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The Cell Broadband Enginee processor employs multiple accelerators, called

synergistic processing elements (SPEs), for high performance. Each SPE has a high-

speed local store attached to the main memory through direct memory access (DMA),

but a drawback of this design is that the local store is not large enough for the entire

application code or data. It must be decomposed into pieces small enough to fit into

local memory, and they must be replaced through the DMA without losing the

performance gain of multiple SPEs. We propose a new programming model, MPI

microtask, based on the standard Message Passing Interface (MPI) programming

model for distributed-memory parallel machines. In our new model, programmers do

not need to manage the local store as long as they partition their application into a

collection of small microtasks that fit into the local store. Furthermore, the

microtasks by exploiting explicit communications in the MPI model. We have created a

prototype that includes a novel static scheduler for such optimizations. Our initial

experiments have shown some encouraging results.

INTRODUCTION
is an

asymmetric multicore processor that combines a

general-purpose IBM PowerPC* processor element

(PPE) and eight synergistic processor elements

(SPEs).
2
From an architectural standpoint, this

processor has a high peak performance because the

SPE is simpler and more efficient than general-

purpose processors in terms of the micro and

memory architecture.
3
One architectural aspect is

the small high-speed local store at each SPE.

Because the size of the local store is limited to a

range of L2-cache sizes—256 KB for the first-

generation Cell BE processor—many real-world

applications do not fit in the local store. While

conventional microprocessors have a hardware

cache to manage such a small local store, the Cell BE

processor must rely on a software mechanism to

manage it. This requirement for software manage-
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The Cell Broadband Engine** (BE) processor
1

preprocessor and runtime in our microtask system optimize the execution of



ment could impose significant challenges to pro-

grammers, but at the same time it offers significant

opportunities for the software to take advantage of

the raw performance of the Cell BE processor.

The microtask we propose here provides a pro-

gramming model that frees programmers from local-

store management and enables the preprocessor and

runtime system to optimize the scheduling of

computations and communications by taking ad-

vantage of the explicit communication model in the

Message Passing Interface (MPI).
4,5

In the microtask

model, programmers are still responsible for parti-

tioning the application into multiple microtasks.

Each microtask is essentially a virtualized SPE that

uses the MPI to communicate with other microtasks.

We have chosen MPI as a communication applica-

tion programming interface (API) for the following

two reasons. First, the Cell BE processor adopts a

distributed-memory model; the PPE and SPEs use

direct memory access (DMA) operations for com-

munications. Thus, the overhead due to a message-

passing layer can be inherently small because of the

commonality between the native hardware and the

message-passing model. The model, moreover, can

hide hardware details from programmers. Second,

and perhaps more important, the message-passing

model allows us to analyze the dependency between

microtasks by examining message APIs. Such

dependency information is essential for various

optimizations in task and communication manage-

ment. Among existing message-passing interfaces,

we selected MPI because it is widely used as a

standard interface.

Our microtask system provides a preprocessor that

transforms a microtask program in the message-

passing model to one in a streaming model
2
that the

Cell BE processor can execute efficiently. To do this,

the preprocessor first divides each microtask into a

collection of basic tasks, each of which represents a

unit of computation that causes communication

only at its beginning and end. Thus, each basic task

corresponds to a computation kernel in stream

programming languages
6,7

in the sense that the

concept of the basic task separates computation

from communication. This separation allows the

preprocessor to schedule basic tasks in such a way

that data streams through SPEs over high-speed, on-

chip DMA channels.

To make the streaming model effective, the prepro-

cessor then puts basic tasks with strong depen-

dencies together as a cluster and applies a heuristic

algorithm to schedule clusters. The cluster-schedul-

ing algorithm creates a precedence graph of clusters

in a series-parallel form
8
and then applies a dynamic

programming algorithm. The nested structure of the

series-parallel graph allows the dynamic program-

ming algorithm to reuse partially scheduled results

to reduce scheduling time. The preprocessor stat-

ically computes runtime parameters, such as the

message buffer address, for each message-passing

operation so that the runtime system can avoid the

overhead of computing them.

While a number of scheduling algorithms for

distributed memory systems have been studied,
9

they are not directly applicable to the Cell BE

processor. This is because of key differences in the

architectural characteristics; that is, existing algo-

rithms assume loosely coupled coarse-grain multi-

processors, where each processor has a large local

memory but the communication latency between

processors is very large. The Cell BE processor, on

the other hand, is a tightly coupled fine-grain

multicore processor where each SPE has a small

local memory but the communication latency

between SPEs is very small. These differences have

led us to a new clustering approach in our static

scheduling algorithm.

The contribution of this paper is twofold. First, we

propose a microtask model for the Cell BE proces-

sor. It frees programmers from explicit local-store

management, which could be a significant burden

for them. Second, we propose a novel scheduling

algorithm that converts a microtask program into

one for a streaming model which the Cell BE

processor can execute efficiently.

RELATED WORK

The microtask model is compared with other

programming models proposed for the Cell BE

processor and similar architectures, and related

work in static scheduling algorithms is discussed.

PPE-centric versus SPE-centric programming
models
Kahle et al.

2
proposed two approaches to map

application programs to the Cell BE processor:

function offload and computational acceleration

models. The function offload model is a PPE-centric
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approach in which the main application program

runs on the PPE and performance-critical functions

in the program are offloaded to SPEs. Typically,

programmers are responsible for identifying func-

tions to be offloaded to SPEs and for modifying the

original program in such a way that the main

program on the PPE uses SPE functions through a

remote procedure call. This model has been popular

because programmers can usually port existing

single-thread programs without changing their main

application logic.

The computational acceleration model, on the other

hand, is an SPE-centric approach, where the main

program runs on SPEs in parallel, and service

functions for SPEs are performed on the PPE. Thus,

this model uses SPEs in a more integrated fashion

than the function offload model. Typically pro-

grammers parallelize the program manually to map

it to the PPE and SPEs.

