
Content protection for games

&

G. Myles

S. Nusser

In this paper we review the state of the art in content protection for video games by

describing the capabilities and shortcomings of currently deployed solutions. In an

attempt to address some of the open issues, we present two novel approaches. The

first approach uses branch-based software watermarking to discourage and detect

piracy through a registration-based system. In the second approach, based on the

parallels between games and premium audio and video content, we propose the use

of current physical-media copy-protection technologies for gaming content. In

particular, we focus on broadcast encryption technology. The use of an open,

standard-based architecture enables the development of a more restrictive protection

system for games. Finally, we demonstrate how the proposed protection mechanisms

can be applied to video-game copy protection through five scenarios.

INTRODUCTION

Before the extensive availability of the high-speed

Internet, the distribution of pirated software in-

volved the transfer of a physical copy, that is, the

transfer of a storage device such as a diskette or a

compact disk. This limited the rate at which illegally

copied games could be distributed, and thus the

associated losses could be absorbed. However, the

recent advances in technology, the ease of access to

the Internet, and the widespread use of peer-to-peer

applications made the physical copy obsolete.

Software piracy is now a widespread, decentralized

problem in which millions of people take part. The

protection afforded by the legal system is no longer

easy to enforce or cost effective. Thus, the gaming

industry now relies on technological mechanisms to

deter, detect, and prevent piracy.

In 2004, when sales of video games in the United

States set a record at $7.3 billion,
1
the industry lost

more than $1.8 billion to global piracy.
2
Unfortu-

nately, the lost revenue is due to a variety of

different piracy-related attacks, such as illegal

copying, counterfeiting, and distributing. The ram-

ifications associated with piracy propagate

throughout the gaming community. The obvious

victims are the game-producing companies, but the

more peripheral victims are often not recognized.

Hardware producers rely on video game players to

buy the newest, fastest, and most expensive

products to play increasingly resource-intensive new

games. For example, in September of 2003 a

significant portion of the source code of the game

Half-Life** 2 was stolen. When the theft, which

occurred before the release of the game, was

discovered, the game maker delayed its release in

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 MYLES AND NUSSER 119

order to develop a new and different version of the

game. This delay led to potential revenue losses for

ATI, a graphics card company. As a marketing

strategy to entice consumers to upgrade, they

planned to distribute free versions of the game with

their latest graphics. Due to the delayed release, the

game was not available in time. The video game

industry must also contend with unscrupulous

retailers who are able to significantly increase their

profits by producing and selling illegal copies.

To develop techniques for the protection of gaming

content it is necessary to understand the mecha-

nisms used by attackers to bypass copy-protection

technologies. The attack mechanisms in use today

target both the executable software and the console

devices on which many games are played. In this

paper we are concerned with the following types of

attacks:

1. Sharing of installation media (e.g., illegal sharing

of an installation CD from a legally purchased

game package).

2. Creating and distributing illegal copies of instal-

lation media.

3. Disabling or bypassing copy-protection technol-

ogy so that the game can be illegally redistributed

(e.g., disabling the license check by modifying

the game code).

4. Execution of illegally copied games on a tradi-

tional PC.

5. Execution of illegally copied games on a console

gaming system.

6. Execution of illegally copied games on a gaming

system that has been modified to run games

using alternate media formats such as a standard

CD.

It is important to note that the third type of attack, in

which the game itself is modified, is distinct from

the last one, in which the gaming system is

modified. Modification of the gaming system to

bypass copy protection is commonly referred to as

modding.

In this paper we present two novel approaches for

game protection. The first approach is based on a

particular software watermarking technique, the

branch-based software-watermarking algorithm,

developed by the authors at the IBM Almaden

Research Center.
3
Software watermaking is one of

many techniques currently being studied to prevent

or discourage software piracy and copyright in-

fringement. The basic idea of watermarking is to

embed a unique identifier in the program. Depend-

ing on the identifier, it can be used to indicate the

author or the legal purchaser of the program. By

incorporating ideas from code obfuscation (to aid in

preventing reverse engineering) and software tam-

per detection (to thwart attacks such as the

application of semantics-preserving transforma-

tions), the technique makes it possible to detect theft

through the implementation of a registration-based

system. The algorithm involves redirecting branch

instructions to a special function known as a branch

function. This function is responsible for computing

the program’s ‘‘fingerprint’’ and controlling the

execution. The branch-based software-watermark-

ing algorithm makes several improvements over

previously proposed watermarking techniques:

� The technique simultaneously provides proof of

authorship and the ability to trace the source of

the illegal distribution.
� The technique demonstrates a significantly higher

level of resilience to attack without significant

overhead.
� The technique provides a means for distributing

prepackaged, fingerprinted software whose link to

the consumer is established at registration time.

In the second approach we show how games are

similar to premium audio and video content in their

need for copy protection. Based on these parallels,

we propose the use of current copy-protection

technologies for physical media in the battle against

video game piracy. In particular, we focus on the

broadcast encryption technology developed by 4C

Entity, LLC, a consortium founded in 1998 by IBM,

Matsushita Electric Industrial Corporation, Toshiba

Corporation, and Intel Corporation to implement

CPRM (Content Protection for Recordable Media). In

this scheme, the game executable is stored in an

encrypted state on a disk and depends on the

presence of protected media (such as an SD memory

card) to execute. As a consequence, multiple copies

of a game can be created by an end user, but they

cannot be executed concurrently. This is a more

user-friendly approach than a per-PC license, which

does not allow an end user to install a game on a

second machine.

Content protection in the gaming industry is

obviously an area of intense interest for developers

MYLES AND NUSSER IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006120

and producers of games. It is also of interest to game

device makers, who often sell the device at a loss

and instead draw their profit from royalties on

software sales. Unfortunately, the gaming industry

currently makes use of proprietary methods in the

development of copy-protection technologies.

Whereas this approach is generally effective against

the occasional copier, such protection is usually

vulnerable to an attack by an experienced hacker.

Our approaches are based on open standards: the

branch-based watermarking algorithm is publicly

available, and the techniques for protection of

physical-media content are based on open stan-

dards. Consequently, the techniques we discuss here

are likely to be scrutinized for pitfalls by a large

community, are based on a strong technical basis,

and are likely to lead to more robust protection

mechanisms for games.

The rest of the paper is structured as follows. In the

section ‘‘Gaming and piracy,’’ we present an over-

view of the state of the art in copy-protection

technologies for PC and console-based gaming.

Then, in the section ‘‘Using software watermarking

to combat game piracy,’’ we discuss our branch-

based software-watermarking algorithm and the

ways it can be used to prevent game piracy. In

‘‘Content protection for physical media,’’ we briefly

review the evolution of copy protection for audio/

video content and for recordable media, with a

particular focus on broadcast encryption, a crypto-

graphic-key management technology. Finally,

through five deployment scenarios described in the

section ‘‘Content protection for games: Deployment

scenarios,’’ we demonstrate the viability of the

proposed techniques to prevent common game

piracy attacks. We thus demonstrate that current

copy-protection techniques that were developed

either for software or for video and audio content

can be successfully applied to combat piracy in

video games. In the ‘‘Conclusion’’ section, we

summarize our main results.

Throughout the paper we use a variety of terms

which could have multiple meanings. This para-

graph clarifies our usage. We use the term video

games (or games, for short) to refer to games that

are played either on a PC (PC-based game) or

specialized hardware known as a video game

console (console-based game). The techniques we

discuss here apply both to prepackaged games and

games that are downloaded from the Internet.

Whereas copy protection refers to preventing copy-

ing of copyrighted material, content protection is

more general and includes other violations of

intellectual property, such as performing illegal

modifications to proprietary software. We use the

term premium audio and video content inter-

changeably with premium entertainment content.

We use the term optical media to refer to media such

as the compact disk, for which the reading or writing

of information is performed through optical tech-

niques. We use the term hackers to refer to people

involved in software piracy.

GAMING AND PIRACY

To combat the high level of piracy, the video game

industry has taken a variety of actions that include

both deterrent and preventative techniques. In this

section we present the current state of the art in both

hardware- and software-based protection mecha-

nisms.

Hardware-based protection techniques
A variety of hardware-based techniques have been

used in video game anti-piracy measures. These

techniques are typically able to provide a higher

level of protection than their software-based coun-

terparts. However, the techniques are generally

more expensive to produce and often cumbersome

for the end user.

One of the first hardware-based, anti-piracy tech-

niques deployed in the game industry was the

dongle.
4
The dongle, a hardware device commonly

distributed with a piece of software to prevent

unauthorized execution, is typically connected to an

I/O port, such as a serial or parallel port. As the

software executes, it periodically queries the dongle,

which returns the output of a secret function. If

communication fails or the result of the query is

incorrect, the software will eventually produce

incorrect results or fail entirely.

The use of a dongle as a protection mechanism has

several drawbacks, the first of which is the cost. The

cost of the dongle, approximately $10 in the United

States, further increases the cost of the game.

Second, the use of a dongle limits the distribution

options. In particular, when a game is sold and

distributed over the Internet, the inclusion of a

dongle is not feasible. Finally, code for dongles is

often ‘‘cracked’’ shortly after release. This is

generally accomplished by ‘‘disassembling’’ the

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 MYLES AND NUSSER 121

game code, identifying the calls to the dongle, and

then bypassing those calls. After the dongle is

cracked, a code patch is usually distributed so that

anyone can play the game without the required

dongle. Such an instance occurred with the Robo-

cop** 3 game for the Amiga** platform. The anti-

piracy dongle had to be connected to one of the

joystick ports for the game to run. A few days after

its release in April of 1992, the dongle was cracked.

A second hardware-based piracy prevention tech-

nique is tamperproof hardware.
5
Tamperproof

hardware is a way to secure parts of the hardware,

such as the use of a computer chip, from being

observed by a hacker. By executing the software in a

secure context the pirate is unable to gain access to

the application code and identify the code to be

bypassed. This piracy prevention technique is

feasible for console-based systems but has limita-

tions for PC games. Because a user must purchase a

console to even play a game, the game developers

can make use of this technology, but the additional

cost of requiring all PC game users to have tamper-

proof hardware is not currently a viable solution.

The development of the Trusted Platform Module
6

(TPM) is one example of using tamperproof hard-

ware to prevent software tampering. The TPM is a

special chip developed to enable trusted computing

features. The four essential features include:

1. Secure I/O—Input and output are verified by

performing a checksum of the software used for

I/O.

2. Memory curtaining—The hardware prevents a

program, including the operating system, from

reading or writing memory used by another

program.

3. Sealed storage—Information is protected by en-

crypting it with a key derived from the hardware

or software currently being used.

4. Remote attestation—Changes to the computer are

detected by having the hardware generate a

certificate stating what software is in use. The

certificate is presented to the remote party,

generally through the use of public key cryptog-

raphy, to demonstrate that the system has not

been altered.

