G. Deen

M. Hammer
J. Bethencourt
I. Eiron

J. Thomas

J. H. Kaufman

Running Quake Il on a grid

As a genre of computer games, the massively multiplayer online game (MMOG) has
the promise of enabling up to tens—or even hundreds—of thousands of simultaneous
players. This paper describes how we began with an existing single-server online game
engine and enhanced it to become a multiserver MMOG engine running on a grid.
Other approaches require that a game be specifically designed to scale to MMOG
player levels. Our approach, using IBM OptimalGrid middleware (which provides an
abstracted underlying grid infrastructure to an application) allowed us to reuse an
existing game engine without the need to make any significant changes to it. In this
paper we examine the design elements needed by an MMOG and provide a practical
implementation example—the extension of the id Software Quake 11® game engine
using OptimalGrid middleware. A key feature of this work is the ability to
programmatically partition a game world onto a dynamically chosen and sized set of
servers, each serving one or more regions of the map, followed by the reintegration of
the distributed game world into a seamless presentation for game clients. We explore
novel features developed in this work and present results of our initial performance

validation experiments with the resulting system.

INTRODUCTION

The computer game industry is deploying a new
genre known as the massively multiplayer online
game (MMOG), characterized by large numbers of
clients—ranging from several hundred to hundreds
of thousands—playing simultaneously. Until now,
the creation of such a scalable game has been done
primarily by custom-designing game engines unique
to the specific MMOG. Efforts to create reusable
MMOG game development and game engines have
been underway, Butterﬂy.net1 being an example of a
commercial game development environment for
MMOGs. In its work, Butterfly.net obtained patents
related to the development of games and games
using grids. Subsequently, it has updated its busi-

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

ness plan and renamed itself Emergent Game
Technologies. At the time of the writing of this
paper, details about this new entity’s game archi-
tecture were not available. The issues surrounding
the building of MMOGs and large-scale virtual
environments” have become an area of interest and
study, with academia publishing studies on general
architecture, intelligent on demand provisioning,3
server selection,” distributed communications mod-

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

DEEN ET AL.

21

22

els,S distributed server location schemes,” game
artificial intelligence, and agent-based testing
frameworks for game developers. Additionally, the
application of MMOG technology to building large-
scale agent-based simulations’ for research on non-
game-related commercial customer relationship
management systems is also underway. The com-
plexities of large-scale group interactions® within
online games, that is, exploring the communities
that come about within the virtual worlds of the
games, has also become a topic of research.

Many techniques have been developed to distribute
both massively parallel applications and connected
parallel applications, such as cellular automata and
finite element modeling.9 MMOGs—Ilike other ap-
plications that stress the resource limitations of a
single system—are excellent candidates to which the
scalable computing power of grids can be applied,
such as the approach taken by Emergent Technol-
ogies1 and that presented in this paper.

MMOGs are especially demanding in their low
communication-latency requirements. In comput-
ing, as in other systems, increasing the number of
parts, in this case the number of computers,
increases the likelihood of failure of a part. To
provide a stable and long-lasting game for players,
MMOGs running on a grid require fault tolerance
and dynamic load balancing, just like scientific grid
applications. However, unlike scientific applications
that tolerate interruption for checkpoint and logging,
online games do not permit interruption or latency
degradation during load balancing or system main-
tenance.

Because considerable performance optimization and
game-play balancing have been done to single-
server multiplayer engines such as id Software
Quake** and Valve Half—Life**,m’11 it would be
desirable if the effort put into such engines could be
reused to run MMOGs. Instead of designing new
engines specifically for MMOGs, the reuse of
existing optimized engines would allow many of
today’s games to be scaled up to MMOG level and
allow game developers to continue using game
engines with which they are familiar. Many popular
engines apply similar architectures, offering the
hope that techniques for scaling up of game engines
to MMOG levels for one engine can be reapplied to
other engines. Ideally, such scaling techniques
would be done in a generalized manner, rather than

DEEN ET AL.

specifically enhancing any one particular engine,
helping to broaden the applicability of the tech-
niques.

In this paper we report the results and lessons
learned in enhancing an existing single-server
multiplayer game engine to scale to the MMOG
level. We chose the popular open-source Quake
" game engine from id Software for this work,
but have attempted to develop reusable generalized
techniques in performing the enhancement. This
enhancement was accomplished by using the
OptimalGrid13 autonomic grid middleware from IBM
Research. This middleware was originally designed
with scientific and engineering applications in mind;
however, the OptimalGrid object model and dy-
namic load-balancing features were easily adapted
to asynchronous online games.

In this paper, we examine the key issues in
extending a game engine to running in a multiserver
environment; we introduce the Quake II game
engine and OptimalGrid middleware. We then
provide an overview of the resulting system, out-
lining its major components, followed by an
exploration of the details of the design. We
introduce the runtime environment developed to
manage the execution of the MMOG game engine
and discuss the additional debugging challenges
inherent in a large distributed system, along with the
solutions we used. We then present the results of the
performance experiments we performed on the
system, and lastly, our conclusions and a brief
outline of future work.

MASSIVELY MULTIPLAYER ONLINE GAMES

Many types of parallel computational problems have
been considered in research and implemented in
mature systems. They range from problems with
moderate connectivity, such as the simulation of
finite element models, to massively parallel tasks,
such as the search for optimal Golomb rulers. "
MMOGs however, present a set of unique con-
straints. Like many scientific simulations, the game
worlds found in MMOGs are often well-suited to
division into spatial regions that may be run in
parallel, albeit connected regions.

Game-world partitioning

Game worlds typically are continuous like the real
world. This means that each spatial division has
strong connectivity to the regions that neighbor

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

(touch) it; actions and events in one region affect
objects in neighboring regions. For example, a gun
fired in one region of the world may cause damage
to a player in another region that lies along a line-of-
sight path from the first. Long-range interactions
between regions can exist, meaning in the example
that there may be multiple regions along the line-of-
sight path, with each region possibly being hosted
on a different server. Thus connectivity between
regions is not limited to those that are “physically”
adjacent, but instead, connectivity exists between
any region and all the regions that are visible to it.
For example, in long hallways and large open areas,
a player’s local actions must be observable to
players in any other visible region, regardless of
which server is controlling that region. Any imple-
mentation of spatial partitioning of the game world
into discrete regions assigned to different servers
must provide a mechanism to propagate events to
servers holding adjacent regions, and it must also
have a mechanism to propagate such events along
the full path of connected regions, and events must
be propagated in a timely manner so that no cause-
and-effect delay is introduced that exceeds that
intended by the game designer or would be
experienced if the game regions were all hosted on a
single server.

The dependencies between spatial regions of the
world are mitigated somewhat by the presence of
barriers such as walls, but some long-distance
connections typically remain. This situation com-
plicates the problem of dividing the world into
regions. How can a parallel system take advantage
of the near-neighbor connectivity of regions with
multiple obstacles while still allowing distantly
connected regions to correctly influence one anoth-
er? An intelligent algorithm for positioning region
boundaries should take into account the underlying
mechanics of the game that may or may not allow
one point to influence another.

Data exchange

One way to help address the problems of strong
connectivity is to introduce a global, shared message
space, or whiteboard, for communication between
portions of the parallel system. In the most extreme
case, if every one of n servers was responsible for a
region of the world connected to some region on
every other server, connecting the servers directly to
one another would result in O(nz) connections
across the network, or n — 1 per server. Introducing

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

a single whiteboard as an intermediary, however,
reduces the total connections to O(n), or one per
server. Of course, this improvement comes at the
cost of increasing latency in sending messages and
limiting the collective bandwidth of all communi-
cation channels in the system to that of the
whiteboard. A more scalable approach is to use a
number of whiteboards, each responsible for for-
warding messages between a set of servers that are
nearby (in the sense of game-world regions). Each
server then needs to connect only to several white-
boards.

Partition granularity

A key problem involved in the partitioning of the
game world is choosing the degree to which the
world is subdivided. For a one-time or static
partitioning of the game world, a significant trade-
off must be made. If too few regions are used, then
fewer servers may be used, but regions can become
overloaded with players and other active entities. If
too many regions are chosen, the area of the game
world covered by a region becomes quite small.
While this allows for more servers to be used, it can
result in excessive data exchange among servers due
to the number of regions connected to each region;
player movement between servers will be very
frequent, and other game entities, such as weapons
fire, will be required to cross numerous servers. A
practical strategy for choosing a partitioning gran-
ularity takes into consideration the maximum
number of servers upon which the game will be
hosted, the complexity of the interconnectedness of
regions, and features specific to the game that affect
event propagation and generation.

m A key problem involved in the
partitioning of the game world is
choosing the degree to which
the world is subdivided. m

Although some effort at selecting an optimal
allocation of servers and assignment of regions can
be made before launching the game, such choices
become outdated and invalid quickly as the result of
game play. Thus, to achieve and maintain an
optimal use of servers requires adaptive reassign-
ment of regions and reallocation of servers (adding
and removing) during game play. This is because

DEEN ET AL.

23

24

server load arises primarily from the players active
on a server and the players moving within the game
world—and thus moving between servers. These
activities can continuously change the optimal
assignment of regions and use of servers.