The microtask model can be considered as an SPE-

centric computational acceleration model; it allows

programmers to parallelize the main program by

using MPI. It extends the computational acceleration

model through an asymmetric thread runtime

model,
2
which allows multiple SPE threads to run

on a physical SPE. The preprocessor of the micro-

task program, furthermore, converts microtask

applications to those for a streaming model, which

allows the multiple SPEs to execute the computation

kernels through which the data flows as a stream. In

particular, the static scheduler, a part of the

preprocessor, optimizes such a conversion.

Shared-memory versus message-passing

programming models

Application programs on the Cell BE processor can

use a shared memory or message-passing program-

ming model. When they use a message-passing

model, each of the SPEs and the PPE has, from the

perspective of the application, a separate memory

space. The message-passing model makes sense

because DMA operations can efficiently transfer

messages between two local stores and also between

the system memory and a local store. For example,

an SPE can transfer a message directly between

user-level buffers on a different local store. Histor-

ically, the IBM System/390* coupling facility ap-

plied similar techniques to implement message

passing.
10

When applications use a shared-memory model, the

PPE and SPEs share the off-chip system memory.

SPEs can access the system memory by using DMA

operations in a cache-coherent way.
2
The shared-

memory approach makes sense because the memory

access latency via DMA is comparable with that of

L2-cache misses of conventional shared memory

multicore processors and also because the PPE and

SPEs can share a common effective-address space.

To run conventional shared memory programs on

SPEs, however, one must modify them because SPEs

& While conventional
microprocessors have a
hardware cache to manage a
small local store, the Cell BE
processor must rely on a
software mechanism to
manage it. &

can access the shared memory only by using DMA

operations but not by using load/store operations.

Eichenberger et al.
11

implemented an OpenMP

compiler and its runtime to provide a shared

memory programming model. By utilizing a com-

piler-controlled data cache, this implementation

generates DMA transfers only when a cache miss

occurs. It also can be viewed as an extended

function offload model, where programmers use

OpenMP directives to specify functions to be off-

loaded from the PPE to SPEs.
2
Those offloaded

functions, however, may or may not fit into the local

store of the SPE. Thus, the OpenMP implementation

employs a compiler-controlled code-partitioning

mechanism in addition to the compiler-controlled

software data cache; these mechanisms allow the

SPE to fetch the overflowed code and data from the

system memory. The OpenMP implementation

applies compilation techniques to reduce the num-

ber of cache directory lookups, which are the major

performance overhead caused by the software data

cache.
11

The OpenMP approach is, in fact, quite contrastive

with the microtask approach. While the OpenMP

approach is based on a shared memory model, the

microtask approach is based on a message-passing

model. While the OpenMP approach relies on
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software-managed data-cache and code-overlay

mechanisms to make each task fit into the local

store, the microtask approach relies on program-

mers to partition the computation into a collection of

microtasks, each of which fits into the local store.

Both approaches rely heavily on compilation tech-

niques, but for different purposes. In the OpenMP

approach, compilation techniques are important to

reduce the performance impact caused by software-

managed data-cache and code-overlay mechanisms,

while in the microtask approach, compilation

techniques are important to efficiently schedule

communications and computations on physical

SPEs. Such communications include data transfers

caused by context switches.

It is too early to compare the two approaches

quantitatively in terms of their programmability and

performance for realistic applications. One can

perhaps argue that the OpenMP approach attempts

to apply a traditional symmetric-multiprocessing

programming model to the Cell BE processor by

providing compiler-controlled software functions to

make up for the lack of certain hardware functions,

such as hardware cache memory. The microtask

approach also applies the traditional message-pass-

ing programming model to the Cell BE processor by

providing an efficient message-passing runtime. The

execution model for the microtask is, however,

more optimized than that for traditional message-

passing models because it translates the microtask

program into a form that stream processing hard-

ware can execute efficiently.

Stream versus message-passing programming
models

Several languages that directly express stream

processing have been proposed. The most recent

ones include Brook
6
and StreamIt.

7
All these

languages define several constructs that allow

programmers to explicitly define a set of arithmetic-

intensive computation kernels, their communica-

tion, and their data parallelism. Although each

stream programming language defines a set of

different language constructs for a different target

hardware structure, they generally share the fol-

lowing two goals.
12

First, they make data and

pipeline parallelism visible to the compiler, which

can exploit multiple functional units or processing

elements. Second, they separate communication

from computation to allow the compiler to minimize

the performance impact of communication latencies.

To this extent, the microtask model shares these two

goals. Owing to the fact that it is based on a

message-passing model, application programs can

make both data and pipeline parallelism visible to

the compiler in the form of tasks and their depen-

dencies through messaging. In other words, explicit

communications in the message-passing model

make it easier for the compiler to separate commu-

nications from computation.

Because message-passing models are more expres-

sive in terms of the application algorithm than

stream programming models, they need extra

compilation techniques to fully optimize the sched-

uling of communications and computation. More

specifically, message-passing models differ from

stream programming models in the following two

aspects.

First, the two models are different with respect to

the degree that computation is separated from

communication. Stream programming models de-

fine communication between computation kernels

outside the definition of computation kernels and

thus separate communication from computation at

the language construct level. Message-passing

models, on the other hand, generally allow pro-

grammers to mix communications and computation

in the task definition. Thus, unlike a computation

kernel in stream programming models, a task in MPI

generally interacts with other tasks to proceed and

thus does not represent a unit of computation that

can run without interacting with other tasks. The

static scheduler for the microtask, consequently,

divides each task into a set of basic tasks, which

corresponds to the computation kernel in stream

programming languages, as mentioned earlier. In

other words, stream programming languages require

programmers to decompose their application to the

computation kernel level, whereas the microtask

model requires them to decompose it only to the

microtask level, and the static scheduler further

decomposes each microtask to the computation

kernel level.