The TPM features have been incorporated into

chipsets by Intel Corporation, Advanced Micro

Devices, Inc., and IBM.

One mechanism used by hackers to bypass copy

protection is the mod chip. This is a special chip

added to the game console that is capable of

modifying or disabling security mechanisms.

Through the use of the mod chip a user can play

games from other regions (installation CDs imple-

ment restrictions that make the game functional

only in certain geographic areas) and create backup

copies on CD-R and DVD-R media. Although it is

legal in some countries for the purchaser to make a

back-up copy in case the original is lost or damaged,

game consoles contain protection mechanisms that

prevent the user from playing the copies. The mod

chip makes it possible to bypass these protection

mechanisms by supplying the appropriate informa-

tion. Currently, this is a very common attack

mechanism for popular console systems such as the

Xbox** and PlayStation** 2. In fact, Microsoft has

taken action to prevent those who have modified

their consoles from Xbox Live** play
7
(online

environment). When a user logs onto an online

gaming forum, his or her system is checked for the

presence of mod chips. If mod chips are detected,

the unit’s serial number is recorded, and the device

is permanently banned from the network. As a

counterattack, mod chips are being produced that

can be temporarily disabled to prevent detection.

Software-based protection techniques

The success of online gaming has led to a new set of

concerns for the industry. These concerns revolve

around maintaining a fair and consistent gaming

environment in which players will continue to

participate. If some players are able to modify their

games, for example, by making their character

immortal, the entire gaming experience can suffer.

One technique that has been explored by research-

ers and that could be used to aid in the prevention of

game modifications is code obfuscation,
8–17

a tech-

nique to protect a secret in the application code. The

secret may vary; examples are the design of a

software component, special algorithms embedded

within the software, and important data such as a

cryptographic key. Obfuscation works by applying

transformations to the code in order to make it more

difficult to understand and reverse engineer while

preserving the original functionality. The idea is to

obscure the readability and understandability of the

program to such a degree that it is more costly for

the attacker to reverse engineer the program than to

simply recreate it or purchase a legal copy. There are

three types of obfuscation:

MYLES AND NUSSER IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006122

1. Layout obfuscations alter the information that is

unnecessary to the execution of the application,

such as identifier names and source code

formatting (e.g., comments and indentations

used for readability).

2. Data obfuscations alter the data structures used

by the program. For example, a two-dimensional

array could be folded into a one-dimensional

array.

3. Control flow obfuscations disguise the true

control flow of the application, for example, by

inserting dead or irrelevant code or merging

multiple functions into one.

The level of protection provided through obfusca-

tion varies with program size and structure. Addi-

tionally, obfuscation increases the overhead of the

program which could have adverse effects on

performance. Since performance is critical in most

video games, the degree to which a game can be

obfuscated may be limited. A second limitation to

the technique is that it does not provide complete

protection. Given enough time, a determined ad-

versary will be able to break the protection.

However, obfuscation can be used to extend the

period of time before the game protection is broken.

Because the majority of video games have a short

shelf life and most of the revenue is derived over a

short period of time, obfuscation is a viable

protection technique.

A common feature of many video games is the

inclusion of a license check. It can be used to verify

the validity of the game or to prevent the use of a

game after a specific date. To prevent a dishonest

player from removing the license check, software

tamperproofing techniques can be used that prevent

the game from being altered.
13,18–23

The tamper-

proofing mechanism must first detect that the

software has been altered. Then, when tampering is

detected, the mechanism must cause the program to

fail. For the tamperproofing to succeed, the software

failure must be stealthy and must not alert the

attacker to the location of the failure-inducing code.

This can be accomplished by separating the detec-

tion and response mechanisms in both space and

time. The protection of license checks is just one

specific use of software tamperproofing. As with

code obfuscation, it can be used to prevent

modification of the game executable. The main

difference between code obfuscation and software

tamperproofing is that code obfuscation is used to

hide a secret, whereas tamperproofing is used to

prevent alteration of the secret.

One of the most prevalent forms of copy protection

for PC-based games is the use of an installation key.

This is the sequence of letters and numbers

generally found on a sticker included with the

installation material. During the installation process

the user has to enter the installation key in order to

verify that the software is a legal copy. This form of

copy protection, while common, is generally broken

shortly after release. To defeat the system an

attacker analyzes the section of code that determines

if the sequence of letters and numbers constitutes a

valid installation key. Based on the analysis, it is

possible to determine the properties a valid key

must possess. Once the mechanism is defeated, key

generators are posted on the Internet, and anyone

can obtain a key to be used with illegal copies of the

software.

Currently many video game console-based systems

make use of their own proprietary CD or DVD

format. When the new console-based systems are

released, the software is written on CD or DVD

formats that standard burners cannot copy. For

example the Xbox uses DVD-9 format, which is a

single-sided, dual-layer media format. Nintendo Inc.

also took this approach with the GameCube** by

using smaller than normal discs. This type of

protection technique is usually effective against the

occasional copier, but it is not normally unbreakable

for long. In fact, software exists that makes it

possible to copy any game distributed in a DVD

format to regular CD-R or DVD-R/þR media. To play

these copies on a game console a mod chip is

required. However, techniques exist to play games

distributed for console systems on a traditional PC

with no special hardware requirements.

The following account illustrates the limited pro-

tection provided by proprietary formats. The Sony

PlayStation Portable (PSP**) handheld gaming

device uses a proprietary 1.8 GB Universal Media

Disc (UMD) format for distribution of both games

and video content. The initial release of the PSP

occurred in Japan on December 12, 2004. This was

followed by a release in the United States on March

24, 2005. Only six weeks after the United States

release and weeks before release in the United

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 MYLES AND NUSSER 123

Kingdom, hackers developed a technique to capture

the data from the UMD. Because the UMD uses the

standard ISO 9669 format, the captured data can be

written to a regular CD or DVD.

The most recently deployed anti-piracy mechanism

within the gaming industry is Steam, developed by

Valve Corporation. Steam is a content-delivery,

digital-rights management (DRM), and multiplayer

system.
24

Currently, only a few games use Steam

technology. To activate a game using Steam

technology requires a Steam account and an Internet

connection. A boxed copy of the game purchased at

a store includes a Steam client and game content,

but not the executable required to play the game.

When the game is activated through the Steam

system, the files necessary to create an executable

game are downloaded. After the initial activation the

user can play in single-player mode or on a LAN

without an Internet connection. Unfortunately,

configuring the game for such activity is not

straightforward for the user. Moreover, to partic-

ipate in online multiplayer games or receive game

patches, the user must log in to the Steam system.

This scheme makes it possible for Value Software to

periodically authenticate the majority of the dis-

tributed game copies and to restrict the functionality

of illegal copies.

USING SOFTWARE WATERMARKING TO COMBAT

GAME PIRACY

One of the difficulties associated with the issue of

video game piracy is enforcing the law. Not only can

it be difficult for small game developers to prove

authorship if their intellectual property is stolen, but

it is usually extremely difficult to trace the source of

an illegal distribution. Through the use of software

watermarking it is possible to address these diffi-

culties.

Fundamentals of software watermarking

Software watermarking takes the approach of

discouraging piracy through the attachment of an

identifying mark (the ‘‘watermark’’).
25–38

The most

basic software watermarking system consists of two

functions: embed(P, w, k) ! P0 and recognize(P0, k)

! w. Using the secret key k, the embed function

incorporates the watermark w into a program P,

yielding a new program P0. The recognize function

uses the same key k to extract the watermark from a

suspected pirated copy.

A watermarking algorithm is categorized based on a

set of characteristics,
39

such as whether the code is

analyzed as a static or dynamic object, the type of

recognizer used, the embedding technique, and the

type of mark embedded.

� Static/dynamic—Strictly static watermarking al-

gorithms only use features available at compila-

tion time for embedding and recognition. On the

other hand, strictly dynamic watermarking algo-

rithms use information gathered during the

execution of the program. Strictly speaking,

abstract watermarking algorithms are neither

static nor dynamic. Instead, such techniques are

static in that recognition does not require execu-

tion of the program, but they are dynamic in that

the watermark is hidden in the semantics of the

program.
� Recognizer type—A watermark recognizer is cate-

gorized based on the information needed to

identify the watermark. Both blind and informed

watermarking algorithms require the water-

marked program and the secret key to extract the

watermark. An informed technique additionally

requires an unwatermarked version of the pro-

gram, the embedded mark, or both.
� Embedding technique—To incorporate a water-

mark, a program has to be manipulated through

semantics-preserving transformations. Such

transformations can be categorized as follows:

— Reorder or rename the code section.

— Alter the program’s semantics by inserting

new nonfunctional code or code that is never

executed.

— Manipulate the program’s statistical proper-

ties, such as instruction frequencies.

— Alter the program’s semantics by incorpo-

rating watermark-generating code that

directs program execution.

� Mark type—An authorship mark (AM) is embed-

ded in every copy of the program and is used to

identify the author. It is in essence a copyright

notice. A fingerprint mark (FM) is unique for each

copy distributed and is normally used to identify

the purchaser. Through the use of an FM it is

possible to identify the source of an illegal

distribution.

Piracy is confirmed by proving the program contains

the watermark upon obtaining a suspected illegal

copy. From a legal perspective, to prove ownership

MYLES AND NUSSER IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006124

it is not sufficient to simply recover the mark from

the program. An ideal authorship mark possesses

some mathematical property that allows for a strong

argument that it was intentionally placed in the

program and that its discovery is not accidental.

Choosing w such that w¼ pq where p and q are two

large primes is one possible example of a strong

watermark. Because factoring is a ‘‘hard’’ problem,

only the person who embedded such a watermark

would be able to identify the factors p and q.

In order for watermarking to be a viable option for

game software, the watermark must withstand

attacks against it. There are four types of such

attacks: additive, distortive, subtractive, and collu-

sive.

1. Additive—In an additive attack an adversary

embeds an additional watermark so as to cast

doubt on the origin of the intellectual property.

Although an attack may succeed even if the

original mark remains intact, it is more effective if

it damages the original mark.

2. Distortive—In a distortive attack, a series of

semantics-preserving transformations are applied

to the program in an attempt to render the

watermark useless. It is the goal of the attacker to

distort the software in such a way that the

watermark becomes unrecoverable, yet the pro-

gram’s functionality and performance remain

intact.

3. Subtractive—In a subtractive attack, the attacker

attempts to remove the watermark from the

disassembled or decompiled code. If the water-

mark has poor transparency, an attacker may be

able to discover the location of the watermark

after manual or automated code inspection and

then remove it from the program without

destroying the software.

4. Collusive—In the collusive attack, which is used

against fingerprinted software, an adversary

obtains multiple, differently fingerprinted instan-

ces of a program and is able, by comparing them,

to isolate the fingerprint.

