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systems and the next generation
of online games

Developing a massively multiplayer online game which utilizes physically based
simulation to provide realistic behaviors requires numerical integration functions with
inherently high computational costs. This simulation, performed on the individual
clients of a peer-to-peer networked game or for a client/server online game, presents
challenges due to many factors, including limited computing resources at the client
level and network latency in the propagation of a client's state to other clients.
Computationally intensive simulation may adversely affect performance and resultin a
situation in which little processing capacity is left for other aspects of the game. In this
paper, we explore how a game developer who is aware of these issues might create a
game for IBM's recently announced Cell Broadband Engine™ processor; we also
present an example of the development of a game in which multiple human and
robotic characters interact with static and dynamic objects in a virtual environment.
Although our experience suggests that porting code to the Cell Broadband Engine core
with minimal use of its synergistic processing elements (SPEs) should not be expected
to produce significant performance gains at this time, the potential of the Cell SPEs to
improve performance is considerable. We discuss performance and design and
implementation decisions, with programmability issues being especially noted.

INTRODUCTION

The video game industry had an annual revenue of
approximately $25.4B in 2004, and this is projected
to increase to $54.6B by 2009, according to Price
Waterhouse Coopelrs.1 This figure represents a 16.5
percent compound annual growth rate. Game plat-
forms (both PCs and consoles) host non-networked
and multiplayer networked games. Although rev-
enue from offline games has been dominant over the
years, analysts’ predictions suggest that multiplayer
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online game sales will eventually dwarf those of
traditional console PC games, with revenues ap-
proaching $5.2B by 2006.
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Currently, online games are predominantly turn-
based role-playing games with limited behavioral
dynamics incorporated into game play. Several
problems, such as low network bandwidth and high
latency as well as low server-side computing
density, are limiting the state of the art in massively
multiplayer online games (MMOGs). As the number
of households with broadband access increases in
the United States and around the world, the network
limitations should be significantly reduced. The next
generation of MMOGs will likely employ a much
higher level of physically based modeling, artificial
intelligence, dynamic story lines, user-created con-
tent, and gesture-based input devices, and a higher
level of visual quality, motivated by a new family of
high-performance game consoles equipped with
integrated Ethernet controllers. Powerful servers
based on the same microprocessor technology used
in these consoles can enable the simulation of
virtual worlds on a massive scale.

Game developers using current technology are
forced to use a design model that binds the scope,
quality, quantity, and complexity of interactivity
between players. This limits both the type of game
that developers can create and the market penetra-
tion of the game. The design model is limited due to
many problems, including communications latency,
bandwidth constraints, algorithmic and computa-
tional complexity, development and implementation
costs, implementation time, and the inherent com-
plexities of combining visual, musical, and literary
arts with technology. MMOGs have traditionally
addressed these challenges by imposing design
constraints on the level of interactivity or realism
provided in the game. For example, games such as
EverQuest** or Ultima Online** do not attempt to
provide a level of realism that depends on physical
simulation, whereas Guild Wars** provides a higher
level of visual realism and attempts to include better
simulation than traditional role-playing games.

Physical simulation allows computer-generated ob-
jects to behave in a physically realistic manner. This
is accomplished by formulating and evaluating a
mathematical model consistent with the laws of
physics governing the behaviors being simulated.
Physical simulation is very computationally inten-
sive and consequently very slow. It can also result in
unrealistic behaviors due to instabilities at extremes
in the simulation, such as very heavy or very light
objects, extreme forces exerted at joints, or very
large velocities. These challenges often lead simu-
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lation models to use physics for some aspects, but
rely on nonphysical simulations for others. For
example, the simulation of a multibody object using
articulated joints may constrain one body to move
itself after each time step to maintain a consistent
position or orientation to an adjacent body. Higher-
performing and more stable “pseudo-physics” is
typically used in video games, but may be inad-
equate for other simulations such as those required
for simulating animal behavior or mechanical
systems.

The numerical integration functions required for
physically based simulation to provide realistic
behaviors in MMOGs have inherently high compu-
tational costs.” To alleviate this somewhat, the
simulation may be performed on the individual
clients of a peer-to-peer networked game, but this is
problematic due to limited computing resources at
the client level and network latency in propagating a
client’s state to the other clients. A client/server
online game offers another alternative, providing a
powerful compute server that can be authoritative
over the state of the entire game world. Although
many clients currently have the capacity to perform
physical simulation for all objects in a player’s view,
with current technology this approach leaves little
processing capacity for all other aspects of the game.

The performance challenges inherent in physical
simulation can be addressed by utilizing a high-
performance computing system to provide the
computing power necessary for the complex math-
ematics used to model the simulation. Traditionally,
the application can be parallelized and distributed
over a cluster or grid of Intel Architecture (IA)
computing nodes, but the communication latency
and bandwidth between the nodes becomes a
bottleneck in achieving real-time performance.
Additionally, the cost of such a system can be
prohibitive for some users. High performance and
high volume mitigate both of these problems. High-
performance processors can provide ten times the
computing power of commercial off-the-shelf
(COTS) PC/workstation processors. If used in a
server cluster or grid, the computing density is much
greater than servers based on a COTS processor
could deliver. Consequently, there is a need for
fewer nodes and less internode communication.