Second, the two models are different with respect

to exposing data parallelism. In stream program-

ming models, computation kernels and streams

naturally represent data parallelism when kernels do

not have internal states. In Brook, for example, a

kernel call represents a do-all parallel loop for each

element of input streams.
6
In message-passing
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models, on the other hand, an input message

generally affects the processing of future input

messages through some internal states of the task,

and thus input messages cannot be processed

independently. Unlike stream programming models,

message-passing models typically use a single-

program multiple-data (SPMD) programming style
4

to represent data parallelism. In the microtask

model, furthermore, the scheduler identifies basic

tasks that can be executed independently by

examining their dependencies. Internal states in the

task actually impose another challenge for the

microtask model. Because the number of tasks is

typically much larger than that of physical processor

cores, a context switch may occur at a basic task

boundary. Such a context switch typically requires

save and restore operations of internal states as the

task context. Thus, one of the important roles that

the static scheduler must play is to reduce the

number of context switches.

Static scheduling for parallel programs in
message-passing models

Kwok et al.
9
compared 27 static scheduling algo-

rithms. Among them, two classes of algorithms—

unbounded number of clusters (UNC) and bounded

number of processors (BNP)—are most relevant to

our discussion. In this section, we discuss potential

issues that could occur when we apply those two

algorithms to the Cell BE processor.

The UNC method consists of two scheduling phases.

In the first phase, the number of processors is

assumed to be infinite, and a set of tasks is

clustered as a unit of computation on a processor.

In the second phase, those task clusters are

scheduled onto a finite number of processors. While

there are several variations in the clustering

algorithm, all of them basically attempt to pack

tightly communicating tasks into a single cluster. As

a result, each cluster represents a coarse-grain

computation assigned for each processor. This

approach is suitable for coarse-grain parallel sys-

tems, such as clustered workstations. However, it is

not suitable for fine-grain multicore processors. This

is because coarse-grain tasks can cause frequent

context switches, which are relatively expensive for

the SPE. Our scheduling scheme is similar to the

UNC method in the sense that it includes a

clustering phase. Nevertheless, it is significantly

different from the UNC method in the characteristics

of the clusters; that is, the clustering phase in our

approach attempts to identify a set of tasks that can

run on multiple SPEs in a gang fashion without

causing context switches, where SPEs can commu-

nicate with each other efficiently. In contrast, the

clustering phase in the UNC method attempts to

identify a set of tasks that can run on a single

general-purpose processor, where each processor

can access a large system memory efficiently. As a

result, if one applies the UNC method for our case,

clusters would cause frequent context switches,

& From a programmer’s
perspective, each microtask
is simply a small MPI task that
fits in the local store. &

which would consume the limited off-chip band-

width without exploiting the large on-chip band-

width among SPEs.

The BNP method, on the other hand, is a list

scheduling algorithm. This method computes a

priority for each task based on a critical-path length,

which can be informally defined as an estimated

execution time between the beginning of the task

and the end of the last task when the number of

processors is infinite. This method selects a task of

the highest priority first and statically schedules it at

the earliest time that the constraints of the task are

met. Many highly parallel applications tend to have

multiple critical paths with a similar length. As a

result, the BNP method tends to schedule several

tasks from different critical paths onto the same

physical processor in an interleaved fashion. Thus,

it tends to cause frequent context switches between

those tasks. This is a serious problem for the SPE

because a context switch operation is relatively

expensive for SPEs. Our scheduling scheme is

advantageous when compared with the BNP method

because of our clustering algorithm, which leads to

fewer context switches than the BNP method.

MICROTASK PROGRAMMING MODEL
From a programmer’s perspective, each microtask is

simply a small MPI task that fits in the local store.

One special microtask, called the supportive micro-

task, runs on the PPE. The supportive microtask

does not have the memory-size restriction for

microtasks. While regular microtasks typically

perform compute-intensive tasks on an SPE, the
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supportive microtask typically performs control-

intensive functions to support regular microtasks,

such as I/O processing. Theoretically, the microtask

could support any MPI APIs as long as the

application task and the runtime can fit in the local

store. Practically, however, we believe the micro-

task should limit the support of certain MPI APIs

that prohibit or excessively complicate the efficient

execution of microtask applications or that are of

little use for SPEs. Namely, the current design of the

microtask system, at least for now, does not support

APIs for one-sided communications (i.e., remote

memory accesses), those for parallel I/O operations,

and other system calls from microtasks on SPEs. In

the current microtask implementation, the support-

ive microtask on the PPE calls the operating system

for I/O operations and other services. We also

believe the microtask could take the liberty of

extending the API, perhaps as ‘‘syntactic sugar’’

(additions to the API that do not affect its

expressiveness but make it more programmer-

friendly), if such an extension is extremely useful in

terms of the expressiveness or performance of

microtask applications.

Decomposing applications to microtasks
The microtask adopts the dynamic process model of

MPI-2 as a primary process model;
5
that is, micro-

task applications start with the invocation of a

supportive microtask that runs on the PPE. The

supportive microtask can create a set of microtasks

by calling MPI_Comm_spawn(), which is one of the

standard APIs in MPI-2. Each microtask, further-

more, can create another set of microtasks hier-

archically by calling MPI_Comm_spawn(). Each call to

MPI_Comm_spawn() creates a set of SPMD micro-

tasks, which typically represent data parallelism.

Thus, programmers typically decompose an appli-

cation into multiple sets of SPMD microtasks and

keep decomposing them further, sometimes hier-

archically, until each microtask fits into the local

store. Such decompositions often cause communi-

cations within each set of SPMD microtasks and also

with their parent, child, and sibling sets.

MPI defines a concept of communicator that

corresponds to a communication context.
5
Each

communication API typically takes one communi-

cator as a parameter to identify the communication

context. Communications within a group use an

intracommunicator that corresponds to the group,

whereas communications between a pair of groups

use an intercommunicator that corresponds to the

pair. Each group of dynamically spawned tasks can

use MPI_COMM_WORLD as a default intracommunica-

tor. MPI-2 provides APIs to construct intercommu-

nicators for two kinds of groups: child/parent and

client/server.
5
The latter typically involves a name

service, which manages service names (a character

string) and associates each service name with an

actual task group.

