Content protection for games

In this paper we review the state of the art in content protection for video games by
describing the capabilities and shortcomings of currently deployed solutions. In an
attempt to address some of the open issues, we present two novel approaches. The
first approach uses branch-based software watermarking to discourage and detect

G. Myles
S. Nusser

piracy through a registration-based system. In the second approach, based on the
parallels between games and premium audio and video content, we propose the use

of current physical-media copy-protection technologies for gaming content. In
particular, we focus on broadcast encryption technology. The use of an open,
standard-based architecture enables the development of a more restrictive protection
system for games. Finally, we demonstrate how the proposed protection mechanisms
can be applied to video-game copy protection through five scenarios.

INTRODUCTION

Before the extensive availability of the high-speed
Internet, the distribution of pirated software in-
volved the transfer of a physical copy, that is, the
transfer of a storage device such as a diskette or a
compact disk. This limited the rate at which illegally
copied games could be distributed, and thus the
associated losses could be absorbed. However, the
recent advances in technology, the ease of access to
the Internet, and the widespread use of peer-to-peer
applications made the physical copy obsolete.
Software piracy is now a widespread, decentralized
problem in which millions of people take part. The
protection afforded by the legal system is no longer
easy to enforce or cost effective. Thus, the gaming
industry now relies on technological mechanisms to
deter, detect, and prevent piracy.

In 2004, when sales of video games in the United

States set a record at $7.3 billion,1 the industry lost
more than $1.8 billion to global piracy.2 Unfortu-

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

nately, the lost revenue is due to a variety of
different piracy-related attacks, such as illegal
copying, counterfeiting, and distributing. The ram-
ifications associated with piracy propagate
throughout the gaming community. The obvious
victims are the game-producing companies, but the
more peripheral victims are often not recognized.
Hardware producers rely on video game players to
buy the newest, fastest, and most expensive
products to play increasingly resource-intensive new
games. For example, in September of 2003 a
significant portion of the source code of the game
Half-Life** 2 was stolen. When the theft, which
occurred before the release of the game, was
discovered, the game maker delayed its release in

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

MYLES AND NUSSER

119

order to develop a new and different version of the
game. This delay led to potential revenue losses for
ATI, a graphics card company. As a marketing
strategy to entice consumers to upgrade, they
planned to distribute free versions of the game with
their latest graphics. Due to the delayed release, the
game was not available in time. The video game
industry must also contend with unscrupulous
retailers who are able to significantly increase their
profits by producing and selling illegal copies.

To develop techniques for the protection of gaming
content it is necessary to understand the mecha-
nisms used by attackers to bypass copy-protection
technologies. The attack mechanisms in use today
target both the executable software and the console
devices on which many games are played. In this
paper we are concerned with the following types of
attacks:

1. Sharing of installation media (e.g., illegal sharing
of an installation CD from a legally purchased
game package).

2. Creating and distributing illegal copies of instal-
lation media.

3. Disabling or bypassing copy-protection technol-
ogy so that the game can be illegally redistributed
(e.g., disabling the license check by modifying
the game code).

4. Execution of illegally copied games on a tradi-
tional PC.

5. Execution of illegally copied games on a console
gaming system.

6. Execution of illegally copied games on a gaming
system that has been modified to run games
using alternate media formats such as a standard
CD.

It is important to note that the third type of attack, in
which the game itself is modified, is distinct from
the last one, in which the gaming system is
modified. Modification of the gaming system to
bypass copy protection is commonly referred to as
modding.

In this paper we present two novel approaches for
game protection. The first approach is based on a
particular software watermarking technique, the
branch-based software-watermarking algorithm,
developed by the authors at the IBM Almaden
Research Center.’ Software watermaking is one of
many techniques currently being studied to prevent

120 MYLES AND NUSSER

or discourage software piracy and copyright in-
fringement. The basic idea of watermarking is to
embed a unique identifier in the program. Depend-
ing on the identifier, it can be used to indicate the
author or the legal purchaser of the program. By
incorporating ideas from code obfuscation (to aid in
preventing reverse engineering) and software tam-
per detection (to thwart attacks such as the
application of semantics-preserving transforma-
tions), the technique makes it possible to detect theft
through the implementation of a registration-based
system. The algorithm involves redirecting branch
instructions to a special function known as a branch
function. This function is responsible for computing
the program’s “fingerprint” and controlling the
execution. The branch-based software-watermark-
ing algorithm makes several improvements over
previously proposed watermarking techniques:

e The technique simultaneously provides proof of
authorship and the ability to trace the source of
the illegal distribution.

® The technique demonstrates a significantly higher
level of resilience to attack without significant
overhead.

* The technique provides a means for distributing
prepackaged, fingerprinted software whose link to
the consumer is established at registration time.

In the second approach we show how games are
similar to premium audio and video content in their
need for copy protection. Based on these parallels,
we propose the use of current copy-protection
technologies for physical media in the battle against
video game piracy. In particular, we focus on the
broadcast encryption technology developed by 4C
Entity, LLC, a consortium founded in 1998 by IBM,
Matsushita Electric Industrial Corporation, Toshiba
Corporation, and Intel Corporation to implement
CPRM (Content Protection for Recordable Media). In
this scheme, the game executable is stored in an
encrypted state on a disk and depends on the
presence of protected media (such as an SD memory
card) to execute. As a consequence, multiple copies
of a game can be created by an end user, but they
cannot be executed concurrently. This is a more
user-friendly approach than a per-PC license, which
does not allow an end user to install a game on a
second machine.

Content protection in the gaming industry is
obviously an area of intense interest for developers

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

and producers of games. It is also of interest to game
device makers, who often sell the device at a loss
and instead draw their profit from royalties on
software sales. Unfortunately, the gaming industry
currently makes use of proprietary methods in the
development of copy-protection technologies.
Whereas this approach is generally effective against
the occasional copier, such protection is usually
vulnerable to an attack by an experienced hacker.
Our approaches are based on open standards: the
branch-based watermarking algorithm is publicly
available, and the techniques for protection of
physical-media content are based on open stan-
dards. Consequently, the techniques we discuss here
are likely to be scrutinized for pitfalls by a large
community, are based on a strong technical basis,
and are likely to lead to more robust protection
mechanisms for games.

The rest of the paper is structured as follows. In the
section “Gaming and piracy,” we present an over-
view of the state of the art in copy-protection
technologies for PC and console-based gaming.
Then, in the section “Using software watermarking
to combat game piracy,” we discuss our branch-
based software-watermarking algorithm and the
ways it can be used to prevent game piracy. In
“Content protection for physical media,” we briefly
review the evolution of copy protection for audio/
video content and for recordable media, with a
particular focus on broadcast encryption, a crypto-
graphic-key management technology. Finally,
through five deployment scenarios described in the
section “Content protection for games: Deployment
scenarios,” we demonstrate the viability of the
proposed techniques to prevent common game
piracy attacks. We thus demonstrate that current
copy-protection techniques that were developed
either for software or for video and audio content
can be successfully applied to combat piracy in
video games. In the “Conclusion” section, we
summarize our main results.

Throughout the paper we use a variety of terms
which could have multiple meanings. This para-
graph clarifies our usage. We use the term video
games (or games, for short) to refer to games that
are played either on a PC (PC-based game) or
specialized hardware known as a video game
console (console-based game). The techniques we
discuss here apply both to prepackaged games and
games that are downloaded from the Internet.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Whereas copy protection refers to preventing copy-
ing of copyrighted material, content protection is
more general and includes other violations of
intellectual property, such as performing illegal
modifications to proprietary software. We use the
term premium audio and video content inter-
changeably with premium entertainment content.
We use the term optical media to refer to media such
as the compact disk, for which the reading or writing
of information is performed through optical tech-
niques. We use the term hackers to refer to people
involved in software piracy.

GAMING AND PIRACY

To combat the high level of piracy, the video game
industry has taken a variety of actions that include
both deterrent and preventative techniques. In this
section we present the current state of the art in both
hardware- and software-based protection mecha-
nisms.

Hardware-based protection techniques

A variety of hardware-based techniques have been
used in video game anti-piracy measures. These
techniques are typically able to provide a higher
level of protection than their software-based coun-
terparts. However, the techniques are generally
more expensive to produce and often cumbersome
for the end user.

One of the first hardware-based, anti-piracy tech-
niques deployed in the game industry was the
dongle.4 The dongle, a hardware device commonly
distributed with a piece of software to prevent
unauthorized execution, is typically connected to an
I/0 port, such as a serial or parallel port. As the
software executes, it periodically queries the dongle,
which returns the output of a secret function. If
communication fails or the result of the query is
incorrect, the software will eventually produce
incorrect results or fail entirely.

The use of a dongle as a protection mechanism has
several drawbacks, the first of which is the cost. The
cost of the dongle, approximately $10 in the United
States, further increases the cost of the game.
Second, the use of a dongle limits the distribution
options. In particular, when a game is sold and
distributed over the Internet, the inclusion of a
dongle is not feasible. Finally, code for dongles is
often “cracked” shortly after release. This is
generally accomplished by “disassembling” the

MYLES AND NUSSER

121

game code, identifying the calls to the dongle, and
then bypassing those calls. After the dongle is
cracked, a code patch is usually distributed so that
anyone can play the game without the required
dongle. Such an instance occurred with the Robo-
cop** 3 game for the Amiga** platform. The anti-
piracy dongle had to be connected to one of the
joystick ports for the game to run. A few days after
its release in April of 1992, the dongle was cracked.

A second hardware-based piracy prevention tech-
nique is tamperproof hardware.” Tamperproof
hardware is a way to secure parts of the hardware,
such as the use of a computer chip, from being
observed by a hacker. By executing the software in a
secure context the pirate is unable to gain access to
the application code and identify the code to be
bypassed. This piracy prevention technique is
feasible for console-based systems but has limita-
tions for PC games. Because a user must purchase a
console to even play a game, the game developers
can make use of this technology, but the additional
cost of requiring all PC game users to have tamper-
proof hardware is not currently a viable solution.

The development of the Trusted Platform Module’
(TPM) is one example of using tamperproof hard-
ware to prevent software tampering. The TPM is a
special chip developed to enable trusted computing
features. The four essential features include:

1. Secure I/O—Input and output are verified by
performing a checksum of the software used for
1/0.

2. Memory curtaining—The hardware prevents a
program, including the operating system, from
reading or writing memory used by another
program.

3. Sealed storage—Information is protected by en-
crypting it with a key derived from the hardware
or software currently being used.