Latency

Apart from the issues arising from the topology of
the game world, MMOGs have another set of distinct
challenges. These derive from the interactive nature
of games. One would like the solution of a scientific
problem to be completed as soon as possible, but the
precise time taken by each successive step is not
typically a concern. Games, however, have stringent
constraints on the time taken to compute successive
states of the world and the latency in client/server
communications. This is especially true because it is
normally necessary to perform all game “physics”
(evaluation of the rules of the game world) on
servers to prevent players from cheating by altering
their client software. Consider the sequence of
events triggered in a typical game when a player
moves forward. After the user chooses to move and
presses the corresponding key, the command is sent
to the server, which computes the movement, and
the new position of the player is then sent back to
the client. Players do not get any visual feedback
that they have moved until this round-trip commu-
nication has taken place. Players are sensitive to
delays in this feedback loop as small as tens of
milliseconds. To address this sensitivity during
periods of unusually high latency, the Quake II
client attempts to predict the server response to
provide feedback to the user sooner. However, this
prediction is error-prone and considered a last
resort.

These latency requirements significantly constrain
parallel architectures for MMOGs. If a distributed
architecture requires switching of network connec-
tions between clients and servers or transmission of
game objects such as players or projectiles between
servers, those transitions must take place in a time
frame sufficiently short to allow a seamless user
experience.

One strategy to reduce critical latencies is to treat
aspects of the system as asynchronous. Rather than
having every server act in lockstep, exchanging
messages at regular intervals, as is essential in
scientific simulations, it can be advantageous to
allow different components of the system to run

DEEN ET AL.

freely, sending each other events as soon as the need
arises. In a system for running MMOGs on multiple
servers, this may mean allowing the servers to
generate states of their portion of the world out of
sync with each other and to send each other
messages as soon as it is useful to do so.

QUAKE II

Quake II is a popular multiplayer (but not massively
multiplayer) game developed by id Software. Re-
leased in late 1997, it is representative of the genre
of games known as first person shooters—games in
which the player is presented with a three-dimen-
sional (3D) view rendered from the perspective of
the game character and whose action is centered on
the player firing weapons at adversaries. Like most
other first person shooters (FPSes), multiplayer
games in Quake II take the form of death matches, in
which players run around a level composed of
rooms, tunnels, and outdoor areas attempting to
shoot and kill their opponents. Although almost
seven years old, Quake II is particularly represen-
tative of many online games. Its engine has been
used in a number of other well-known games
including Valve Half-Life'™"", Xatrix Kingpin: Life of
Crime**,16 and Soldier of Fortune**."” Also, its
engine is architecturally similar to that of the more
recent Quake 111+ *.'* More important, id Software
released the complete source code under the GNU
General Public License (GPL) in 2001, allowing us to
modify it for research purposes. The engine is
written in a combination of highly optimized C and
x86 assembly.

Multiplayer games in Quake II are run by a single
server. All network communications are over User
Datagram Protocol (UDP). The designers of the
Quake II network protocol chose to use UDP to
reduce latency and also because it is not useful to
retransmit some time-sensitive messages. For ex-
ample, suppose a Quake II server sends a client an
update on the state of the world so the client may
render it, but the packets are lost. By the time the
client could discover that the packets were dropped
and request that the server retransmit, the server
would have likely generated the next state of the
world. Rather than retransmitting, the server should
send the most recent information.

All game logic and physics are carried out on the

server; the client is essentially a graphics-rendering
and client-input engine. The client continuously

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

sends packets to the server with the state of the user
keys and mouse position. The server keeps all game-
state information and sends clients updated posi-
tions and appearances of entities in the game world
10 times per second, or every 100 ms. To make
motion appear smooth, the client interpolates
between the updates in the 10 Hz stream. In
moments of unusually high latency, the client also
attempts to predict the contents of the next sever
update, but this is error-prone and considered a last
resort.

We now give a few more details of the production
and structure of Quake II levels, which will be useful
later. A number of levels were developed by id
Software and shipped with the game, and many
more have been created by players. Levels (self-
contained scenarios within the game) can be
downloaded from the Internet and loaded into the
game at runtime. After the geometry of a level has
been created using specialized map creation tools,
the positions and orientations of walls and other
surfaces in the level are used to create a binary space
partitioning (BSP) tree. The BSP tree divides the
entire level into a number of small, irregular
(usually), convex polyhedrons, each of which
corresponds to a leaf in the tree. These BSP leaves
are further organized into leaf collections composed
of several adjacent leaves. A typical leaf collection
may be the size of a portion of a room. After the leaf
collections have been generated, each pair of leaf
collections is checked for the presence of line-of-
sight visibility between them, and this relation is
stored in the level with the leaf collections.

OPTIMALGRID

IBM OptimalGrid technology is research middleware
designed to hide the complexity of creating, man-
aging, and running, large-scale parallel applications
on any kind of heterogeneous computational grid.
OptimalGrid was created, in particular, to address
scientific and technical computing problems that are
parallel and connected, that is to say, not massively
parallel. However, the OptimalGrid object model is
general enough to handle a wide variety of other
coupled parallel applications, including MMOGs and
massively multiplayer online role-playing games
(MMORPGS). OptimalGrid automates the task of
resource allocation on a computational utility or grid
to optimize the performance of running applications.
It efficiently and automatically partitions a given
problem throughout a large collection of computer

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

resources and manages communication between the
nodes. It also adjusts to the dynamic grid environ-
ment by providing autonomic functionality in the
middleware layer to re-optimize the complexity of
running problem pieces to match the changing
landscape of resource capabilities on a grid.

OptimalGrid’s runtime model uses three different
services that are placed on computers in the grid:
autonomic program manager (APM), computer
agents (CAs), and TSpaces servers. The APM over-
sees the execution of the application and contains
any load-balancing and global-scheduling control
used by an application. The APM directs the work
assigned to and executed by each of the CAs. CAs
hold and execute the work units assigned to them by
the APM. Each CA has a variable problem partition
(VPP), which is the set of work units assigned to the
CA. The size of this set can be varied by the APM—
hence its name.

Communication between grid nodes is accom-
plished by exchanging messages with a set of one or
more distributed whiteboards. This distributed
Linda'®"” model for communication is embodied in
IBM TSpaces20 technology. Communication by
reading messages from or writing messages to a
whiteboard server has some additional overhead,
but offers several important advantages:

1. The whiteboard is both a communication system
and an in-memory database. This greatly sim-
plifies the implementation of both load balancing
and fault tolerances. It also allows caching,
staging, and checkpointing of persistent data
(that may reside in a relational database).

2. In a highly connected problem, a whiteboard
model can actually reduce the load. If each
problem piece must exchange data with
N neighbors, a peer-to-peer architecture requires
N — 1 connections per node. In a distributed
whiteboard architecture, each node reads from
one whiteboard and writes to n whiteboards,
where n << N.

3. When the communication load is high, Optimal-
Grid takes advantage of the TSpaces multiread
and multiwrite operations that group messages,
thus lowering overall message traffic. So long as
the computational load is correctly balanced with
the communication cost, this can actually lower
the application back-end latency. When the
communication load is very low, OptimalGrid

DEEN ET AL.

25

26

takes advantage of a wait-to-read or wait-to-take
mode. Thus nodes can register for callbacks and
receive data only when it is available, reducing
network load by eliminating query overhead.

OptimalGrid does not preclude the use of other peer-
to-peer communication modes, and one can even
locate a whiteboard on each grid node and perform
all reads from main memory. However, we found
that even for an FPS application like Quake II,
communication through a set of distributed white-
boards delivers adequate or even excellent per-
formance with good scalability.

The OptimalGrid object model assumes that an
application can be described as a graph where the
nodes on the graph contain data, methods, and
pointers to neighbors. In OptimalGrid terminology,
these nodes are called original problem cells (OPCs).
OPCs are the “atomic” problem units or the smallest
pieces of a problem that represent a unit of
computation. In general, OPCs interact with their
neighbors, sharing information to produce a larger,
big-picture computation. Therefore, an OPC must
communicate its state with its neighboring OPCs.
During load time, OPCs are grouped into collections.
These collections are precomputed and have pre-
defined dependencies on other collections. Each
computational node is assigned one or more OPC
collections. This defines both the computational
workload and the communication workload (the
collection edges) for that node. The partitioning of
the entire initial set of OPCs into collections and the
assignment of OPC collections to actual computers
on the grid must minimize the overall processing
time. The VPP for each CA is assigned zero or more
OPC collections, the actual number of which is
changeable through a load-balancing operation by
the APM. Thus, a computer runs a CA that holds a
VPP, which in turn holds zero or more OPC
collections that are each made up of one or more
OPCs.

Processing time is composed of three components:
computation time, communication time, and, in the
case of synchronous applications, idle time. To
efficiently parallelize the application, the ratio of
computation to communication for each node must
be minimized.

The computation time per server is primarily a
function of the number of players within the server

DEEN ET AL.

OPCs. When the OPCs are initially partitioned into
collections, however, we cannot know precisely
where players will be positioned; therefore, we
attempt to balance the area of the game world
within OPCs, OPC collections, and servers as an
approximation.

Additionally, when distributing OPC collections
among servers, we wish to give each server a set of
adjacent collections in order to minimize transfers of
players and other game entities between servers.

