP method.

MICROTASK PROGRAMMING MODEL

From a programmer’s perspective, each microtask is
simply a small MPI task that fits in the local store.
One special microtask, called the supportive micro-
task, runs on the PPE. The supportive microtask
does not have the memory-size restriction for
microtasks. While regular microtasks typically
perform compute-intensive tasks on an SPE, the
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supportive microtask typically performs control-
intensive functions to support regular microtasks,
such as I/O processing. Theoretically, the microtask
could support any MPI APIs as long as the
application task and the runtime can fit in the local
store. Practically, however, we believe the micro-
task should limit the support of certain MPI APIs
that prohibit or excessively complicate the efficient
execution of microtask applications or that are of
little use for SPEs. Namely, the current design of the
microtask system, at least for now, does not support
APIs for one-sided communications (i.e., remote
memory accesses), those for parallel I/O operations,
and other system calls from microtasks on SPEs. In
the current microtask implementation, the support-
ive microtask on the PPE calls the operating system
for I/0O operations and other services. We also
believe the microtask could take the liberty of
extending the API, perhaps as “syntactic sugar”
(additions to the API that do not affect its
expressiveness but make it more programmer-
friendly), if such an extension is extremely useful in
terms of the expressiveness or performance of
microtask applications.

Decomposing applications to microtasks

The microtask adopts the dynamic process model of
MPI-2 as a primary process model;5 that is, micro-
task applications start with the invocation of a
supportive microtask that runs on the PPE. The
supportive microtask can create a set of microtasks
by calling MPT1_Comm_spawn (), which is one of the
standard APIs in MPI-2. Each microtask, further-
more, can create another set of microtasks hier-
archically by calling MPI_Comm_spawn (). Each call to
MPI_Comm_spawn() creates a set of SPMD micro-
tasks, which typically represent data parallelism.
Thus, programmers typically decompose an appli-
cation into multiple sets of SPMD microtasks and
keep decomposing them further, sometimes hier-
archically, until each microtask fits into the local
store. Such decompositions often cause communi-
cations within each set of SPMD microtasks and also
with their parent, child, and sibling sets.

MPI defines a concept of communicator that
corresponds to a communication context.” Each
communication API typically takes one communi-
cator as a parameter to identify the communication
context. Communications within a group use an
intracommunicator that corresponds to the group,
whereas communications between a pair of groups
use an intercommunicator that corresponds to the
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pair. Each group of dynamically spawned tasks can
use MPI_COMM_WORLD as a default intracommunica-
tor. MPI-2 provides APIs to construct intercommu-
nicators for two kinds of groups: child/parent and
client/servelr.5 The latter typically involves a name
service, which manages service names (a character
string) and associates each service name with an
actual task group.

Because communications between sibling groups
are very common in microtask applications, as
mentioned previously, we have found that the
following API makes it simpler to program micro-
tasks with intercommunicators:

int uMPI_Connect_task(MPI_Comm comml,
MPI_Comm comm?,
MPI_Comm *new_comm)

The uMPI_Connect_task() API involves three
groups of tasks: a parent group and its two child
groups. Applications in the microtask model typi-
cally use this API in the following scenario. The
parent group calls this API by passing two inter-
communicators in comml and comm?, one for each
child group. The two child groups, on the other
hand, call this API by passing an intercommunicator
with their parent in comml, and a null intercommu-
nicator in comm2. When the API call returns, it passes
a new intercommunicator between the two child
groups in new_comm.

In addition to convenience for programmers, this
API helps the preprocessor identify the dependency
between microtasks and hence helps the prepro-
cessor optimize the scheduling of microtasks. In this
sense, this API is similar to language constructs in
stream programming languages that define com-
munications between computation kernels. Note
that this API does not necessarily impose synchro-
nization overhead among the three task groups at
runtime. If the preprocessor can statically identify
the dependency between microtasks, it translates
MPI APIs to lower-level specialized functions that do
not use the intercommunicator. We describe more
on how to use this API by showing an example later
in this section.