Because communications between sibling groups

are very common in microtask applications, as

mentioned previously, we have found that the

following API makes it simpler to program micro-

tasks with intercommunicators:

int uMPI_Connect_task(MPI_Comm comm1,

MPI_Comm comm2,

MPI_Comm *new_comm)

The uMPI_Connect_task() API involves three

groups of tasks: a parent group and its two child

groups. Applications in the microtask model typi-

cally use this API in the following scenario. The

parent group calls this API by passing two inter-

communicators in comm1 and comm2, one for each

child group. The two child groups, on the other

hand, call this API by passing an intercommunicator

with their parent in comm1, and a null intercommu-

nicator in comm2. When the API call returns, it passes

a new intercommunicator between the two child

groups in new_comm.

In addition to convenience for programmers, this

API helps the preprocessor identify the dependency

between microtasks and hence helps the prepro-

cessor optimize the scheduling of microtasks. In this

sense, this API is similar to language constructs in

stream programming languages that define com-

munications between computation kernels. Note

that this API does not necessarily impose synchro-

nization overhead among the three task groups at

runtime. If the preprocessor can statically identify

the dependency between microtasks, it translates

MPI APIs to lower-level specialized functions that do

not use the intercommunicator. We describe more

on how to use this API by showing an example later

in this section.

Differences from traditional MPI programming

Although the communication API is basically the

same between microtask programs and traditional

MPI programs, the programming style is actually
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different between the two. Traditional MPI applica-

tions consist of a set of SPMD tasks that run in a

static process model, where all tasks share the same

code and each task is associated with a processor

that is physically available when the program starts.

This style is convenient for conventional coarse-

grain parallel systems. For example, this style makes

it possible for programmers to write portable

applications easily because they can manage phys-

ical resources in the application without depending

heavily on the operating system.

Microtask applications, on the other hand, cannot

adopt this traditional MPI programming style

because each task has a very small memory space.

Thus, microtask applications usually consist of

multiple sets of SPMD microtasks after they are

decomposed on both code and data planes; that is,

on a code plane, programmers must divide large

applications into multiple sets of application-level

functions. Furthermore, on a data plane program-

mers must divide each application-level function

into a set of SPMD microtasks so that the data (as

well as the code) of each microtask can fit into the

local store.

Microtask program example
Figure 1 shows pseudocode for a microtask

program example, a two-dimensional fast Fourier

transform (2D FFT), which consists of three sets of

microtasks. The two sets, X and Y microtasks,

perform a 1D FFT for each dimension, x-axis and

y-axis respectively. Each 1D-FFT operation uses a

radix-2 Cooley-Turkey method. The third set is the

supportive microtask that runs on the PPE to control

the rest of the microtasks, feeds the input data to

them, and then collects the output data from them.

Note that in Figure 1 the supportive microtask

executes the main() function, while the X and Y

microtasks execute x_main() and y_main(), re-

spectively. This example is intended for illustrative

purposes only and is not necessarily an optimized

version of a 2D FFT.

This application assumes that the data set for each

1D-FFT operation may not fit into the eight local

stores of the chip. Thus, it must be divided into

small pieces that can fit into one local store. First,

each X microtask is assigned to one of such data

pieces to perform several butterfly stages in a

Cooley-Turkey method. Each X microtask then

exchanges the data with another X microtask to

perform one butterfly stage. It continues the data

exchange and one-stage butterfly operation until the

entire 1D data is transformed. Then it sends the

results to a set of Y microtasks, which perform 1D-

FFT operations for the y-axis by using the same

method. Finally, Y microtasks send out the result to

the supportive microtask.

Now we describe the behavior of the microtask

runtime for this application. At the beginning of the

program, the supportive microtask creates two sets

& The concept of a basic task is
analogous to that of the basic
block, which consists of straight-
line code without any jump or
jump targets in the middle. &

of microtasks by calling MPI_Comm_Spawn(). Each

call to this API creates a set of tasks and returns an

intercommunicator between the supportive micro-

task and the newly created tasks. The supportive

microtask then calls uMPI_Connect_task() to create

a new intercommunicator between the two sets of

microtasks, X and Y. The uMPI_Connect_task() API

is a collective function, which the three sets of

microtasks need to call. After creating the new

intercommunicator, the supportive microtask sends

the input data to X microtasks and then waits until it

receives the result from Y microtasks.

The X and Y microtasks obtain an intercommuni-

cator between the two groups by calling

uMPI_Connect_task(). Because of this intercom-

municator, X microtasks can send intermediate

results directly to Y microtasks without asking the

supportive microtask for help. In other words, the

intercommunicator helps make it easy to allow the

preprocessor to analyze the dataflow among micro-

tasks. For example, without using this intercom-

municator, X microtasks need to send intermediate

results to the supportive microtask, which forwards

them to Y microtasks. Thus, the two groups always

have to go through the system memory to commu-

nicate with each other. When they can directly

communicate with each other, however, we can

allocate communication buffers on a local store as

long as they fit into the local store. In this way, we

can reduce the number of DMA transfers between

the local store and the system memory to improve

system performance.
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STATIC SCHEDULING ALGORITHM

For those applications for which we can statically

construct a task precedence graph in a direct acyclic

graph (DAG) form, we can utilize the task prece-

dence information for various optimizations. We

call such an application a static application. For

static applications, a preprocessor can analyze their

source code and convert MPI functions in the code

to optimized lower-level functions at compile time.

The preprocessor has four phases: task graph

generation, clustering, scheduling, and runtime

parameter generation. We describe each phase in

detail.

Task graph generation

In this phase, the preprocessor first divides each

microtask into a set of basic tasks, each of which

represents a unit of computation that does not cause

a context switch in the middle, as described earlier.