Given these considerations, the BSP-tree leaf col-
lections of a Quake II level are a natural choice for
the OPCs. To group the OPCs into collections, we
place them into an octree. (An octree is a tree data
structure that organizes 3-dimensional space. Each
node represents a cuboid volume and has eight
children.) The nodes of the octree are recursively
subdivided until the number of nodes reaches the
desired number of OPC collections. Each time it is
necessary to divide a node, the largest node is
selected. The resulting collections are then approx-
imately equal in size and consist of spatially
adjacent OPCs. An OPC collection is considered to
be dependent on another collection if there is line-
of-sight visibility between an OPC in the first
collection and an OPC in the second collection. This
is determined by checking for visibility between the
corresponding leaf collections, as stored with the
level by the Quake II map-creation tools. This
method was tuned to ensure that the resulting OPC
collections were small enough that a server could
handle at least several (even at their busiest in terms
of player presence and activity). Larger OPC
collections may result in the inability to effectively
balance the load among servers. As a side note, for a
game to be effectively parallelized and run on grid
middleware, it must provide some hints about the
connectivity among locations in the game world.
Quake II does this by providing the line-of-sight
visibility information between its leaf clusters within
the map file.

At runtime the grid nodes report their real-time
performance data. This data is collected by the
OptimalGrid load balancer, which watches over the
running parallel application and attempts to balance
the load across the computational nodes. This task is
accomplished by reassigning OPC collections from
loaded to less busy machines so as to harmonize the
workload across the servers being used by the game.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

The actual OPC collection to be moved should be
chosen with great care. The estimated communica-
tion overhead should be low relative to the expected
gain in computation time so that the overall
performance gain will be beneficial. Additionally, if
all the available servers are being used to the limit of
their reasonable capacity, the system can add new
servers to meet demand. Likewise, when the servers
supporting the game world are underutilized, the
world can be consolidated onto fewer servers,
freeing those that are no longer needed to meet
demand.

In Figure 1A we show a fragment of a BSP tree. The
root node of the tree represents the first partitioning
of the world space of the game into two halves,
separated by a plane. Each internal node represents
one half the space represented by its parent node
and also splits this space into two halves for its
children. The leaves of the tree do not introduce any
additional splitting of the space. In Quake II, the BSP
leaf nodes can represent a relatively small space
compared with the size of typical game objects
(such as players), so they are quite numerous.
Therefore, the game defines leaf clusters to be
groupings of leaf nodes that share common attri-
butes, such as visibility information. The game map
format contains this BSP tree along with information
about the relevant relationships among leaf clusters.
In our system, we create a one-to-one mapping
between leaf clusters and OPCs. When we form OPC
collections, we use the information the map file
provides us about leaf clusters to guide us in
creating edges between OPC collections. An example
fragment of the graph of connected OPC collections
is shown in Figure 1B. In practice the Quake II map
file is generous in associating leaf clusters for
visibility, and as a result, the graphs of connected
OPC collections approach completeness (a graph is
complete when every pair of nodes is connected).
Because this is undesirable for distribution, we
employ stricter heuristics to determine which OPC
collections should be connected.

SYSTEM OVERVIEW

Figure 2 illustrates the core components that make
up OptimalGrid and the components that comprise
the Quake II game environment running on Opti-
malGrid. The following describes each of these
components and conceptual elements and its role in
the overall system.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

’ BSP Node

5 OPC (BSP Leaf Cluster)
OPC Collection

Figure 1

Mapping: (A) Binary space partition (BSP) tree to
IBM OptimalGrid original problem cells (OPCs);

(B) BSP leaf clusters to OptimalGrid OPC collections.

e Autonomic program manager—A service respon-
sible for coordinating the start up and operation of
a distributed program. In this case, the APM
coordinates the distributed game and can be used
to manage its computing resources and dynam-
ically adjust allocations of these resources during
the game.

e Back-end boundary—Defines the boundary be-
tween the infrastructure of the grid and the outside
world. Things on the inner side of this boundary
are assumed to be owned and operated by the
party hosting the distributed game; clients outside
of this boundary could potentially be anyone with
access to the system proxies and a copy of the
game client.

® Bot (short for robot)—A modified game client that
is given enough artificial intelligence to wander
about the game world, stressing the system
infrastructure in the process. Bots are meant to
simulate clients when enough players are not

DEEN ET AL

27

28

Distinct services or processes
running on computers

Grouping of processes

and the computers they
run on (when there can be
more than one computer)

Figure 2
System components and communication paths

TSpaces
Server

Viewer
Pool

available or when there is a need to control
participation in the game for testing and debug-
ging purposes.

e Client—A human user not necessarily associated
with the hosts of the distributed game. The clients
represented in Figure 2 can be game clients in the
sense of software connecting to the proxies via a
network connection and human users interacting
with the system ... and ultimately the virtual
game world.

e Compute agent (CA)—OptimalGrid terminology
for a network node with a piece of the grid
application problem. In this case, the problem is
hosting the game world, and having a piece of that
problem means being responsible for a region of
that virtual world and everything that moves
through it. The CA is a component made of both
general OptimalGrid logic and application-specific

DEEN ET AL.

logic. In our case, this is logic that pertains to
hosting a Quake II server instance.

* CA process—A Sun Java** process that extends
and ultimately uses the OptimalGrid code base to
run application-specific logic. In our case, this is
logic to interface the CA to an associated Quake II
server instance.

* Game server—A term we use to refer to a CA or CA
process given the task of running an instance of
the Quake II server. We usually talk about game
servers in a context in which we need to refer to
them collectively, or in the context of other
components of our system.

e Console—A visual tool used by a human to see
and manipulate the current state of the game on
the grid. (It is labeled on Figure 2 as grid-eye view
[GEV].) Using this tool, a user can see which CA
nodes are currently hosting pieces of the game

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

world, how those pieces are arranged, and where
players and projectiles are in respect to them. A
user at the console also has the option of moving
game-world pieces among the game server pool to
demonstrate the overall ability of the system to
handle the world in a dynamic way.

* Proxy—A lightweight networking daemon written
in the C language to perform various tasks relating
to interfacing a pool of game clients with a pool of
potential servers. Among other things, it filters
and routes the game traffic between these two
pools by using information about the current
distribution of the game world and the current set
of game servers in the game server pool.

® Proxy filter—Interfaces the proxy (written in the C
language) to a Java-based TSpaces communica-
tion system. Using this interface, the proxy gets
initialization information about the game world as
well as updates about changes to the server and
proxy pools.

® Quake II server—An instance of a Quake II game
server modified to work under the control of
OptimalGrid.

e Scheduler—A pluggable unit that can be either
general or application-specific, which gives the
APM logic the ability to balance the load on the
grid that it is managing.

e TSpaces server—An implementation of the Linda
model for representing persistent shared state
among distributed nodes through spaces holding
tuples. These tuples collectively hold all the
information necessary to coordinate the operation
of the system and keep its current state.

® Tuple space—A whiteboard space on a TSpaces
server for holding tuples. The Linda model defines
operations for reading and writing tuples in these
spaces, as well as making queries for tuples
meeting some match criteria.

DESIGN ASSUMPTIONS AND DECISIONS

We started with a small set of assumptions about
how the system would be composed and what it
ought to be capable of when we were finished. The
following are our initial assumptions:

1. The use of Quake II as our proof-of-concept game
server and client was chosen because it was
available under the GNU GPL; it was simple
enough to rework in a short period of time; and it
was fast-paced enough to make perceivable lags
in our underlying infrastructure detectable,
which was important to demonstrate that our

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

solution was capable of meeting the performance
needs of games.

2. The use of OptimalGrid as our grid middleware
technology was chosen because of its inherent
ability to scale systems across a grid and provide
the needed communications and load-balancing
technology to make the game world both
distributed and dynamic.

3. The use of TSpaces was chosen because it was
already used by the OptimalGrid system for
communication, and it provided a scalable
communication system for managing the game-
system global state across all the individual nodes
of the grid.

We would make only the most minimal modifica-
tions to the Quake II server and client. Our intention
was to demonstrate the application of grid technol-
ogy to online games, not to create a new and
improved Quake II engine.

By deciding to grid-enable an online game, we
committed to having many game servers, many
proxies, and many TSpaces servers.

m We would make only the most
minimal modifications to the
Quake Il server and client. m

Server boundaries

One problem with splitting a once single-server
game into distributed pieces is that the game space
now has boundaries and, as objects like players and
projectiles move through game space, they need to
be able to see across and move across server
boundaries. A popular solution to this problem is to
make each section of the game world cleanly
divisible from the rest and small enough to exist on
a single server. This means, however, that there is
no way for the player to see what is happening on a
server without actually being in the region of the
game world on the server. It also means using a
contrived map that just connects otherwise disjoint
game worlds through some kind of game element
like a door or teleportation device. Because the map
is contrived so that the state of each server is self-
contained, there is no communication issue among
the pools of game servers and game clients. Just as
with a single game server for a set of clients, the

DEEN ET AL.

29

30

Figure 3
Game map partitioned into six areas (A2—6) and
distributed among four game servers, Sa—d

system has a one-to-many mapping between game
servers and game clients.

We did not want to create or use contrived maps,
nor did we want just to devise a system that had no
state dependencies among the system game servers.
To have a satisfying and general solution required
the division of a premade world into a form that
could be managed by many servers.

Following the OptimalGrid approach, we created a
problem builder to make this splitting a start-time
process that happens only when the system is
initialized. Thus, before the game world is adopted
by the game servers, it is split into indivisible units
that we call areas. These areas, as they are
implemented in our system, correspond to the
OptimalGrid concept of an OPC collection. One or
more areas are then allocated to each of the active
game servers. Once defined, these areas do not
change shape or size, but the assignment of areas to
game servers can change. As load-balancing occurs,
areas are traded among game servers, and the
collections are thus redefined. Any two areas that
are adjacent in the original game world but are
grouped apart on separate servers constitute a
server boundary. The problem builder and the
dynamic load-balancing algorithms can identify
which areas are mutually visible and, whenever
possible, server boundaries are chosen to minimize
both the surface area and visible interfaces between
the servers. There are, however, always some

DEEN ET AL.

visible connections. This boundary is literally a
surface in the map (usually a plane) that separates
area volumes managed by separate servers. When a
game object, such as a player or projectile, crosses
such a boundary that separates server S, from server
Sy, S, must remove the game object from its state
and communicate its arrival and relevant associated
state to §,.