Differences from traditional MPI programming
Although the communication API is basically the
same between microtask programs and traditional
MPI programs, the programming style is actually
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different between the two. Traditional MPI applica-
tions consist of a set of SPMD tasks that run in a
static process model, where all tasks share the same
code and each task is associated with a processor
that is physically available when the program starts.
This style is convenient for conventional coarse-
grain parallel systems. For example, this style makes
it possible for programmers to write portable
applications easily because they can manage phys-
ical resources in the application without depending
heavily on the operating system.

Microtask applications, on the other hand, cannot
adopt this traditional MPI programming style
because each task has a very small memory space.
Thus, microtask applications usually consist of
multiple sets of SPMD microtasks after they are
decomposed on both code and data planes; that is,
on a code plane, programmers must divide large
applications into multiple sets of application-level
functions. Furthermore, on a data plane program-
mers must divide each application-level function
into a set of SPMD microtasks so that the data (as
well as the code) of each microtask can fit into the
local store.

Microtask program example

Figure 1 shows pseudocode for a microtask
program example, a two-dimensional fast Fourier
transform (2D FFT), which consists of three sets of
microtasks. The two sets, X and Y microtasks,
perform a 1D FFT for each dimension, x-axis and
y-axis respectively. Each 1D-FFT operation uses a
radix-2 Cooley-Turkey method. The third set is the
supportive microtask that runs on the PPE to control
the rest of the microtasks, feeds the input data to
them, and then collects the output data from them.
Note that in Figure 1 the supportive microtask
executes the main() function, while the X and Y
microtasks execute x_main() and y_main(), re-
spectively. This example is intended for illustrative
purposes only and is not necessarily an optimized
version of a 2D FFT.

This application assumes that the data set for each
1D-FFT operation may not fit into the eight local
stores of the chip. Thus, it must be divided into
small pieces that can fit into one local store. First,
each X microtask is assigned to one of such data
pieces to perform several butterfly stages in a
Cooley-Turkey method. Each X microtask then
exchanges the data with another X microtask to
perform one butterfly stage. It continues the data
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exchange and one-stage butterfly operation until the
entire 1D data is transformed. Then it sends the
results to a set of Y microtasks, which perform 1D-
FFT operations for the y-axis by using the same
method. Finally, Y microtasks send out the result to
the supportive microtask.

Now we describe the behavior of the microtask
runtime for this application. At the beginning of the
program, the supportive microtask creates two sets

m The concept of a basic task is
analogous to that of the basic
block, which consists of straight-
line code without any jump or
jump targets in the middle. m

of microtasks by calling MPI_Comm_Spawn (). Each
call to this API creates a set of tasks and returns an
intercommunicator between the supportive micro-
task and the newly created tasks. The supportive
microtask then calls uMPI_Connect_task() to create
a new intercommunicator between the two sets of
microtasks, X and Y. The uMPI_Connect_task() API
is a collective function, which the three sets of
microtasks need to call. After creating the new
intercommunicator, the supportive microtask sends
the input data to X microtasks and then waits until it
receives the result from Y microtasks.

The X and Y microtasks obtain an intercommuni-
cator between the two groups by calling
UMPI_Connect_task(). Because of this intercom-
municator, X microtasks can send intermediate
results directly to Y microtasks without asking the
supportive microtask for help. In other words, the
intercommunicator helps make it easy to allow the
preprocessor to analyze the dataflow among micro-
tasks. For example, without using this intercom-
municator, X microtasks need to send intermediate
results to the supportive microtask, which forwards
them to Y microtasks. Thus, the two groups always
have to go through the system memory to commu-
nicate with each other. When they can directly
communicate with each other, however, we can
allocate communication buffers on a local store as
long as they fit into the local store. In this way, we
can reduce the number of DMA transfers between
the local store and the system memory to improve
system performance.