The Cell Broadband Engine** (BE) processor is a

compute server which can meet these challenges.
The Cell BE processor consists of a 64-bit PowerPC*
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core augmented with eight synergistic processing
elements (SPEs) suitable for high-speed, numeri-
cally intensive computation.4 In this paper, we
explore how an independent software vendor such
as a game developer might create a game for the Cell
BE processor with multiple human and robotic
characters interacting with static and dynamic
objects in a virtual environment.

Each Cell BE processor represents nine computing
nodes over which an application can be distributed
with very high bandwidth and low latency commu-
nications between processors. A system using
multiple nodes based on the Cell BE architecture can
distribute the application further across the nodes.
Hence, the physical simulation application can
leverage the layered bandwidth of the server system
based on the Cell BE architecture to distribute the
latency- or bandwidth-sensitive operations over
multiple processing elements within the Cell BE
processor and the less sensitive operations over
multiple Cell BE nodes.

PROJECT OVERVIEW

The purpose of the project presented here was to
assess the viability of using Cell BE technology to
implement high-performance compute servers for
the next generation of online games. The method-
ology used was to develop a client/server-based
online game which would utilize a Cell BE server to
implement rigid body dynamics in addition to global
state management, relying on a Wintel (Microsoft
Windows** and Intel) client for rendering. The team
focused on determining the programmability and
performance of the Cell BE server by porting pre-
existing Wintel code and developing new code using
the tool chain provided for the Cell BE architecture.
The most powerful Cell BE architectural character-
istic for which we designed was the eight SPEs.
Their 256 GFLOPS of computing power could
potentially provide a significant performance boost
to physically based simulations not available
through current Intel Architecture IA-32 or [A-64
implementations.

In our implementation we began as a game
developer might by simply porting existing code

to the relatively mature and well-understood
PowerPC core. Following this, we utilized the SPEs
to perform some of the more computationally
intensive physics simulation required for a game
server. We used the SPEs to perform a hybrid
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integration calculation required to compute rigid
body displacements in a multibody game scene. We
also investigated the potential for utilizing the SPEs
to perform narrow-phase collision detection.
Although our experience suggests that simply
porting code to the Cell BE processor PowerPC core
with minimal use of the SPEs should not be expected
to produce significant performance gains early in the
process, the potential of the Cell BE processor SPEs
to improve performance is considerable.

Our research was conducted in three phases. Phase I
utilized a Wintel-based prototype with a single client
and server. Performance was characterized on this
system by determining frame rates and time spent in
specific sections of code. Frame rates in this context
indicate the number of frames simulated per second,
rather than the number rendered. Streaming SIMD
(single instruction multiple data) extensions (SSE)
were utilized to accelerate server-side computation-
ally intensive functions, such as numerical integra-
tion and collision detection. SIMD extensions are
API (application programming interface) extensions
to the C programming language that allow the
programmer to utilize the SIMD extensions to the
Cell BE architecture without having to write
assembly language. The Wintel system serves as a
reference performance benchmark. During Phase 1I
of this study, server code was ported to the Mambo
simulation environment for the Cell BE processor.
We utilized a stand-alone 3D physics editor to
determine specific bottlenecks in the physical
simulations and to compute projected frame rates.
Phase III focused on porting the server-side code
base to engineering prototype boards connected via
gigabit Ethernet networks to Wintel client systems.
Performance was characterized and compared with
previous projections. We describe design and
implementation decisions, with programmability
issues being especially noted.

GAME DESCRIPTION AND CHALLENGES

The story line for the game involves mechanical
robots attacking a city inhabited by humans who
defend themselves by using a variety of weapons.
These weapons include handheld rocket launchers,
machine guns, and satchel explosives. A robot can
be destroyed by firing weapons at vulnerable points.
Alternatively, humans can destroy static structures,
causing indirect damage to a robot.

Several technical challenges were involved in
implementing the articulation of robot and human
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communication between client and server. For a
low-performance client, this compensation would
require approximations that could result in a
desynchronization of game-world state between the
client and the server, which computes more
accurately.

Ultimately, aggregate outbound server network
bandwidth was limited to 100 Mb/s, and this
presented a challenge for data movement to the
client during state updates and packaging of
information. Client-to-server communication was
considerably less, and was more susceptible to the
limitations of higher latency than those of overall
bandwidth.