In Figure 3 we show a simple game world of six
areas managed by four game servers. Solid lines
illustrate areas grouped on the same server that are
mutually visible and connected, and dotted lines
show connections to areas placed on other servers.
We needed to address the problems associated with
allowing paths of visibility and influence to cross
such server boundaries. Say, for example, that a
player in area A, is facing into A, and something in
A, is moving or otherwise changing state. S, needs a
way of keeping players up to date who are currently
in §, areas.

Proxy

In principle, game servers and game clients could
talk to each other directly, as they do in the original
Quake II game design, but this would introduce
some drawbacks. In the original design, there is
exactly one server managing the game world of one
or more clients. In our system, we assume there can
be both many clients and many servers. Having
clients and servers talk directly would require
connection-switching logic in the game client, which
had already been written under the assumption that
there was only a single game server.

Additionally, forcing direct contact between clients
and servers means potentially exposing much of the
internal infrastructure. This certainly includes game
servers, but it also includes other services not used
directly by the game clients, that is, services used by
the grid infrastructure as it communicates internally
and manages its subsystems. Exposing these sys-
tems means giving them addresses that are acces-
sible from all potential game clients, which may
include the entire Internet. In some cases this may
be acceptable, but it would also be desirable to
completely hide these machines from the end user
both for security and for added indirection and
abstraction of the grid system working behind the
scenes. We thus implemented an intermediary
proxy to manage the many-to-many connectivity
that is required when more than one server is used.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Figure 4
Back end connections: (A) When clients and servers are connected directly, the back end is exposed, and the
number of required connections is large; (B) when a proxy (or set of proxies) couple clients and servers, the back
end can remain private, and the proxies can multiplex connections between clients and servers.

This approach, and the alternative direct connection
approach, are illustrated in Figure 4.

In Quake II, the game server generates a new world
state every 0.1 second. At this same rate, the server
must send this state to all of the clients that need it.
In our system, this includes both clients that are in
the region of responsibility of this server and clients
that can “see” into this region. Without a proxy, it is
difficult for the server to get this information to the
right clients without having to keep a lot of
repetitive information. For example, it must know
about clients that it is not managing directly so that
it can send updates to them. As an alternative, the
server could send its state to neighboring servers,
which could then forward it to the clients that they
are managing, but this approach again requires
servers to be responsible for keeping other servers
informed about their continually changing state.

In our system, we eliminate this complication by
placing a pool of proxies between the clients and
servers. When a client wants to play the game, it
selects a proxy, connects to it, and stays connected
to it even as the player traverses the game world.
The proxy performs the act of connecting to the
game server responsible for the region of the world
in which the player is located. As the player moves
through the world, and hence into areas managed by
different servers, the proxy moves its connection for
the client to the appropriate server. The proxy is
aware of the regions of the world visible to the
player, and thus connects to the servers holding
those regions. It then filters out messages relating to
areas not visible to the player, but passes along, in

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

an integrated stream of updates, any messages from
visible areas, regardless of the server from which
they originated. In the implementation described
here, the proxy is not fault-tolerant. If a given proxy
fails in this implementation, those players connected
to it are disconnected from the game, but the game
continues to run without them. Implementation of a
fault-tolerant proxy was considered beyond the
scope of the project goals; however, either addi-
tional logic could be easily added to the game client
to support automated failover, or some form of
manipulation of network address or routing tables to
the proxy pool could be used, as is done with Web
servers, to provide failover.

The proxy can be thought of as a sort of multiplexer/
demultiplexer. A single proxy allows a set of game
servers and a set of game clients to communicate
with one another while minimizing the necessary
design and code modifications to either set. This
means we can afford to have a simpler client, as the
client does not have to be knowledgeable about the
underlying network back end, nor does it need to
know how to continually switch its connection
across this back end. It also means that the back end
can be totally inaccessible to the outside world, as
long as the pool of proxies is accessible and these
proxies can reach the back end. Finally, we can
improve game-state updates. Proxies can handle the
task of aggregating game-state information from all
the various servers and ensuring that each client
gets the exact information it needs, depending on its
location and the visibility associated with that
location.

DEEN ET AL

31

32

CA Process

TSpaces

Figure 5

' TSpaces

Communication: (A) Game server composed of two subcomponents, Quake Il server and a CA connected
by an interprocess communication (IPC) mechanism; (B) two game servers communicating by means of

a TSpaces whiteboard.

Proxy alternatives

Alternative architectures that do not use a proxy are
possible, though each has its own drawbacks. One
alternative is to merge the proxy logic into the client
itself. With the client responsible for managing its
own connection switching, the need for a proxy pool
would be eliminated. This would additionally
eliminate the filtering of game updates sent to the
client (passing only those from regions visible to the
player), thus significantly increasing message traffic
and bandwidth requirements between the client and
the game servers. To alleviate this, servers could
have additional logic added to perform some
message filtering to clients, but this approach would
increase the computational load on the game
servers, reducing the number of players or the size
of the world region each could host.

Another alternative is having a sticky server, that is,
clients never switch connections; they connect to a
server and stay connected. The game server itself
performs the switching by allowing the client to
tunnel through it as it moves through the game
world. The drawback with this is that now a
machine is acting as both a proxy and game server,
when really they should be separate tasks. What
happens when this game server goes down or the
administrator wants to take it off the network? It is
managing not only a piece of the game world, which
can be moved to another grid node, but it is also

DEEN ET AL.

acting as a proxy for some clients as well. This
design is less robust, as clients may not have the
logic necessary to switch proxies midstride, and if
this is the case, shutting down a sticky game server
will result in disconnections, even if the game state
of that server is transferred.

Game server

When Quake II is deployed onto OptimalGrid, it runs
as a child process of the OptimalGrid CA, which is a
service that encapsulates and manages the respon-
sibilities and resources of a grid node. In Figure 5A
we illustrate how a game server is made up of two
layers. The CA process—an application-specific Java
process—is the lower layer and has a communica-
tion path to TSpaces, and with it, the rest of
OptimalGrid. The upper layer is an instance of the
Quake II server, which has a communication path to
its clients via the proxy pool. The two layers of the
game server communicate via an interprocess
communications (IPC) mechanism that allows
events and data to be sent and received. This
mechanism couples the two processes written in
different source languages and running in different
runtime environments—the Java Virtual Machine
(JVM**) and the native machine.

Interserver communication
Figure 5B illustrates the connection of two servers
via TSpaces. When a game object crosses a server

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

boundary, that object state needs to be communi-
cated from the original server S, to the new server S,
very quickly and reliably. This transfer process
happens in the following steps:

1. Game object P moves from game area A, through
the game space on S, and its new game area A, is
noted. Every time a game object moves into a
new BSP-tree leaf cluster, the Quake II server
notifies the CA of a possible need to transfer the
game object.

2. Area A, is known to be on another server §,.
Therefore S, begins the dump sequence to
remove P from its state and place it into TSpaces
for §,.

3. The Quake II process on S, removes P, serializes
it, and sends it to its CA process on S, through an
IPC mechanism.

4. The CA process places the serialized copy of P in
a Java object, which is put into TSpaces.

5. The CA process of S, retrieves a tuple from
TSpaces containing a Java object holding P.

6. From this Java object, the CA process extracts the
serialized version of P and sends this version to
its own Quake II process on S,.

7. The Quake II process on S, deserializes P and
places P back into the game world in its new
position in A,.

Quake Il modifications

To give the Quake II server the mechanisms to
manage only portions of the game world, when
before it assumed control over it entirely, several
extensions and modifications were necessary.
Although we tried to avoid it, some minor changes
to the Quake II client were also necessary, although
these ended up being trivial and in the end did not
alter much of the logic or behavior of the client:

¢ Entity serialization and deserialization midgame

* Map-file interpretation and partitioning

® Packet size maximum reached; extended the
upper limit of the client packet size

e Game frame numbers translated and rewritten in
proxy

e Packet sequence numbers translated and rewritten
in proxy

* Game updates constructed in game server on a
per-area basis as well as a per-client basis

* Game updates about areas from game servers
routed by proxy to applicable clients

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Proxy state

The proxy needs to maintain some routing infor-
mation as its current state to properly route packets
between the game servers and game clients. Routing
a game packet is then a simple function of this state.
After examining what was required to route the
Quake II protocol, we found that several tables (lists
of associations) needed to be kept current to route
game traffic between clients and servers.

For the game updates that are created and delivered
for each simulation frame of the game world, we
need client-to-area mapping M., and area-to-area
mapping, M, ,. For client messages that provide
player input and commands to their corresponding
game servers, we need client-to-server mapping,

M.

M, , is static and an inherent property of the map
and its current partitioning into swappable units.
These units (which the proxy calls areas) are then
distributed as responsibilities among the game
servers and can later be traded between them in the
process of load balancing. M, , is unique because
this part of the proxy state is static. The other
mappings needed for routing are subject to change
throughout the course of the game.