4. Remote attestation—Changes to the computer are
detected by having the hardware generate a
certificate stating what software is in use. The
certificate is presented to the remote party,
generally through the use of public key cryptog-
raphy, to demonstrate that the system has not
been altered.

The TPM features have been incorporated into
chipsets by Intel Corporation, Advanced Micro
Devices, Inc., and IBM.

122 MYLES AND NUSSER

One mechanism used by hackers to bypass copy
protection is the mod chip. This is a special chip
added to the game console that is capable of
modifying or disabling security mechanisms.
Through the use of the mod chip a user can play
games from other regions (installation CDs imple-
ment restrictions that make the game functional
only in certain geographic areas) and create backup
copies on CD-R and DVD-R media. Although it is
legal in some countries for the purchaser to make a
back-up copy in case the original is lost or damaged,
game consoles contain protection mechanisms that
prevent the user from playing the copies. The mod
chip makes it possible to bypass these protection
mechanisms by supplying the appropriate informa-
tion. Currently, this is a very common attack
mechanism for popular console systems such as the
Xbox** and PlayStation** 2. In fact, Microsoft has
taken action to prevent those who have modified
their consoles from Xbox Live** play7 (online
environment). When a user logs onto an online
gaming forum, his or her system is checked for the
presence of mod chips. If mod chips are detected,
the unit’s serial number is recorded, and the device
is permanently banned from the network. As a
counterattack, mod chips are being produced that
can be temporarily disabled to prevent detection.

Software-based protection techniques

The success of online gaming has led to a new set of
concerns for the industry. These concerns revolve
around maintaining a fair and consistent gaming
environment in which players will continue to
participate. If some players are able to modify their
games, for example, by making their character
immortal, the entire gaming experience can suffer.
One technique that has been explored by research-
ers and that could be used to aid in the prevention of
game modifications is code obfuscation,g_17 a tech-
nique to protect a secret in the application code. The
secret may vary; examples are the design of a
software component, special algorithms embedded
within the software, and important data such as a
cryptographic key. Obfuscation works by applying
transformations to the code in order to make it more
difficult to understand and reverse engineer while
preserving the original functionality. The idea is to
obscure the readability and understandability of the
program to such a degree that it is more costly for
the attacker to reverse engineer the program than to
simply recreate it or purchase a legal copy. There are
three types of obfuscation:

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

1. Layout obfuscations alter the information that is
unnecessary to the execution of the application,
such as identifier names and source code
formatting (e.g., comments and indentations
used for readability).

2. Data obfuscations alter the data structures used
by the program. For example, a two-dimensional
array could be folded into a one-dimensional
array.

3. Control flow obfuscations disguise the true
control flow of the application, for example, by
inserting dead or irrelevant code or merging
multiple functions into one.

The level of protection provided through obfusca-
tion varies with program size and structure. Addi-
tionally, obfuscation increases the overhead of the
program which could have adverse effects on
performance. Since performance is critical in most
video games, the degree to which a game can be
obfuscated may be limited. A second limitation to
the technique is that it does not provide complete
protection. Given enough time, a determined ad-
versary will be able to break the protection.
However, obfuscation can be used to extend the
period of time before the game protection is broken.
Because the majority of video games have a short
shelf life and most of the revenue is derived over a
short period of time, obfuscation is a viable
protection technique.

A common feature of many video games is the
inclusion of a license check. It can be used to verify
the validity of the game or to prevent the use of a
game after a specific date. To prevent a dishonest
player from removing the license check, software
tamperproofing techniques can be used that prevent
the game from being altered.'"*™** The tamper-
proofing mechanism must first detect that the
software has been altered. Then, when tampering is
detected, the mechanism must cause the program to
fail. For the tamperproofing to succeed, the software
failure must be stealthy and must not alert the
attacker to the location of the failure-inducing code.
This can be accomplished by separating the detec-
tion and response mechanisms in both space and
time. The protection of license checks is just one
specific use of software tamperproofing. As with
code obfuscation, it can be used to prevent
modification of the game executable. The main
difference between code obfuscation and software

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

tamperproofing is that code obfuscation is used to
hide a secret, whereas tamperproofing is used to
prevent alteration of the secret.

One of the most prevalent forms of copy protection
for PC-based games is the use of an installation key.
This is the sequence of letters and numbers
generally found on a sticker included with the
installation material. During the installation process
the user has to enter the installation key in order to
verify that the software is a legal copy. This form of
copy protection, while common, is generally broken
shortly after release. To defeat the system an
attacker analyzes the section of code that determines
if the sequence of letters and numbers constitutes a
valid installation key. Based on the analysis, it is
possible to determine the properties a valid key
must possess. Once the mechanism is defeated, key
generators are posted on the Internet, and anyone
can obtain a key to be used with illegal copies of the
software.

Currently many video game console-based systems
make use of their own proprietary CD or DVD
format. When the new console-based systems are
released, the software is written on CD or DVD
formats that standard burners cannot copy. For
example the Xbox uses DVD-9 format, which is a
single-sided, dual-layer media format. Nintendo Inc.
also took this approach with the GameCube** by
using smaller than normal discs. This type of
protection technique is usually effective against the
occasional copier, but it is not normally unbreakable
for long. In fact, software exists that makes it
possible to copy any game distributed in a DVD
format to regular CD-R or DVD-R/4R media. To play
these copies on a game console a mod chip is
required. However, techniques exist to play games
distributed for console systems on a traditional PC
with no special hardware requirements.

The following account illustrates the limited pro-
tection provided by proprietary formats. The Sony
PlayStation Portable (PSP**) handheld gaming
device uses a proprietary 1.8 GB Universal Media
Disc (UMD) format for distribution of both games
and video content. The initial release of the PSP
occurred in Japan on December 12, 2004. This was
followed by a release in the United States on March
24, 2005. Only six weeks after the United States
release and weeks before release in the United

MYLES AND NUSSER

123

Kingdom, hackers developed a technique to capture
the data from the UMD. Because the UMD uses the
standard ISO 9669 format, the captured data can be
written to a regular CD or DVD.

The most recently deployed anti-piracy mechanism
within the gaming industry is Steam, developed by
Valve Corporation. Steam is a content-delivery,
digital-rights management (DRM), and multiplayer
system.24 Currently, only a few games use Steam
technology. To activate a game using Steam
technology requires a Steam account and an Internet
connection. A boxed copy of the game purchased at
a store includes a Steam client and game content,
but not the executable required to play the game.
When the game is activated through the Steam
system, the files necessary to create an executable
game are downloaded. After the initial activation the
user can play in single-player mode or on a LAN
without an Internet connection. Unfortunately,
configuring the game for such activity is not
straightforward for the user. Moreover, to partic-
ipate in online multiplayer games or receive game
patches, the user must log in to the Steam system.
This scheme makes it possible for Value Software to
periodically authenticate the majority of the dis-
tributed game copies and to restrict the functionality
of illegal copies.

USING SOFTWARE WATERMARKING TO COMBAT
GAME PIRACY

One of the difficulties associated with the issue of
video game piracy is enforcing the law. Not only can
it be difficult for small game developers to prove
authorship if their intellectual property is stolen, but
it is usually extremely difficult to trace the source of
an illegal distribution. Through the use of software
watermarking it is possible to address these diffi-
culties.

Fundamentals of software watermarking
Software watermarking takes the approach of
discouraging piracy through the attachment of an
identifying mark (the “vvatermark”).zs_38 The most
basic software watermarking system consists of two
functions: embed(P, w, k) — P’ and recognize(P’, k)
— w. Using the secret key k, the embed function
incorporates the watermark w into a program P,
yielding a new program P’. The recognize function
uses the same key k to extract the watermark from a
suspected pirated copy.

124 MYLES AND NUSSER

A watermarking algorithm is categorized based on a
set of characteristics,”” such as whether the code is
analyzed as a static or dynamic object, the type of

recognizer used, the embedding technique, and the
type of mark embedded.

e Static/dynamic—Strictly static watermarking al-
gorithms only use features available at compila-
tion time for embedding and recognition. On the
other hand, strictly dynamic watermarking algo-
rithms use information gathered during the
execution of the program. Strictly speaking,
abstract watermarking algorithms are neither
static nor dynamic. Instead, such techniques are
static in that recognition does not require execu-
tion of the program, but they are dynamic in that
the watermark is hidden in the semantics of the
program.

® Recognizer type—A watermark recognizer is cate-
gorized based on the information needed to
identify the watermark. Both blind and informed
watermarking algorithms require the water-
marked program and the secret key to extract the
watermark. An informed technique additionally
requires an unwatermarked version of the pro-
gram, the embedded mark, or both.

e Embedding technique—To incorporate a water-
mark, a program has to be manipulated through
semantics-preserving transformations. Such
transformations can be categorized as follows:

— Reorder or rename the code section.

— Alter the program’s semantics by inserting
new nonfunctional code or code that is never
executed.

— Manipulate the program’s statistical proper-
ties, such as instruction frequencies.

— Alter the program’s semantics by incorpo-
rating watermark-generating code that
directs program execution.

® Mark type—An authorship mark (AM) is embed-
ded in every copy of the program and is used to
identify the author. It is in essence a copyright
notice. A fingerprint mark (FM) is unique for each
copy distributed and is normally used to identify
the purchaser. Through the use of an FM it is
possible to identify the source of an illegal
distribution.

Piracy is confirmed by proving the program contains

the watermark upon obtaining a suspected illegal
copy. From a legal perspective, to prove ownership

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

it is not sufficient to simply recover the mark from
the program. An ideal authorship mark possesses
some mathematical property that allows for a strong
argument that it was intentionally placed in the
program and that its discovery is not accidental.
Choosing w such that w = pg where p and q are two
large primes is one possible example of a strong
watermark. Because factoring is a “hard” problem,
only the person who embedded such a watermark
would be able to identify the factors p and q.

In order for watermarking to be a viable option for
game software, the watermark must withstand
attacks against it. There are four types of such
attacks: additive, distortive, subtractive, and collu-
sive.

1. Additive—In an additive attack an adversary
embeds an additional watermark so as to cast
doubt on the origin of the intellectual property.
Although an attack may succeed even if the
original mark remains intact, it is more effective if
it damages the original mark.

2. Distortive—In a distortive attack, a series of
semantics-preserving transformations are applied
to the program in an attempt to render the
watermark useless. It is the goal of the attacker to
distort the software in such a way that the
watermark becomes unrecoverable, yet the pro-
gram’s functionality and performance remain
intact.