OHARA ET AL

91



92

void fftid(complex *buf_a)

fftld_local(buf_a); // local butterfly stages
for (loop = 0; loop < num_loops; loop++) {
// exchanging data with a peer task
MPI_lsend(buf_a, points_per_task, MPI_COMPLEX, peer_task(loop),
0, MPI_COMM_WORLD, &réq[0]);
MPI_Irecv(buf_b, points_per_task, MPI_COMPLEX, peer_task(loop),
0, MPI_COMM_WORLD, &req[1]);
MPI_Waitall(2, req, stat);
fftistage(buf_a, buf_b, loop); // one-stage butterfly
}

}

int x_main(int argc, char *argv[]) // the main for X microtasks

MPI_Init(&argc, &argv);

MPI_Comm_get_parent(&parent);

// creating an inter-communicator between X and Y microtasks
uMPI_Connect_task(parent, MPI_COMM_NULL, &sibling);

// receiving the input from the supportive (parent) microtask
MPI_Recv(data, points_per_task, MPI_COMPLEX, O, O, parent, &status);

fftid(data);

for (i=0; i < points_per_task; i++) // sending to Y microtasks
MPI_lsend(&data[i], 1, MPI_COMPLEX, y_dest(i), O, sibling, &req[i]);

MPI_Waitall(points_per_task, reg, stat);
MPI_Finalize() ;

int y_main(int argc, char *argv[]) // the main for Y microtasks

MPI_Init(&argc, &argv);
MPI_Comm_get_parent(&parent);

// creating an inter-communicator between X and Y microtasks

uMPI_Connect_task(parent, MPI_COMM_NULL, &sibling);

for (i=0; i < points_per_task; i++) // receiving from X microtasks
MPI_Irecv(&datali], 1, MPI_COMPLEX, x_src(i), O, sibling, &req[i]);

MPI_Waitall(points_per_task, reg, stat);
fftid(data);

// sending the output to the supportive (parent) microtask

MPI_Send(data, points_per_task, MPI_COMPLEX, O, O, parent);

MPI_Finalize();

Figure 1

Pseudocode for a microtask program example (2D FFT); Part 1 of 2, regular microtasks

STATIC SCHEDULING ALGORITHM

For those applications for which we can statically
construct a task precedence graph in a direct acyclic
graph (DAG) form, we can utilize the task prece-
dence information for various optimizations. We
call such an application a static application. For
static applications, a preprocessor can analyze their
source code and convert MPI functions in the code
to optimized lower-level functions at compile time.
The preprocessor has four phases: task graph
generation, clustering, scheduling, and runtime
parameter generation. We describe each phase in
detail.

OHARA ET AL.

Task graph generation

In this phase, the preprocessor first divides each
microtask into a set of basic tasks, each of which
represents a unit of computation that does not cause
a context switch in the middle, as described earlier.
The concept of a basic task is analogous to that of
the basic block, which consists of straight-line code
without any jump or jump targets in the middle.

Note that we have no need to restrict the size of the
microtask but only that of the basic task but because
the basic task is not a visible component for

programmers, we impose the size limitation to the
microtask. It would be interesting to examine how

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006



int main(int argc, char *argv[]) // the main for supportive microtask

MPI_Init(&argc, &argv);
init_data(data2d);
// creating X and Y microtasks

MPI_Comm_spawn("x_main", argv, x_size, MPI_INFO_NULL, O, MPI_COMM_SELF,

&x_comm, errcodes);

MPI_Comm_spawn("y_main", argv, y_size, MPI_INFO_NULL, O, MPI_COMM_SELF,

&y_comm, errcodes);

// creating an inter-communicator between X and Y microtasks

uMPI_Connect_task(x_comm, y_comm, &omm);
// sending the input to X microtasks
for (y = 0; y <y_points; y++)

for (x = 0; x < x_points; x+=points_per_task)

MPI_Send(&data2d[ y*x_points+x], points_per_task, MPI_COMPLEX,

dest(x, y), 0, x_comm);
// receiving the output to Y microtasks
for (x = 0; x < x_points; x++)
for (y = 0; y <y_points; y+=points_per_task)

MPI_Recv(&data2d[ x*y_points+y], points_per_task, MPI_COMPLEX,

src(x, y), 0, y_comm, &status);
MPI_Finalize();
}

Figure 1

Pseudocode for a microtask program example (2D FFT); Part 2 of 2, supportive microtask

programmability and performance would be af-
fected if we imposed the size limitation on the basic
task.