Many of the known watermarking techniques are

not robust enough to prevent piracy because an

attacker can use very simple reverse-engineering

tools to identify and remove the mark. The method

described in the next section is more resistant to

reverse engineering than current methods.

The branch-based watermarking algorithm
The basic idea of the branch-based software water-

marking algorithm is centered around the use of a

branch function specifically designed to generate the

program fingerprint as the program executes. If the

branch function is properly designed, the branch-

based algorithm can simultaneously embed author-

ship and fingerprint marks. With many other

algorithms, inserting a second mark will destroy the

first one. Additionally, tamper detection can be

incorporated. We describe the algorithm next and

illustrate how these three features can be incorpo-

rated in a single branch function.

Any software watermarking system consists of two

functions: embed and recognize. The embed function

for the branch-based algorithm has four inputs and

two outputs.

embedðP;AM; keyAM ; keyFMÞ ! P 0; FM

Using the two secret keys key
AM

and key
FM

, the

embed function incorporates the authorship mark

AM into a program P, yielding a new program P0 and

the fingerprint mark FM. Because the algorithm can

simultaneously embed an authorship and a finger-

print mark, two secret keys are required. The key
AM

key is tied to the authorship mark and is the same

for every copy of the program. The key
FM

key is

required for the fingerprint mark and should be

unique for each copy. A fingerprint mark for a

particular instance of a program is based on the

fingerprint key and the program execution. Thus,

the actual fingerprint mark is generated during

embedding and is an output of the embed function.

Similarly, the recognize function has three inputs

and two outputs.

recognizeðP 0; keyAM ; keyFMÞ ! AM; FM

Because the recognition technique is blind, the

authorship and fingerprint marks can be obtained

from the watermarked program by providing the

two secret keys.

The branch-based watermark is dynamic, thus one

of the secret keys, key
AM

, is actually an input

sequence to the program. For example, suppose we

wish to watermark a tic-tack-toe program; the secret

input sequence could be the sequence of mouse

clicks that select ‘‘X-O-X’’ on the diagonal. By

executing the program with the input sequence, a

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 MYLES AND NUSSER 125

trace consisting of a set of functions F is identified.

The set F consists of those functions that participate

in the fingerprint calculation. The secret input

serves two very important functions in the algo-

rithm. First, it provides a stronger argument for the

validity of both the authorship and the fingerprint

marks. Second, the secret input makes recognition

more reliable. Only when the program is executed

using the secret input can it be guaranteed that the

fingerprint is generated.

Fingerprint branch function

The fingerprint mark for a program is generated as

the program executes through a specifically de-

signed branch function. We call this function a

fingerprint branch function (FBF). The FBF is an

extension of the branch function originally proposed

by Linn and Debray as part of an obfuscation

technique used to disrupt static disassembly of

native (x86 compatible) executables.
17

The obfus-

cation converted unconditional branch instructions

to a call to a branch function inserted in the

program. The sole purpose of the branch function

was to transfer the control of execution to the target

of the unconditional branch. Figure 1 illustrates the

change in the execution when a branch function is

used to control the execution behavior. The branch

function can be designed to handle any number of

unconditional branches. To increase the versatility

of the branch function we have devised an extension

that makes it possible to convert conditional

branches as well. When this idea is applied to the

x86 microprocessor architecture instruction set, all

jmp, call, and jcc instructions can be converted to

calls to a single branch function.

In order to provide fingerprinting and tamper

detection capabilities, the branch function is en-

hanced. The original branch function was designed

simply to transfer execution control to the branch

target. In addition to the transfer of control, the FBF

also incorporates an integrity check and key

evolution. The FBF performs the following tasks:

� An integrity check producing the value v
i
.

� Generation of the next function key, k
i þ 1

, using v
i

and the current key k
i
, k

i þ 1
¼ g(k

i
, v

i
).

� k
i þ 1

is used to identify the return instruction.

Each time the FBF is called, a new key, k
i
, is

calculated. The k
i
key is then used to aid in

identifying the original branch target. There are a

variety of ways the FBF can be implemented. Many

of the details are specific to the particular architec-

ture. For example, when the FBF is implemented for

use in native executables, one possible way to link

key generation to program execution is to use the

key to identify the displacement to the branch target.

In this case the branch-target displacements asso-

ciated with each replaced branch are stored in a

table. The key is used to access the table. The

displacement obtained is added to the return

address that was stored on the stack when the FBF

was called. After the execution of the FBF is

completed, the next instruction to execute is the

target of the original branch instruction. This is

contrary to the traditional assumption that a

function returns to the instruction following the call

instruction.

The original branch function obfuscation can

provide minimal tamper detection. A table is used to

store a displacement. Therefore, any transformation

applied to a function which alters the displacement

between a branch and its target causes the branch

function to return to an incorrect instruction. A key

aspect of the FBF is the use of integrity checks,

which make it possible to extend the tamper

detection capabilities throughout the entire pro-

gram. An integrity check is an inserted section of

code used to verify the integrity of the program and

to identify active debugging.
40

Integrity checks are

Figure 1
Change in execution flow associated with a branch
function

Insert
Watermark

Branch 2

Original Executable

Target 1

Branch 1

Target 2

Watermarked Executable

• • •

• • •

• • •

Branch 2

Target 1

Branch 1

Target 2

• • •

• • •

• • •

Branch
Function

MYLES AND NUSSER IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006126

triggered during software execution. For example,

one of the integrity checks could choose a block of

code and calculate its checksum. If the attacker

attempts to store break points or modify the code,

even if the modification is very slight, the checksum

will be incorrect. When tying to detect the presence

of a debugger, the elapsed time of execution from

one point to another can be used as an integrity

check. These simple integrity checks are just for

illustration purposes. In practice, a variety of

stealthy integrity checks are used. Often these

checks are customized to address the specific

requirements of the application. One of the limi-

tations of the use of integrity checks is that

describing them in detail decreases their potency.

This is true of most techniques aimed at providing

tamper resistance.

In addition to fingerprint generation and tamper

detection, an authorship mark can be incorporated

in the FBF. One possible means of encoding the

mark is to choose a one-way function such that one

of the variables can be set to AM. For example:

ki þ 1 ¼ SHA1½ðki XOR AMÞ jj vi�

A one-way function is a function in which it is easy

to compute y ¼ f(x), but given y, it is difficult to

reverse the process and find x. SHA-1 is one

example of a one-way function (SHA-1 stands for

Secure Hash Algorithm).

Embedding the fingerprint branch function in the

executable

The branch-based watermarking algorithm is a

general scheme that can be implemented in a variety

of different ways. Many of the implementation

details are architecture specific; however, variations

can be constructed based on the architectural

specifications. In general, the embedding of the

authorship and fingerprint marks occurs by embed-

ding the FBF into the program and converting

branch instructions to calls to the FBF. The

following algorithm illustrates a possible embedding

transformation for watermarking native execut-

ables. In this technique watermarking is accom-

plished by disassembling a statically linked binary,

modifying the instructions, and then rewriting the

instructions to a new executable file.

The embedding process consists of three phases. In

the first phase, an execution trace of the program is

obtained based on the secret input sequence. The

trace identifies a set of functions F through which

execution passes. These functions will be modified

to incorporate the fingerprint generating code.

In the second phase of the algorithm, the branches

in each function f in F are replaced by calls to the

FBF. Special care must be taken in selecting which

branch instructions are converted. The branch

instruction used for the fingerprint computation

must reside on a path through the function that will

be traversed every time the function is executed.

Without this constraint, an irregular key evolution

would occur, which would result in transferring

execution to an incorrect instruction. This would

ultimately lead to improper program behavior. In

addition, because a new key is generated every time

the branch function is executed, the branch in-

structions cannot be part of a nondeterministic loop.

Thus, all branches along the deterministic path

through the function are replaced with calls to the

FBF. In order to identify the deterministic path, we

compute the dominator set for the exit block in the

function control flow graph. The dominator set may

include blocks that are part of a nondeterministic

path such as a loop header. Any such block is

removed from the path.

For each branch replaced, a mapping between the

calculated key and the branch-target displacement is

maintained.

h ¼ k1 ! d1; k2 ! d2; . . . ; kn ! dnf g

Because the key is paired with the displacement at

the time the branch instruction is replaced, the

instructions must be replaced in execution order.

This is again addressed by using the dominator set

for the exit block.

h is used in phase three to construct a table T, which

is stored in the data section of the binary. The table

is used to store the branch-target displacement for

each branch in the program that has been replaced.

The first step in laying out the table is to construct a

perfect hash function
41,42

such that each key maps

to a unique slot in the table. It is best to use a

minimal perfect hash function so that the table size

is minimized.

h : k1; k2; . . . ; knf g ! 1; 2; . . . ;mf g;n � m:

The displacements are stored in the table such that

T[h(k
i
)] ¼ d

i
.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 MYLES AND NUSSER 127

The fingerprint branch function is a new function

inserted in the program during embedding. The

function is constructed such that the following tasks

are performed:

� An integrity check producing the value v
i
.

� Generation of the next function key, k
i þ 1

, using v
i

and the current key k
i
, k

i þ 1
¼ g(k

i
, v

i
).

� Identification of the displacement to the next

instruction via d
i
¼ T[h(k

i
)], where T is the table

stored in the data section and h is a hash function.
� Computation of the return location by adding the

displacement d
i
to the return address.

Unlike the authorship mark, the fingerprint mark is

not embedded in the program. Instead, it is

generated as the program is executed. Each function

in the set F obtained by executing the program with

the secret input sequence produces a final function

key. The keys are combined in a commutative way

(e.g., add the values) to produce the fingerprint

mark for the program.

The variation in the fingerprint mark is obtained

through the fingerprint key, key
FM

, which is unique

for each copy of the program. The key
FM

key is used

to begin the key evolution process in each finger-

printed function. Based on the unique key, the

fingerprint for each program will evolve differently.

Because the key is used to access the inserted

structure, each program will contain a differently

organized structure. It is important that key
FM

is

available each time the program executes. There are

a variety of ways this can be accomplished. For

example, it could be embedded in the program, or it

could be required that the user enter it each time the

program is started. To prevent a user from using the

initial key in an attack, secure computing devices

such as the TPM available in the ThinkPad** laptop

could be leveraged.

Recognition

As with embedding, the first step in recognizing the

embedded marks is to execute the program using the

secret input. The execution will identify the set of

functions F, which have been fingerprinted, as well

as the FBF itself. Once the FBF has been identified,

the one-way function to extract the authorship mark

can be isolated. To extract the fingerprint mark, the

location where the final function key is stored for

each f in F must be accessed while the program is

executing. The final function keys are combined to

form the fingerprint mark.

Registration-based customization

The only static variation in differently watermarked

instances of a program is in the inserted structure.