3. Subtractive—In a subtractive attack, the attacker
attempts to remove the watermark from the
disassembled or decompiled code. If the water-
mark has poor transparency, an attacker may be
able to discover the location of the watermark
after manual or automated code inspection and
then remove it from the program without
destroying the software.

4. Collusive—In the collusive attack, which is used
against fingerprinted software, an adversary
obtains multiple, differently fingerprinted instan-
ces of a program and is able, by comparing them,
to isolate the fingerprint.

Many of the known watermarking techniques are
not robust enough to prevent piracy because an
attacker can use very simple reverse-engineering
tools to identify and remove the mark. The method
described in the next section is more resistant to
reverse engineering than current methods.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

The branch-based watermarking algorithm

The basic idea of the branch-based software water-
marking algorithm is centered around the use of a
branch function specifically designed to generate the
program fingerprint as the program executes. If the
branch function is properly designed, the branch-
based algorithm can simultaneously embed author-
ship and fingerprint marks. With many other
algorithms, inserting a second mark will destroy the
first one. Additionally, tamper detection can be
incorporated. We describe the algorithm next and
illustrate how these three features can be incorpo-
rated in a single branch function.

Any software watermarking system consists of two
functions: embed and recognize. The embed function
for the branch-based algorithm has four inputs and
two outputs.

embed(P,AM, keyau, keyry) — P',FM

Using the two secret keys key,, and key,, , the
embed function incorporates the authorship mark
AM into a program P, yielding a new program P’ and
the fingerprint mark FM. Because the algorithm can
simultaneously embed an authorship and a finger-
print mark, two secret keys are required. The key,,,
key is tied to the authorship mark and is the same
for every copy of the program. The key,,, key is
required for the fingerprint mark and should be
unique for each copy. A fingerprint mark for a
particular instance of a program is based on the
fingerprint key and the program execution. Thus,
the actual fingerprint mark is generated during
embedding and is an output of the embed function.

Similarly, the recognize function has three inputs
and two outputs.

recognize(P’, keyam, keyrm) — AM,FM

Because the recognition technique is blind, the
authorship and fingerprint marks can be obtained
from the watermarked program by providing the
two secret keys.

The branch-based watermark is dynamic, thus one
of the secret keys, key,,,, is actually an input
sequence to the program. For example, suppose we
wish to watermark a tic-tack-toe program; the secret
input sequence could be the sequence of mouse
clicks that select “X-O-X” on the diagonal. By
executing the program with the input sequence, a

MYLES AND NUSSER

125

Original Executable Watermarked Executable

— Branch 1 Branch 1

— Target 1 Target 1
Insert '

— Target 2 Watermark Target 2

| Branch 2 Branch 2

Figure 1
Change in execution flow associated with a branch
function

trace consisting of a set of functions F is identified.
The set F consists of those functions that participate
in the fingerprint calculation. The secret input
serves two very important functions in the algo-
rithm. First, it provides a stronger argument for the
validity of both the authorship and the fingerprint
marks. Second, the secret input makes recognition
more reliable. Only when the program is executed
using the secret input can it be guaranteed that the
fingerprint is generated.

Fingerprint branch function

The fingerprint mark for a program is generated as
the program executes through a specifically de-
signed branch function. We call this function a
fingerprint branch function (FBF). The FBF is an
extension of the branch function originally proposed
by Linn and Debray as part of an obfuscation
technique used to disrupt static disassembly of
native (x86 compatible) executables.'” The obfus-
cation converted unconditional branch instructions
to a call to a branch function inserted in the
program. The sole purpose of the branch function
was to transfer the control of execution to the target
of the unconditional branch. Figure T illustrates the
change in the execution when a branch function is
used to control the execution behavior. The branch
function can be designed to handle any number of
unconditional branches. To increase the versatility
of the branch function we have devised an extension

126 MYLES AND NUSSER

that makes it possible to convert conditional
branches as well. When this idea is applied to the
x86 microprocessor architecture instruction set, all
jmp, call, and jcc instructions can be converted to
calls to a single branch function.

In order to provide fingerprinting and tamper
detection capabilities, the branch function is en-
hanced. The original branch function was designed
simply to transfer execution control to the branch
target. In addition to the transfer of control, the FBF
also incorporates an integrity check and key
evolution. The FBF performs the following tasks:

* An integrity check producing the value v,.
* Generation of the next function key, k, , |,
and the current key k,, k; | =g(k;, v).

* k; ., , is used to identify the return instruction.

using v,

Each time the FBF is called, a new key, k., is
calculated. The k, key is then used to aid in
identifying the original branch target. There are a
variety of ways the FBF can be implemented. Many
of the details are specific to the particular architec-
ture. For example, when the FBF is implemented for
use in native executables, one possible way to link
key generation to program execution is to use the
key to identify the displacement to the branch target.
In this case the branch-target displacements asso-
ciated with each replaced branch are stored in a
table. The key is used to access the table. The
displacement obtained is added to the return
address that was stored on the stack when the FBF
was called. After the execution of the FBF is
completed, the next instruction to execute is the
target of the original branch instruction. This is
contrary to the traditional assumption that a
function returns to the instruction following the call
instruction.

The original branch function obfuscation can
provide minimal tamper detection. A table is used to
store a displacement. Therefore, any transformation
applied to a function which alters the displacement
between a branch and its target causes the branch
function to return to an incorrect instruction. A key
aspect of the FBF is the use of integrity checks,
which make it possible to extend the tamper
detection capabilities throughout the entire pro-
gram. An integrity check is an inserted section of
code used to verify the integrity of the program and
to identify active debugging.40 Integrity checks are

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

triggered during software execution. For example,
one of the integrity checks could choose a block of
code and calculate its checksum. If the attacker
attempts to store break points or modify the code,
even if the modification is very slight, the checksum
will be incorrect. When tying to detect the presence
of a debugger, the elapsed time of execution from
one point to another can be used as an integrity
check. These simple integrity checks are just for
illustration purposes. In practice, a variety of
stealthy integrity checks are used. Often these
checks are customized to address the specific
requirements of the application. One of the limi-
tations of the use of integrity checks is that
describing them in detail decreases their potency.
This is true of most techniques aimed at providing
tamper resistance.

In addition to fingerprint generation and tamper
detection, an authorship mark can be incorporated
in the FBF. One possible means of encoding the
mark is to choose a one-way function such that one
of the variables can be set to AM. For example:

kl‘ 4+ 1= SHAl[(kl XOR AM) H Ui]

A one-way function is a function in which it is easy
to compute y = f(x), but given y, it is difficult to
reverse the process and find x. SHA-1 is one
example of a one-way function (SHA-1 stands for
Secure Hash Algorithm).

Embedding the fingerprint branch function in the
executable

The branch-based watermarking algorithm is a
general scheme that can be implemented in a variety
of different ways. Many of the implementation
details are architecture specific; however, variations
can be constructed based on the architectural
specifications. In general, the embedding of the
authorship and fingerprint marks occurs by embed-
ding the FBF into the program and converting
branch instructions to calls to the FBF. The
following algorithm illustrates a possible embedding
transformation for watermarking native execut-
ables. In this technique watermarking is accom-
plished by disassembling a statically linked binary,
modifying the instructions, and then rewriting the
instructions to a new executable file.

The embedding process consists of three phases. In
the first phase, an execution trace of the program is

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

obtained based on the secret input sequence. The
trace identifies a set of functions F through which
execution passes. These functions will be modified
to incorporate the fingerprint generating code.

In the second phase of the algorithm, the branches
in each function fin F are replaced by calls to the
FBF. Special care must be taken in selecting which
branch instructions are converted. The branch
instruction used for the fingerprint computation
must reside on a path through the function that will
be traversed every time the function is executed.
Without this constraint, an irregular key evolution
would occur, which would result in transferring
execution to an incorrect instruction. This would
ultimately lead to improper program behavior. In
addition, because a new key is generated every time
the branch function is executed, the branch in-
structions cannot be part of a nondeterministic loop.
Thus, all branches along the deterministic path
through the function are replaced with calls to the
FBF. In order to identify the deterministic path, we
compute the dominator set for the exit block in the
function control flow graph. The dominator set may
include blocks that are part of a nondeterministic
path such as a loop header. Any such block is
removed from the path.

For each branch replaced, a mapping between the
calculated key and the branch-target displacement is
maintained.

0={ki > di,k, —ds,....kn — dn}

Because the key is paired with the displacement at
the time the branch instruction is replaced, the
instructions must be replaced in execution order.
This is again addressed by using the dominator set
for the exit block.

0 is used in phase three to construct a table T, which
is stored in the data section of the binary. The table
is used to store the branch-target displacement for
each branch in the program that has been replaced.
The first step in laying out the table is to construct a
perfect hash function”*** such that each key maps
to a unique slot in the table. It is best to use a
minimal perfect hash function so that the table size
is minimized.

h:d{ky k... ky} —{1,2,...,m},n <m.

The displacements are stored in the table such that
Tlh(k)] = d..

MYLES AND NUSSER

127

The fingerprint branch function is a new function
inserted in the program during embedding. The
function is constructed such that the following tasks
are performed:

* An integrity check producing the value v,.
e Generation of the next function key, kl. Y
and the current key k;, k; 1= 8k, v,).
Identification of the displacement to the next
instruction via d, = T[h(k)], where T is the table
stored in the data section and h is a hash function.
¢ Computation of the return location by adding the
displacement d, to the return address.

using v,

Unlike the authorship mark, the fingerprint mark is
not embedded in the program. Instead, it is
generated as the program is executed. Each function
in the set F obtained by executing the program with
the secret input sequence produces a final function
key. The keys are combined in a commutative way
(e.g., add the values) to produce the fingerprint
mark for the program.

The variation in the fingerprint mark is obtained
through the fingerprint key, key,,, which is unique
for each copy of the program. The key,,, key is used
to begin the key evolution process in each finger-
printed function. Based on the unique key, the
fingerprint for each program will evolve differently.
Because the key is used to access the inserted
structure, each program will contain a differently
organized structure. It is important that key,,, is
available each time the program executes. There are
a variety of ways this can be accomplished. For
example, it could be embedded in the program, or it
could be required that the user enter it each time the
program is started. To prevent a user from using the
initial key in an attack, secure computing devices
such as the TPM available in the ThinkPad** laptop
could be leveraged.