The preprocessor then constructs a task precedence
graph, where each node corresponds to a basic task
and each edge corresponds to a pair of send and
receive operations. Figure 2A shows an example of
a basic task graph. This example illustrates a task
graph for a 1D-FFT program. For purposes of
explanation, we focus on a part of the 2D-FFT
program that we discussed earlier (Figure 1). This
1D-FFT example consists of nine microtasks, eight
of them for the main computation and one for
supportive operations. In Figure 2A, each square
represents a microtask, whereas each numbered
circle represents a basic task.

Clustering

After generating a task graph, the preprocessor
groups basic tasks into clusters. Each cluster
consists of a set of basic tasks that are derived from
one or more microtasks, and it can be executed by
the Cell BE processor without any context switches.
Each cluster must not involve more microtasks than
the number of physical SPEs, and it must not have a
cyclic dependency on other clusters. Here, we
informally denote that Cluster A has a cyclic
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dependency on other clusters if there is a path that
goes out from Cluster A and comes back to Cluster
A. The preprocessor first picks up a basic task as a
seed of a cluster and then attempts to grow it by
adding other basic tasks that have a strong
dependency on the cluster. We define the strength of
the dependency between a task and a cluster as the
amount of communication between the task and the
cluster required for exchanging messages and
context switches. Each cluster should be able to run
in a gang fashion without causing a context switch,
and the preprocessor stops the growth of a cluster if
any additional basic task causes a context switch in
the cluster. Clustering is, in fact, the most important
optimization. It greatly affects the overall system
performance.

The clustering phase then generates a precedence
graph of clusters, which is used in the next
scheduling phase. Figure 2B shows the cluster
precedence graph for the basic task graph shown in
Figure 2A. In this example, we assume there are
three physical SPEs.

Scheduling with a dynamic-programming
method

It is known that scheduling problems for series-
parallel graphs are solvable in polynomial time for
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An example scenario of static scheduling (1D FFT); (A) basic task graph; (B) cluster precedence graph;
(C) converted series-parallel graph; (D) parse tree; (E) intercluster scheduling result
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certain special cases, whereas those for general
precedence constraints are nondeterministic poly-
nomial (NP)-hard.8 Namely, if the task precedence
is given by a series-parallel graph and if the longest
communication time is much shorter than the
shortest computation time, the scheduling problem
for series-parallel graphs is solvable in polynomial
time for a sufficient number of processors.8 Our
dynamic-programming algorithm solves the sched-
uling problem by transforming it to a simpler
problem. This transformation involves two levels of
approximation. First, we approximate the task
precedence graph in a series-parallel graph. Second,
we bound the search space for scheduling the series-
parallel graph by assuming that the scheduling
problem for each series and parallel suite is
independent. This is discussed in more detail later in
this section.

The series-parallel graph has a nested structure of
series and parallel graphs, as discussed previously.
In a series graph, all nodes need to be scheduled in a
series fashion. In a parallel graph, all nodes are
independent and can be scheduled in a parallel or
series fashion. It is known'” that any DAGs can be
converted into a series-parallel graph by adding
some extra edges (dependencies) and by removing
transitive edges. When the preprocessor converts
the precedence graph of clusters into a series-
parallel graph, we limit the number of children to k
for each parallel suite so that we can limit the
amount of computation in the next step.