This feature enables software companies to produce

and distribute fingerprinted software in the tradi-

tional manner. The program purchased would be

nonfunctional until the user installs the software

and registers it with the company. Upon registration,

the user key and structure is distributed, creating a

fully functioning program. Previously, if a software

company wanted to tie a specific fingerprint mark to

a purchaser, the user had to purchase the software

directly from the company, and the program was

fingerprinted at that point. By using the branch-

based watermark, distribution of fingerprinted soft-

ware can be accomplished through prepackaged

software sold at retail stores. Installation of a fully

functioning copy does require an initial Internet

connection; however, Valve’s Steam technology has

demonstrated that a required connection may no

longer be a drawback.

One important distinction to make between the

branch-based software watermarking technique and

fingerprinting techniques used for media is that the

technique is not based on signal processing. A media

fingerprint is often embedded by the media player.

This makes the technique vulnerable to an attack in

which the media player is prevented from actually

embedding the mark. In the event of such an attack,

the non-fingerprinted media is still playable. When a

piece of software is prepared for fingerprinting using

the branch-based technique, the proper control flow

is removed. The control flow is added back into the

program when the fingerprint is embedded because

the execution behavior is tied to the generation of

the fingerprint. If an attacker blocks the embedding

of the fingerprint, the program is nonfunctional.

Evaluation

The branch-based watermarking technique was

proposed by Myles and Jin.
3
They performed a

thorough evaluation with respect to robustness

against attack and overhead incurred. In this section

we summarize those results so as to demonstrate the

viability of the branch-based watermarking algo-

rithm for content protection of video games.

The evaluation was performed using the SPEC

CINT2000 benchmark suite.
43

To evaluate the

MYLES AND NUSSER IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006128

robustness of the algorithm, four categories of

attacks were examined: additive, distortive, collu-

sive, and subtractive. For an additive attack to be

successful the program has to continue to function

properly after the embedding of the second water-

mark. To simulate an additive attack, the test

applications were double watermarked using the

branch-based algorithm. This resulted in improperly

functioning applications. Similar results could be

obtained by using other watermarking algorithms in

the attack. The attack fails because the integrity

check detects the program alteration.

In a distortive attack, the goal of the attacker is to

distort the software such that the watermark is

unrecoverable, yet the program’s functionality and

performance remain intact. To verify that the

branch-based algorithm is resistant to distortive

attacks, five different obfuscations were applied to

the watermarked applications. In each case the

alterations were detected, resulting in improper

functionality.

The collusive attack is the most crucial for finger-

printed software. Previous watermarking algorithms

have relied on the use of obfuscation to prevent a

collusive attack. The general idea is to apply

different sets of obfuscations to the fingerprinted

programs so that they differ everywhere. The

branch-based algorithm is resistant to the collusive

attack even without the use of obfuscation. Two

differently fingerprinted programs differ only in the

order of the values in the table added to the data

section of the binary. Examining the code segment

of the application does not aid the attacker.

Because an attacker has full control over the

software, without the use of a completely secure

computing device, guaranteed protection against a

subtractive attack is not possible. Instead, the goal is

to design a technique in which the analysis required

to remove the watermark is too costly. The robust-

ness of the branch-based algorithm is partially

dependent on the number of branches that contrib-

ute to the fingerprint calculation. By requiring the

branches to be on a deterministic path, the number

of usable branches is decreased. Through an

analysis of a variety of different applications, it was

found that a satisfactory number of branch instruc-

tions exist. To remove the watermark, the attacker

has to identify the sections of code generating the

fingerprint and patch the executable. Such an attack

first requires identifying each of the converted

branch instructions. The second step involves

identifying the correct target for each branch.

Finally, each of the call instructions must be

replaced with the correct branch (which could be a

jmp, jcc, or call instruction) and displacement. For

the attack to be successful, all converted branches

must be identified and replaced. Although such an

attack is not impossible, the manual analysis

required to accomplish such a task is extensive,

especially because many analysis tools can be

thwarted through the integrity checks. Additionally,

the attack can be further complicated by the

incorporation of the strength-enhancing features

described in the original paper.
3

The cost incurred due to watermarking was also

evaluated using the SPEC CINT2000 benchmark

suite. As can be seen in Table 1, very little

performance overhead was incurred by the addi-

tional calls and integrity checks. Only one applica-

tion (parser) suffered a noticeable slowdown of 13

percent. The performance of the other benchmarks

was between 99 and 101 percent of the original. The

impact on size was a bit more noticeable with

increases between 1 and 19 percent. Since the

fingerprint is generated as the program executes, the

size of the fingerprint does not impact the size of the

watermarked program. The majority of the size

increase is a result of the table inserted in the data

section and the size of the inserted fingerprint

branch function. For each branch replaced, a single

slot in the table is required. Using a straightforward

implementation of the algorithm, each slot is 4

bytes. Thus, the minimum table size is (num

branches3 4 bytes). Through the use of a minimal

perfect hash function the number of empty slots can

be minimized. For most applications, the size

Table 1 Effect of watermarking on program execu-

tion time and size

Program Branches Used Slowdown Size Increase

gzip 79 1.00 1.04
vpr 405 1.00 1.19
mcf 24 1.00 1.06
crafty 94 1.00 1.01
parser 239 1.13 1.02
gap 742 1.00 1.18
vortex 477 1.00 1.09
bzip2 135 0.99 1.09
twolf 233 1.01 1.05

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 MYLES AND NUSSER 129

increase was minimal. Additionally, the implemen-

tation used to generate the results did not use a

minimal perfect hash function; thus, the results

could be improved.

CONTENT PROTECTION FOR PHYSICAL MEDIA:
AN INTRODUCTION
The factors that led to rampant video game piracy

have also created similar issues for the distribution

of premium entertainment content. Due to these

similarities, it is natural to apply the concepts

developed for the protection of entertainment

content to video games. More specifically, parallels

can be drawn between the protection of console

games and that of audio or video content on

prerecorded media, such as the video content on

DVDs. Similarly, the concepts for the protection of

software media players can be applied to PC games.

To the best of our knowledge, such parallels have

yet to be leveraged in developing protection

technologies for games.

In this section we briefly review the evolution of

copy protection technologies developed for pre-

packaged audio/video content and for recordable

media. In particular, we focus on broadcast

encryption, a cryptographic-key management tech-

nology that has turned out to be well suited for this

application domain.

Copy protection
One of the first and most widely known encryption-

based protection schemes for optical media is the

content scrambling system (CSS). CSS was intro-

duced in 1997 for DVD-video recordings. The

essence of the scheme is the use of a small set of

secret, static global keys. The set of keys are shared

between the studios and the DVD player manufac-

turers upon signing of the CSS license. DVD-video

content is encrypted with the global keys during the

DVD mastering process. The content can then be

decrypted by all licensed players that employ one of

the global keys.

CSS is not a true copy protection system—no

attempt is made to prevent identical copies from

working. A bit-for-bit copy of a CSS-protected DVD

still plays in all licensed players. The purpose of CSS

is to limit playback of DVD-video recordings to

licensed players.

The first successful attack against CSS was launched

in 1999. It was based on obtaining one of the secret

keys by reverse engineering a licensed software

player. Because the cryptography used in the system

was weak, the remaining secret keys were discov-

ered using cryptanalysis. These attacks enabled the

development and distribution of non-licensed play-

ers such as the DeCSS software. An obvious

consequence of using a global secret-based key

management scheme such as CSS is that once the

system is compromised, there is no recovery with-

out updating the entire player population.

Broadcast encryption

When CSS was introduced, the global secret-based

key-management system was thought to be a

necessary consequence of having to distribute

encrypted content to a large number of disconnected

player devices. However, unbeknownst to the

developers of CSS, Fiat and Naor had developed a

key-management scheme in 1993 specifically for

one-way communication channels, called broadcast

encryption.
44

Originally designed to address the

problem of renewability for conditional access

applications, broadcast encryption was, several

years later, successfully applied to the problem of

protecting content on physical media. This new

direction of copy protection leverages the fact that

DVD players are not completely disconnected

devices—they have a one-way connection to the

publishers, who are continuously providing a

stream of new content.

Fundamentally, a broadcast encryption system is

designed to encode a management key that is to be

transferred from a sender to a multitude of receivers.

This management key is typically used as an

encryption key for the protection of some payload

data. The purpose of the broadcast encryption

scheme is to be able to efficiently modify the

encoding of the management key such that one or

more receivers are excluded from receiving man-

agement key updates. This prevents the affected

receivers from continuing to decrypt the payload

data. The key management information, which

encodes the management key, is referred to as the

key management block (KMB). The broadcast

encryption keys stored by the receivers are called

device keys (DK).

To illustrate, consider the very simple broadcast

encryption scheme in Figure 2. In this scheme, each

receiver has a single unique device key k
i
in

fk
1
. . .k

n
g. The management key K is encrypted once

MYLES AND NUSSER IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006130

for each potential receiver, e(K)k
i
(this notation

signifies that we are encrypting management key K

using device key k
i
). To obtain K, a particular

receiver needs to locate the corresponding entry in

the KMB and decrypt the management key using its

device key. To revoke a particular receiver, the KMB

simply needs to be updated to remove the corre-

sponding entry.

Some of the advantages of broadcast encryption are

obvious, even with this simplified model. It is very

efficient. All encryptions are performed by using

symmetric algorithms such as the Advanced En-

cryption Standard and are therefore very fast. To

obtain the management key, a receiver has to

process some index information and perform a

single symmetric decryption.

The simplified scheme suffers from a significant

flaw: the KMB is prohibitively large. Suppose storing

a single encrypted key takes 20 bytes and the system

has to support one billion receivers; then, the size of

the KMB would be 20 GB of data. This makes the

scheme completely impractical for almost all appli-

cations. Fortunately, techniques exist for signifi-

cantly improving the efficiency.

In Figure 3 the simple broadcast encryption scheme

is extended by giving each receiver an additional

key. This key is shared with half of the device

population. In this example, assume that all

receivers with an even serial number share a copy of

the key k
e
, and all receivers with an odd serial

number share a copy of the key k
o
. Thus, each

receiver has two device keys—an individual device

key and a copy of either k
e
or k

o
.

How this modification affects the size of the KMB is

illustrated in Figure 3. Initially, all receivers are

included, and the KMB is very small. Receivers with

an even serial number are using k
e
to decrypt the

management key K, and receivers with an odd serial

number are decrypting the management key with k
o
.

Thus, if the size of an entry in the KMB is 20 bytes,

its size is 40 bytes. Note that this size is independent

of the number of receivers; a system that includes a

billion receivers has a KMB of 40 bytes.

The improvement quickly degrades, however, as

devices are revoked. The second KMB shown in

Figure 3 excludes receiver 2 (R2). Because R2 has a

copy of k
e
, it cannot be used in the KMB anymore.