Recognition

As with embedding, the first step in recognizing the
embedded marks is to execute the program using the
secret input. The execution will identify the set of
functions F, which have been fingerprinted, as well
as the FBF itself. Once the FBF has been identified,
the one-way function to extract the authorship mark
can be isolated. To extract the fingerprint mark, the
location where the final function key is stored for
each fin F must be accessed while the program is

128 MYLES AND NUSSER

executing. The final function keys are combined to
form the fingerprint mark.

Registration-based customization

The only static variation in differently watermarked
instances of a program is in the inserted structure.
This feature enables software companies to produce
and distribute fingerprinted software in the tradi-
tional manner. The program purchased would be
nonfunctional until the user installs the software
and registers it with the company. Upon registration,
the user key and structure is distributed, creating a
fully functioning program. Previously, if a software
company wanted to tie a specific fingerprint mark to
a purchaser, the user had to purchase the software
directly from the company, and the program was
fingerprinted at that point. By using the branch-
based watermark, distribution of fingerprinted soft-
ware can be accomplished through prepackaged
software sold at retail stores. Installation of a fully
functioning copy does require an initial Internet
connection; however, Valve’s Steam technology has
demonstrated that a required connection may no
longer be a drawback.

One important distinction to make between the
branch-based software watermarking technique and
fingerprinting techniques used for media is that the
technique is not based on signal processing. A media
fingerprint is often embedded by the media player.
This makes the technique vulnerable to an attack in
which the media player is prevented from actually
embedding the mark. In the event of such an attack,
the non-fingerprinted media is still playable. When a
piece of software is prepared for fingerprinting using
the branch-based technique, the proper control flow
is removed. The control flow is added back into the
program when the fingerprint is embedded because
the execution behavior is tied to the generation of
the fingerprint. If an attacker blocks the embedding
of the fingerprint, the program is nonfunctional.

Evaluation

The branch-based watermarking technique was
proposed by Myles and Jin.’? They performed a
thorough evaluation with respect to robustness
against attack and overhead incurred. In this section
we summarize those results so as to demonstrate the
viability of the branch-based watermarking algo-
rithm for content protection of video games.

The evaluation was performed using the SPEC
CINT2000 benchmark suite.*’ To evaluate the

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

robustness of the algorithm, four categories of
attacks were examined: additive, distortive, collu-
sive, and subtractive. For an additive attack to be
successful the program has to continue to function
properly after the embedding of the second water-
mark. To simulate an additive attack, the test
applications were double watermarked using the
branch-based algorithm. This resulted in improperly
functioning applications. Similar results could be
obtained by using other watermarking algorithms in
the attack. The attack fails because the integrity
check detects the program alteration.

In a distortive attack, the goal of the attacker is to
distort the software such that the watermark is
unrecoverable, yet the program’s functionality and
performance remain intact. To verify that the
branch-based algorithm is resistant to distortive
attacks, five different obfuscations were applied to
the watermarked applications. In each case the
alterations were detected, resulting in improper
functionality.

The collusive attack is the most crucial for finger-
printed software. Previous watermarking algorithms
have relied on the use of obfuscation to prevent a
collusive attack. The general idea is to apply
different sets of obfuscations to the fingerprinted
programs so that they differ everywhere. The
branch-based algorithm is resistant to the collusive
attack even without the use of obfuscation. Two
differently fingerprinted programs differ only in the
order of the values in the table added to the data
section of the binary. Examining the code segment
of the application does not aid the attacker.

Because an attacker has full control over the
software, without the use of a completely secure
computing device, guaranteed protection against a
subtractive attack is not possible. Instead, the goal is
to design a technique in which the analysis required
to remove the watermark is too costly. The robust-
ness of the branch-based algorithm is partially
dependent on the number of branches that contrib-
ute to the fingerprint calculation. By requiring the
branches to be on a deterministic path, the number
of usable branches is decreased. Through an
analysis of a variety of different applications, it was
found that a satisfactory number of branch instruc-
tions exist. To remove the watermark, the attacker
has to identify the sections of code generating the
fingerprint and patch the executable. Such an attack

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Table 1 Effect of watermarking on program execu-
tion time and size

Program Branches Used Slowdown Size Increase
gzip 79 1.00 1.04
vpr 405 1.00 1.19
mcf 24 1.00 1.06
crafty 94 1.00 1.01
parser 239 1.13 1.02
gap 742 1.00 1.18
vortex 477 1.00 1.09
bzip2 135 0.99 1.09
twolf 233 1.01 1.05

first requires identifying each of the converted
branch instructions. The second step involves
identifying the correct target for each branch.
Finally, each of the call instructions must be
replaced with the correct branch (which could be a
jmp, jcc, or call instruction) and displacement. For
the attack to be successful, all converted branches
must be identified and replaced. Although such an
attack is not impossible, the manual analysis
required to accomplish such a task is extensive,
especially because many analysis tools can be
thwarted through the integrity checks. Additionally,
the attack can be further complicated by the
incorporation of the strength-enhancing features
described in the original paper.

The cost incurred due to watermarking was also
evaluated using the SPEC CINT2000 benchmark
suite. As can be seen in Table 1, very little
performance overhead was incurred by the addi-
tional calls and integrity checks. Only one applica-
tion (parser) suffered a noticeable slowdown of 13
percent. The performance of the other benchmarks
was between 99 and 101 percent of the original. The
impact on size was a bit more noticeable with
increases between 1 and 19 percent. Since the
fingerprint is generated as the program executes, the
size of the fingerprint does not impact the size of the
watermarked program. The majority of the size
increase is a result of the table inserted in the data
section and the size of the inserted fingerprint
branch function. For each branch replaced, a single
slot in the table is required. Using a straightforward
implementation of the algorithm, each slot is 4
bytes. Thus, the minimum table size is (num
branches X 4 bytes). Through the use of a minimal
perfect hash function the number of empty slots can
be minimized. For most applications, the size

MYLES AND NUSSER

129

increase was minimal. Additionally, the implemen-
tation used to generate the results did not use a
minimal perfect hash function; thus, the results
could be improved.

CONTENT PROTECTION FOR PHYSICAL MEDIA:
AN INTRODUCTION

The factors that led to rampant video game piracy
have also created similar issues for the distribution
of premium entertainment content. Due to these
similarities, it is natural to apply the concepts
developed for the protection of entertainment
content to video games. More specifically, parallels
can be drawn between the protection of console
games and that of audio or video content on
prerecorded media, such as the video content on
DVDs. Similarly, the concepts for the protection of
software media players can be applied to PC games.
To the best of our knowledge, such parallels have
yet to be leveraged in developing protection
technologies for games.

In this section we briefly review the evolution of
copy protection technologies developed for pre-
packaged audio/video content and for recordable
media. In particular, we focus on broadcast
encryption, a cryptographic-key management tech-
nology that has turned out to be well suited for this
application domain.

Copy protection

One of the first and most widely known encryption-
based protection schemes for optical media is the
content scrambling system (CSS). CSS was intro-
duced in 1997 for DVD-video recordings. The
essence of the scheme is the use of a small set of
secret, static global keys. The set of keys are shared
between the studios and the DVD player manufac-
turers upon signing of the CSS license. DVD-video
content is encrypted with the global keys during the
DVD mastering process. The content can then be
decrypted by all licensed players that employ one of
the global keys.

CSS is not a true copy protection system—no
attempt is made to prevent identical copies from
working. A bit-for-bit copy of a CSS-protected DVD
still plays in all licensed players. The purpose of CSS
is to limit playback of DVD-video recordings to
licensed players.

The first successful attack against CSS was launched
in 1999. It was based on obtaining one of the secret

130 MYLES AND NUSSER

keys by reverse engineering a licensed software
player. Because the cryptography used in the system
was weak, the remaining secret keys were discov-
ered using cryptanalysis. These attacks enabled the
development and distribution of non-licensed play-
ers such as the DeCSS software. An obvious
consequence of using a global secret-based key
management scheme such as CSS is that once the
system is compromised, there is no recovery with-
out updating the entire player population.

Broadcast encryption

When CSS was introduced, the global secret-based
key-management system was thought to be a
necessary consequence of having to distribute
encrypted content to a large number of disconnected
player devices. However, unbeknownst to the
developers of CSS, Fiat and Naor had developed a
key-management scheme in 1993 specifically for
one-way communication channels, called broadcast
encryption.44 Originally designed to address the
problem of renewability for conditional access
applications, broadcast encryption was, several
years later, successfully applied to the problem of
protecting content on physical media. This new
direction of copy protection leverages the fact that
DVD players are not completely disconnected
devices—they have a one-way connection to the
publishers, who are continuously providing a
stream of new content.

Fundamentally, a broadcast encryption system is
designed to encode a management key that is to be
transferred from a sender to a multitude of receivers.
This management key is typically used as an
encryption key for the protection of some payload
data. The purpose of the broadcast encryption
scheme is to be able to efficiently modify the
encoding of the management key such that one or
more receivers are excluded from receiving man-
agement key updates. This prevents the affected
receivers from continuing to decrypt the payload
data. The key management information, which
encodes the management key, is referred to as the
key management block (KMB). The broadcast
encryption keys stored by the receivers are called
device keys (DK).

To illustrate, consider the very simple broadcast
encryption scheme in Figure 2. In this scheme, each
receiver has a single unique device key k; in
{k,...k,}. The management key K is encrypted once

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

for each potential receiver, e(K)k; (this notation
signifies that we are encrypting management key K
using device key k). To obtain K, a particular
receiver needs to locate the corresponding entry in
the KMB and decrypt the management key using its
device key. To revoke a particular receiver, the KMB
simply needs to be updated to remove the corre-
sponding entry.

Some of the advantages of broadcast encryption are
obvious, even with this simplified model. It is very
efficient. All encryptions are performed by using
symmetric algorithms such as the Advanced En-
cryption Standard and are therefore very fast. To
obtain the management key, a receiver has to
process some index information and perform a
single symmetric decryption.

The simplified scheme suffers from a significant
flaw: the KMB is prohibitively large. Suppose storing
a single encrypted key takes 20 bytes and the system
has to support one billion receivers; then, the size of
the KMB would be 20 GB of data. This makes the
scheme completely impractical for almost all appli-
cations. Fortunately, techniques exist for signifi-
cantly improving the efficiency.

In Figure 3 the simple broadcast encryption scheme
is extended by giving each receiver an additional
key. This key is shared with half of the device
population. In this example, assume that all
receivers with an even serial number share a copy of
the key k_, and all receivers with an odd serial
number share a copy of the key k_. Thus, each
receiver has two device keys—an individual device
key and a copy of either k, or k_.