The concept of a basic task is analogous to that of

the basic block, which consists of straight-line code

without any jump or jump targets in the middle.

Note that we have no need to restrict the size of the

microtask but only that of the basic task but because

the basic task is not a visible component for

programmers, we impose the size limitation to the

microtask. It would be interesting to examine how

Figure 1 
Pseudocode for a microtask program example (2D FFT); Part 1 of 2, regular microtasks

void fft1d(complex *buf_a)
{
  fft1d_local(buf_a);  // local butterfly stages
  for (loop = 0; loop < num_loops; loop++) {
    // exchanging data with a peer task
    MPI_Isend(buf_a, points_per_task, MPI_COMPLEX, peer_task(loop), 
  0, MPI_COMM_WORLD, &req[0]);
    MPI_Irecv(buf_b, points_per_task, MPI_COMPLEX, peer_task(loop), 
 0, MPI_COMM_WORLD, &req[1]);
    MPI_Waitall(2, req, stat);
    fft1stage(buf_a, buf_b, loop);  // one-stage butterfly
  }
}

int x_main(int argc, char *argv[ ] )  // the main for X microtasks
{
  MPI_Init(&argc, &argv);
  MPI_Comm_get_parent(&parent);
  // creating an inter-communicator between X and Y microtasks
  uMPI_Connect_task(parent, MPI_COMM_NULL, &sibling);
  // receiving the input from the supportive (parent) microtask
  MPI_Recv(data, points_per_task, MPI_COMPLEX, 0, 0, parent, &status);
  fft1d(data);
  for (i = 0; i < points_per_task; i++)  // sending to Y microtasks
    MPI_Isend(&data[ i ] , 1, MPI_COMPLEX, y_dest(i), 0, sibling, &req[ i ] );
  MPI_Waitall(points_per_task, req, stat);
  MPI_Finalize( ) ;
}

int y_main(int argc, char *argv[ ] ) // the main for Y microtasks
{
  MPI_Init(&argc, &argv);
  MPI_Comm_get_parent(&parent);
  // creating an inter-communicator between X and Y microtasks
  uMPI_Connect_task(parent, MPI_COMM_NULL, &sibling);
  for (i = 0; i < points_per_task; i++)  // receiving from X microtasks
    MPI_Irecv(&data[i], 1, MPI_COMPLEX, x_src(i), 0, sibling, &req[ i ] );
  MPI_Waitall(points_per_task, req, stat);
  fft1d(data);
  // sending the output to the supportive (parent) microtask
  MPI_Send(data, points_per_task, MPI_COMPLEX, 0, 0, parent);
  MPI_Finalize();
}
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programmability and performance would be af-

fected if we imposed the size limitation on the basic

task.

The preprocessor then constructs a task precedence

graph, where each node corresponds to a basic task

and each edge corresponds to a pair of send and

receive operations. Figure 2A shows an example of

a basic task graph. This example illustrates a task

graph for a 1D-FFT program. For purposes of

explanation, we focus on a part of the 2D-FFT

program that we discussed earlier (Figure 1). This

1D-FFT example consists of nine microtasks, eight

of them for the main computation and one for

supportive operations. In Figure 2A, each square

represents a microtask, whereas each numbered

circle represents a basic task.

Clustering

After generating a task graph, the preprocessor

groups basic tasks into clusters. Each cluster

consists of a set of basic tasks that are derived from

one or more microtasks, and it can be executed by

the Cell BE processor without any context switches.

Each cluster must not involve more microtasks than

the number of physical SPEs, and it must not have a

cyclic dependency on other clusters. Here, we

informally denote that Cluster A has a cyclic

dependency on other clusters if there is a path that

goes out from Cluster A and comes back to Cluster

A. The preprocessor first picks up a basic task as a

seed of a cluster and then attempts to grow it by

adding other basic tasks that have a strong

dependency on the cluster. We define the strength of

the dependency between a task and a cluster as the

amount of communication between the task and the

cluster required for exchanging messages and

context switches. Each cluster should be able to run

in a gang fashion without causing a context switch,

and the preprocessor stops the growth of a cluster if

any additional basic task causes a context switch in

the cluster. Clustering is, in fact, the most important

optimization. It greatly affects the overall system

performance.

The clustering phase then generates a precedence

graph of clusters, which is used in the next

scheduling phase. Figure 2B shows the cluster

precedence graph for the basic task graph shown in

Figure 2A. In this example, we assume there are

three physical SPEs.

Scheduling with a dynamic-programming

method

It is known that scheduling problems for series-

parallel graphs are solvable in polynomial time for

Figure 1 
Pseudocode for a microtask program example (2D FFT); Part 2 of 2, supportive microtask

int main(int argc, char *argv[ ]) // the main for supportive microtask
{
  MPI_Init(&argc, &argv);
  init_data(data2d);
  // creating X and Y microtasks
  MPI_Comm_spawn("x_main", argv, x_size, MPI_INFO_NULL, 0, MPI_COMM_SELF, 
   &x_comm, errcodes);
  MPI_Comm_spawn("y_main", argv, y_size, MPI_INFO_NULL, 0, MPI_COMM_SELF, 
   &y_comm, errcodes);
  // creating an inter-communicator between X and Y microtasks
  uMPI_Connect_task(x_comm, y_comm, &comm);
  // sending the input to X microtasks
  for (y = 0; y < y_points; y++)
    for (x = 0; x < x_points; x+=points_per_task)
      MPI_Send(&data2d[ y*x_points+x ], points_per_task, MPI_COMPLEX,
        dest(x, y), 0, x_comm);
  // receiving the output to Y microtasks
  for (x = 0; x < x_points; x++)
     for (y = 0; y < y_points; y+=points_per_task)
      MPI_Recv(&data2d[ x*y_points+y ], points_per_task, MPI_COMPLEX,
        src(x, y), 0, y_comm, &status);
  MPI_Finalize();
}
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certain special cases, whereas those for general

precedence constraints are nondeterministic poly-

nomial (NP)-hard.
8
Namely, if the task precedence

is given by a series-parallel graph and if the longest

communication time is much shorter than the

shortest computation time, the scheduling problem

for series-parallel graphs is solvable in polynomial

time for a sufficient number of processors.
8
Our

dynamic-programming algorithm solves the sched-

uling problem by transforming it to a simpler

problem. This transformation involves two levels of

approximation. First, we approximate the task

precedence graph in a series-parallel graph. Second,

we bound the search space for scheduling the series-

parallel graph by assuming that the scheduling

problem for each series and parallel suite is

independent. This is discussed in more detail later in

this section.