Figure 1
Mechanical robot

GAME DESIGN
The prototypical game was designed to execute on

joints resulting in realistic movement. First, collision
detection was needed to determine when moving
bodies intersected with other moving or static
bodies, such as walkways, buildings, and terrain.
Collision detection was implemented with a two-
phase approach, using a broad phase to quickly
eliminate bodies that could not physically collide
with each other during any given frame update and
a narrow phase to specifically determine if pairs of
bodies would intersect within each given frame
update. This process was both integer- and floating-
point-intensive. Figure 1 shows a large robot with
many articulating joints. Each pair of joints is
represented in a database of collision bodies.

Robot and player movement and balance were
expected to be a difficult problem. Specifically, we
did not want moving bodies to look like they were
“floating” over terrain or paved surfaces. The
articulation of joints was intended to look smooth
and coordinated. This was especially challenging
because network bandwidth limitations would
require differential updates of bodies to reduce data
flow from server to client. We had to consider what
granularity of updates in the time line would be
appropriate to ensure that articulating joints did not
“drift” and separate over several frames.

Client/server synchronization was another impor-
tant challenge. Due to network latency time, we
would need to compensate on the client for player
response time that could not tolerate a round-trip
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both client and server. The client used in this project
was an IBM Intellistation* M-Pro with a 3.2 GHz P4
processor and 1 GB of RAM. The graphics adapter
used was an nVidia GeForce** 6800 adapter with
256 MB of unified frame buffer memory. Client
execution primarily involved the rendering of each
frame. The client software processed player inputs
in the form of mouse and keyboard actions. In order
to accommodate very low-latency game actions, the
client software received entity state input from the
server and performed an “approximated” simula-
tion. The client model of the game-world state was
then updated, and the frame was rendered. A client
world-state update was subsequently sent to the
server. The approximated simulation could be
performed on the client by using an extrapolation of
entity positions from the last known positions or an
interpolation based on information transferred from
the server running the simulation at a slightly higher
frame rate than the client updates.

The server was an engineering prototype board
based upon the Cell BE architecture. The Cell BE
processor was running at 2.4 MHz, and the available
system memory was 512 MB. The Ethernet con-
troller was a PCI (Peripheral Component Intercon-
nect) E1000 card and could achieve a bandwidth of
up to 100 Mb/s. The focus of the project was to test
the feasibility of using the server to perform accurate
real-time physical modeling of the rigid body
dynamics required to simulate the movement of
robot entities as they attack a virtual city. This
modeling consisted of repeatedly performing colli-
sion detection by using the current positions of the
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Figure 2
Data flow and game functionality

objects in the game world followed by numerical
integration to obtain the positions and orientations
of the objects for the next time step, based on the
application of an external force. Both collision
detection and integration are very computationally
intensive tasks. They accounted for at least 90
percent of the server-simulation computational
workload.

Finally, the server executable was tasked with
keeping an inventory of state changes for the entire
virtual world, a complete copy of the entire entity
database representing all assets, managing network
communications including determination of client
updates, packaging of data, input event processing,
player login, and so forth. The state of each body
can change from frame to frame. These tasks,
although many, did not represent a significant
amount of the server workload on the reference
platform. Figure 2 describes the overall flow of data
between client and server and the distribution of
game functionality.

GAME PHYSICS

The physics engine provided the real-time simu-
lation of a simplified model of real-world physics.
The goal was not to provide a perfectly realistic
model of reality, but rather to robustly and
efficiently provide a reasonable model for building
game worlds.
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The engine supported a large number of rigid
bodies. The collision representation was a union of
convex hulls. Various control forces were provided
to allow interaction. Several types of constraints
were provided to allow construction of hinges,
joints, and so forth. Client code interfaced with the
physics engine via an object-oriented C++ interface.
Client code instantiated rigid body, force, and
simulator objects.

The most important distinction among physics
engines is the method of integration. Physics
simulation is fundamentally about solving the
measure differential inclusions that describe the
time evolution of a dynamic system. A common
method is to reformulate this as a mixed comple-
mentary problem.5 However, an alternate method
was chosen for this project that was more robust,
efficient, and better suited to SIMD hardware,
namely semi-implicit integration6 of a penalty force-
based system, that is, a dynamic system that
enforces constraints by applying a restorative force
when the constraint is violated.

Contact and other constraints were internally
reformulated as “stiff” penalty forces designed to
enforce the desired behavior.” (Forces are said to be
stiff if they are difficult or expensive to integrate
explicitly.) The system was evolved by numerically
integrating a system of ordinary differential equa-
tions. To handle the stiffness of these forces, implicit
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integration of the equations of motion was required.
A fully implicit integration requires solving a system
of nonlinear equations, or alternatively, minimizing
a nonlinear function of the system, which can be
very expensive. Thus, a semi-implicit formulation
was used. First, a first-order Taylor series of the
equations of motion was expanded around the
current state, producing a local model that was a
linear approximation of the actual nonlinear system.
Then, the integration step was achieved by solving a
large sparse linear algebra problern.3

Continuous collision detection was not supported,
and collision detection was implemented only at a
fixed frequency. This frequency was a small multi-
ple of the game update frequency. Because of this,
tunneling (the complete passage of a fast-moving
object through another object due to running
collision detection only at discrete time steps) could
occur. This presented a game-design constraint,
imposing a restriction on the size versus the speed of
simulated objects. Objects that did not fit within this
size/speed envelope, such as bullets, were simu-
lated outside of the physics engine.