In the course of converting the graph, the prepro-
cessor also creates a parse tree of the series-parallel
graph. Each leaf node in the parse tree corresponds
to a cluster, and each non-leaf node corresponds to a
series or parallel suite that consists of its immediate
children. Figure 2C shows the converted series-
parallel graph when k is 4 for the cluster precedence
graph shown in Figure 2B. Figure 2D shows the
parse tree. Although the preprocessor adds pseudo-
synchronization nodes to convert the cluster graph
in a series-parallel form (Figure 2C), those pseudo-
synchronization nodes are used only for conceptual
purposes and do not really cause synchronization
operations at runtime.

Once we obtain a scheduling problem in a series-
parallel form, it is natural to apply a dynamic-
programming method if we can assume each series
or parallel suite is an independent subproblem; that
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is, starting from lowest non-leaf nodes in the parse
tree, which have only leaf nodes as their children,
we compute an expected execution time when a
node is executed by p SPEs for each p (1 < p < P),
where P is the number of physical SPEs. For the leaf
nodes, we use a brute force method to schedule
basic tasks in each cluster. The computation for the
intracluster scheduling, however, is bounded be-
cause the number of microtasks in each cluster does
not exceed the number of physical SPEs, which is
eight for the first-generation Cell BE processor. For
series suites, we simply add up the minimum
execution time of each immediate child when p SPEs
execute it. For parallel suites, we compute the
execution time for each case when the k immediate
children are executed in series, in parallel, or
partially in series and in parallel. Then we select the
shortest execution time for each p (1 < p < P). The
final solution is the minimum execution time of the
root node in the parse tree when P SPEs execute the
root node. Because we schedule a node (series or
parallel suite) by using the intermediate scheduling
results only of its immediate children and because
we schedule nodes from the lowest level toward the
root, we can schedule a node by using the
scheduling results for nodes that have been visited.
In other words, the preprocessor takes a bottom-up
approach for applying a dynamic-programming
method by visiting each node only once. Thus, the
total computation time is a linear order on the
number of clusters.

This linear-order algorithm obviously involves some
approximation because the scheduling problem for
general series-parallel graphs is known to be NP-
hard. In fact, the scheduling problem for each suite
is not a totally independent subproblem because of
the following two reasons. First, when we schedule
a series or parallel suite, the result usually includes
some slack time during which one or more SPEs
becomes idle. Thus, if we consider each suite as an
independent subproblem, we ignore scheduling
options to fill such slack time with clusters that are
outside the suite. In our current algorithm, we
simply ignore the effect of the slack time.

Second, the independence between suites does not
hold because the transition time between sequen-
tially scheduled suites may depend on the internal
scheduling result of both suites. Suppose two
parallel suites, Pa and Pb, are scheduled in back-to-
back fashion, and each parallel suite consists of two
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gang-scheduled basic tasks; that is, Pa consists of
Ta, and Ta,, and Pb consists of Tb, and Tb,. When
Pa and Pb are scheduled on two physical SPEs, Ta,
can be followed by either one of the two basic tasks
in Pb (Tb, or Tb,), and Ta, is followed by the other
basic task in Pb. If Ta, and Tb, belong to the same
SPMD set, the context switch from Ta, and Tb,
needs to swap only the data portion of the context. If
not, it needs to swap the entire context on the local
store. Thus, the latter case requires a longer context
switch time on the SPE than the former case. The
transition time from Pa to Pb, therefore, may depend
on their internal scheduling results. We, however,
simply assume the transition time between any two
clusters is constant. Although this assumption is not
accurate, it allows us to treat the scheduling
problem of each series or parallel suite as an
independent problem. In other words, we can use
the linear-order scheduling method for intercluster
scheduling and can limit the use of an expensive
brute force method only for intracluster scheduling.

In our example, shown in Figure 2, the intracluster
scheduler obtains the execution time for all clusters
when the number of SPEs is one, two, and three.
When the intercluster scheduler schedules a parallel
suite P1, for example, it chooses the number of SPEs
to be allocated to each immediate child (C1-4) by
applying the dynamic-programming algorithm.
Figure 2E shows the result of the intercluster
scheduling. In this example, it allocates one SPE for
two clusters (C4 and C8), and two SPEs for the rest
of the clusters. In this way, this scheduling scheme
optimizes the intracluster and intercluster schedul-
ing by applying a dynamic-programming algorithm.