We take a common approach to keeping these
mutable mappings up to date by putting their
continually changing pairings in each update that is
sent from the game servers to the proxies. For
example, to keep M., up to date, we allow the
servers to tag each client-specific message with the
client’s current area location. This avoids the need
for explicit updates about clients’ area changes,
which tend to happen often as the clients transverse
the virtual game world, but it also sidesteps another
issue: all the traffic coming directly from the game
servers to the proxy is, by default, unreliable.
Because the datagrams that make up these messages
can be lost by the underlying network stack, we
would have to invent or adopt some kind of
reliability layer to prevent our updates from getting
lost. By tagging every client update with the client’s
current area, we avoid this problem.

The other dynamic mappings are maintained this
way as well. As the flow of game traffic comes into
the proxies from the game servers, the game servers
prefix a header for the proxy with pieces of the
current state of the proxy state mappings. The actual
data that appears in the header corresponds to the

DEEN ET AL.

33

34

type of the game update packet being sent. For
client-specific packets, client-routing data is pre-
fixed. For area-specific updates, area-routing data is
prefixed. The overhead of this data is minimal (eight
bytes), but it allows the proxy state to remain
current at all times and to cope with any disruptive
properties of the underlying unreliable UDP, which
does not include error detection or recovery/replay.

The state of each game entity is sent to every client
that needs it in each frame of the game. This enables
the proxies and modified game servers to accom-
plish the task of making a once-centralized world
that is now split across many servers acting in
concert.

Global views

Once the system is running, observing exactly what
is going on from some global world view is a
desirable administrative function. Without such a
view, the only graphical view an administrator has
of the game world is through a game client, and the
only view of the game world’s current occupation of
the grid is by snooping about the communications
between the grid components. What is needed is a
snapshot of the state of the grid for a developer or
administrator and a conceptual view of a working
grid system for a newcomer.

We accomplish this by aggregating the problem
state and responsibility of each grid node and
presenting this aggregation graphically. This global
viewing client, called the console or grid-eye view
(and labeled GEV in Figure 2), provides this
function. Using the console, we can see what, if any,
responsibility has been given to each node in the
running system, and we can see the human players
or game bots active in the system and their location
in the game world. From this view, we collapse
many layers of abstraction: from physical machines,
to grid services, to problem pieces, to game notions
like map sections and players. Furthermore, our
console gives us the ability to issue commands and
query statuses for each node in the system. This
includes the ability to dynamically move the game-
world pieces between the participating grid nodes.
An explanation of the supported operations is given
in the next section, “Load balancing.”

LOAD BALANCING
The architecture for Quake II on a grid thus far has
not dealt with dynamically reconfiguring the use

DEEN ET AL.

and number of servers in response to system load. In
our architecture, OptimalGrid CAs are responsible
for starting and stopping Quake II servers and for
moving player and game objects between servers.
There remains one more important feature provided
by CAs: load balancing.

In the OptimalGrid core design, each CA is assigned
a task set or VPP holding OPC collections. In Quake
II terminology, an OPC collection represents an area
in the Quake II world map, and a VPP represents a
region composed of connected areas.

m | oad-balancing operations
occur on demand as the APM
identifies a suboptimal
distribution of load across the
grid. m

In the OptimalGrid architecture, load balancing is
achieved by migrating an OPC collection from the
VPP on one CA to another. In the case of Quake II,
this operation translates to adding or removing areas
from the region controlled by a particular server.
Entities in a migrated area are dropped by the server
that formerly owned that area and are picked up by
the server that now assumes responsibility for that
area, similar to the operation that takes place when
an entity crosses a region boundary.

Originally, OptimalGrid was designed to support
scientific applications, which typically follow a
synchronous model of communication. This syn-
chronous mode of operation as supported by
OptimalGrid is based on stages of computation; that
is, no communication occurs between the CAs,
followed by a stage of information exchange. This
information exchange is required for the next stage
to begin, providing a natural synchronization point
for the grid application. OptimalGrid uses this
feature to collect performance data and redistribute
the workload accordingly. Quake II, on the other
hand, is an asynchronous application. Interaction
between different CAs is predicated on user inter-
action (entities moving from one region to another),
which does not occur at regular intervals and does
not involve all the CAs at the same time. We
therefore must artificially synchronize the various
CAs when reconfiguration occurs.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

Synchronization is required to maintain consistency
of the application state. To demonstrate this
consideration, let us examine a simple scenario in
which one player P, is throwing a hand grenade at a
second player P,. The two players are located in two
separate regions of the world map controlled by two
different servers, S, and S, respectively. At this
instant, the APM has decided to balance the system
load and the problem is being repartitioned. It so
happens that the OPC collection in which player P,
is located is now being reassigned to a third server.
Let us assume that P_’s grenade in the original
single-server setting would indeed hit P, . In the case
of a grid, without additional synchronization, the
grenade may or may not hit P,, depending on timing
(i.e., arace condition exists). If, at the time when the
grenade crosses the boundary of S ’s region, P,’s
area is already assigned to the new server S_ but the
player P, himself has not yet been transferred from
S, to S_, the grenade will appear to have missed
player P,. If, on the other hand, the grenade crosses
S,’s boundary either before the transfer of P,’s area
occurs or after it is completed, the grenade will
indeed appear to have hit P, as in the single-server
case. Such a condition is obviously unacceptable to
Quake II users.

We have chosen to implement synchronization of
the servers by freezing entities that take part in an
inter-region interaction that involves a region which
is being migrated for as long as the migration
operation is in progress. This ensures that any
additional inter-region activity is either wholly
completed before the migration takes place or is
delayed until after all the regions and their entities
are picked up by their newly assigned CAs.
Obviously, this is a trade-off solution that favors
consistency over real-time performance. However,
because the Quake II clients are designed to operate
in an environment in which communication be-
tween the server and client may be intermittent and
because the client maintains a map of the complete
world, the client can interpolate between the world
state updates to smooth out these freezes to the
user. This greatly mitigates the effects of the freezes
on the end user.

The load-balancing operations could be imple-
mented in terms of contraction and expansion
operations on the regions controlled by the servers.
When a server’s region is expanded, it is reconfig-

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

ured to take on responsibility for the new areas
added to it.

Entities in that area are then migrated to the
expanded server, and finally the server that pre-
viously controlled this area has its region con-
tracted. This solution, however, is Quake II-specific,
in contrast to our solution that is built around
OptimalGrid. We have chosen to implement the
load-balancing operations in a more transparent
way as far as the server code is concerned. Instead
of modifying the region controlled by an already
active server, our scheme creates a new server
(under its own CA) that is started with a config-
uration appropriate for controlling the newly modi-
fied region. Then, entities in the region in the
existing server are migrated to the new server.
Finally, any superseded servers, which now control
no entities, are shut down.

This solution has higher overhead because of the
need to start new servers, and it also requires better
management and knowledge of the grid configura-
tion because new servers are started on a different
machine. However, this solution is more generic and
does not rely on the ability of individual servers to
be reconfigured on the fly. It is also much better
from a game-play point of view as the client game
play is not interrupted by expansion, contraction, or
server replacement.

Figure 6 demonstrates a repartition operation. On
the upper half of the figure, we see S, and S,, where
S, controls an area R3 that is about to be reassigned
to §,. To perform the repartitioning operation, two
new Quake servers are allocated, S, and Spe The
configuration of the two new servers is the config-
uration that S_ and S, would have, respectively,
after the repartition operation is completed. S, and
S, drop all the entities in the areas they controlled,
and the new servers S_, and S, pick up the entities.
After the operation is completed, the old S, and S,
are shut down.

Load-balancing operations occur on demand as the
APM identifies a suboptimal distribution of load
across the grid. Identifying the ideal load distribu-
tion in the general case is a hard problem. The CAs
report computation and communication loads at
regular intervals or on demand by the APM. The
APM uses pluggable algorithms to balance the load

DEEN ET AL.

35

36

| FE

Figure 6
Repartition operation moving regions between servers

across available servers. It is then possible to
implement policies based on any number of factors
upon which optimization is desired: number of
players on a server, the activity levels of players, the
load on the CPU, and so on. In our example
implementation, one policy we implemented was
rebalancing based upon the number of players on a
server: above a given threshold, the number of
servers assigned regions expanded to two; below a
given threshold, two servers were contracted into
one.

The following explains the basic load-balancing
operations supported by the OptimalGrid infra-
structure:

® Repartition—Balance the load on a server by
reassigning a region of the world map controlled
by one server to another server. In practice, the
two old servers are shut down, and two new

DEEN ET AL.

servers are assigned the two new regions resulting
from the repartitioning operation. This approach
of using two new servers was chosen so that we
can ensure full initialization and synchronization
of the new servers before using them. Future
versions will likely do away with this very
conservative approach.

Expand—Split the region set assigned to one
server into two smaller region sets and reassign
the two newly created regions to two new servers.
As with the repartition operation, we followed a
conservative strategy of not reusing the existing
server as one of the servers after the split. It is
unlikely that future versions will be this conser-
vative.

Contract—Merge two regions controlled by two
servers into one. Reassign the newly created
region to a new server. Once again the strategy of
using a new server was chosen for this imple-
mentation.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

* Migrate—Reassign the region controlled by one
server to a new server. The old server is then shut
down.

In the case of the Quake II application, the load on
individual servers is directly related to the number
of players within the control region of the server and
is independent of the size of the control region itself.
Therefore, the load-balancing mechanism used by
the APM can be greatly simplified and based on
thresholds set for the difference between the
numbers of players in each region.