Offline force construction

For the semi-implicit integrator to work, the
derivatives of forces needed to be calculated. Often
this is performed with an in-place automatic differ-
entiation library.8 However, we took a better
approach: in a preprocessing step, force expressions
were compiled, and derivative code was generated.

For example, we examine the functioning of a point-
to-point constraint. The constraint function

C=Pb—"Pa

indicates that the constraint is satisfied (i.e., C = 0)
when the positions of the constraint points are equal
(note this is a vector-valued equation). The formula
is hard-coded as a C++ expression in the force
compiler tool.

Pa and Pb are functions of the underlying state
variables:

Pa = Xa + RaxPa_bs

where Xa is the position of the center of mass of
body a, Ra is the orientation matrix for body a, and
Pa_bs is the body space position of the constraint
point.
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Next, we convert the constraint equation to a
penalty function:

Fa =9dC/dCax*(Ks*C + Kd*dC/dt),

where Fa is the force on body a and Ca is the vector
of the 6 degrees of freedom of body a’s position.

The force compiler symbolically calculates this
expression and then symbolically generates the
partial derivative matrices required for the integra-
tors as follows:

dFa/oXa
dFa/oVa
dFa/aCb
dFa/aVb

where Va is the vector of the 6 degrees of freedom of
body a’s velocity. Each partial derivative isa 6 X 6
matrix. Similar expressions are evaluated for Fb.

The expressions are internally represented as an
expression tree that allows the taking of derivatives.
The output expressions are then optimized with
some simple identity rules, passed through a
common subexpression eliminator, and output as C
code. The C code is compiled into the game runtime.

The preceding description presents the science of
force formulation. The art is in the manner in which
constraints are formulated. For example, we also
could have written the point-to-point constraint as

C = ||Pb — Pal|

This expression provides a continuous function that
is zero when the constraint is satisfied and nonzero
when it is not. This second formulation works, but
results in significantly worse stability (and therefore
performance), because the first formulation is a
much more linear function of the degrees of freedom
than the second and therefore, is much better
approximated by the first order Taylor series
approximation used in semi-implicit integration.

Runtime step

A runtime step consists of collision detection using
the current positions of the rigid bodies in the game
world, revising the groups of active versus sleeping
objects based on the result, and integrating to obtain
the positions of the rigid bodies for the next step.

Collision detection

The broad phase of collision detection compares
objects pair-wise based on their axis-aligned
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bounding boxes. Alternatively, bounding spheres
could have been used, but ultimately boxes were
chosen because they can be made to tightly fit a
variety of geometric shapes. If the bounding boxes
intersect, the objects are passed along to the narrow
phase for a more detailed examination to see
whether the objects intersect. Bodies that are static
are referred to as “sleeping,” and moving bodies are
referred to as “active.”

In the broad phase, all of the active bodies’
bounding boxes are tested against each other. Each
active body is then tested against all of the sleeping
bodies. It is not necessary to test the sleeping bodies
against each other because they are not moving.

The narrow phase collision detection takes a pair of
convex hulls and outputs a set of contacts. First, a
best separating plane is found, as shown in Figure 3.
The definition of “separating” is generalized to
handle the case of penetration, when ordinary
separation is not possible. In this case, a generalized
conception of separation could be a plane that has
the normal of the direction of minimum translation
(to separate) and a position that converges to the
ordinary separating plane as the two hulls separate.

The best separating plane P on hull A versus hull B
is the plane that produces the maximal separating
distance, where separating distance is the minimum
signed distance of all the vertices of hull B from
plane P. Planes from all the faces of both hulls are
tested. If at any point an actual separating plane is
found, the algorithm ends because the hulls are
disjoint. The contact list is then generated. The two
hulls are “intersected,” that is, an algorithm is run
which finds some attributes of the volume of
intersection, and a contact point is generated for
each edge-face intersection and each contained
vertex.

Waking, partitioning, and sleeping

With collision detection done, the new contact list is
checked to see if any active bodies have collided
with any sleeping bodies. Any sleep groups (i.e., a
group of bodies that was an integration group but
has been put to sleep) which have been affected are
moved to the list of active bodies. Partitioning takes
the active bodies and separates them into non-
interacting groups (islands), using the disjoint set
forest algorithm.9
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Figure 3
Narrow-phase collision detection

Each group is tested to see if it meets the require-
ments for being put to sleep (velocity tolerance tests
over several frames). If so, it is changed to a sleeping
group and not integrated.