The series-parallel graph has a nested structure of

series and parallel graphs, as discussed previously.

In a series graph, all nodes need to be scheduled in a

series fashion. In a parallel graph, all nodes are

independent and can be scheduled in a parallel or

series fashion. It is known
13

that any DAGs can be

converted into a series-parallel graph by adding

some extra edges (dependencies) and by removing

transitive edges. When the preprocessor converts

the precedence graph of clusters into a series-

parallel graph, we limit the number of children to k

for each parallel suite so that we can limit the

amount of computation in the next step.

In the course of converting the graph, the prepro-

cessor also creates a parse tree of the series-parallel

graph. Each leaf node in the parse tree corresponds

to a cluster, and each non-leaf node corresponds to a

series or parallel suite that consists of its immediate

children. Figure 2C shows the converted series-

parallel graph when k is 4 for the cluster precedence

graph shown in Figure 2B. Figure 2D shows the

parse tree. Although the preprocessor adds pseudo-

synchronization nodes to convert the cluster graph

in a series-parallel form (Figure 2C), those pseudo-

synchronization nodes are used only for conceptual

purposes and do not really cause synchronization

operations at runtime.

Once we obtain a scheduling problem in a series-

parallel form, it is natural to apply a dynamic-

programming method if we can assume each series

or parallel suite is an independent subproblem; that

is, starting from lowest non-leaf nodes in the parse

tree, which have only leaf nodes as their children,

we compute an expected execution time when a

node is executed by p SPEs for each p (1 � p � P),

where P is the number of physical SPEs. For the leaf

nodes, we use a brute force method to schedule

basic tasks in each cluster. The computation for the

intracluster scheduling, however, is bounded be-

cause the number of microtasks in each cluster does

not exceed the number of physical SPEs, which is

eight for the first-generation Cell BE processor. For

series suites, we simply add up the minimum

execution time of each immediate child when p SPEs

execute it. For parallel suites, we compute the

execution time for each case when the k immediate

children are executed in series, in parallel, or

partially in series and in parallel. Then we select the

shortest execution time for each p (1 � p � P). The

final solution is the minimum execution time of the

root node in the parse tree when P SPEs execute the

root node. Because we schedule a node (series or

parallel suite) by using the intermediate scheduling

results only of its immediate children and because

we schedule nodes from the lowest level toward the

root, we can schedule a node by using the

scheduling results for nodes that have been visited.

In other words, the preprocessor takes a bottom-up

approach for applying a dynamic-programming

method by visiting each node only once. Thus, the

total computation time is a linear order on the

number of clusters.

This linear-order algorithm obviously involves some

approximation because the scheduling problem for

general series-parallel graphs is known to be NP-

hard. In fact, the scheduling problem for each suite

is not a totally independent subproblem because of

the following two reasons. First, when we schedule

a series or parallel suite, the result usually includes

some slack time during which one or more SPEs

becomes idle. Thus, if we consider each suite as an

independent subproblem, we ignore scheduling

options to fill such slack time with clusters that are

outside the suite. In our current algorithm, we

simply ignore the effect of the slack time.

Second, the independence between suites does not

hold because the transition time between sequen-

tially scheduled suites may depend on the internal

scheduling result of both suites. Suppose two

parallel suites, Pa and Pb, are scheduled in back-to-

back fashion, and each parallel suite consists of two
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gang-scheduled basic tasks; that is, Pa consists of

Ta
0
and Ta

1
, and Pb consists of Tb

0
and Tb

1
. When

Pa and Pb are scheduled on two physical SPEs, Ta
0

can be followed by either one of the two basic tasks

in Pb (Tb
0
or Tb

1
), and Ta

1
is followed by the other

basic task in Pb. If Ta
0
and Tb

0
belong to the same

SPMD set, the context switch from Ta
0
and Tb

0

needs to swap only the data portion of the context. If

not, it needs to swap the entire context on the local

store. Thus, the latter case requires a longer context

switch time on the SPE than the former case. The

transition time from Pa to Pb, therefore, may depend

on their internal scheduling results. We, however,

simply assume the transition time between any two

clusters is constant. Although this assumption is not

accurate, it allows us to treat the scheduling

problem of each series or parallel suite as an

independent problem. In other words, we can use

the linear-order scheduling method for intercluster

scheduling and can limit the use of an expensive

brute force method only for intracluster scheduling.

In our example, shown in Figure 2, the intracluster

scheduler obtains the execution time for all clusters

when the number of SPEs is one, two, and three.

When the intercluster scheduler schedules a parallel

suite P1, for example, it chooses the number of SPEs

to be allocated to each immediate child (C1–4) by

applying the dynamic-programming algorithm.

Figure 2E shows the result of the intercluster

scheduling. In this example, it allocates one SPE for

two clusters (C4 and C8), and two SPEs for the rest

of the clusters. In this way, this scheduling scheme

optimizes the intracluster and intercluster schedul-

ing by applying a dynamic-programming algorithm.

Optimizing runtime message operations

After performing intercluster scheduling, the pre-

processor recreates a precedence graph of the basic

tasks that have been scheduled on physical pro-

cessor cores. The task graph represents the execu-

tion order of all basic tasks and their dependencies

caused by message passing. By using the task graph,

the preprocessor assigns a specialized function to

each message operation and computes its parame-

ters for optimizing message operations at runtime.