Therefore, all other receivers with an even serial

number have to be included in the KMB by

encrypting the management key K with their

individual keys. Thus, an additional (n/2) � 1

entries, where n is the number of receivers in the

system, have to be added to the KMB. In the system

in Figure 3, which contains six receivers, two entries

must be added to the KMB when R2 is revoked.

However, if we consider a population of a billion

receivers and 20 bytes per entry, the resulting KMB

will have a size of 10 GB.

Continuing with the example, it is interesting to

observe the effects of excluding an additional

receiver. If the additional receiver has an even serial

number, the size of the KMB will not change

significantly. However, if the receiver has an odd

serial number, the use of k
o
has to be discontinued.

In this case, the system degrades to the simple

model in the initial scheme, and the size of the KMB,

assuming a system with a billion receivers, increases

to approximately 20 GB. This example highlights an

important trade-off for this family of key-manage-

ment systems: the size of the KMB can be reduced at

the cost of increasing the number of device keys.

Also, we can see that it is desirable to start out with

a very small KMB, which grows in a linear

relationship to the number of excluded devices.

Figure 2
Simplistic broadcast encryption scheme

Receiver 1 Receiver 2 Receiver 3 Receiver n

k1 k2 k3 kn

e(K)k1

e(K)k2

e(K)k3

e(K)kn

• • •

• • •

Sender

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 MYLES AND NUSSER 131

Currently, broadcast encryption is used in at least

four copy protection systems for media. The first

such scheme, CPRM, is based on a system of keys

arranged in the structure of a matrix. A device has

16 device keys. Although each individual key might

be shared with some of the other devices, the

combination of 16 keys is unique. CPRM is used on

various formats with slightly different parameters,

which among other things determine the size of the

KMB. For example, the KMB used on recordable

DVDs is 320 KB. It is of constant size, independent

of the number of excluded receivers. It is important

to point out that the key management system used

by CPRM has finite revocation capabilities—once

the maximum number of revocations is reached, it is

no longer possible to exclude an additional receiver

without affecting some of the remaining devices in

the system. Note that the same restriction also

applied to the original scheme presented by Fiat and

Naor in 1993.
44

Shortly after the introduction of CPRM, two very

similar broadcast encryption schemes with un-

limited revocation capabilities were developed.
45,46

The logical key hierarchy (LKH) scheme uses a

tree-based structure of keys. Even though LKH

provides unlimited revocation capabilities, it still

has approximately the same space efficiency as the

matrix-based key management scheme used in

CPRM.

Two years later, Naor, Naor, and Lotspiech
47

developed the NNL broadcast encryption system.

NLL provides unlimited revocation capabilities, at

the same time significantly reducing the size of the

KMB. In NNL the keys are arranged in multiple tree

structures. Under this scheme, a receiver has

approximately 400 device keys. The NNL KMB is

about 25 times more concise than that used by LKH.

Requiring about 1.28 entries in the KMB per

revocation, NNL is nearly as efficient as a public-key

certificate revocation list without requiring connec-

tivity or expensive public-key calculations. An NNL

KMB starts out very small and grows in a linear

fashion as the number of revoked receivers goes up.

Broadcast encryption and protection of content

on physical media

CPRM is available on a variety of formats, such as

DVD-RAM, DVD-R/W and flash-memory cards like

the Secure Digital (SD**) memory card or Secure

CompactFlash**. DVD-Audio uses a version of

CPRM for prepackaged content which is called

CPPM (Content Protection for Prerecorded Media).

The 4C specifications for CPRM and CPPM are

publicly available and can be downloaded from 4C

Entity’s Web site.
48

With over 200 million devices

enabled and KMBs on every SD memory card, 4C

technology is in widespread use today.
49

We now

describe how CPRM leverages broadcast encryption

for copy protection.

Figure 3
Simplistic broadcast encryption scheme with two device keys

Receiver 1 Receiver 2 Receiver 3

k1 k2 k3

Receiver 4 Receiver 5 Receiver 6

k4 k5 k6ko ke ko ke ko ke

E(K)k0

E(K)ke

All Receivers

Sender

E(K)k0

E(K)k4

E(K)k6

All except
R2

Sender

E(K)k1

E(K)k3

E(K)k4

All except
R2, R5

E(K)k6

Sender

MYLES AND NUSSER IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006132

Access authorization

To use broadcast encryption for protecting content

on physical media, each player must have its own

set of device keys. In the case of prerecorded

content, such as DVD-Audio, the media itself

contains the KMB, followed by the encrypted

content. For recordable media, the KMB is pre-

embossed in the disk’s lead-in area. Thus, all blank,

recordable 4C media available in retail stores

contain a current KMB. Additionally, to encrypt the

content for storage on recordable media requires the

recorders to have a set of device keys. The device

keys are used by the recorder to process the KMB to

obtain the management key used in encryption.

The system, as described so far, can be used to

manage device compliance. Upon signing the 4C

license, a device manufacturer can start ordering

device keys. If device keys get compromised, as was

the case in DeCSS, new media will contain an

updated KMB which revokes this particular set of

keys. All of the CPRM-enabled recordable media

formats are designed to be usable with unprotected

content. In this case, recorder and player applica-

tions do not require device keys, and the security

features of the protected media remain unused.

Even if the copy protection features are used, CPRM

does not require the application to be authenticated.

Any application can retrieve the Media ID and the

KMB and read or write the encrypted content—but

to make any sense of the content or to produce valid

data, the application needs to have device keys.

Copy protection

In order to enable a compliant, unrevoked device to

distinguish between the original and a bit-by-bit

copy requires the introduction of a unique Media ID.

The Media ID is the unique, read-only disk serial

number. Combining the Media ID with the man-

agement key obtained from the KMB binds the

content to a particular instance of physical media.

This binding prevents a bit-by-bit copy from playing.

Theoretically, a compliant recorder containing a

valid set of device keys can create a valid copy. To

create the copy, the content is read from the source

disk, rebound using the new serial number, and

written to the target disk. However, because such a

recorder needs to have device keys in order to

process the KMBs on the source and target media, it

has to be a license-compliant device. Such a device

will not create a copy unless allowed by the usage

conditions associated with the content. The revoca-

tion capabilities of the underlying broadcast en-

cryption scheme make this rule enforceable, which

prevents licensed manufacturers from building an

illegal copying device.

To cleanly separate the binding step from content

encryption and to simplify legitimate rebinding in

case of a copy or move, another level of indirection

is introduced: the management key derived from the

KMB combined with the disk serial number yields a

media unique key. The media unique key is not used

to encrypt the bulk content on the media. Instead it

encrypts the title keys which in turn can be used to

access a title (a title is a self-contained unit of

content such as a complete motion picture). This

allows content to be copied or moved to a different

medium simply by re-encrypting the title keys with

the new media unique key.

Management of usage conditions

In order to protect sensitive data from being

modified by unauthorized applications, an addi-

tional protection mechanism is needed. This re-

quirement exists for both static data, such as usage

conditions, and dynamic data, such as the actual

value of usage counts or time stamps. All CPRM

media manage usage conditions by combining their

hash with the title key calculation. The simple

extension of the binding calculation ensures that if

the usage restrictions are modified by an unautho-

rized application, any subsequent decryption of the

protected content will fail.

This approach does not work, however, for dynamic

usage data on a recordable medium that needs to be

updated. In that case, an attacker can do a complete

backup of the medium and restore it, for example,

after a usage count is decremented. To address this

requirement, CPRM-enabled drives support a

mechanism for secure state management. This is

either done with a two-way authentication protocol

between drive and application or by having the

drive generate a cryptographic nonce (an arbitrary

number used only once in a security session) that is

used to protect the sensitive data against unautho-

rized backup and restore. The effect is the same—

only a licensed application that has device keys is

able to make updates to this authenticated area.

Drive authentication

For software players, the architecture as described

in this section remains essentially the same. A

software application running on a general-purpose

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 MYLES AND NUSSER 133

computing device needs to have device keys in order

to access protected content on CPRM-enabled

media. Nevertheless, there is an attack specific to

this architecture. Because the application is running

on an extensible platform, there is a risk when the

drive containing the protected media is virtualized.

On an open platform with an extensible driver

model, the application needs to have a way to tell

that it is really interacting with a disk drive

containing the protected media, instead of a device

driver that merely replays the stream of encrypted

information that a valid drive would originate. To

solve this problem, CPRM-enabled drives support a

drive authentication mechanism that uses a chal-

lenge-response protocol which allows the applica-

tion to authenticate the drive. By introducing a

randomly generated challenge, the physical drive

can no longer be ‘‘spoofed’’ (have another drive

masquerade as this drive). Different CPRM-based

formats use different drive authentication proto-

cols—whereas some take advantage of the broad-

cast encryption key material, others are based on

separate keys.

Summary

The broadcast encryption-based copy protection

schemes for physical media provide several features

for the protection of premium content:

� Authorized access—Protected content is accessible

only to authorized devices and applications that

have valid device keys.
� Copy protection—The protected content is strongly

associated with a particular instance of media and

its unique Media ID.
� Management of usage conditions and related state

information—This allows licensed devices and

applications to securely manage copy control

information and related state data, such as the

maximum number of plays and the number of

plays already consumed.
� Drive authentication—On open platforms such as

PCs, there is an additional protocol allowing the

compliant application to authenticate the drive.

This prevents drive spoofing and ensures posses-

sion of the media.

These features of copy-protected media are as

important for the protection of games as they are for

the protection of audio/video content. As we will

show, both PC-based and console games can benefit

from them. Before we focus on applying these

protection capabilities to games, we will introduce

another interesting aspect of the broadcast encryp-

tion-based copy-protection scheme described in this

section: it can be used in a server-side binding

model to enable electronic distribution of content to

physical media.

Electronic distribution of protected content

The obvious way to add secure electronic distribu-

tion capabilities to CPRM-enabled media is with a

DRM. However, if there is no need to manage

content on the PC, there is an easier way. The copy

protection architecture described in the last section

can be extended to provide protection for content

during online distribution. In 2004, 4C Entity

published a specification for this architecture, call-

ing it CPRM for Network Download.
50

In this model, the binding operation during the

recording process is performed across a network

connection to a server system. As we discussed in

the previous section, the binding operation involves

processing the KMB of the target media with the

recorder’s device keys to obtain the management

key. Then the management key is combined with

the Media ID of the target media to calculate the

media unique key. Finally the title keys of the

content are encrypted with the new media unique

key. These are the steps that a CPRM-compliant

recorder performs to create a valid recording.

In the network download model, illustrated in Fig-

ure 4, the binding operation is now performed by

two components instead of one—a lightweight client

application that runs on a PC in the end user’s home

and a remote license server that has access to device

keys.

In this model, the client application interacts with

the drive to read from and write to the CPRM-

enabled media. The license server performs the

cryptographic binding calculation.