Decoupling

Decoupling forcibly breaks up integration groups
(i.e., a group of bodies that must be integrated due
to their interactions, constraints, etc.) that are too
large to fit in SPE memory. Decoupling is a
constrained combinatoric graph optimization prob-
lem, with the bodies as the nodes of the graph and
the forces, constraints, and contacts as the edges.
The problem can be stated as follows: find the
smallest set of partitions, such that each partition
passes some cost function (involving SPE memory
size), which maximizes some quality function
(involving which edges are broken). As such, it is
probably an NP (nondeterministic polynomial)
problem. The algorithm we currently use for
decoupling uses a very simple heuristic that could
not be called “greedy,” as it does not optimize even
locally. It randomly picks a node to start with and
indiscriminately attempts to grow the group until it
cannot fit any more nodes under the memory limit.

An intrinsic part of the quality of the decoupling is
that the decoupled partitions are randomized from
step to step so that a given group is decoupled
differently at each step. This is necessary in order to
spread decoupling-induced error around the group.
The requirement for randomization makes any
caching system impracticable.

Step control

When the integration step fails for a workload (due
to failure to converge when solving the linear
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system), the step control system acts to keep the
system from “exploding.” This is done by discarding
all results from solution failures (despite the fact
that they may have resulted in a solution which was
close to adequate), reducing the step size, and
reintegrating. For performance and stability, colli-
sion detection is not rerun. Should step size
reduction fail, there are a number of backup
methods to keep the integration from totally failing.

Integration step

In the following, we present a mathematical over-
view and a description of the algorithm used for
performing the integration step.

Mathematical overview

Numerical integration schemes integrate a time-
dependent system Y from state YO = Y(t0) to state
Y1=Y(t1), where the time derivative function of Y is
dY/dt = F(Y). The step time is referred to as

h=tl —t0.

The simplest integration scheme is known as Euler
integration:

Y1 = Y0 + hF(Y0).
Euler integration is easy and fast to evaluate.

However, it is inaccurate and, more important,
unstable when presented with stiff systems.

Implicit integration handles stiff forces much more
robustly. The simplest implicit integration scheme is
known as backward Euler integration:

Y1 =Y0+h«F(Y1).

However, as Y1 depends on F(Y1), one cannot
simply calculate Y1 as one can with forward Euler
integration. Instead, one must solve for a new state
Y1 that satisfies the above equation. As the function
F is generally nonlinear, this requires solving a
system of nonlinear equations. The problem can
also be cast as a nonlinear minimization problem:

minf(Y) = r(Y) - r(Y),
where
r(Y)=Y —Y0— hxF(Y).

Semi-implicit integration approximates Y1 by a first
order Taylor expansion of F around YO:

F(YO0 + delta_y) ~F(Y0) + F'(Y0) xdelta_y

where
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F'(Y)=dF(Y)/dY
and

delta_y =Y1 — YO0.
This gives us

Y1 = YO0 + hx(F(Y0) + F'(Y0) xdelta_y)
delta_y = h+F(Y0) + h«F'(Y0) «delta_y.

In order to solve for delta_y, we obtain:
(I — hxF'(Y0))*delta_y = h*xF(Y0).
This is a square linear system that can be solved for

delta_y.

Second-order rigid body dynamics can conceptually
be turned into a first order integration problem like
this:

T R <R

where x[0] is the generalized position of body 0 (or
the Oth element of the system x vector), and v[0] is
the generalized velocity of body 0.

The derivatives are:

v[0]

W[o] = f[0]
F(y)=| V]

W1} = f[1]
where

w0l =M [0]_1, is the inverse of the generalized
mass matrix of body 0, and f[0] is the force on body
0, that is, the Oth component of the force vector f
(not to be confused with system derivative F).

We can see that this results in Newton’s familiar
formulation of dynamics:

dx/dt =v

Mxdv/dt = f

We could directly use such as setup to do a semi-
implicit integration, but by directly expanding F(Y)
in terms of delta_x and delta_v, we can halve the
size of the linear solution:

F(x0 + delta_x,v0 + delta_v)
~ F(x0,v0) + dF(x0,v0)/dx*delta_x
+dF(x0,v0)/dv=delta_v.
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Because
delta_x = h+vl = h*(v0 + delta_v),

we can remove delta_x and solve for delta_v only:

(1o (luonac))

delta_v = hx(Wx(f0 + h=(/df(x0,v0) /dx*v0))).
By introducing some abbreviations,

df_dx = df (x0,v0)/dx,
df_dv = df(x0,v0)/dv,

we arrive at our final problem:

(I —h«Wx(df_dv+ hxdf_x)) =
delta_v = hx (W (fO + hx (df _dx=v0)))

Once again, this is a linear algebra problem, but now
we are only solving for delta_v.