RUNTIME ENVIRONMENT

Instantiating Quake II on OptimalGrid is a carefully
orchestrated workflow across the many computers
on which the services that make up the system will
be run. Unlike a simple server running on only one
computer, Quake I on OptimalGrid has one or more
TSpaces servers, one or more CAs, one or more
proxies, one APM, and one problem builder. Addi-
tionally, one or more computers may be used to run
bots. Each of these services has build and config-
uration issues that need to be handled.

We initially created a tool to assist in setting up and
starting Quake II on OptimalGrid. This was intended
to make it easy for users to start and stop the
system. The first version of the tool was written in
Perl and was directly tied to the Quake II on
OptimalGrid application. The original version was
written in a few days and met our basic and initial
needs as developers. As Quake II on OptimalGrid
began to be used by more and more people outside
our immediate project team, the need to simplify the
configuration process for both nonexpert users and
the research team motivated us to revisit the tool.
The second version was more general. It was written
in Object-Oriented Perl and supported an external
XML (Extensible Markup Language) configuration
file.

The Quake II on OptimalGrid runtime system was
designed to work on Linux**. OptimalGrid can run
on any Java-enabled platform, but the Quake II
modifications made by the research team were done
only to the Linux version of the Quake II server. This
reduced the complexity of controlling the runtime
environment because only Linux needed to be
supported. The source for Quake II on OptimalGrid
consisted of both the Java code of OptimalGrid, the

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

C code of the Quake II server, and the proxy we
developed.

First runtime system

The first runtime system, written in Perl, followed a
hub-and-spoke model, where all the compilation,
configuration, and packaging into tar files was done
on the hub, then pushed (using the Linux scp tool)
to the appropriate node on the network, and then
unpacked. The services on each node were started
and stopped by means of a remote invocation of a
copy of the script on the hub by using the Linux ssh
tool. The spoke version would then directly invoke
the executable to start the service or issue the Linux
ki1l command to stop it. In this original version,
the specific machines that ran CAs, and thus servers,
were hard-coded into the master script. This script
was then used during the build and bundling
process to select the map partitioning that would be
used. Thus, in order to change either the specific
server assignment or the number of servers, the
source file of the script had to be edited and
completely rebuilt, followed by a complete redis-
tribution and unpacking of the system executables.
Even simple changes in the configuration were slow
and painful to make.

A consequence of doing all the builds on the one
master node is that the nodes that run the compiled
executables must have compatible runtime libraries.
Linux systems are patched regularly to incorporate
fixes and changes, particularly the GNU C compiler
libraries. For this reason, the hub node used for the
builds needed to be identical to the spoke nodes,
which would run the binaries. Although this
solution met the immediate needs of the research
team, its ongoing use revealed areas where usability
could be improved.

Second-generation runtime system

As use of the first runtime system grew beyond the
immediate research team, there were a number of
areas to improve:

* Configuration editing—Changing configuration
should only require the editing of one file. The
configuration file should be easy to edit, and it
should be programmatically verifiable for cor-
rectness. This was done by isolating all the
configuration parameters in one XML file: nodes,
node assignments, service options, and so forth.

DEEN ET AL.

37

38

XML provided the ability to programmatically
verify the configuration file. This allowed us to
implement a syntax checker for the configuration
file. A detailed semantic checker could have been
created as well by using a document type
definition and a validating parser, but this was
never implemented.

e Configuration changes—The runtime system
should only need to move the updated config-
uration file, and possibly any new code required,
to each node, instead of doing a complete rebuild
on the hub node, followed by a complete
replacement of any existing code on the spoke
nodes. This requirement was met by changing
when and where the OptimalGrid problem con-
figuration was performed. In the first version, this
was done when distribution tar files for each
service were compiled and built. The tar files for
the APM and the CAs included the explicit Quake
IT map partitioning for the specific number of
servers for which the system was being built.
Thus, every change to the number of servers
required a rebuild and redistribution of tar files.
This was avoided by making several changes.
First, the build process was changed so that it did
not require any specific knowledge of which
servers were being used or their number or roles.
The configuration for a specific setup was moved
into the XML configuration file. Second, the
problem builder process was modified to be run as
part of the launch sequence of the system. This
allowed the details of the system to be specified at
launch time instead of build time. Another benefit
of this was that once the executable for a service
had been installed on a node, only the config-
uration file needed to be updated when different
system setups were made.

® Build—The runtime system should be able to run
on different Linux systems. The requirement that
all the nodes be clones of the hub, or at least have
compatible runtime libraries, was very limiting.
The restriction to Linux only was not a problem,
but the restriction of all nodes being the same
distribution and version of Linux was. For
example many users wanted to run our Quake II
on OptimalGrid system, but the collection of
systems available to them on which to run would
include a heterogeneous mixture of Linux versions
and distributions, such as Red Hat** 7, Red Hat 8,
Red Hat 9, and SUSE** Linux to name a few. We
solved this by moving the compilation process of
C code from the hub node onto each of the spokes.

DEEN ET AL.

This did mean that when a service was set up on a
node for the first time, it was necessary to wait
while the C portions of it compiled, but this was a
one-time penalty. Subsequent starts would reuse
the previously built binaries.

e Service assignment and status—One of the limi-
tations of the original system was determining the
service assignments to nodes as coded in the script
file. To discover them, users would have to look at
the source of the Perl script. For non-Perl users,
this was not very friendly. Another limitation was
that once the system had been launched, there
Was no easy way to see the status and assignment
of all the services. We solved this by introducing
two features into the system. The first feature can
parse the XML configuration file and produce a
user-friendly summary of the system configura-
tion. The second feature dynamically queries the
status of each service on each node as laid out in
the XML configuration file and returns its current
status. These two features provide easy under-
standing of the system’s configuration and real-
time status.

The new runtime system was written in Object-
Oriented Perl. A set of utility classes were created for
performing interaction with the underlying operat-
ing system and for data management. A base class
representing a generic service was created, with
subclasses created for each of the services: APM,
problem builder, CA, proxy, and bots. The use of
object-oriented design allowed for easy extension of
the system for use in other OptimalGrid applications
and beyond. New services could be added quickly
by extending the base class and implementing tasks
specific to the service, such as building, configuring,
starting, stopping, and asking for status.

Another change in the design affected how the hub
issued commands on the spoke nodes. In the
original version, the script on the hub was dupli-
cated on each spoke. It would then call its copy of
itself, using a different subroutine as its entry point.
This is how the script would determine whether it
was running on the hub or a spoke. The change we
made was to create specific scripts for the hub and
for the spokes. Following object-oriented design
principles, we then created classes and subclasses as
needed for the two sides of the conversation. The
spoke script would instantiate the appropriate Perl
object class for the service on the node, which

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

would then follow the configuration in the XML file
and perform the requested action on the service:
start, stop, status, and so forth.

Hub and spoke conversations

One of the limitations we encountered was in
detecting the results of actions the hub node asked
the spokes to perform. The ssh session used to
connect with the spoke would only give the return
code of the last command to execute as an integer
when the ssh session was completed. Additionally
the messages to the stdout stream could be
captured, but they were only a stream of characters
without context. The stderr messages for remotely
executed tasks were difficult to capture in Perl—not
impossible, just difficult—but they too lacked
context. This made it difficult for the script on the
hub to do anything more meaningful than just dump
the messages to the console. A considerable amount
of mostly meaningless text was displayed when
launching the system on 20 nodes. The solution was
to create an XML messaging object that was used by
the hub to send commands to the spokes, and for
the spokes to send all output. This allowed the code
on the spokes to produce output as XML messages
and hold the resulting output from the scripts and
commands on the spoke, while retaining the context
of the text along with the return code associated
with them. With this additional knowledge, the hub
script could then be extended to perform more
intelligent and useful actions than was possible in
Version 1.

DEBUGGING

The task of parallelizing Quake II with OptimalGrid
presented the significant challenge of debugging the
large distributed application. In a simple client/
server application, there are only two parts to
consider when tracking down problems: the client
and the server. Behavior of both can be directly
observed through application graphical user inter-
faces, consoles, and the log files of each. Quake II on
OptimalGrid, by comparison, is much more complex
to debug.

The OptimalGrid services—CAs, APM, TSpaces, and
problem builder—are distributed across several
systems connected together to form the OptimalGrid
runtime. The pieces produce large amounts of
debugging information across different nodes and
servers. This information must be integrated to

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

present a useful overall view of the application state.
The addition of the Quake II servers, Quake II
clients, proxies, and proxy filters increases the
number of sources and also introduces new inter-
connected relationships (Quake II servers to CAs,
Quake II clients to Quake II servers, etc.) that must
be integrated for effective debugging of problems.
This resulted in our creation of several ways to
improve access to debugging information and to
make viewing it easier.

Logs

Each service and Quake II component produces
some form of log output to help in debugging. In a
typical test done during development, nine grid
nodes would be allocated. One node would run the
APM, TSpaces, problem builder, proxy filter, and
proxy, resulting in five logs. Six nodes would run
CAs and Quake servers, adding two logs per node
(two would be running CAs waiting for use as
needed and adding one log for the CA, and one log
each if a server was started). This adds up to 17 log
files across the nine nodes if load balancing is not
active, and up to 19 if it is. The problem grows as the
scale of the test grows.

Accessing these numerous independent logs was
tedious, requiring numerous logins. Our solution to
this was to add log access to our launch and
distribution system in the operating environment.
The launch systems knew which grid nodes were
used, what roles they were assigned, and where
each service log file was on local disk. The ability to
log in and access the files was relatively easy to add.
The problem remaining was how to display the logs
themselves. Two options were provided to devel-
opers. The first was a dedicated window per log file,
created on the developer’s workstation. This was
updated in real time as the log file was changed on
the remote grid node. The second was a merged
output of all the log files being monitored. This
output would merge the stream of messages from
each monitored log file and show them together in a
single window. It was also possible for specific
services to be monitored, for example, only CAs if
that was all the developers needed. This was made
available to the developer as a simple one-line
command.