Optimizing runtime message operations

After performing intercluster scheduling, the pre-
processor recreates a precedence graph of the basic
tasks that have been scheduled on physical pro-
cessor cores. The task graph represents the execu-
tion order of all basic tasks and their dependencies
caused by message passing. By using the task graph,
the preprocessor assigns a specialized function to
each message operation and computes its parame-
ters for optimizing message operations at runtime.
To that end, the preprocessor identifies whether it
needs a synchronization operation, a context switch,
and a message buffer (on a local store or the system
memory). We briefly describe each case in more
detail.
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First, a message operation generally requires a
synchronization operation between the sender and
the receiver; that is, the receiver needs to confirm a
message arrival before fetching the message from a
buffer. For certain cases, in fact, the receiver can
fetch the message without confirming its arrival
because DMA operations with an optional fence
semantics can maintain the order of message
transfers. The preprocessor identifies such cases in
the task graph to reduce the number of runtime
synchronization operations.

Second, the preprocessor identifies message oper-
ations that cause a context switch by simply
scanning the task graph. If two basic tasks, T, and
T, are scheduled on the same physical core in a
back-to-back fashion, and if T, and T, belong to
different microtasks, a context switch occurs be-
tween T, and T,.

Third, the preprocessor determines the location of
the message buffer—a local memory or the system
memory—for each message operation. The current
prototype assigns a buffer on the local memory for
intracluster communications; a DMA mechanism
transfers a message between SPEs directly. The
current prototype simply assigns a system memory
buffer for intercluster communications. We plan to
improve it by assigning a local-memory buffer for
certain intercluster communications.

Finally, the preprocessor can compute all parame-
ters statically for each specialized message function,
such as the system memory address of the message
buffer (if the communication uses a buffer on
system memory), the index of the physical SPE of
the peer basic task (if the communication uses a
direct SPE-SPE message transfer), and the index of
the next microtask to be scheduled (if the commu-
nication causes a context switch). Because the
preprocessor computes these parameters, the run-
time system can transfer messages efficiently, as we
describe next.

Runtime organization

This section describes a high-level structure of the
runtime system for the current implementation.
Figure 3 shows the memory layout of each SPE. Out
of the 256-KB local store, the lowest 16 KB is
reserved for the resident runtime, which contains
per-SPE data structures, such as synchronization
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flags and performance counters. The highest 2KB is
reserved to store the register context of the micro-
task, which consists of 128 128-bit registers. The rest
of the 238 KB is left for a microtask and its runtime
library. The runtime library contains a message API
table and a set of specialized message functions,
which we discussed previously. Each table record
consists of a pointer to a specialized message
function in the runtime library and some parameters
for the function. When the microtask calls a
message-passing API, such as MPI_Send() and
MPI_Recv (), the runtime library looks up the table
and jumps to the specialized function with the
parameters supplied in the table record. The runtime
library usually increments the index at each table
lookup for an API call, so that each message transfer
looks up a unique record in the table.

The memory layout of the system memory is similar
to that of each SPE except for the following two
differences. First, the memory space for the sup-
portive microtask does not have the 256-KB limi-
tation. Second, the system memory contains a large
buffer pool of messages and a backing store of all
microtask contexts. The preprocessor statically
manages the recycling of the buffer pool, which
holds the messages that do not fit in the local store.