A xdelta_v=">
where

A=I1—hs W= (df_dv+ h * df _dx)
b="hsx (W x (f0+h * (df _dx * v0)))

In the maximal coordinates representation, each
body contributes six components to v (three linear
and three angular). df_dx and df_dv are of size

6 * num_bodies by 6 x num_bodies and are 6 X 6
block sparse. The sparseness pattern is such that the
diagonal blocks are nonzero, and there are a pair of
off-diagonal nonzero blocks for each pair of inter-
acting bodies (i.e., those with a force between
them).

Algorithm
The integration algorithm consists of several logical
steps:

1. Calculate the components of A and b; v0 and W
are trivial to extract, fO must be calculated, and
df_dx and df_dv both require considerable
computational effort to calculate.

2. Form A and b.

3. Solve A x delta_v = b by a conjugate gradient
method.

4. Step the system from YO to Y1 by delta_v.

IMPLEMENTATION

This project was executed on a much accelerated
schedule and was intended to assess the pro-
grammability of the Cell BE architecture. To that
end, the team started with an established code base
that included a general game database, game engine,
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network manager, event handlers, and a 2D physics
engine. Four fundamental challenges were identified
up front:

1. Creating a 3D physics engine optimized for the
eight SPEs;

2. Porting some portion of the existing C++ code to
C because there was no SPE compiler support for
G+

3. Porting Windows-specific code to Linux**;

4. Providing additional network management logic
to handle endianness differences between Cell
BE- and Intel-based server and client platforms.

These four challenges resulted in a fairly quick
divergence between the Wintel and Cell BE code
base. In order to create a stable, robust reference
system, the team decided to develop the game on a
Wintel platform first. In reality, the Wintel version
of the game was not completed before work started
on the Cell BE version, and there was some dual
development that occurred throughout the latter
stages of the project.

Implementing an application for the Cell BE
architecture requires that programmers design for
one of its key architectural features, that is, the eight
asynchronous SPEs. The SPEs represent an aggre-
gate 256 GFLOPS of vector float performance.
Fundamentally, to achieve optimal performance, the
code needs to be partitioned across both the PPE
(PowerPC Processor Element) and the SPEs. Ideally,
it was our goal to port most of the code to the SPEs;
practically, this was not possible, given the time
constraints of the project. We focused our efforts on
porting the code that represented the bulk of the
workload.

Because the application relied heavily on rigid body
dynamics to provide interesting game play, it was
heavily dependent on collision detection and nu-
merical integration. Either task-level or data-level
parallelism could have been employed across the
SPEs, but because the integration code was compact
enough to reside in the 256-KB local storage area of
a single SPE, we chose a data parallelization scheme
across all available SPEs. This also facilitated
workload balancing and hence optimal SPE utiliza-
tion. The scheme was applied to the port of the
numerical integration code onto the SPEs. Numer-
ical integration required an iterative solution to the
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conjugate gradient squared algorithm10 as outlined
in the following pseudocode:

r=rt=p=u=>b—-A(x)

rho=dot (r,rt)

if rho==0, return (method fails)

while (1){
vhat =A(p)
alpha=rho/dot (rt,vhat)
qg=u- (alpha)vhat

Uu+=gq
x+=(alpha) u
ghat=A(u)

r—=(alpha)ghat

if converged, return (ok)

if maximum iteration count
exceeded, return
(not converged)

rhoprev =rho

rho=dot(r, rt)

ifrho==0, return(methodfails)

beta=rho/rhoprev

u=r+ (betaq

p=q+ (beta)lp

p=u+ (beta)p

}

A biconjugate gradient algorithm, as shown in the
following pseudocode, was also tested:

r=rt=p=pt=Db—-A(x)
rho=dot (r,rt)
if rho==0, return (method fails)
while (1){
qg=A(p)
gt = (transpose(A))(pt)
alpha=rho/dot(pt, q)
X +=(alpha)p
r—=_(alpha)q
rt —=(alpha)qt
if converged, return (ok)
if maximum iteration count
exceeded, return
(not converged)
rhoprev =rho
rho=dot(r, rt)
ifrho==0, return (methodfails)
beta=rho/rhoprev
p=r+ (betalp
pt=r+ (beta)pt
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The latter algorithm required some additional
storage for the multiplication by the transposition of
the matrix. The two algorithms yielded similar
performance results, and the conjugate gradient
squared algorithm was ultimately chosen because of
its smaller memory footprint. DMA (direct memory
access) was driven from the SPEs, and a single-
buffer implementation was used for input and
output data storage. The option of double-buffering
data I/0 between the SPE local store and system
memory was identified, but the decision of whether
to do this was deferred until the performance
analysis phase of the project. The following input
and output data structures were used for transfer of
rigid body metrics to and from the SPEs:

struct Rigid_Body{

Vec3 position;
Quaternion orientation;
Vec3 velocity;
Vec3 angular_velocity;

//----mass parameters----
float inverse_mass;
Matrix33 inverse_inertia;

//----other parameters----
float coefficient_friction;
float coefficient_damping;

} bodies[num_bodies];

struct Rigid_Body_Step {

Vec3 delta_velocity;

Vec3 delta_angular_velocity;
} deltalnum_bodies];

The remainder of the server code was targeted to
run on the PPE. This included the network-
management, arithmetic-coding, and particle-sys-
tems code. The network-management code was
broken into two levels. The team initially focused on
networked scene management. Even with low-level
compression, because there was far too much data
to send all of it to each client as changes occurred,
the server needed to have a “scene management”
layer that decided which state updates needed to be
sent and to which clients. This layer was constantly
working to minimize the error in each client’s view
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of the world and, at the same time, stay within a
bandwidth budget.