How this modification affects the size of the KMB is
illustrated in Figure 3. Initially, all receivers are
included, and the KMB is very small. Receivers with
an even serial number are using k, to decrypt the
management key K, and receivers with an odd serial
number are decrypting the management key with k.
Thus, if the size of an entry in the KMB is 20 bytes,
its size is 40 bytes. Note that this size is independent
of the number of receivers; a system that includes a
billion receivers has a KMB of 40 bytes.

The improvement quickly degrades, however, as
devices are revoked. The second KMB shown in
Figure 3 excludes receiver 2 (R2). Because R2 has a

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Sender

Figure 2
Simplistic broadcast encryption scheme

copy of k, it cannot be used in the KMB anymore.
Therefore, all other receivers with an even serial
number have to be included in the KMB by
encrypting the management key K with their
individual keys. Thus, an additional (1/2) — 1
entries, where n is the number of receivers in the
system, have to be added to the KMB. In the system
in Figure 3, which contains six receivers, two entries
must be added to the KMB when R2 is revoked.
However, if we consider a population of a billion
receivers and 20 bytes per entry, the resulting KMB
will have a size of 10 GB.

Continuing with the example, it is interesting to
observe the effects of excluding an additional
receiver. If the additional receiver has an even serial
number, the size of the KMB will not change
significantly. However, if the receiver has an odd
serial number, the use of ko has to be discontinued.
In this case, the system degrades to the simple
model in the initial scheme, and the size of the KMB,
assuming a system with a billion receivers, increases
to approximately 20 GB. This example highlights an
important trade-off for this family of key-manage-
ment systems: the size of the KMB can be reduced at
the cost of increasing the number of device keys.
Also, we can see that it is desirable to start out with
a very small KMB, which grows in a linear
relationship to the number of excluded devices.

MYLES AND NUSSER 131

All Receivers

All except

R2

All except
R2, R5

T v [e 1 - [| e R e o [o e
Receiver 1 | Recefver2 | Receier 3 || Recefver4 | Recefiers || Receivers |

Figure 3

Simplistic broadcast encryption scheme with two device keys

Currently, broadcast encryption is used in at least
four copy protection systems for media. The first
such scheme, CPRM, is based on a system of keys
arranged in the structure of a matrix. A device has
16 device keys. Although each individual key might
be shared with some of the other devices, the
combination of 16 keys is unique. CPRM is used on
various formats with slightly different parameters,
which among other things determine the size of the
KMB. For example, the KMB used on recordable
DVDs is 320 KB. It is of constant size, independent
of the number of excluded receivers. It is important
to point out that the key management system used
by CPRM has finite revocation capabilities—once
the maximum number of revocations is reached, it is
no longer possible to exclude an additional receiver
without affecting some of the remaining devices in
the system. Note that the same restriction also
applied to the original scheme presented by Fiat and
Naor in 1993.*

Shortly after the introduction of CPRM, two very
similar broadcast encryption schemes with un-
limited revocation capabilities were developed.‘ks’46
The logical key hierarchy (LKH) scheme uses a
tree-based structure of keys. Even though LKH
provides unlimited revocation capabilities, it still
has approximately the same space efficiency as the
matrix-based key management scheme used in
CPRM.

132 MYLES AND NUSSER

Two years later, Naor, Naor, and Lotspiech47
developed the NNL broadcast encryption system.
NLL provides unlimited revocation capabilities, at
the same time significantly reducing the size of the
KMB. In NNL the keys are arranged in multiple tree
structures. Under this scheme, a receiver has
approximately 400 device keys. The NNL KMB is
about 25 times more concise than that used by LKH.
Requiring about 1.28 entries in the KMB per
revocation, NNL is nearly as efficient as a public-key
certificate revocation list without requiring connec-
tivity or expensive public-key calculations. An NNL
KMB starts out very small and grows in a linear
fashion as the number of revoked receivers goes up.

Broadcast encryption and protection of content
on physical media

CPRM is available on a variety of formats, such as
DVD-RAM, DVD-R/W and flash-memory cards like
the Secure Digital (SD**) memory card or Secure
CompactFlash**. DVD-Audio uses a version of
CPRM for prepackaged content which is called
CPPM (Content Protection for Prerecorded Media).
The 4C specifications for CPRM and CPPM are
publicly available and can be downloaded from 4C
Entity’s Web site.*® With over 200 million devices
enabled and KMBs on every SD memory card, 4C
technology is in widespread use today.49 We now
describe how CPRM leverages broadcast encryption
for copy protection.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Access authorization

To use broadcast encryption for protecting content
on physical media, each player must have its own
set of device keys. In the case of prerecorded
content, such as DVD-Audio, the media itself
contains the KMB, followed by the encrypted
content. For recordable media, the KMB is pre-
embossed in the disk’s lead-in area. Thus, all blank,
recordable 4C media available in retail stores
contain a current KMB. Additionally, to encrypt the
content for storage on recordable media requires the
recorders to have a set of device keys. The device
keys are used by the recorder to process the KMB to
obtain the management key used in encryption.

The system, as described so far, can be used to
manage device compliance. Upon signing the 4C
license, a device manufacturer can start ordering
device keys. If device keys get compromised, as was
the case in DeCSS, new media will contain an
updated KMB which revokes this particular set of
keys. All of the CPRM-enabled recordable media
formats are designed to be usable with unprotected
content. In this case, recorder and player applica-
tions do not require device keys, and the security
features of the protected media remain unused.
Even if the copy protection features are used, CPRM
does not require the application to be authenticated.
Any application can retrieve the Media ID and the
KMB and read or write the encrypted content—but
to make any sense of the content or to produce valid
data, the application needs to have device keys.

Copy protection

In order to enable a compliant, unrevoked device to
distinguish between the original and a bit-by-bit
copy requires the introduction of a unique Media ID.
The Media ID is the unique, read-only disk serial
number. Combining the Media ID with the man-
agement key obtained from the KMB binds the
content to a particular instance of physical media.
This binding prevents a bit-by-bit copy from playing.
Theoretically, a compliant recorder containing a
valid set of device keys can create a valid copy. To
create the copy, the content is read from the source
disk, rebound using the new serial number, and
written to the target disk. However, because such a
recorder needs to have device keys in order to
process the KMBs on the source and target media, it
has to be a license-compliant device. Such a device
will not create a copy unless allowed by the usage
conditions associated with the content. The revoca-

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

tion capabilities of the underlying broadcast en-
cryption scheme make this rule enforceable, which
prevents licensed manufacturers from building an
illegal copying device.

To cleanly separate the binding step from content
encryption and to simplify legitimate rebinding in
case of a copy or move, another level of indirection
is introduced: the management key derived from the
KMB combined with the disk serial number yields a
media unique key. The media unique key is not used
to encrypt the bulk content on the media. Instead it
encrypts the title keys which in turn can be used to
access a title (a title is a self-contained unit of
content such as a complete motion picture). This
allows content to be copied or moved to a different
medium simply by re-encrypting the title keys with
the new media unique key.

Management of usage conditions

In order to protect sensitive data from being
modified by unauthorized applications, an addi-
tional protection mechanism is needed. This re-
quirement exists for both static data, such as usage
conditions, and dynamic data, such as the actual
value of usage counts or time stamps. All CPRM
media manage usage conditions by combining their
hash with the title key calculation. The simple
extension of the binding calculation ensures that if
the usage restrictions are modified by an unautho-
rized application, any subsequent decryption of the
protected content will fail.

This approach does not work, however, for dynamic
usage data on a recordable medium that needs to be
updated. In that case, an attacker can do a complete
backup of the medium and restore it, for example,
after a usage count is decremented. To address this
requirement, CPRM-enabled drives support a
mechanism for secure state management. This is
either done with a two-way authentication protocol
between drive and application or by having the
drive generate a cryptographic nonce (an arbitrary
number used only once in a security session) that is
used to protect the sensitive data against unautho-
rized backup and restore. The effect is the same—
only a licensed application that has device keys is
able to make updates to this authenticated area.

Drive authentication

For software players, the architecture as described
in this section remains essentially the same. A
software application running on a general-purpose

MYLES AND NUSSER

133

computing device needs to have device keys in order
to access protected content on CPRM-enabled
media. Nevertheless, there is an attack specific to
this architecture. Because the application is running
on an extensible platform, there is a risk when the
drive containing the protected media is virtualized.
On an open platform with an extensible driver
model, the application needs to have a way to tell
that it is really interacting with a disk drive
containing the protected media, instead of a device
driver that merely replays the stream of encrypted
information that a valid drive would originate. To
solve this problem, CPRM-enabled drives support a
drive authentication mechanism that uses a chal-
lenge-response protocol which allows the applica-
tion to authenticate the drive. By introducing a
randomly generated challenge, the physical drive
can no longer be “spoofed” (have another drive
masquerade as this drive). Different CPRM-based
formats use different drive authentication proto-
cols—whereas some take advantage of the broad-
cast encryption key material, others are based on
separate keys.

Summary

The broadcast encryption-based copy protection
schemes for physical media provide several features
for the protection of premium content:

* Authorized access—Protected content is accessible
only to authorized devices and applications that
have valid device keys.

* Copy protection—The protected content is strongly
associated with a particular instance of media and
its unique Media ID.

e Management of usage conditions and related state
information—This allows licensed devices and
applications to securely manage copy control
information and related state data, such as the
maximum number of plays and the number of
plays already consumed.

e Drive authentication—On open platforms such as
PCs, there is an additional protocol allowing the
compliant application to authenticate the drive.
This prevents drive spoofing and ensures posses-
sion of the media.

These features of copy-protected media are as
important for the protection of games as they are for
the protection of audio/video content. As we will
show, both PC-based and console games can benefit
from them. Before we focus on applying these

134 MYLES AND NUSSER

protection capabilities to games, we will introduce
another interesting aspect of the broadcast encryp-
tion-based copy-protection scheme described in this
section: it can be used in a server-side binding
model to enable electronic distribution of content to
physical media.

Electronic distribution of protected content

The obvious way to add secure electronic distribu-
tion capabilities to CPRM-enabled media is with a
DRM. However, if there is no need to manage
content on the PC, there is an easier way. The copy
protection architecture described in the last section
can be extended to provide protection for content
during online distribution. In 2004, 4C Entity
published a specification for this architecture, call-
ing it CPRM for Network Download.”