The client application retrieves the Media ID and the

KMB from the target media (step 2 in Figure 4) and

transfers it over the network to the license server

(step 3). The license server uses its device keys to

perform the binding operation and sends the

encrypted title keys back to the client (step 4), who

writes it onto the target media (step 5). At this point,

the recordable media is ready to receive the

MYLES AND NUSSER IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006134

encrypted titles, which can be downloaded by the

client application in any arbitrary way and written

onto the target media.

There are different ways to communicate the end

user’s content selection to the license server—the

model shown in Figure 4 assumes that there is an

eCommerce service involved that guides the end

user through the online shopping experience and

ensures payment has been obtained. At the end of

this process, the eCommerce service will launch the

client application and pass it a content identifier,

Content ID, in order to begin the server-side binding

process (step 1 in Figure 4). Also, the CPRM license

server has to be able to obtain the title key

corresponding to the content that is purchased.

These keys could be managed in a database at the

license server. Note that for this reason the license

server also needs to receive the Content ID in step 3

so that it can pick the corresponding title key for the

binding operation.

The server-side binding model has a number of

interesting characteristics. Most important, there is

no requirement to manage sensitive key material in

the client application. In fact, this client could be

open sourced without compromising the security of

the system. The license server, on the other hand,

can be hosted in a secure facility to provide

adequate protection for the device keys. Also, the

CPRM download architecture has excellent privacy

properties. The security model itself does not force

the end user to reveal his or her identity, and it does

not even allow the license server to build a profile of

the consumer because it cannot tie individual

transactions together. Of course, the payment or

subscription component in the eCommerce service

might require identification—but if an anonymous

subscriber management system is used, the trans-

action can be kept completely confidential. Finally,

observe that the content itself remains persistently

encrypted and can be obtained by the client

application in whatever way desired. Because all

media-specific information is contained in the

protocol flow with the license server, the encrypted

content object can be cached or even shared among

users in a peer-to-peer fashion if desired.

CONTENT PROTECTION FOR GAMES:
DEPLOYMENT SCENARIOS
In this section we present five scenarios that

illustrate how the previously described protection

mechanisms can be deployed for video-game copy

protection. In each of the scenarios we discuss how

the proposed mechanisms address the attacks

described in the section ‘‘Gaming and piracy.’’ In

addition, PC and console-based gaming have differ-

ing capabilities, and therefore, the copy-protection

mechanisms must be customized to the particular

platform. In these scenarios we illustrate how the

described protection mechanism can be customized

to address platform differences. Lastly, the scenarios

illustrate how the protection mechanisms do not

restrict the method of distribution; that is, they

apply both to physical media and distribution by

download.

Watermarking for PC-based games

Piracy protection for PC-based games has the

advantage that protection technologies developed

for general software can be directly applied. By

using the software-watermarking technique previ-

ously described, each individual copy can be

customized to the user. Using this model, software

can either be distributed as prepackaged software

purchased at a retail store or through online down-

load distribution. In either case the game package

contains the installation executable as well as a

crippled game executable, which is nonfunctional

until the installation process has been completed.

During installation, a one-time connection to the

registration server is required. The registration

process requires that a user submit some form of

unique identification in exchange for the water-

Figure 4
CPRM for network download

Device Keys

CPRM
Download
Client

eCommerce
and Download
Service

CPRM
Download
License Server

Write bound
title keys

Read KMB,
Media ID

2

134

5

CPRM
Media

Title keys
bound to
media

Content IDContent ID,
Media ID,
KMB

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 MYLES AND NUSSER 135

mark-specific code, which creates the fully execut-

able game linked to the user. The unique identifier

must enable the future identification of the user.

Additionally, this information has to be personal

enough that the user is unlikely to share it with

others. An example of such information includes a

credit card number. Figure 5 illustrates the instal-

lation process of a watermarked game that is linked

to the user.

Using this protection model, the user is not

prohibited from playing the legally registered game

on multiple machines. This allows for the portability

desired by the gaming community, which is

generally accomplished by transporting the physical

media. The model also does not prohibit the player

from creating back-up copies of the game in

countries where such activity is legal. However, this

model does address the difficulty associated with

identifying the source of an illegal distribution.

When an illegal copy of the game is produced and

distributed, the copy contains the watermark asso-

ciated with the original owner. When illegal copies

are recovered, the watermark is extracted and

compared with the data contained on the registra-

tion server. This information leads to the user who

is guilty of illegally redistributing the game.

Copy protection and watermarking for console

games

In this model, we apply the copy protection

technology described in the section ‘‘Content pro-

tection for physical media’’ and our software

watermarking capabilities presented in the section

‘‘Using software watermarking to combat game

piracy’’ to the problem of copy protection for

console games.

This is a straightforward application of CPRM and

CPPM to gaming consoles. In this model, the

console is equipped with device keys that have to be

robustly embedded in the device. The media used to

distribute the gaming content uses broadcast en-

cryption-based copy protection as described in the

section ‘‘Content protection for physical media.’’ It

comes with a KMB that is capable of revoking

compromised game consoles or any applications

that copy gaming content off a disk for redistribution.

Figure 6 illustrates a way to combine copy

protection functionality with our watermarking

technology. This assumes that the game console has

connectivity and is capable of persistently managing

the fingerprinted executable or at least the finger-

print data in permanent local storage. Whenever a

new game is first played on the console, the console

has to go through the fingerprint registration flow,

and the game is digitally fingerprinted (side marked

‘‘Play’’). The registration information submitted for

fingerprinting can include both a personal identifier

that the user is reluctant to divulge publicly and a

console identifier. Should the content be pirated,

this allows the identification of the compromised

console and the subsequent revocation of its device

keys with an updated KMB.

As Figure 6 shows, this basic model can be

combined with the CPRM download architecture

described in the section ‘‘Content protection for

physical media’’ to enable electronic distribution of

new gaming content by means of a PC-based client

application (side marked ‘‘Distribution’’). Following

the CPRM for Network Download model, there is no

need to hide sensitive key material on the PC

because the cryptographic binding calculation is

done by the license server. The result of the CPRM

download is a CPRM-enabled disk that contains

protected content which is in every aspect similar to

a prerecorded disk available in retail stores.

The security properties of this model are similar to

those of a player for 4C-enabled content, except that

the fingerprint provides an additional level of

protection. Attempts to copy the installation media

or to lift the content off the installation media are

thwarted by the copy-protection technology. If the

attack is focused on the console, the attacker might

Figure 5
Installation and registration of a watermarked game

2

1

3

Watermark
Code

Watermark Code

Unique Identifier

Game
Executable

Crippled
Game
Executable

Game
Installer

Registration
Server

MYLES AND NUSSER IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006136

succeed in obtaining a decrypted copy of the game

but will still have to overcome the digital fingerprint

in order to avoid being tracked down. Should the

attacker decide to redistribute the fingerprinted

games, we have two options. Using the personal

identification obtained during the registration proc-

ess, legal steps can be taken against the attacker.

Also, based on the console identifier, we know what

device keys the attacker is using, and we can revoke

them in subsequent game releases—either via

electronic download or distribution on prerecorded

media.

The most difficult to defend against is an attacker

who managed to obtain valid device keys and is

therefore in a position to create and distribute new

installation images on recordable disks. With our

current fingerprint technology there is no way for us

to trace the attacker in this scenario because the

fingerprint has not been inserted yet. Other forensic

technologies, such as traitor-tracing schemes, might

be needed to be able to identify the source of the

pirated games. Applying these concepts to execut-

able content is certainly an area for future research.

Copy protection and watermarking for PC games

In this scenario we leverage the properties of CPPM

to develop an architecture for media-based distri-

bution of PC-based games. We reuse concepts

developed for software implementation of 4C media

players.

What differentiates the PC from the gaming console

in the first scenario is that PCs, or any other general-

purpose computing platform, do not come equipped

with device keys. To solve this problem, we

introduce a game loader component that manages

device keys protected by tamper-resistant software

and capable of executing encrypted gaming content.

The game loader needs to obtain 4C device keys.

This can be done in one of two ways: The game

loader can be shipped with shared device keys with

a limited validity period. That approach requires a

solid online update capability so that the game

loader can be updated with a new version as soon as

the shared keys expire. Alternatively, there can be a

registration flow as shown in step 1 in Figure 7. This

registration does not require payment but must

include a Personal ID suitable to discourage an end

user from registering multiple times with different

identities in order to get multiple sets of device keys.

The game loader itself can be shipped on the copy-

protected disk as an unprotected file to be installed

automatically when the disk is inserted in the drive.

The loader is a generic component designed to be

used with a variety of different titles. It only requires

updating if it becomes known that a particular

implementation is compromised, and updating can

happen either over the network or with new media.

After the game loader setup is complete, the actual

game can get installed onto the PC. At this point, the

Figure 6
Copy protection for console games

Game Console

CPPM or
CPRM
Media

CPRM
Media

Play Distribution

Fingerprint
Registration
Server

Game Game

Device Keys

Disk Drive

Personal Computer

Device Keys

License Server

eCommerce and
Download Service

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 MYLES AND NUSSER 137

game itself is registered, and user-specific water-

mark information is inserted into the game execut-

ables, thereby creating a functional, fingerprinted,

and encrypted binary. As part of the registration

flow (step 2 in Figure 7), both the unique Media ID

of the installation media and the Personal ID are

sent to the registration server in order to prevent a

copy from being registered multiple times by

different users. The Personal ID has to be an

identifier that can be traced back to the user and that

the user is reluctant to share with others. This could

be a credit card number or a subscriber ID and

password combination for an online system oper-

ated by the game publisher—as long as that system

is based on authenticated users.

The game loader now plays the role of a software

player for CPPM-protected multimedia content: To

execute a game, the game loader decrypts pages of

the fingerprinted executable on the fly and executes

the game. On the Windows** family of operating

systems, the game loader could be implemented as a

file-system filter driver. The game loader can also

take advantage of the CPRM drive authentication

procedure to make sure the original installation disk

is available. Finally, the game loader is also tasked

with enforcing any usage conditions that might be

associated with the game.

Looking at the attack scenarios described in the

section ‘‘Gaming and piracy,’’ we observe that

sharing the installation media is discouraged in two

ways. We assume that users are unwilling to share

their Personal IDs (the registration flow links the

Personal ID to the Media ID), but should they

nevertheless decide to do so, the license server can

limit the number of installations per user to a

reasonable maximum. Furthermore, the drive au-

thentication procedure requires the corresponding

installation media to be physically present so that

only one of the installed copies can be active at any

given time. This architecture basically supports

multiple installations with the same Media ID and

Personal ID and facilitates multiple installed copies

that are registered to the same user—either on the

same machine or on different machines. The

attacker could conceivably attempt to spoof the

Media ID when registering the game, but the game

installer can validate the Media ID by using the KMB

and some content from the disk.

The installation medium itself is now subject to the

copy-protection capabilities of CPPM. If the disk

image is copied onto another blank medium, the

game loader will not be able to calculate the correct

title keys and will therefore fail to decrypt the game

executables.