Initially, the problem of networked scene manage-
ment may seem difficult to allocate to the SPEs
because it requires random access to all client-
observable game states, and this involves much
more data than can fit into an SPE’s local memory.
However, even in a monolithic CPU situation,
because the “brute force” version of this algorithm
requires prohibitive amounts of memory, the algo-
rithm must be modified to reduce memory expen-
diture. Generally, this involves developing some
heuristics that coarsely approximate each client’s
state-knowledge error. Such approximations often
involve grouping entities into equivalence classes;
such a grouping strategy, if properly chosen, could
also help the system run on the SPEs.

The nature of this grouping heuristic depends on
many factors that are not yet finalized (the number
of objects in the game world, how many data items
describing them need to be communicated and at
what precision, how quickly and predictably the
values tend to change, and so forth). The most likely
approach would be to perform the broad phase,
which requires many random memory accesses, on
the PPE and allocate the narrow phase to the SPEs.
This model does not fit perfectly because networked
scene management is a somewhat stream-oriented
rather than a batch-oriented task, but it can be a
good starting point. This would constitute a server-
side optimization. Whereas the client does tend to
perform some tasks related to networked scene
management, these are not very expensive com-
pared to what the server does. The server must
perform computations for each client, and these
computations are more expensive.

PERFORMANCE

We were concerned primarily with server-side
performance, based on the premise of the project,
which was that servers based on the Cell BE
architecture could be used to accelerate game play
for MMOGs. We profiled the server-side components
to determine both qualitative and quantitative
performance differences between an Intel Pentium-4
(P4) 3.0 GHz system and a Cell BE processor 2.4
GHz system. The Cell BE processor performance
profiling was done on early hardware that was not
running at full clock speed (4 GHz) and had only six
(as opposed to eight) functioning SPEs.
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During the implementation phase, we had consid-
ered double buffering data I/O to and from the SPE
local store. Profiling determined that numerical
integration executing on the SPE had an extremely
high ratio of computation time to DMA time
(approximately 182); that is, DMA time (single
buffered) was less than 1 percent of all SPE
execution time. This suggested that double buffering
input and output buffers would likely reduce overall
performance by lowering maximum workload size
without providing a speedup.

Two benchmarks were used to determine relative
performance differences between the Intel and Cell
BE processor platforms:

* The “Ben25” benchmark (see Figure 4 for a
screen capture) is a synthetic benchmark. It
contains 25 “ben” robots and is designed to stress
integration.

* The “City_Busy” benchmark (see Figure 5 for a
screen capture) is a realistic game scenario. It was
created with data captured from a level during
actual game play. It contains two “ben” robots, two
“sparkimus_prime” robots, two “heshbot” robots,
and a lot of rubble.

The results are normalized so that the P4 perfor-
mance is 1.0.

Ben25 benchmark

Figure 6A shows the relative performance of the
Ben25 benchmark using various processor combi-
nations. The first obvious result is that the PPE
(VMX) is less than a fifth of the speed of the P4
(SSE). This result has roughly held true for all P4-to-
PPE comparisons made in this code base (VMX-to-
SSE or scalar-to-scalar).

The SPE versus PPE performance gap is huge.
Measuring the exact SPE performance shows that
one SPE runs at more than 11 times the speed of the
PPE and at more than twice the speed of the P4.
Figure 6A shows a 1.5 times speedup for one SPE,
which indicates that even with one SPE, the PPE is a
major drag on performance. This is despite the fact
that most of the PPE integration code is run in
parallel on the SPE. The PPE overhead in this
benchmark is mostly due to packing and unpacking
SPE workloads, although there is some small over-
head for SPE scheduling. The multi-SPE scheduling
is less than optimal, as well. The multi-SPE
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performance continues to scale until the PPE over-
head dominates at around three or four SPEs.

Figure 7B shows that the non-SPE parts of the code
take a much larger proportion of the time on the Cell
BE processor than on the P4, in particular when
performing decoupling. The PPE is obviously a
limiting factor in the current SPE optimized code.
SPE optimizing of 90 percent of the P4 profile (of the
integration core) results in 1.3 times the perfor-
mance.