Log file content detail was also selectable, allowing
developers to increase the level of detail for

DEEN ET AL.

39

40

particular services, either for all instances of the
service or instances on specific nodes. The combi-
nation of log level control and easy one-command
access greatly improved the ability for developers to
quickly monitor and locate problems.

Messages

A second form of output by the OptimalGrid system
is messaging through the TSpaces communication
system. Embedded in each OptimalGrid service is a
debug class that can generate and send message
objects. Objects can include simple events generated
by the services up to the Java event objects
generated by fatal exceptions. In addition to the
more traditional logs in use, these objects are useful
because clients can be easily written, making it
possible to monitor the message space and actively
filter which messages are displayed to the user.
Filtering based on any attribute of the message
object is possible: source, service, message content
(error only, server errors, memory exceptions, etc.).
Messages are accessible by a small footprint client
we wrote for the task or from any Web browser.

PERFORMANCE OF QUAKE Il AS AN MMOG
Several different experiments were done to validate
the performance of the MMOG version of Quake II.
The primary goal was to determine if our imple-
mentation satisfied the single most basic criterion:
Was game play from the player’s perspective any
different when on a grid? Two tests are presented
here that demonstrate we did indeed achieve this
goal. Deeper, more robust performance testing and
analysis is beyond the scope of this paper and
belongs in separate work.

Player transfer latency

The first test was done precisely six weeks after
coding began on the project. In this test, the
modified Quake II client was made available to
people inside the IBM Research Division who were
invited to play the game. The invitation eventually
was sent to other IBM employees around the world.
This early test was designed to validate the code
itself (determine that the servers would not crash
due to coding errors) and to demonstrate that the
Quake II on OptimalGrid distributed system could
deliver adequate performance for an FPS game. The
critical factor in this performance evaluation was the
player transfer latency or the time required to pull a
moving object or player out of one server and

DEEN ET AL.

reinsert the object or player into a destination
server. The player transfer latency could not exceed
the Quake II world update time, which is fixed at
100 ms. If the player transfer latency exceeded 100
ms, then the player would notice a distinct jitter or
interruption when moving around the world among
servers. Note that the player transfer latency is not
correlated with the overall game play latency, which
depends on many factors, including network infra-
structure, network traffic, and raw server speed. In
our tests, the normal game play latency was quite
good, and game play within a server was indistin-
guishable from game play on a single (nondistrib-
uted) Quake II game.

Figure 7A shows the player transfer latency mea-
sured in the second of two separate tests of the
Quake II system. Note that in reporting player
transfer latency it is not sufficient to report the
average latency achieved. A histogram of the data
more accurately represents the game play as the tail
of the distribution reveals how often (or if) a critical
threshold time or game-world update time might be
exceeded.

The first performance test used 30 servers and a 100-
Mb Ethernet infrastructure for the servers. In this
first test, the average player transfer latency was
approximately 150 ms, and game play across servers
had a noticeable jitter or delay. Subsequently, we
reexamined some implementation choices, making
several changes.

We conducted a second test using the updated code
and improved server hardware. The second test
results, shown in Figure 7A, reflect the performance
when the system was moved to a server cluster of
dual Intel Xeon** processor nodes with a Gigabit
Ethernet infrastructure. The game was distributed
over 12 servers. In this test, the average player
transfer latency was less than 70 ms, which is less
than the Quake II server 100-ms update frequency.
In this test there was no obvious delay when players
moved between servers, meaning we had achieved
the core goal that players should get as good a
playing experience in regard to performance on the
grid as they did on a single server.

Between these two tests we made a change to the
algorithm used in the problem builder to perform
the initial partitioning of the game map. This was
one of the most significant factors in the perfor-

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

@
E150- - 150° -
5 ’ . T . -
5 No. £ -
©100 - of CAs 100~ 4 x]
6 + c . A
o $ i g gy @ 7
© § ; 8 x 5 A
Q50 - % 11v 50 - + A%
< 16 A
B T 23 e B 1
O [| | [! 32 o O [N | Lol | [
10 20 40 100 200 10 100
Bots Transitions/Server (time)
Figure 7

Player transfer latency: (A) Frequency of player transfer latency occurrence; (B) player transfer latency as a function
of the number of game servers (CAs); (C) player transfer latency compared with the number of bots;
(D) player transfer latency as a function of per-server transfer frequency. (The unit time interval was four minutes.)

mance improvement seen in the second test. In
particular one aspect we did not fully consider in the
original partitioning scheme was the 3D nature of
the world. The one poor choice made in the original
algorithm was to occasionally partition stairways
too finely. This resulted in players moving between
servers with each step on the stairway.

As we have experimented with this MMOG version
of Quake II, we have subsequently made other
improvements to the system. These were individu-
ally minor, making it difficult in a paper of finite size
to discuss, but the sum of their contributions was
significant. It is worth noting however, that even in
the early implementation profiled here, we were
able to demonstrate adequate performance for an
FPS game.

Optimal map partitioning
For any infrastructure and system design, the
efficiency of the map-partitioning algorithm has a

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

significant effect on overall system performance. In
simple terms, a partitioning algorithm that lowers
surface-to-volume ratio lowers the rate at which
players cross server boundaries for a given map
design. This fact is evident in Figure 7B, which
shows latency compared with the number of game
servers (CAs). For control purposes, this data was
acquired with a constant number of 200 client-side
Quake II bots running on the 100-Mb Ethernet
cluster. The data demonstrates that for the map and
partitioning algorithm in use, the system is most
efficient (and performance most consistent) when
the game world is divided across 10-12 servers.

Scalability

Ultimately, it is important to consider how total
game load limits overall system performance. In our
live-play tests, we had difficulty finding sufficient
numbers of people who could play simultaneously
to stress our test grid. To study the system at even

DEEN ET AL

41

42

higher loads, we measured the latency as a function
of the number of Quake II client-side bots, where the
number of bots was varied between one and 200.
We could run up to five bots per server, which
limited the range of this test. The latency of one to
200 bots running on six to 30 servers is shown in
Figure 7C. There is a large scatter in the data, but
analysis reveals an important scaling function. If the
same data is plotted as player transfer latency
against the number of server crossings per server
per second (which increased with the number of
servers and the number of players or bots), then all
of the data collapses onto the single curve shown in
Figure 7D.

Analysis

Somewhat surprisingly, the system performance
initially improves as the load on the communication
system is increased. This improvement is likely due
to two factors. At very low load, our original Quake
IT code ran open loop with all CAs continually
polling the whiteboard servers to detect new players
arriving. When game traffic was low this was highly
inefficient, as requests for data were frequent but
returned nothing (there was no data). This situation
was later improved by modifying the system so that
if a query for arriving players returned null, the CA
would enter a wait to take state (registering for a
callback on the TSpaces server). In this state, if a
player arrives, in response to the callback the server
immediately enters a multitake loop and processes
arriving players continually until a query returns
null, in which case it returns to the wait to take
state. This design is much better given the dynamic
nature of game play (with varying levels of activity
of different servers).

The second reason for the improvement in per-
formance at higher loads may be understood in
terms of the multitake operation itself. In periods of
intense traffic when many players are crossing a
common server boundary in the same 100-ms
interval, these player objects are written to and read
from a single whiteboard in a single multitake or
multiwrite operation. At high loads, the number of
player server crossings can increase with no
increase in the number of messages or transactions
and only a slight increase in message size. This
predicts a nearly linear improvement in perfor-
mance as load increases. Of course at very high
load, other factors should cause the performance to
decrease, but we were unable to observe this, given

DEEN ET AL.

our limit of 200 bots in the experiment. This regime
may be explored in future studies.

CONCLUSION

MMOGs are an emerging form of online entertain-
ment. While the common approach of addressing
the demands of MMOGs can be done through the
design and implementation of specialized MMOG-
specific game server engines, we have demonstrated
that existing engines, such as Quake II, can be
extended to become dynamically scalable engines
capable of meeting these same demands without
compromising game play or game design. This was
possible through the use of intelligent autonomic
middleware, such as IBM OptimalGrid, which
handled the decomposition of the game world into
connected regions capable of being hosted on
different servers, and subsequently the reintegration
of the game world messages, enabling clients to see
the distributed virtual world as one that was single
and unified.

m The results of our performance
tests showed that the resulting
MMOG Quake Il engine was
capable of meeting game-play
needs. m

Autonomic load balancing, server expansion, server
consolidation, and server start/stop control were
added, along with a simple-to-use provisioning
system, making the resulting system more than a
trivial example. Instead, it is an advanced imple-
mentation that showcases how OptimalGrid can be
used in a practicable way to add features that are
vital in production-level commercial deployments of
MMOG engines servicing paying customers. The
results of our performance tests showed that the
resulting MMOG Quake II engine was capable of
meeting game-play needs, providing a seamless
world, and hiding from the players the reality of
running the world across more than one server.

Finally, the extension of the Quake II engine to
MMOG status was done while strictly following the
constraint of making only minor changes to the
original Quake II server. The solutions to the
challenges faced in this work are reusable features
that can be applied, without redesign of the game
engine core, to add dynamic load balancing,
dynamic scaling, support for distributed servers, and

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

advanced execution management to other existing
game engines, making it possible to give them new
life as MMOGs.