To that end, the preprocessor identifies whether it

needs a synchronization operation, a context switch,

and a message buffer (on a local store or the system

memory). We briefly describe each case in more

detail.

First, a message operation generally requires a

synchronization operation between the sender and

the receiver; that is, the receiver needs to confirm a

message arrival before fetching the message from a

buffer. For certain cases, in fact, the receiver can

fetch the message without confirming its arrival

because DMA operations with an optional fence

semantics can maintain the order of message

transfers. The preprocessor identifies such cases in

the task graph to reduce the number of runtime

synchronization operations.

Second, the preprocessor identifies message oper-

ations that cause a context switch by simply

scanning the task graph. If two basic tasks, T
a
and

T
b
, are scheduled on the same physical core in a

back-to-back fashion, and if T
a
and T

b
belong to

different microtasks, a context switch occurs be-

tween T
a
and T

b
.

Third, the preprocessor determines the location of

the message buffer—a local memory or the system

memory—for each message operation. The current

prototype assigns a buffer on the local memory for

intracluster communications; a DMA mechanism

transfers a message between SPEs directly. The

current prototype simply assigns a system memory

buffer for intercluster communications. We plan to

improve it by assigning a local-memory buffer for

certain intercluster communications.

Finally, the preprocessor can compute all parame-

ters statically for each specialized message function,

such as the system memory address of the message

buffer (if the communication uses a buffer on

system memory), the index of the physical SPE of

the peer basic task (if the communication uses a

direct SPE–SPE message transfer), and the index of

the next microtask to be scheduled (if the commu-

nication causes a context switch). Because the

preprocessor computes these parameters, the run-

time system can transfer messages efficiently, as we

describe next.

Runtime organization
This section describes a high-level structure of the

runtime system for the current implementation.

Figure 3 shows the memory layout of each SPE. Out

of the 256-KB local store, the lowest 16 KB is

reserved for the resident runtime, which contains

per-SPE data structures, such as synchronization
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flags and performance counters. The highest 2KB is

reserved to store the register context of the micro-

task, which consists of 128 128-bit registers. The rest

of the 238 KB is left for a microtask and its runtime

library. The runtime library contains a message API

table and a set of specialized message functions,

which we discussed previously. Each table record

consists of a pointer to a specialized message

function in the runtime library and some parameters

for the function. When the microtask calls a

message-passing API, such as MPI_Send() and

MPI_Recv(), the runtime library looks up the table

and jumps to the specialized function with the

parameters supplied in the table record. The runtime

library usually increments the index at each table

lookup for an API call, so that each message transfer

looks up a unique record in the table.

The memory layout of the system memory is similar

to that of each SPE except for the following two

differences. First, the memory space for the sup-

portive microtask does not have the 256-KB limi-

tation. Second, the system memory contains a large

buffer pool of messages and a backing store of all

microtask contexts. The preprocessor statically

manages the recycling of the buffer pool, which

holds the messages that do not fit in the local store.

To illustrate how these runtime components work

together, we describe an example in Figure 4. First,

in Step 1, a microtask M
a
calls MPI_Recv(), a

blocking receive operation (A), to look up the

message API table (B) in the runtime. In this

example, M
a
needs to switch to another microtask

M
b
to receive the message. After MPI_Recv() calls

the specialized function to which the table record

points (C), it passes the index of M
b
to a resident

runtime routine, syscall() (D). This routine saves

all registers to the register context area in the local

store and the local store image to the context

backing store of M
a
on the system memory (E). In

Step 2, it restores the context of M
b
from the backing

store (F), and starts executing a basic task. When

the basic task is completed, in Step 3, M
b
calls

syscall(), which saves the context of M
b
(G). In

Step 4, the resident runtime then restores the

context of M
a
(H) and returns to the runtime library.

The library then looks up the next table record (I)

and jumps to the specialized function to which the

table record points (J). In this example, the

specialized function directly transfers the message

from a buffer on the system memory without a

synchronization operation. It performs a DMA

transfer (K) by using the buffer address given by the

corresponding table record (I).

Note that each SPE can perform a context switch

without communicating with the PPE because the

resident runtime can directly swap microtask con-

texts by accessing their backing store on the system

memory. As we discussed previously, we usually

schedule a set of microtasks in a gang fashion if they

belong to the same cluster. A naive implementation

of such gang scheduling requires a barrier synchro-

nization at which each microtask has to wait for

other microtasks in the gang set. Such an imple-

mentation, furthermore, can cause heavy congestion

at the system memory because multiple context

switches occur at the same time. Our implementa-

tion, on the other hand, does not use a barrier

synchronization when a cluster is being scheduled.

Instead, it uses a pair-wise synchronization between

a sender and a receiver within the same cluster at

each message-passing operation. In this way, we can

avoid heavy congestion at the system memory by

allowing each microtask in a cluster to start

execution independently.

Figure 3 
Memory layout of local store for each regular microtask
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The current implementation with a message API

table is reasonably efficient because the table is

structured in such a way that the SPE can efficiently

access it. Our early experimental results have, in

fact, shown that the overhead for table lookups is

very small. Nevertheless, we can further reduce the

overhead by inlining certain table entries inside the

microtask code.

EXPERIMENTAL RESULTS

We have implemented an initial prototype to

evaluate the microtask programming model and its

scheduling algorithm. For our experiments, we used

three well-known computation kernels: an LU

decomposition (LU), a 1D FFT (FFT1D), and a matrix

multiplication (MATMUL). First, LU decomposes a

10243 1024 matrix into an LU form by using 32

microtasks. The program divides the matrix into 32

stripes and assigns each stripe (128 KB) to a

microtask. Second, FFT1D performs a radix-2

Cooley-Turkey algorithm for 256-KB complex data

by using 32 microtasks. The program divides the

data into 32 chunks—each 64 KB consisting of 8-KB

8-byte complex numbers—and assigns each chunk

to a microtask. Third, MATMUL multiplies two

5763 576 matrices by using 36 microtasks. The
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program divides the resultant matrix into 36 963 96

submatrices and assigns each submatrix (36 KB) to a

microtask. All of these programs use single-preci-

sion floating operations to exploit the four-way

single-instruction multiple-data (SIMD) engine on

each SPE.