City Busy benchmark

Compared to the Ben25 benchmark, we see that for
the City_Busy benchmark (Figure 6B), the SPEs
perform less well. This is probably due to less ideal
workload generation, resulting in higher PPE over-
head. This is confirmed by a higher ratio of the
number of workloads to the number of bodies and
the leveling off of performance at two SPEs. Another
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factor is that the City_Busy benchmark is less stiff
than the Ben25 test (as indicated by the ratio of the
number of solution steps to the number of bodies).

As shown in Figure 7B, the non-SPE parts of the
code take a much larger proportion of time on the
Cell BE processor than on the P4. In particular,
collision detection time now dominates the Cell BE
processor profile. SPE optimizing of 61 percent of
the P4 profile (of the integration core) results in 0.4
times the overall performance. The modest per-
formance gains in SPE code are swamped by huge
performance losses in the PPE code.

Next steps

Clearly, the PPE is a bottleneck in the current
implementation. Since much of the game code runs
on the PPE, most of the advantage of the SPEs is
negated. In order to improve performance, we are
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focusing on moving more code to the SPEs.
Ultimately, this will require considerable redesign of
the current game code. One component that is
currently being ported to the SPEs is collision
detection. The narrow-phase function is highly
vectorizable, and this would reduce a significant
bottleneck in current game play.

Another important design change that would alle-
viate the PPE bottleneck involves the data structures
used to store the game scene data, which must be
transferred to the SPEs for the collision-detection
and integration calculations. These structures,
which describe such things as rigid bodies, collision
bodies, and forces, were designed as C++ structures
in the code base with which we started, and tend to
be somewhat complex. For example, a collision
body includes (among other things) a vector of
shared faces, each of which has a normal, a vector of
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edges, and a vector indicating which face is on the
opposite side of each edge. This complexity allows a
degree of abstraction in C++ that makes algorithm
development much easier. When we moved the
integration to the SPEs, we had two options: packing
the information from the various structures needed
for each workload into contiguous storage on the
PPE side and copying it to the SPE as one “chunk,”
or sending the addresses of the structures to the SPE
and letting it crawl through the C4+ structures to get
the necessary data. We chose the former approach
because the latter would have been difficult to
program and error-prone, and we expected the PPE
performance to be somewhat better than it turned
out to be. However, the packing step is highly
inefficient and further burdens the PPE with a data-
processing task that not only would be unnecessary
on an Intel platform, but would execute five times
faster. An extension to the SPE compiler which
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would read the PPE’s C++ data structures would be
helpful in porting the code, but ultimately the data
structures need to be simplified to obtain maximum
performance.

For collision detection, we are investigating ways to
simplify the data structures on the PPE side so that
we can transfer blocks of contiguous storage, with
pointers to vectors (again in contiguous storage) for
some of the variable-sized data structures. This will
require some additional discipline on the PPE side.
We can store pointers to C++ vectors without
resetting them every time we send them to the SPE
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as long as we do not add elements to the vectors
during game play, because this may cause the data
to be moved. This simplification also requires more
complex code on the SPE side to transfer the data,
but should make it possible to improve performance
significantly. If so, we would investigate doing
something similar with the data structures that are
used in the integration step in order to break the
bottleneck there.

The goal of providing a high-performance server
platform for MMOGs requires significant design
work to support a multiprocessor implementation.
The game currently supports a “stateless” model to
distribute the data for entities in the virtual world.
The entities in the virtual world are maintained by
one or more nodes in the system, which dispatch
work to helper nodes. Workload balancing is easier
to accomplish with this scheme, but the dispatcher
node can become a bottleneck, and there may be
long latencies to move data to remote helper nodes.
Another approach would be the “territorial” model,
in which the virtual-world entities are distributed
throughout all the nodes in the system, and each
node is responsible for processing data in a
particular geographic area of the world. This
approach presents several challenges. First, as
objects or players move from one geographical
region to another, their representative data must be
transferred between the appropriate nodes, leading
to longer latencies in this event. Second, if play is
concentrated in a subset of the geographical regions,
other nodes are idle, making load balancing a
challenge.
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CONCLUSIONS

It is clear that from the point of view of theoretical
maximum performance, the Cell BE processor’s low-
latency local store with bandwidth-efficient DMA
and manually managed memory latency offers
significant advantages. However, from a software-
engineering perspective, the impact of porting some
types of legacy game software is daunting. It is not
enough to identify computationally expensive sub-
processes and fit them onto the SPEs; the data which
supports those subprocesses must be stored in a
compact way on the PPE side to simplify data
transfer without requiring repacking by the PPE. It is
possible to envision applications for which this
could be done without great difficulty, but our game
was not one of them.

The lower performance of the PPE is the major
factor in considering overall system performance
when porting legacy code. The SPEs performed very
well, beyond our expectations, and we did not
experience any DMA-related performance issues.
Nevertheless, it is clear that with the current Cell BE
hardware, there is not a performance advantage
unless most of the non-SPE-optimized profile is
moved to SPE code. Even using the SPEs to process
scalar codes would offer a significant advantage
over executing the same code on the PPE.
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