In this model, the binding operation during the
recording process is performed across a network
connection to a server system. As we discussed in
the previous section, the binding operation involves
processing the KMB of the target media with the
recorder’s device keys to obtain the management
key. Then the management key is combined with
the Media ID of the target media to calculate the
media unique key. Finally the title keys of the
content are encrypted with the new media unique
key. These are the steps that a CPRM-compliant
recorder performs to create a valid recording.

In the network download model, illustrated in Fig-
ure 4, the binding operation is now performed by
two components instead of one—a lightweight client
application that runs on a PC in the end user’s home
and a remote license server that has access to device
keys.

In this model, the client application interacts with
the drive to read from and write to the CPRM-
enabled media. The license server performs the
cryptographic binding calculation.

The client application retrieves the Media ID and the
KMB from the target media (step 2 in Figure 4) and
transfers it over the network to the license server
(step 3). The license server uses its device keys to
perform the binding operation and sends the
encrypted title keys back to the client (step 4), who
writes it onto the target media (step 5). At this point,
the recordable media is ready to receive the

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

encrypted titles, which can be downloaded by the
client application in any arbitrary way and written
onto the target media.

There are different ways to communicate the end
user’s content selection to the license server—the
model shown in Figure 4 assumes that there is an
eCommerce service involved that guides the end
user through the online shopping experience and
ensures payment has been obtained. At the end of
this process, the eCommerce service will launch the
client application and pass it a content identifier,
Content ID, in order to begin the server-side binding
process (step 1 in Figure 4). Also, the CPRM license
server has to be able to obtain the title key
corresponding to the content that is purchased.
These keys could be managed in a database at the
license server. Note that for this reason the license
server also needs to receive the Content ID in step 3
so that it can pick the corresponding title key for the
binding operation.

The server-side binding model has a number of
interesting characteristics. Most important, there is
no requirement to manage sensitive key material in
the client application. In fact, this client could be
open sourced without compromising the security of
the system. The license server, on the other hand,
can be hosted in a secure facility to provide
adequate protection for the device keys. Also, the
CPRM download architecture has excellent privacy
properties. The security model itself does not force
the end user to reveal his or her identity, and it does
not even allow the license server to build a profile of
the consumer because it cannot tie individual
transactions together. Of course, the payment or
subscription component in the eCommerce service
might require identification—but if an anonymous
subscriber management system is used, the trans-
action can be kept completely confidential. Finally,
observe that the content itself remains persistently
encrypted and can be obtained by the client
application in whatever way desired. Because all
media-specific information is contained in the
protocol flow with the license server, the encrypted
content object can be cached or even shared among
users in a peer-to-peer fashion if desired.

CONTENT PROTECTION FOR GAMES:
DEPLOYMENT SCENARIOS

In this section we present five scenarios that
illustrate how the previously described protection
mechanisms can be deployed for video-game copy

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

P il
I

L Device Keys |

Figure 4
CPRM for network download

protection. In each of the scenarios we discuss how
the proposed mechanisms address the attacks
described in the section “Gaming and piracy.” In
addition, PC and console-based gaming have differ-
ing capabilities, and therefore, the copy-protection
mechanisms must be customized to the particular
platform. In these scenarios we illustrate how the
described protection mechanism can be customized
to address platform differences. Lastly, the scenarios
illustrate how the protection mechanisms do not
restrict the method of distribution; that is, they
apply both to physical media and distribution by
download.

Watermarking for PC-based games

Piracy protection for PC-based games has the
advantage that protection technologies developed
for general software can be directly applied. By
using the software-watermarking technique previ-
ously described, each individual copy can be
customized to the user. Using this model, software
can either be distributed as prepackaged software
purchased at a retail store or through online down-
load distribution. In either case the game package
contains the installation executable as well as a
crippled game executable, which is nonfunctional
until the installation process has been completed.
During installation, a one-time connection to the
registration server is required. The registration
process requires that a user submit some form of
unique identification in exchange for the water-

MYLES AND NUSSER

Game

1 Unique Identifier Registration
Installer

~ Server

2 Watermark Code

Game
Executable

Crippled

Watermark
Game ode

Executable

Figure 5
Installation and registration of a watermarked game

mark-specific code, which creates the fully execut-
able game linked to the user. The unique identifier
must enable the future identification of the user.
Additionally, this information has to be personal
enough that the user is unlikely to share it with
others. An example of such information includes a
credit card number. Figure 5 illustrates the instal-
lation process of a watermarked game that is linked
to the user.

Using this protection model, the user is not
prohibited from playing the legally registered game
on multiple machines. This allows for the portability
desired by the gaming community, which is
generally accomplished by transporting the physical
media. The model also does not prohibit the player
from creating back-up copies of the game in
countries where such activity is legal. However, this
model does address the difficulty associated with
identifying the source of an illegal distribution.
When an illegal copy of the game is produced and
distributed, the copy contains the watermark asso-
ciated with the original owner. When illegal copies
are recovered, the watermark is extracted and
compared with the data contained on the registra-
tion server. This information leads to the user who
is guilty of illegally redistributing the game.

Copy protection and watermarking for console
games

In this model, we apply the copy protection
technology described in the section “Content pro-
tection for physical media” and our software
watermarking capabilities presented in the section
“Using software watermarking to combat game

136 MYLES AND NUSSER

piracy” to the problem of copy protection for
console games.

This is a straightforward application of CPRM and
CPPM to gaming consoles. In this model, the
console is equipped with device keys that have to be
robustly embedded in the device. The media used to
distribute the gaming content uses broadcast en-
cryption-based copy protection as described in the
section “Content protection for physical media.” It
comes with a KMB that is capable of revoking
compromised game consoles or any applications
that copy gaming content off a disk for redistribution.

Figure 6 illustrates a way to combine copy
protection functionality with our watermarking
technology. This assumes that the game console has
connectivity and is capable of persistently managing
the fingerprinted executable or at least the finger-
print data in permanent local storage. Whenever a
new game is first played on the console, the console
has to go through the fingerprint registration flow,
and the game is digitally fingerprinted (side marked
“Play”). The registration information submitted for
fingerprinting can include both a personal identifier
that the user is reluctant to divulge publicly and a
console identifier. Should the content be pirated,
this allows the identification of the compromised
console and the subsequent revocation of its device
keys with an updated KMB.

As Figure 6 shows, this basic model can be
combined with the CPRM download architecture
described in the section “Content protection for
physical media” to enable electronic distribution of
new gaming content by means of a PC-based client
application (side marked “Distribution”). Following
the CPRM for Network Download model, there is no
need to hide sensitive key material on the PC
because the cryptographic binding calculation is
done by the license server. The result of the CPRM
download is a CPRM-enabled disk that contains
protected content which is in every aspect similar to
a prerecorded disk available in retail stores.

The security properties of this model are similar to
those of a player for 4C-enabled content, except that
the fingerprint provides an additional level of
protection. Attempts to copy the installation media
or to lift the content off the installation media are
thwarted by the copy-protection technology. If the
attack is focused on the console, the attacker might

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Play

Distribution

Figure 6
Copy protection for console games

succeed in obtaining a decrypted copy of the game
but will still have to overcome the digital fingerprint
in order to avoid being tracked down. Should the
attacker decide to redistribute the fingerprinted
games, we have two options. Using the personal
identification obtained during the registration proc-
ess, legal steps can be taken against the attacker.
Also, based on the console identifier, we know what
device keys the attacker is using, and we can revoke
them in subsequent game releases—either via
electronic download or distribution on prerecorded
media.

The most difficult to defend against is an attacker
who managed to obtain valid device keys and is
therefore in a position to create and distribute new
installation images on recordable disks. With our
current fingerprint technology there is no way for us
to trace the attacker in this scenario because the
fingerprint has not been inserted yet. Other forensic
technologies, such as traitor-tracing schemes, might
be needed to be able to identify the source of the
pirated games. Applying these concepts to execut-
able content is certainly an area for future research.

Copy protection and watermarking for PC games
In this scenario we leverage the properties of CPPM
to develop an architecture for media-based distri-
bution of PC-based games. We reuse concepts
developed for software implementation of 4C media
players.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

What differentiates the PC from the gaming console
in the first scenario is that PCs, or any other general-
purpose computing platform, do not come equipped
with device keys. To solve this problem, we
introduce a game loader component that manages
device keys protected by tamper-resistant software
and capable of executing encrypted gaming content.
The game loader needs to obtain 4C device keys.
This can be done in one of two ways: The game
loader can be shipped with shared device keys with
a limited validity period. That approach requires a
solid online update capability so that the game
loader can be updated with a new version as soon as
the shared keys expire. Alternatively, there can be a
registration flow as shown in step 1 in Figure 7. This
registration does not require payment but must
include a Personal ID suitable to discourage an end
user from registering multiple times with different
identities in order to get multiple sets of device keys.

The game loader itself can be shipped on the copy-
protected disk as an unprotected file to be installed
automatically when the disk is inserted in the drive.
The loader is a generic component designed to be
used with a variety of different titles. It only requires
updating if it becomes known that a particular
implementation is compromised, and updating can
happen either over the network or with new media.

After the game loader setup is complete, the actual
game can get installed onto the PC. At this point, the

MYLES AND NUSSER 137

Figure 7
Copy protection and watermarking for PC games

game itself is registered, and user-specific water-
mark information is inserted into the game execut-
ables, thereby creating a functional, fingerprinted,
and encrypted binary. As part of the registration
flow (step 2 in Figure 7), both the unique Media ID
of the installation media and the Personal ID are
sent to the registration server in order to prevent a
copy from being registered multiple times by
different users. The Personal ID has to be an
identifier that can be traced back to the user and that
the user is reluctant to share with others. This could
be a credit card number or a subscriber ID and
password combination for an online system oper-
ated by the game publisher—as long as that system
is based on authenticated users.

The game loader now plays the role of a software
player for CPPM-protected multimedia content: To
execute a game, the game loader decrypts pages of
the fingerprinted executable on the fly and executes
the game. On the Windows** family of operating
systems, the game loader could be implemented as a
file-system filter driver. The game loader can also
take advantage of the CPRM drive authentication
procedure to make sure the original installation disk
is available. Finally, the game loader is also tasked
with enforcing any usage conditions that might be
associated with the game.