To illustrate how these runtime components work
together, we describe an example in Figure 4. First,
in Step 1, a microtask M_ calls MPT_Recv (), a
blocking receive operation (A), to look up the
message API table (B) in the runtime. In this
example, M_ needs to switch to another microtask
M, to receive the message. After MP1_Recv () calls
the specialized function to which the table record
points (C), it passes the index of M, to a resident
runtime routine, syscall() (D). This routine saves
all registers to the register context area in the local
store and the local store image to the context
backing store of M, on the system memory (E). In
Step 2, it restores the context of M, from the backing
store (F), and starts executing a basic task. When
the basic task is completed, in Step 3, M, calls
syscall (), which saves the context of M, (G). In
Step 4, the resident runtime then restores the
context of M, (H) and returns to the runtime library.
The library then looks up the next table record (I)
and jumps to the specialized function to which the
table record points (J). In this example, the
specialized function directly transfers the message
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Memory layout of local store for each regular microtask

from a buffer on the system memory without a
synchronization operation. It performs a DMA
transfer (K) by using the buffer address given by the
corresponding table record (I).

Note that each SPE can perform a context switch
without communicating with the PPE because the
resident runtime can directly swap microtask con-
texts by accessing their backing store on the system
memory. As we discussed previously, we usually
schedule a set of microtasks in a gang fashion if they
belong to the same cluster. A naive implementation
of such gang scheduling requires a barrier synchro-
nization at which each microtask has to wait for
other microtasks in the gang set. Such an imple-
mentation, furthermore, can cause heavy congestion
at the system memory because multiple context
switches occur at the same time. Our implementa-
tion, on the other hand, does not use a barrier
synchronization when a cluster is being scheduled.
Instead, it uses a pair-wise synchronization between
a sender and a receiver within the same cluster at
each message-passing operation. In this way, we can
avoid heavy congestion at the system memory by
allowing each microtask in a cluster to start
execution independently.
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of the next microtask Mp, which
starts the execution of a basic task.

An example scenario of a message-receive operation (Part 1 of 2)

The current implementation with a message API
table is reasonably efficient because the table is
structured in such a way that the SPE can efficiently
access it. Our early experimental results have, in
fact, shown that the overhead for table lookups is
very small. Nevertheless, we can further reduce the
overhead by inlining certain table entries inside the
microtask code.

EXPERIMENTAL RESULTS

We have implemented an initial prototype to
evaluate the microtask programming model and its
scheduling algorithm. For our experiments, we used
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three well-known computation kernels: an LU
decomposition (LU), a 1D FFT (FFT1D), and a matrix
multiplication (MATMUL). First, LU decomposes a
1024 X 1024 matrix into an LU form by using 32
microtasks. The program divides the matrix into 32
stripes and assigns each stripe (128 KB) to a
microtask. Second, FFT1D performs a radix-2
Cooley-Turkey algorithm for 256-KB complex data
by using 32 microtasks. The program divides the
data into 32 chunks—each 64 KB consisting of 8-KB
8-byte complex numbers—and assigns each chunk
to a microtask. Third, MATMUL multiplies two

576 X 576 matrices by using 36 microtasks. The
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Step 4: The resident runtime restores the context of the microtask Ma

from the system memory, and the runtime library of Ma
transfers the message from the system memory.

An example scenario of a message-receive operation (Part 2 of 2)

program divides the resultant matrix into 36 96 X 96
submatrices and assigns each submatrix (36 KB) to a
microtask. All of these programs use single-preci-
sion floating operations to exploit the four-way
single-instruction multiple-data (SIMD) engine on
each SPE.

Our microtask prototype has certain limitations, the
most notable being the current reliance of the

preprocessor on programmers to specify some user
directives to construct the task precedence graph. A
future version of the preprocessor is planned to have
a source-code analysis phase that can automatically
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generate the directives as an intermediate repre-
sentation of the task precedence graph.

To evaluate the performance advantage of our
scheduling algorithm, we have also implemented a
well-known critical-path scheduling algorithm9 for
comparisons. As mentioned before, it first computes
the critical-path length for each basic task. It
maintains a list of runnable basic tasks whose
precedence tasks have been scheduled, and it
always selects the runnable basic task with the
longest critical path in the list. Our algorithm,
moreover, uses a simple heuristics to reduce the
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Experimental results

number of context switches; that is, it looks for an
SPE whose latest scheduled basic task belongs to the
same microtask as the task to be scheduled
currently. If there is such an SPE, it schedules the
basic task on that SPE to avoid a context switch
operation. Otherwise, it schedules the basic task on
an SPE that can complete it at the earliest time. In
our experiments, this critical-path scheduler uses
the same basic task graph for input and the same
runtime system as our two-phase (i.e., intracluster
and intercluster) scheduler.