A more elaborate attack against which to defend is

the removal of some or all of the protection layers in

order to redistribute the game as an unprotected

image. This can be done at two levels. Portions of

the game executable will have to be in the clear as

they are executed. If these portions are captured and

reassembled together with the nonexecutable gam-

ing content to form a complete, stand-alone distri-

bution, the attacker still has to remove the

fingerprint from the executable to prevent the pirate

content from being traced back to him.

Alternatively, the attacker might try to obtain an

unwatermarked copy of the game executable by

extracting the device keys from the game loader, or

by locating device keys on the Internet, and using

them to obtain a decrypted copy of the game on the

installation media. However, these game execut-

ables have been prepared for fingerprint insertion

and are therefore not in an executable state. To

succeed, the attacker has to go through the

registration flow again and then successfully remove

the digital fingerprint. Thus, our level of resilience

against both of these attacks depends on the

strength of our fingerprinting technology.

Figure 7
Copy protection and watermarking for PC games

Personal Computer

Game
Content

Game
Content

Device
Keys

Game Executable

Game
Content

Game
Content

Game Executable

Game Loader

Disk Drive

Device Keys

Media ID,
Personal ID

Fingerprint

Loader
Registration1

2

CPPM
Media

MYLES AND NUSSER IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006138

If a compromised game loader becomes publicly

available on the Internet, new games can be released

with updated KMBs that disable the hacked com-

ponent. If the game loaders are using shared device

keys, this revocation will trigger an update of all

game loaders in the field.

We observe that by adding the registration protocol

flows for the game executables, the role of copy

protection for the installation media is diminished.

In the next scenario, we present a model that

completely abandons protection of the installation

media and therefore enables electronic distribution

and various forms of super-distribution in addition

to the conventional distribution of games on media.

Super-distribution, a common term used in

discussing DRM systems, is a way of distributing

freely and widely digital files that are protected by

using tamper-resistant technologies to prevent

modification and modes of usage not authorized by

the vendor.

Electronic distribution of PC games

In this section we present a variation of the

architecture described in the previous section. This

model uses the copy-protection features of CPRM-

protected recordable media to establish a strong tie

between the game executables and the target

machine. Also, with this model, we would like to

enable secure online distribution of the game

content. Thus, possession of the installation media

is no longer necessary as a proof of ownership—the

installation image can be obtained in many different

ways. In this model, the user is charged and obtains

a license for the game when the registration flow is

completed.

As in the previous scenario, the model in Figure 8

uses the game loader as an enabling tool that is

protected by tamper-resistant software and contains

device keys. However, in this case, the crypto-

graphic keys to unlock the game executables are

managed on a separate SD memory card, protected

by the 4C copy-protection features described in the

section ‘‘Content protection for physical media.’’

The game executables themselves are encrypted and

located on the PC. To obtain the decryption keys for

running the game executables, the game loader has

to be able to successfully process the KMB on the SD

memory card by using its device keys. The built-in

storage devices of the PC are used to extend the

capacity of the SD memory card. In other words, the

SD memory card is used to manage the inventory of

licensed games for a given user.

Looking at the security properties of this model, we

observe that protection of the installation media is

no longer a concern. It does not matter if the

installation image is copied, shared through a peer-

to-peer network, or redistributed in other ways. As a

matter of fact, with this model, the installation

media itself could be given out without charge, for

example, to people who subscribe to a video gaming

journal. Only during the registration flow would the

user actually acquire a license to the game. There-

fore there is no need to be concerned about users

sharing or copying the installation media. With

respect to the other attacks discussed in the

introduction, this model has the same characteristics

as the architecture presented in the previous section.

Note that this model enables several interesting new

features.

� The CPRM for Network Download architecture

described in the section ‘‘Content protection for

physical media’’ can be used in order to remotely

associate new gaming content with the SD

memory card. If combined with the registration

flow for watermark insertion, this provides an

effective method for electronic distribution.
� Even a small SD memory card (a 64-MB model

currently retails for less than $20) can handle key

material for a very large number of games. This

avoids the check for the installation disk, which

could be considered problematic from a usability

perspective. A single SD memory card can easily

be used to manage 1000 games and has a very

high degree of portability.
� The secure state management capabilities of the

SD memory card can be used to implement a

variety of usage conditions to enable new business

models. The scenarios that can be realized this

way include a limited time rental, a ‘‘try before

you buy’’ model that limits the number of plays,

and others.
� Because the game registration flow includes the

Media ID, a game can be installed safely on

multiple machines with the same SD memory

card. This enables support for multiple installa-

tions while only one of them can be active at a

given time. The SD memory card literally becomes

the key to unlock the installed game on the PC.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 MYLES AND NUSSER 139

� Extending this model further, the SD memory card

can also be used to store other game-related state

information in unprotected mode, allowing the

end user to consistently play a game across

multiple installations on different machines by

taking along his or her SD memory card.

To summarize, the significant change in this model

is that the SD memory card replaces the installation

media as a token of ownership. It no longer matters

if the game was received on physical media or via

download—the key to unlocking the installed game

executable is managed on the SD memory card,

taking advantage of the CPRM copy-protection

features and providing a high degree of portability.

Management of virtual game assets with copy-

protected media

Another requirement, which has surfaced with the

increasing popularity of online games, is the need to

secure virtual game assets that are of real value in

the gaming community. These assets include not

only certain attributes of a character in the game,

which can only be acquired after playing for a long

time, but also belongings of the character that are

transferable. There is an active secondary market

where these virtual assets are swapped or even

bought and sold by users who play the game.

The need for protection of these virtual assets arises

from their real world value. In certain scenarios, the

need for protection can be addressed with copy-

protection technology. In particular, this is the case

if virtual assets are managed locally on the end

user’s machine and if these assets are transferable in

a peer-to-peer fashion. The secure state manage-

ment capabilities of copy-protected media can then

be used to manage the inventory of virtual assets

and to enable transfer operations, similar to the

mechanisms used to handle copy or move oper-

ations with multimedia content.

The model presented in the previous section lends

itself well to being extended to include this

capability. Figure 9 illustrates the extended model.

In addition to storing the user-specific state in-

formation in unprotected mode on the SD memory

card, any virtual assets can be stored in protected

mode and will be subject to the copy-protection

features of the CPRM-enabled media.

In this scenario, the SD memory card contains all the

user-specific information, including the protected

inventory of virtual assets. Device keys are needed

to manage the inventory of assets on the SD memory

card in protected mode and to perform a proper

copy or move operation for transfer. Following the

Figure 8
Electronic distribution of PC games

Personal Computer

Game
Content

Game
Content

Device
Keys

Game Executable

Game
Content

Game
Content

Game Executable

Game Loader

SD
 C

ar
d

Re
ad

er

Device Keys

Game Registration, Binding Request

Fingerprint, Bound Title Keys

Loader Registration1

2

Download,
Super-distribution Regular

Media

MYLES AND NUSSER IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006140

architecture described in the previous section, the

device keys are managed by the game loader. To

make this asset management functionality available

to the game executables, we propose to export this

capability in the form of an application program-

ming interface (label API), as shown in Figure 9.

Note that some of these interfaces will require

authentication of the calling code module with a

code signature to make sure user assets are created

and removed only by valid game executables.

In this model, the SD memory card serves as the

storage container for all virtual assets created by a

game. By leveraging the copy-protection features of

the SD memory card, we provide a basic level of

security for virtual assets and allow them to be

managed locally, at the end user machine. This

solution effectively prevents backup-restore type of

attacks, such as a user selling an asset and then

restoring a backup to recreate a copy of the asset.

A successful attack against this model will have to

involve reverse engineering the game loader in order

to obtain the device keys. In that case, the broadcast

encryption-based revocation mechanism is our

defense to enforce an update of the game loader

applications.

CONCLUSION

In this paper we presented two novel approaches to

copy protection for video games that target some of

the shortcomings of current techniques. These

techniques draw on previously developed protection

technologies, which to the best of our knowledge

have yet to be applied to video games. The first

approach uses branch-based software watermarking

to create game executables that are linked to the

user. Through this technique the gaming industry

can begin to address one of the most difficult aspects

of video game piracy: identifying the source of an

illegal distribution. As an alternative, we draw on

the parallels between games and premium audio

and video content to demonstrate how the broadcast

encryption technology used by 4C can be applied to

both PC and console-based games. The use of these

open standards-based techniques would enable the

gaming industry to move away from protection

based on proprietary information and toward

techniques that have a stronger scientific basis.

**Trademark, service mark, or registered trademark of
Commodore-Amiga, Inc., Microsoft Corporation, Nintendo,
Inc., Orion Pictures Corporation, SanDisk Corporation, Sony
Computer Entertainment, Inc., Lenovo Ltd., Toshiba Corpo-
ration, or Valve Corporation in the United States, other
countries, or both.

CITED REFERENCES
1. ‘‘Computer and Video Game Software Sales Reach Record

$7.3 Billion in 2004,’’ Entertainment Software Association
(ESA) (Jan. 2005), http://www.theesa.com/archives/
2005/02/computer_and_vi.php.

2. ‘‘2005 Special 301 Report on Global Copyright Protection
and Enforcement,’’ International Intellectual Property
Alliance (IIPA) (Feb. 10, 2005), http://www.iipa.com/
special301.html.

3. G. Myles and H. Jin, ‘‘Self-Validating Branch-Based
Software Watermarking,’’ in Information Hiding, 7th

Figure 9
Management of virtual game assets on an SD Memory Card

Transfer

Personal Computer

API

Device
Keys

Game Executable

Game
Loader

Personal Computer

Game Executable

Game
Loader

SD
 C

ar
d

Re
ad

er

SD
 C

ar
d

Re
ad

er

API

Device
Keys

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 MYLES AND NUSSER 141

International Workshop, Lecture Notes in Computer
Science 3727, Springer-Verlag Inc., New York (2005), pp.
342–356.

4. T. Maude and D. Maude, ‘‘Hardware Protection Against
Software Piracy,’’ Communications of the ACM 27 (9),
950–959, 1984.

5. D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Bohen, J.
Mitchell, and M. Horowitz, ‘‘Architectural Support for
Copy and Tamper Resistant Software,’’ in Proceedings of
the Ninth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ACM, New York (2000), pp. 168–177.

6. Trusted Computing Group Home, Trusted Computing
Group, http://www.trustedcomputinggroup.org/home.

7. S. Parsons, ‘‘More on Xbox Live Bans,’’ Joystiq, Weblogs
Inc., (November 14, 2004), http://www.joystiq.com/
entry/6673569691391113/.