Looking at the attack scenarios described in the
section “Gaming and piracy,” we observe that

138 MYLES AND NUSSER

sharing the installation media is discouraged in two
ways. We assume that users are unwilling to share
their Personal IDs (the registration flow links the
Personal ID to the Media ID), but should they
nevertheless decide to do so, the license server can
limit the number of installations per user to a
reasonable maximum. Furthermore, the drive au-
thentication procedure requires the corresponding
installation media to be physically present so that
only one of the installed copies can be active at any
given time. This architecture basically supports
multiple installations with the same Media ID and
Personal ID and facilitates multiple installed copies
that are registered to the same user—either on the
same machine or on different machines. The
attacker could conceivably attempt to spoof the
Media ID when registering the game, but the game
installer can validate the Media ID by using the KMB
and some content from the disk.

The installation medium itself is now subject to the
copy-protection capabilities of CPPM. If the disk
image is copied onto another blank medium, the
game loader will not be able to calculate the correct
title keys and will therefore fail to decrypt the game
executables.

A more elaborate attack against which to defend is
the removal of some or all of the protection layers in
order to redistribute the game as an unprotected
image. This can be done at two levels. Portions of
the game executable will have to be in the clear as
they are executed. If these portions are captured and
reassembled together with the nonexecutable gam-
ing content to form a complete, stand-alone distri-
bution, the attacker still has to remove the
fingerprint from the executable to prevent the pirate
content from being traced back to him.

Alternatively, the attacker might try to obtain an
unwatermarked copy of the game executable by
extracting the device keys from the game loader, or
by locating device keys on the Internet, and using
them to obtain a decrypted copy of the game on the
installation media. However, these game execut-
ables have been prepared for fingerprint insertion
and are therefore not in an executable state. To
succeed, the attacker has to go through the
registration flow again and then successfully remove
the digital fingerprint. Thus, our level of resilience
against both of these attacks depends on the
strength of our fingerprinting technology.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

If a compromised game loader becomes publicly
available on the Internet, new games can be released
with updated KMBs that disable the hacked com-
ponent. If the game loaders are using shared device
keys, this revocation will trigger an update of all
game loaders in the field.

We observe that by adding the registration protocol
flows for the game executables, the role of copy
protection for the installation media is diminished.
In the next scenario, we present a model that
completely abandons protection of the installation
media and therefore enables electronic distribution
and various forms of super-distribution in addition
to the conventional distribution of games on media.
Super-distribution, a common term used in
discussing DRM systems, is a way of distributing
freely and widely digital files that are protected by
using tamper-resistant technologies to prevent
modification and modes of usage not authorized by
the vendor.

Electronic distribution of PC games

In this section we present a variation of the
architecture described in the previous section. This
model uses the copy-protection features of CPRM-
protected recordable media to establish a strong tie
between the game executables and the target
machine. Also, with this model, we would like to
enable secure online distribution of the game
content. Thus, possession of the installation media
is no longer necessary as a proof of ownership—the
installation image can be obtained in many different
ways. In this model, the user is charged and obtains
a license for the game when the registration flow is
completed.

As in the previous scenario, the model in Figure 8
uses the game loader as an enabling tool that is
protected by tamper-resistant software and contains
device keys. However, in this case, the crypto-
graphic keys to unlock the game executables are
managed on a separate SD memory card, protected
by the 4C copy-protection features described in the
section “Content protection for physical media.”
The game executables themselves are encrypted and
located on the PC. To obtain the decryption keys for
running the game executables, the game loader has
to be able to successfully process the KMB on the SD
memory card by using its device keys. The built-in
storage devices of the PC are used to extend the
capacity of the SD memory card. In other words, the

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

SD memory card is used to manage the inventory of
licensed games for a given user.

Looking at the security properties of this model, we
observe that protection of the installation media is
no longer a concern. It does not matter if the
installation image is copied, shared through a peer-
to-peer network, or redistributed in other ways. As a
matter of fact, with this model, the installation
media itself could be given out without charge, for
example, to people who subscribe to a video gaming
journal. Only during the registration flow would the
user actually acquire a license to the game. There-
fore there is no need to be concerned about users
sharing or copying the installation media. With
respect to the other attacks discussed in the
introduction, this model has the same characteristics
as the architecture presented in the previous section.

Note that this model enables several interesting new
features.

* The CPRM for Network Download architecture
described in the section “Content protection for
physical media” can be used in order to remotely
associate new gaming content with the SD
memory card. If combined with the registration
flow for watermark insertion, this provides an
effective method for electronic distribution.

e Even a small SD memory card (a 64-MB model
currently retails for less than $20) can handle key
material for a very large number of games. This
avoids the check for the installation disk, which
could be considered problematic from a usability
perspective. A single SD memory card can easily
be used to manage 1000 games and has a very
high degree of portability.

* The secure state management capabilities of the
SD memory card can be used to implement a
variety of usage conditions to enable new business
models. The scenarios that can be realized this
way include a limited time rental, a “try before
you buy” model that limits the number of plays,
and others.

® Because the game registration flow includes the
Media ID, a game can be installed safely on
multiple machines with the same SD memory
card. This enables support for multiple installa-
tions while only one of them can be active at a
given time. The SD memory card literally becomes
the key to unlock the installed game on the PC.

MYLES AND NUSSER

139

I
| Personal Computer
I

Electronic distribution of PC games

| Figure 8
1

¢ Extending this model further, the SD memory card
can also be used to store other game-related state
information in unprotected mode, allowing the
end user to consistently play a game across
multiple installations on different machines by
taking along his or her SD memory card.

To summarize, the significant change in this model
is that the SD memory card replaces the installation
media as a token of ownership. It no longer matters
if the game was received on physical media or via
download—the key to unlocking the installed game
executable is managed on the SD memory card,
taking advantage of the CPRM copy-protection
features and providing a high degree of portability.

Management of virtual game assets with copy-
protected media

Another requirement, which has surfaced with the
increasing popularity of online games, is the need to
secure virtual game assets that are of real value in
the gaming community. These assets include not
only certain attributes of a character in the game,
which can only be acquired after playing for a long
time, but also belongings of the character that are
transferable. There is an active secondary market
where these virtual assets are swapped or even
bought and sold by users who play the game.

140 MYLES AND NUSSER

The need for protection of these virtual assets arises
from their real world value. In certain scenarios, the
need for protection can be addressed with copy-
protection technology. In particular, this is the case
if virtual assets are managed locally on the end
user’s machine and if these assets are transferable in
a peer-to-peer fashion. The secure state manage-
ment capabilities of copy-protected media can then
be used to manage the inventory of virtual assets
and to enable transfer operations, similar to the
mechanisms used to handle copy or move oper-
ations with multimedia content.

The model presented in the previous section lends
itself well to being extended to include this
capability. Figure 9 illustrates the extended model.
In addition to storing the user-specific state in-
formation in unprotected mode on the SD memory
card, any virtual assets can be stored in protected
mode and will be subject to the copy-protection
features of the CPRM-enabled media.

In this scenario, the SD memory card contains all the
user-specific information, including the protected
inventory of virtual assets. Device keys are needed
to manage the inventory of assets on the SD memory
card in protected mode and to perform a proper
copy or move operation for transfer. Following the

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

! Personal Computer :
I

| Personal Computer !
I

Management of virtual game assets on an SD Memory Card

| Figure 9
I

architecture described in the previous section, the
device keys are managed by the game loader. To
make this asset management functionality available
to the game executables, we propose to export this
capability in the form of an application program-
ming interface (label API), as shown in Figure 9.
Note that some of these interfaces will require
authentication of the calling code module with a
code signature to make sure user assets are created
and removed only by valid game executables.

In this model, the SD memory card serves as the
storage container for all virtual assets created by a
game. By leveraging the copy-protection features of
the SD memory card, we provide a basic level of
security for virtual assets and allow them to be
managed locally, at the end user machine. This
solution effectively prevents backup-restore type of
attacks, such as a user selling an asset and then
restoring a backup to recreate a copy of the asset.

A successful attack against this model will have to
involve reverse engineering the game loader in order
to obtain the device keys. In that case, the broadcast
encryption-based revocation mechanism is our
defense to enforce an update of the game loader
applications.

CONCLUSION

In this paper we presented two novel approaches to
copy protection for video games that target some of
the shortcomings of current techniques. These
techniques draw on previously developed protection

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

technologies, which to the best of our knowledge
have yet to be applied to video games. The first
approach uses branch-based software watermarking
to create game executables that are linked to the
user. Through this technique the gaming industry
can begin to address one of the most difficult aspects
of video game piracy: identifying the source of an
illegal distribution. As an alternative, we draw on
the parallels between games and premium audio
and video content to demonstrate how the broadcast
encryption technology used by 4C can be applied to
both PC and console-based games. The use of these
open standards-based techniques would enable the
gaming industry to move away from protection
based on proprietary information and toward
techniques that have a stronger scientific basis.

**Trademark, service mark, or registered trademark of
Commodore-Amiga, Inc., Microsoft Corporation, Nintendo,
Inc., Orion Pictures Corporation, SanDisk Corporation, Sony
Computer Entertainment, Inc., Lenovo Ltd., Toshiba Corpo-
ration, or Valve Corporation in the United States, other
countries, or both.

CITED REFERENCES

1. “Computer and Video Game Software Sales Reach Record
$7.3 Billion in 2004,” Entertainment Software Association
(ESA) (Jan. 2005), http://www.theesa.com/archives/
2005/02/computer_and_vi.php.

2. 2005 Special 301 Report on Global Copyright Protection
and Enforcement,” International Intellectual Property
Alliance (IIPA) (Feb. 10, 2005), http://www.iipa.com/
special301.html.

3. G. Myles and H. Jin, “Self-Validating Branch-Based
Software Watermarking,” in Information Hiding, 7th

MYLES AND NUSSER

141

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

International Workshop, Lecture Notes in Computer
Science 3727, Springer-Verlag Inc., New York (2005), pp.
342-356.

T. Maude and D. Maude, “Hardware Protection Against
Software Piracy,” Communications of the ACM 27 (9),
950-959, 1984.

D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Bohen, J.
Mitchell, and M. Horowitz, “Architectural Support for
Copy and Tamper Resistant Software,” in Proceedings of
the Ninth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ACM, New York (2000), pp. 168-177.

Trusted Computing Group Home, Trusted Computing
Group, http://www.trustedcomputinggroup.org/home.

S. Parsons, “More on Xbox Live Bans,” Joystiq, Weblogs
Inc., (November 14, 2004), http://www.joystiq.com/
entry/6673569691391113/.