We ran the three programs for each scheduling
algorithm on a Cell BE processor prototype system.
Figure 5 shows the relative execution time for the
three programs. Each execution time is normalized
with respect to that for the critical-path scheduling.
We break down the relative execution time into
seven components: computation, context switch,
system-memory transfer, local-store transfer, syn-
chronization, unused, and miscellaneous. Compu-
tation indicates the time during which an SPE was
busy for actual computations. Context switch
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indicates the time during which an SPE saved or
restored a context. System-memory transfer indi-
cates the time during which an SPE read or wrote
the system memory for message transfers via DMA.
Local-store transfer indicates the time during which
an SPE transferred a message between two local
stores. Synchronization indicates the time during
which an SPE waited for a message. Unused
indicates the time during which an SPE waited for
the completion of other SPEs at the end of the
program. Miscellaneous indicates the time for any
other overhead in the runtime system, such as the
message-API table look-ups. The miscellaneous
component is negligible (less than 0.2 percent in the
relative execution time) for all cases shown in Fig-
ure 5. For these experiments, all DMA transfers do
not overlap with other computations.

Our experimental results have shown that our
clustering algorithm consistently reduces the con-
text switch overhead in the execution time as
intended. This reduction is most significant for LU.
This is because LU consists of many basic tasks that
can run in parallel. As a result, the critical-path
scheduler schedules basic tasks in such a way that
the 32 microtasks are interleaved on the eight SPEs
in fine granularity. This scheduling pattern results in
a large context switch overhead. In our two-phase
scheduler, clustering can prevent such a large
context switch overhead.

Due to the reduction in the context switch overhead,
the total execution time for our two-phase schedul-
ing algorithm is smaller than that for a critical-path
scheduling algorithm for all the three programs we
examined. The difference in the total execution time
between the two algorithms is most significant for
LU and least significant for MATMUL. For MATMUL, our
clustering algorithm successfully reduces the con-
text switch overhead, but it increases the synchro-
nization overhead. This is because our algorithm
creates some clusters with relatively large slack
time, which in turn cause load unbalancing among
SPEs. This indicates that there are opportunities for
improving our clustering algorithm further.

CONCLUSION

Although the Cell BE processor has a very high peak
performance, it relies on software control for certain
functions that microprocessors typically support in
hardware. One such function is local-store manage-
ment, which could burden programmers with
significant effort if they are entirely responsible. The
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microtask model we proposed here provides a
unique programming model for the Cell BE pro-
cessor to free programmers from local-store man-
agement by allowing the preprocessor and the
runtime system to optimize the scheduling of
communications and computation.

In addition to providing a well-known message-
passing programming model, the microtask model
enables the preprocessor to convert the program
into one for a streaming model, in which both task
contexts and messages stream through processor
cores. The preprocessor performs this conversion by
dividing each microtask into several basic tasks,
each of which represents a unit of computation that
does not communicate with other basic tasks in the
middle. Each basic task also corresponds to a
computation kernel in stream programming models.
Finally, the preprocessor schedules the computation
and communications of basic tasks in such a way
that the Cell BE processor can execute them
efficiently. For that purpose, we propose a novel
scheduling algorithm suitable for the unique archi-
tecture of the Cell BE processor.

We have implemented an initial prototype of the
microtask preprocessor and the runtime system. Our
early experiments have shown some encouraging
results; our scheduling algorithm consistently re-
duced the context switch overhead for the programs
that we examined. The results also indicated
opportunities to enhance our clustering algorithm
for further performance improvements. Thus, the
microtask model should make it easier for pro-
grammers to exploit the high peak performance of
the Cell BE processor.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sony
Computer Entertainment, Inc. in the United States, other
countries, or both.
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