8. F. B. Cohen, ‘‘Operating System Protection through
Program Evolution,’’ http://all.net/books/IP/
evolve.html, 1992.

9. D. Libes, Obfuscated C and Other Mysteries, John Wiley
and Sons, New York, 1993.

10. C. Collberg, C. Thomborson, and D. Low, ‘‘A Taxonomy
of Obfuscation Transformations,’’ Technical Report 148,
Department of Computer Science, University of Auckland
(July 1997).

11. C. Collberg, C. Thomborson, and D. Low, ‘‘Manufactur-
ing Cheap, Resilient, and Stealthy Opaque Constructs,’’
in Proceedings of the ACM Symposium on Principles of
Programming Languages, ACM, New York (1998),
pp. 184–196.

12. C. Collberg, C. Thomborson, and D. Low, ‘‘Breaking
Abstractions and Unstructuring Data Structures,’’ IEEE
International Conference on Computer Languages, IEEE,
New York (1998), pp. 28–38.

13. F. Hohl, ‘‘Time Limited Blackbox Security: Protecting
Mobile Agents from Malicious Hosts,’’ Mobile Agents and
Security, Lecture Notes in Computer Science 1419,
Springer-Verlag Inc., New York (1998), pp. 92–113.

14. C. Wang, ‘‘A Security Architecture for Survivability
Mechanisms,’’ Ph.D. Thesis, University of Virginia,
School of Engineering and Applied Science (Oct 2000).

15. C. Wang, J. Hill, J. C. Knight, and J. W. Davidson,
‘‘Software Tamper Resistance: Obstructing Static Analysis
of Programs,’’ Technical Report CS-2000-12, University of
Virginia, Dec. 2000.

16. C. Wang, J. Hill, J. C. Knight, and J. W. Davidson,
‘‘Protection of Software-Based Survivability Mecha-
nisms,’’ in Proceedings of the 2001 International Confer-
ence on Dependable Systems and Networks, IEEE
Computer Society (2001), pp. 193–202.

17. C. Linn and S. Debray, ‘‘Obfuscation of Executable Code
to Improve Resistance to Static Disassembly,’’ in
Proceedings of the 10th ACM Conference on Computer and
Communications Security, ACM, New York (2003), pp.
290–299.

18. D. Aucsmith, ‘‘Tamper Resistant Software; An Imple-
mentation,’’ in Information Hiding, First International
Workshop, Lecture Notes in Computer Science 1174,
Springer-Verlag Inc., New York (1996), pp. 317–333.

19. T. Sander and C. F. Tschudin, ‘‘Protecting Mobile Agents
Against Malicious Hosts,’’ Mobile Agents and Security,
Lecture Notes in Computer Science 1419, Springer-Verlag
Inc., New York (1998), pp. 44–60.

20. D. Aucsmith and G. Graunke, Tamper Resistant Methods
and Apparatus, U.S. Patent 5,892,899, Assignee: Intel
Corporation, 1999.

21. H. Chang and M. Atallah, ‘‘Protecting Software Code By
Guards,’’ in Proceedings of the ACM Workshop on
Security and Privacy in Digital Rights Management,
Lecture Notes in Computer Science 2320, Springer-Verlag
Inc., New York (2001), pp. 160–171.

22. B. Horne, L. Matheson, C. Sheehan, and R. Tarjan,
‘‘Dynamic Self-Checking Techniques for Improved Tam-
per Resistance,’’ in Proceedings of the ACM Workshop on
Security and Privacy in Digital Rights Management,
Lecture Notes in Computer Science 2320, Springer-Verlag
Inc., New York (2001), pp. 141–159.

23. C. Collberg and C. Thomborson, ‘‘Watermarking, Tam-
per-Proofing, and Obfuscation—Tools for Software Pro-
tection,’’ IEEE Transactions on Software Engineering 28,
No. 8, 735–746, August, 2002.

24. Steam, http://www.steampowered.com.

25. D. Grover, ‘‘Program Identification,’’ The Protection of
Computer Software: Its Technology and Applications, The
British Computer Society Monographs in Informatics,
Cambridge University Press, Second Edition, 1992.

26. K. Holmes, Computer Software Protection, U.S. Patent
5,287,407, Assignee: International Business Machines
Corporation, Feb. 1994.

27. P. R. Samson, Apparatus and Method for Serializing and
Validating Copies of Computer Software, U.S. Patent
5,287,408, Assignee: Autodesk, Inc., Feb. 1994.

28. S. A. Moszowitz and M. Cooperman, Method for Stega-
Cipher Protection of Computer Code, U.S. Patent
5,745,569, Assignee: The Dice Company, Jan. 1996.

29. R. L. Davidson and N. Myhrvold, Method and System for
Generating and Auditing a Signature for a Computer
Program, U.S. Patent 5,559,884, Assignee: Microsoft
Corporation, Sept 1996.

30. C. Collberg and C. Thomborson, ‘‘Software Watermark-
ing: Models and Dynamic Embeddings,’’ in Proceedings
of the Symposium on Principles of Programming Lan-
guages, 1999, pp. 311–324.

31. G. Qu and M. Potkonjak, ‘‘Hiding Signatures in Graph
Coloring Solutions,’’ in Information Hiding, Third
International Workshop, Lecture Notes in Computer
Science 1768, Springer-Verlag Inc., New York (1999),
pp. 348–367.

32. J. P. Stern, G. Hachez, F. Koeune, and J. J. Quisquater,
‘‘Robust Object Watermarking: Application to Code,’’
Information Hiding, 3rd International Workshop, Lecture
Notes in Computer Science 1768, Springer-Verlag Inc.,
New York (1999), pp. 368–378.

33. A. Monden, H. Iida, K. Matsumoto, K. Inoue, and K.
Torii, ‘‘A Practical Method for Watermarking Java
Programs,’’ in Proceedings of the 24th Computer Science
and Applications Conference, IEEE Computer Society,
2000, pp. 191–197.

34. R. Venkatesan, V. Vazirani, and S. Sinha, ‘‘A Graph
Theoretic Approach to Software Watermarking,’’ Infor-
mation Hiding, 4th International Workshop, Lecture Notes
in Computer Science 2127, Springer-Verlag Inc., New
York (2001), pp. 157–168.

35. Genevieve Arboit, ‘‘A Method for Watermarking Java
Programs via Opaque Predicates,’’ in Proceedings of the
Fifth International Conference on Electronic Commerce
Research (ICECR-5), 2002.

MYLES AND NUSSER IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006142

36. P. Cousot and R. Cousot, ‘‘An Abstract Interpretation-
Based Framework for Software Watermarking,’’ in
Proceedings of the 31st ACM SIGPLAN-SIGACT Symposi-
um on Principles of Programming Languages (2004), pp.
173–185.

37. C. Collberg, E. Carter, S. Debry, A. Huntwork, J.
Kececioglu, C. Linn, and M. Stepp, ‘‘Dynamic Path-Based
Software Watermarking,’’ in Proceedings of the SIGPLAN
Conference on Programming Language Design and
Implementation (2004), pp. 107–118.

38. J. Nagra and C. Thomborson, ‘‘Threading Software
Watermarks,’’ Information Hiding, 6th International
Workshop, Lecture Notes in Computer Science 3200,
Springer-Verlag Inc., New York (2004), pp. 208–233.

39. J. Nagra, C. Thomborson, and C. Collberg, ‘‘A Functional
Taxonomy for Software Watermarking,’’ in Proceedings
of the Twenty-Fifth Australasian Computer Science Con-
ference, Australian Computer Society Inc. (2002), pp.
177–186.

40. J. M. Nardone, R. P. Mangold, J. L. Pfotenhauer, K. L.
Shippy, D. W. Aucsmith, R. L. Maliszewski, and G. L.
Graunke, Tamper Resistant Methods and Apparatus, U.S.
Patent 6,205,550, Assignee: Intel Corporation, March 20,
2001.

41. M. L. Fredman, J. Komlos, and E. Szemeredi, ‘‘Storing a
Sparse Table with O(1) Worst Case Access Time,’’
Journal of the ACM 31, No. 3, 538–544 (July 1984).

42. K. Mehlhorn and A. K. Tsakalidis, ‘‘Data Structures,’’ in
Handbook of Theoretical Computer Science, Volume A:
Algorithms and Complexity (A), J. van Leeuwen, Editor,
pp. 301–341, MIT Press, Cambridge, MA (1990).

43. SPEC CPU2000, http://www.spec.org/cpu2000/, 2001.

44. A. Fiat and M. Naor, ‘‘Broadcast Encryption,’’ in
Advances in Cryptology (Crypto 93), Lecture Notes in
Computer Science 773, Springer-Verlag Inc., New York
(1994), pp. 480–491.

45. D. M. Wallner, E. J. Harder, and R. C. Agee, ‘‘Key
Management for Multicast: Issues and Architectures,’’
RFC 2627 (informational), The Internet Society (July
1999).

46. C. K. Wong, M. Gouda, and S. Lam, ‘‘Secure Group
Communications Using Key Graphs,’’ in Proceedings of
the ACM SIGCOMM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer
Communication, ACM, New York (1998), pp. 68–79.

47. D. Naor, M. Naor, and J. Lotspiech, ‘‘Revocation and
Tracing Routines for Stateless Receivers,’’ Advances in
Cryptology (Crypto 2001), Lecture Notes in Computer
Science 2139, Springer-Verlag Inc., New York (2001), pp.
41–62.

48. Publications and Current Versions, 4C Entity, Intel
Corporation, IBM, Matsushita Electric Industrial Co.,
Toshiba Corporation, http://www.4centity.com/docs/
versions.html.

49. For additional background, see C. Brendan and B. Traw,
‘‘Protecting Digital Content Within the Home,’’ Computer
34, No. 10, 42–47 (Oct 2001).

50. ‘‘Content Protection for Recordable Media Specification—
Network Download Book,’’ Intel, IBM, MEI, Toshiba
(2004), http://www.4centity.com/licensing/adopter/
CPRM-Download-090.pdf.

Accepted for publication August 30, 2005.

Ginger Myles
IBM Almaden Research Center, 650 Harry Road, San Jose, CA
95120 (gmyles@us.ibm.com). Ginger Myles is currently a
Postdoctoral Scientist at IBM’s Almaden Research Center and
is finishing a Ph.D. degree in computer science at the
University of Arizona. She received a B.A. degree in
mathematics from Beloit College in Beloit, Wisconsin and an
M.S. degree in computer science from the University of
Arizona. Her research focuses on all aspects of content
protection.

Stefan Nusser
IBM Almaden Research Center, 650 Harry Road, San Jose, CA
95120 (nusser@us.ibm.com). Dr. Stefan Nusser is a research
staff member at IBM’s Almaden Research Center and manages
a research team focused on content protection. His research
interests include content protection and digital rights
management. He received a Ph.D. degree in management
information systems from Vienna University of Business
Administration and Economics in Vienna, Austria. &

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006 MYLES AND NUSSER 143

Published online January 1 , 2006.8