F. B. Cohen, “Operating System Protection through
Program Evolution,” http://all.net/books/IP/
evolve.html, 1992.

D. Libes, Obfuscated C and Other Mysteries, John Wiley
and Sons, New York, 1993.

C. Collberg, C. Thomborson, and D. Low, “A Taxonomy
of Obfuscation Transformations,” Technical Report 148,
Department of Computer Science, University of Auckland
(July 1997).

C. Collberg, C. Thomborson, and D. Low, “Manufactur-
ing Cheap, Resilient, and Stealthy Opaque Constructs,”
in Proceedings of the ACM Symposium on Principles of

Programming Languages, ACM, New York (1998),

pp. 184-196.

C. Collberg, C. Thomborson, and D. Low, “Breaking
Abstractions and Unstructuring Data Structures,” IEEE
International Conference on Computer Languages, IEEE,
New York (1998), pp. 28-38.

F. Hohl, “Time Limited Blackbox Security: Protecting
Mobile Agents from Malicious Hosts,” Mobile Agents and
Security, Lecture Notes in Computer Science 1419,
Springer-Verlag Inc., New York (1998), pp. 92-113.

C. Wang, “A Security Architecture for Survivability
Mechanisms,” Ph.D. Thesis, University of Virginia,
School of Engineering and Applied Science (Oct 2000).

C. Wang, J. Hill, J. C. Knight, and J. W. Davidson,
“Software Tamper Resistance: Obstructing Static Analysis
of Programs,” Technical Report CS-2000-12, University of
Virginia, Dec. 2000.

C. Wang, J. Hill, J. C. Knight, and J. W. Davidson,
“Protection of Software-Based Survivability Mecha-
nisms,” in Proceedings of the 2001 International Confer-
ence on Dependable Systems and Networks, IEEE
Computer Society (2001), pp. 193-202.

C. Linn and S. Debray, “Obfuscation of Executable Code
to Improve Resistance to Static Disassembly,” in
Proceedings of the 10th ACM Conference on Computer and
Communications Security, ACM, New York (2003), pp.
290-299.

D. Aucsmith, “Tamper Resistant Software; An Imple-
mentation,” in Information Hiding, First International
Workshop, Lecture Notes in Computer Science 1174,
Springer-Verlag Inc., New York (1996), pp. 317-333.

T. Sander and C. F. Tschudin, “Protecting Mobile Agents
Against Malicious Hosts,” Mobile Agents and Security,
Lecture Notes in Computer Science 1419, Springer-Verlag
Inc., New York (1998), pp. 44-60.

142 MYLES AND NUSSER

20.

21.

22.

23.

24.
25.

206.

27.

28.

29.

30.

31.

32.

33.

34.

35.

D. Aucsmith and G. Graunke, Tamper Resistant Methods
and Apparatus, U.S. Patent 5,892,899, Assignee: Intel
Corporation, 1999.

H. Chang and M. Atallah, “Protecting Software Code By
Guards,” in Proceedings of the ACM Workshop on
Security and Privacy in Digital Rights Management,
Lecture Notes in Computer Science 2320, Springer-Verlag
Inc., New York (2001), pp. 160-171.

B. Horne, L. Matheson, C. Sheehan, and R. Tarjan,
“Dynamic Self-Checking Techniques for Improved Tam-
per Resistance,” in Proceedings of the ACM Workshop on
Security and Privacy in Digital Rights Management,
Lecture Notes in Computer Science 2320, Springer-Verlag
Inc., New York (2001), pp. 141-159.

C. Collberg and C. Thomborson, “Watermarking, Tam-
per-Proofing, and Obfuscation—Tools for Software Pro-
tection,” IEEE Transactions on Software Engineering 28,
No. 8, 735-746, August, 2002.

Steam, http://www.steampowered.com.

D. Grover, “Program Identification,” The Protection of
Computer Software: Its Technology and Applications, The
British Computer Society Monographs in Informatics,
Cambridge University Press, Second Edition, 1992.

K. Holmes, Computer Software Protection, U.S. Patent
5,287,407, Assignee: International Business Machines
Corporation, Feb. 1994.

P. R. Samson, Apparatus and Method for Serializing and
Validating Copies of Computer Software, U.S. Patent
5,287,408, Assignee: Autodesk, Inc., Feb. 1994.

S. A. Moszowitz and M. Cooperman, Method for Stega-
Cipher Protection of Computer Code, U.S. Patent
5,745,569, Assignee: The Dice Company, Jan. 1996.

R. L. Davidson and N. Myhrvold, Method and System for
Generating and Auditing a Signature for a Computer
Program, U.S. Patent 5,559,884, Assignee: Microsoft
Corporation, Sept 1996.

C. Collberg and C. Thomborson, “Software Watermark-
ing: Models and Dynamic Embeddings,” in Proceedings
of the Symposium on Principles of Programming Lan-
guages, 1999, pp. 311-324.

G. Qu and M. Potkonjak, “Hiding Signatures in Graph
Coloring Solutions,” in Information Hiding, Third
International Workshop, Lecture Notes in Computer
Science 1768, Springer-Verlag Inc., New York (1999),
pp. 348-367.

J. P. Stern, G. Hachez, F. Koeune, and J. J. Quisquater,
“Robust Object Watermarking: Application to Code,”
Information Hiding, 3rd International Workshop, Lecture
Notes in Computer Science 1768, Springer-Verlag Inc.,
New York (1999), pp. 368-378.

A. Monden, H. Iida, K. Matsumoto, K. Inoue, and K.
Torii, “A Practical Method for Watermarking Java
Programs,” in Proceedings of the 24th Computer Science
and Applications Conference, IEEE Computer Society,
2000, pp. 191-197.

R. Venkatesan, V. Vazirani, and S. Sinha, “A Graph
Theoretic Approach to Software Watermarking,” Infor-
mation Hiding, 4th International Workshop, Lecture Notes
in Computer Science 2127, Springer-Verlag Inc., New
York (2001), pp. 157-168.

Genevieve Arboit, “A Method for Watermarking Java
Programs via Opaque Predicates,” in Proceedings of the
Fifth International Conference on Electronic Commerce
Research (ICECR-5), 2002.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

36. P. Cousot and R. Cousot, “An Abstract Interpretation-
Based Framework for Software Watermarking,” in
Proceedings of the 31st ACM SIGPLAN-SIGACT Symposi-
um on Principles of Programming Languages (2004), pp.
173-185.

37. C. Collberg, E. Carter, S. Debry, A. Huntwork, J.
Kececioglu, C. Linn, and M. Stepp, “Dynamic Path-Based
Software Watermarking,” in Proceedings of the SIGPLAN
Conference on Programming Language Design and
Implementation (2004), pp. 107-118.

38. J. Nagra and C. Thomborson, “Threading Software
Watermarks,” Information Hiding, 6th International
Workshop, Lecture Notes in Computer Science 3200,
Springer-Verlag Inc., New York (2004), pp. 208-233.

39. J. Nagra, C. Thomborson, and C. Collberg, “A Functional
Taxonomy for Software Watermarking,” in Proceedings
of the Twenty-Fifth Australasian Computer Science Con-
ference, Australian Computer Society Inc. (2002), pp.
177-186.

40. J. M. Nardone, R. P. Mangold, J. L. Pfotenhauer, K. L.
Shippy, D. W. Aucsmith, R. L. Maliszewski, and G. L.
Graunke, Tamper Resistant Methods and Apparatus, U.S.
Patent 6,205,550, Assignee: Intel Corporation, March 20,
2001.

41. M. L. Fredman, J. Komlos, and E. Szemeredi, “Storing a
Sparse Table with O(1) Worst Case Access Time,”
Journal of the ACM 31, No. 3, 538-544 (July 1984).

42. K. Mehlhorn and A. K. Tsakalidis, “Data Structures,” in
Handbook of Theoretical Computer Science, Volume A:
Algorithms and Complexity (A), J. van Leeuwen, Editor,
pp. 301-341, MIT Press, Cambridge, MA (1990).

43. SPEC CPU2000, http://www.spec.org/cpu2000/, 2001.

44. A. Fiat and M. Naor, “Broadcast Encryption,” in
Advances in Cryptology (Crypto 93), Lecture Notes in
Computer Science 773, Springer-Verlag Inc., New York
(1994), pp. 480-491.

45. D. M. Wallner, E. J. Harder, and R. C. Agee, “Key
Management for Multicast: Issues and Architectures,”
RFC 2627 (informational), The Internet Society (July
1999).

46. C. K. Wong, M. Gouda, and S. Lam, “Secure Group
Communications Using Key Graphs,” in Proceedings of
the ACM SIGCOMM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer
Communication, ACM, New York (1998), pp. 68-79.

47. D. Naor, M. Naor, and J. Lotspiech, “Revocation and
Tracing Routines for Stateless Receivers,” Advances in
Cryptology (Crypto 2001), Lecture Notes in Computer
Science 2139, Springer-Verlag Inc., New York (2001), pp.
41-62.

48. Publications and Current Versions, 4C Entity, Intel
Corporation, IBM, Matsushita Electric Industrial Co.,
Toshiba Corporation, http://www.4centity.com/docs/
versions.html.

49. For additional background, see C. Brendan and B. Traw,
“Protecting Digital Content Within the Home,” Computer
34, No. 10, 42-47 (Oct 2001).

50. “Content Protection for Recordable Media Specification—
Network Download Book,” Intel, IBM, MEI, Toshiba
(2004), http://www .4centity.com/licensing/adopter/
CPRM-Download-090.pdf.

Accepted for publication August 30, 2005.
Published online January 18, 2006.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Ginger Myles

IBM Almaden Research Center, 650 Harry Road, San Jose, CA
95120 (gmyles@us.ibm.com). Ginger Myles is currently a
Postdoctoral Scientist at IBM’s Almaden Research Center and
is finishing a Ph.D. degree in computer science at the
University of Arizona. She received a B.A. degree in
mathematics from Beloit College in Beloit, Wisconsin and an
M.S. degree in computer science from the University of
Arizona. Her research focuses on all aspects of content
protection.

Stefan Nusser

IBM Almaden Research Center, 650 Harry Road, San Jose, CA
95120 (nusser@us.ibm.com). Dr. Stefan Nusser is a research
staff member at IBM’s Almaden Research Center and manages
a research team focused on content protection. His research
interests include content protection and digital rights
management. He received a Ph.D. degree in management
information systems from Vienna University of Business
Administration and Economics in Vienna, Austria.

MYLES AND NUSSER

143