Our microtask prototype has certain limitations, the

most notable being the current reliance of the

preprocessor on programmers to specify some user

directives to construct the task precedence graph. A

future version of the preprocessor is planned to have

a source-code analysis phase that can automatically

generate the directives as an intermediate repre-

sentation of the task precedence graph.

To evaluate the performance advantage of our

scheduling algorithm, we have also implemented a

well-known critical-path scheduling algorithm
9
for

comparisons. As mentioned before, it first computes

the critical-path length for each basic task. It

maintains a list of runnable basic tasks whose

precedence tasks have been scheduled, and it

always selects the runnable basic task with the

longest critical path in the list. Our algorithm,

moreover, uses a simple heuristics to reduce the

Step 4: The resident runtime restores the context of the microtask Ma 
           from the system memory, and the runtime library of Ma 
           transfers the message from the system memory. 
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An example scenario of a message-receive operation (Part 2 of 2)
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number of context switches; that is, it looks for an

SPE whose latest scheduled basic task belongs to the

same microtask as the task to be scheduled

currently. If there is such an SPE, it schedules the

basic task on that SPE to avoid a context switch

operation. Otherwise, it schedules the basic task on

an SPE that can complete it at the earliest time. In

our experiments, this critical-path scheduler uses

the same basic task graph for input and the same

runtime system as our two-phase (i.e., intracluster

and intercluster) scheduler.

We ran the three programs for each scheduling

algorithm on a Cell BE processor prototype system.

Figure 5 shows the relative execution time for the

three programs. Each execution time is normalized

with respect to that for the critical-path scheduling.

We break down the relative execution time into

seven components: computation, context switch,

system-memory transfer, local-store transfer, syn-

chronization, unused, and miscellaneous. Compu-

tation indicates the time during which an SPE was

busy for actual computations. Context switch

indicates the time during which an SPE saved or

restored a context. System-memory transfer indi-

cates the time during which an SPE read or wrote

the system memory for message transfers via DMA.

Local-store transfer indicates the time during which

an SPE transferred a message between two local

stores. Synchronization indicates the time during

which an SPE waited for a message. Unused

indicates the time during which an SPE waited for

the completion of other SPEs at the end of the

program. Miscellaneous indicates the time for any

other overhead in the runtime system, such as the

message-API table look-ups. The miscellaneous

component is negligible (less than 0.2 percent in the

relative execution time) for all cases shown in Fig-

ure 5. For these experiments, all DMA transfers do

not overlap with other computations.

Our experimental results have shown that our

clustering algorithm consistently reduces the con-

text switch overhead in the execution time as

intended. This reduction is most significant for LU.

This is because LU consists of many basic tasks that

can run in parallel. As a result, the critical-path

scheduler schedules basic tasks in such a way that

the 32 microtasks are interleaved on the eight SPEs

in fine granularity. This scheduling pattern results in

a large context switch overhead. In our two-phase

scheduler, clustering can prevent such a large

context switch overhead.

Due to the reduction in the context switch overhead,

the total execution time for our two-phase schedul-

ing algorithm is smaller than that for a critical-path

scheduling algorithm for all the three programs we

examined. The difference in the total execution time

between the two algorithms is most significant for

LU and least significant for MATMUL. For MATMUL, our

clustering algorithm successfully reduces the con-

text switch overhead, but it increases the synchro-

nization overhead. This is because our algorithm

creates some clusters with relatively large slack

time, which in turn cause load unbalancing among

SPEs. This indicates that there are opportunities for

improving our clustering algorithm further.

CONCLUSION
Although the Cell BE processor has a very high peak

performance, it relies on software control for certain

functions that microprocessors typically support in

hardware. One such function is local-store manage-

ment, which could burden programmers with

significant effort if they are entirely responsible. The

Figure 5 
Experimental results

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Re

la
tiv

e 
Ex

ec
ut

io
n 

Ti
m

e

Application/Scheduling Algorithm

LU
/C

P

FF
T1

D/T
P

MAT
MUL/

TP

MAT
MUL/

TP

Miscellaneous
Unused
Synchronization
Local Store 
Transfer
System Memory 
Transfer
Context Switch
Computation

LU
/T

P  

FF
T1

D/C
P

TP = Our two-phase 
        scheduling 

CP = Existing 
        critical-path 
        scheduling

OHARA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006100



microtask model we proposed here provides a

unique programming model for the Cell BE pro-

cessor to free programmers from local-store man-

agement by allowing the preprocessor and the

runtime system to optimize the scheduling of

communications and computation.

In addition to providing a well-known message-

passing programming model, the microtask model

enables the preprocessor to convert the program

into one for a streaming model, in which both task

contexts and messages stream through processor

cores. The preprocessor performs this conversion by

dividing each microtask into several basic tasks,

each of which represents a unit of computation that

does not communicate with other basic tasks in the

middle. Each basic task also corresponds to a

computation kernel in stream programming models.

Finally, the preprocessor schedules the computation

and communications of basic tasks in such a way

that the Cell BE processor can execute them

efficiently. For that purpose, we propose a novel

scheduling algorithm suitable for the unique archi-

tecture of the Cell BE processor.

We have implemented an initial prototype of the

microtask preprocessor and the runtime system. Our

early experiments have shown some encouraging

results; our scheduling algorithm consistently re-

duced the context switch overhead for the programs

that we examined. The results also indicated

opportunities to enhance our clustering algorithm

for further performance improvements. Thus, the

microtask model should make it easier for pro-

grammers to exploit the high peak performance of

the Cell BE processor.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sony
Computer Entertainment, Inc. in the United States, other
countries, or both.
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