The changes we made to the Quake II open-source
game engine and client, and the OptimalGrid
middleware to run them, is available on the Web
from the IBM alphaWorks*21 site.

FUTURE WORK

This paper focused on the creation of an MMOG
game engine beginning with an existing single-
server online engine. In particular, the engine
chosen was an FPS game. Another popular type of
game for MMOGs is the role-playing game, often
called MMORPG, which is typically much longer
running than FPS games, with both characters and
the game world having significant and evolving
amounts of state information. Such state informa-
tion is maintained in the game server memory, with
copies of it backed by network-connected databases.
This introduces a new set of issues, such as how to
use a grid to enhance the performance and
scalability of the distributed database servers used
by the game engine.

The use of BSP trees in Quake II to represent the
game world, wherein the world is represented as a
graph with leaf nodes being visible vertices, made
the choice of mapping these to OptimalGrid OPCs
the obvious choice. This—together with the fact that
the primary limit faced by the Quake II engine when
hosting a large number of players is the ability of a
server to process player-client messages and updates
for all the regions of the map—made the partitioning
of the Quake II engine along map regions the most
appropriate one. This choice however may not be
the best to apply to different game engines that face
different resource limitations when required to host
large numbers of players. The ability to partition and
distribute the computational needs of these alternate
engines would require analysis of the particular
design and behavior of the engine to make the
appropriate partitioning decision. One can imagine a
game in which the game world would be hosted in
full on each server, and instead, its computationally
expensive task is game physics. In this case, it
would be best to partition and distribute physics
calculations for the game regions on the grid, with
the physics calculations and game world areas
forming the interconnected graph, instead of the
graph of connected visible areas used for Quake II.

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

This different partitioning and management is still
possible with OptimalGrid, but would require that a
different OPC and problem builder component be
developed.

*Trademark, service mark or registered trademark of
International Business Machines Corporation.

**Trademark, service mark or registered trademark of id
Software, Inc., Valve Corporation, Xatrix Entertainment, Inc.,
Omega Group, Ltd., Sun Microsystems, Inc., Linus Torvalds,
Red Hat, Inc., SUSE, a trademark of SUSE LINUX Products
GmbH, a Novell business, or Intel Corporation in the United
States, other countries, or both.

CITED REFERENCES

1. Emergent Game Technologies, http://www.
emergentgametech.com/press_1.html.

2. M. Oliveira, J. Crowcroft, and M. Slater, “An Innovative
Design Approach to Build Virtual Environment Systems,”
Proceedings of the ACM International Conference Pro-
ceeding Series, 9th Eurographics Workshop on Virtual
Environments, Zurich, Switzerland (2003), pp. 143-151.

3. A. Shaikh, S. Sahu, M.-C. Rosu, M. Shea, and D. Saha,
“On Demand Platform for Online Games,” IBM Systems
Journal 45, No. 1, 7-20 (2006, this issue).

4. K.-W. Lee, B.-J. Ko, and S. Calo, “Adaptive Server
Selection for Large Scale Interactive Online Games,”
Proceedings of the 14th International Workshop on
Network and Operating Systems Support for Digital Audio
and Video, International Workshop on Network and
Operating System Support for Digital Audio and Video,
Cork, Ireland (2004), pp. 152-157.

5. E. Frécon and M. Stenius, “DIVE: A Scalable Network
Architecture for Distributed Virtual Environments,” Dis-
tributed Systems Engineering Journal 5, No. 3, special
issue on Distributed Virtual Environments, pp. 91-100
(September 1998), http://www.iop.org/EJ/abstract/
0967-1846/5/3/002.

6. Wu-chang Feng and Wu-chi Feng, “On the Geographic
Distribution of On-line Game Servers and Players,”
Proceedings of the Second Workshop on Network and
System Support for Games, Redwood City, CA (2003), pp.
173-179.

7. A.Tveit, O. Rein, J. V. Iversen, and M. Matskin, “Scalable
Agent-Based Simulation of Players in Massively Multi-
player Online Games,” Proceedings of the Eighth Scandi-
navian Conference on Artificial Intelligence (SCAI2003),
Bergen, Norway (November 2003), http://www.idi.ntnu.
no/~amundt/publications/2003/zereal.pdf.

8. A.F. Seay, W. J. Jerome, K. S. Lee, and R. E. Kraut,
“Project Massive: A Study of Online Gaming Commu-
nities,” Conference on Human Factors in Computing
Systems (CHI’04), Vienna, Austria (2004), extended
abstracts on human factors in computing systems, pp.
1421-1424.

9. T.J. Lehman and J. H. Kaufman, “OptimalGrid: Middle-
ware for Automatic Deployment of Distributed FEM
Problems on an Internet-Based Computing Grid,” Pro-
ceedings of the IEEE International Conference on Cluster
Computing, Hong Kong, China (2003), pp. 164-171.

10. Half-Life, Valve Corporation, www.valvesoftware.com.

DEEN ET AL.

43

44

11. Half-Life, Sierra Entertainment Inc., http://half-life.
sierra.com/.

12. Quake, id Software, http://www.idsoftware.com/games/
quake/quake3-gold/.

13. OptimalGrid: Autonomic Grid Systems, IBM Research,
http://www.almaden.ibm.com/software/ds/
OptimalGrid.

14. S. W. Golomb, “How to Number a Graph,” Graph Theory
and Computing, R. C. Read, Editor, Academic Press, New
York (1972), pp. 23-37.

15. Project OGR, www.distributed.net/ogr.

16. Kingpin, developed by Xatrix Entertainment Inc., pub-
lished by Interplay, Inc., 1999.

17. Soldier of Fortune, Studio—Raven Software Corp.,
published by Activision, Inc., www.activision.com.

18. D. Gelernter and A. J. Bernstein, “Distributed Commu-
nication via Global Buffer,” Proceedings of the ACM
Principles of Distributed Computing Conference, Ottawa,
Ontario, Canada (1982), pp. 10-18.

19. D. Gelernter, “Generative Communication in Linda,”
TOPLAS 7, No. 1, pp. 80-112 (1985).

20. TSpaces, IBM Research, http://www.almaden.ibm.com/
cs/tspaces.

21. alphaWorks, IBM Corporation, http://www.alphaworks.
ibm.com.

Accepted for publication June 14, 200S.
Published online January 19, 2006.

Glenn Deen

IBM Research Division, Almaden Research Center, 6560 Harry
Road, San Jose, California 95120 (glenn@almaden.ibm.com).
Mr. Deen joined IBM in 1989. He is a researcher and the
OptimalGrid project leader at the IBM Almaden Research
Center. His current work is in the areas of distributed
computing and healthcare informatics. In the past he has been
involved in such areas as data visualization, distributed
storage, and distributed security policy and architecture.

Matthew Hammer

IBM Research Division, Almaden Research Center, 6560 Harry
Road, San Jose, California 95120 (hammer@upl.cs.wisc.edu).
Mr. Hammer is a computer science Ph.D. candidate at the
Toyota Technological Institute in Chicago specializing in
programming language theory and implementation. While an
undergraduate at the University of Wisconsin, he worked at
the IBM Almaden Research Center on various grid computing
projects including OptimalGrid and the Extreme Blue project
GameGrid.

John Bethencourt

IBM Research Division, Almaden Research Center, 6560 Harry
Road, San Jose, California 95120 (jbethenc@andrew.cmu.edu).
Mr. Bethencourt is a computer science Ph.D. candidate at
Carnegie Mellon University with a research focus in applied
cryptography and systems security. He has been involved in
several grid computing projects, including the Condor project
at the University of Wisconsin (where he was an
undergraduate) and the OptimalGrid project at the IBM
Almaden Research Center.

Iris Eiron

IBM Research Division, Almaden Research Center, 6560 Harry
Road, San Jose, California 95120 (iriss@us.ibm.com). Ms.
Eiron is a researcher at the IBM Almaden Research Center. She

DEEN ET AL.

joined IBM in January 1998 after receiving an M.S. degree in
computer science from the Technion, the Israeli Institute of
Technology. She worked for the IBM Israeli Research Lab for
three years. In December 2000 she joined the Almaden
Research Center. Ms. Eiron’s current interests include
development and implementation of a national healthcare
infrastructure.

John Thomas

IBM Research Division, Almaden Research Center, 6560 Harry
Road, San Jose, California 95120 (jgthomas@us.ibm.com).
Mr. Thomas is a researcher in the department of Computer
Science at the IBM Almaden Research Center. He is a Java
developer for IBM. Mr. Thomas was previously one of the lead
programmers for the IBM Almaden TSpaces project and a
member of the OptimalGrid Project at the Almaden Research
Center.

James H. Kaufman

IBM Research Division, Almaden Research Center, 6560 Harry
Road, San Jose, California 95120 (kaufman@almaden.ibm.com).
Dr. Kaufman is the manager of the Healthcare Informatics
project in the department of Computer Science at the IBM
Almaden Research Center. He received a B.A. degree in
physics from Cornell University and a Ph.D. degree in physics
from the University of California at Santa Barbara. During his
career at IBM Research, he has made contributions to several
fields ranging from simulation science to magnetic device
technology. His scientific contributions include work on
pattern formation, conducting polymers, superconductivity,
experimental studies of the moon illusion, and contributions
to distributed computing and grid middleware. Dr. Kaufman is
a Fellow of the American Physical Society. H

IBM SYSTEMS JOURNAL, VOL 45, NO 1, 2006

