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Developing a massively multiplayer online game which utilizes physically based

simulation to provide realistic behaviors requires numerical integration functions with

inherently high computational costs. This simulation, performed on the individual

clients of a peer-to-peer networked game or for a client/server online game, presents

challenges due to many factors, including limited computing resources at the client

level and network latency in the propagation of a client’s state to other clients.

Computationally intensive simulation may adversely affect performance and result in a

situation in which little processing capacity is left for other aspects of the game. In this

paper, we explore how a game developer who is aware of these issues might create a

game for IBM’s recently announced Cell Broadband Enginee processor; we also

present an example of the development of a game in which multiple human and

robotic characters interact with static and dynamic objects in a virtual environment.

Although our experience suggests that porting code to the Cell Broadband Engine core

with minimal use of its synergistic processing elements (SPEs) should not be expected

to produce significant performance gains at this time, the potential of the Cell SPEs to

improve performance is considerable. We discuss performance and design and

implementation decisions, with programmability issues being especially noted.

INTRODUCTION

The video game industry had an annual revenue of

approximately $25.4B in 2004, and this is projected

to increase to $54.6B by 2009, according to Price

Waterhouse Coopers.
1

This figure represents a 16.5

percent compound annual growth rate. Game plat-

forms (both PCs and consoles) host non-networked

and multiplayer networked games. Although rev-

enue from offline games has been dominant over the

years, analysts’ predictions suggest that multiplayer

online game sales will eventually dwarf those of

traditional console PC games, with revenues ap-

proaching $5.2B by 2006.
2
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Currently, online games are predominantly turn-

based role-playing games with limited behavioral

dynamics incorporated into game play. Several

problems, such as low network bandwidth and high

latency as well as low server-side computing

density, are limiting the state of the art in massively

multiplayer online games (MMOGs). As the number

of households with broadband access increases in

the United States and around the world, the network

limitations should be significantly reduced. The next

generation of MMOGs will likely employ a much

higher level of physically based modeling, artificial

intelligence, dynamic story lines, user-created con-

tent, and gesture-based input devices, and a higher

level of visual quality, motivated by a new family of

high-performance game consoles equipped with

integrated Ethernet controllers. Powerful servers

based on the same microprocessor technology used

in these consoles can enable the simulation of

virtual worlds on a massive scale.

Game developers using current technology are

forced to use a design model that binds the scope,

quality, quantity, and complexity of interactivity

between players. This limits both the type of game

that developers can create and the market penetra-

tion of the game. The design model is limited due to

many problems, including communications latency,

bandwidth constraints, algorithmic and computa-

tional complexity, development and implementation

costs, implementation time, and the inherent com-

plexities of combining visual, musical, and literary

arts with technology. MMOGs have traditionally

addressed these challenges by imposing design

constraints on the level of interactivity or realism

provided in the game. For example, games such as

EverQuest** or Ultima Online** do not attempt to

provide a level of realism that depends on physical

simulation, whereas Guild Wars** provides a higher

level of visual realism and attempts to include better

simulation than traditional role-playing games.

Physical simulation allows computer-generated ob-

jects to behave in a physically realistic manner. This

is accomplished by formulating and evaluating a

mathematical model consistent with the laws of

physics governing the behaviors being simulated.

Physical simulation is very computationally inten-

sive and consequently very slow. It can also result in

unrealistic behaviors due to instabilities at extremes

in the simulation, such as very heavy or very light

objects, extreme forces exerted at joints, or very

large velocities. These challenges often lead simu-

lation models to use physics for some aspects, but

rely on nonphysical simulations for others. For

example, the simulation of a multibody object using

articulated joints may constrain one body to move

itself after each time step to maintain a consistent

position or orientation to an adjacent body. Higher-

performing and more stable ‘‘pseudo-physics’’ is

typically used in video games, but may be inad-

equate for other simulations such as those required

for simulating animal behavior or mechanical

systems.

The numerical integration functions required for

physically based simulation to provide realistic

behaviors in MMOGs have inherently high compu-

tational costs.
3

To alleviate this somewhat, the

simulation may be performed on the individual

clients of a peer-to-peer networked game, but this is

problematic due to limited computing resources at

the client level and network latency in propagating a

client’s state to the other clients. A client/server

online game offers another alternative, providing a

powerful compute server that can be authoritative

over the state of the entire game world. Although

many clients currently have the capacity to perform

physical simulation for all objects in a player’s view,

with current technology this approach leaves little

processing capacity for all other aspects of the game.

The performance challenges inherent in physical

simulation can be addressed by utilizing a high-

performance computing system to provide the

computing power necessary for the complex math-

ematics used to model the simulation. Traditionally,

the application can be parallelized and distributed

over a cluster or grid of Intel Architecture (IA)

computing nodes, but the communication latency

and bandwidth between the nodes becomes a

bottleneck in achieving real-time performance.

Additionally, the cost of such a system can be

prohibitive for some users. High performance and

high volume mitigate both of these problems. High-

performance processors can provide ten times the

computing power of commercial off-the-shelf

(COTS) PC/workstation processors. If used in a

server cluster or grid, the computing density is much

greater than servers based on a COTS processor

could deliver. Consequently, there is a need for

fewer nodes and less internode communication.

The Cell Broadband Engine** (BE) processor is a

compute server which can meet these challenges.

The Cell BE processor consists of a 64-bit PowerPC*
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core augmented with eight synergistic processing

elements (SPEs) suitable for high-speed, numeri-

cally intensive computation.
4

In this paper, we

explore how an independent software vendor such

as a game developer might create a game for the Cell

BE processor with multiple human and robotic

characters interacting with static and dynamic

objects in a virtual environment.

Each Cell BE processor represents nine computing

nodes over which an application can be distributed

with very high bandwidth and low latency commu-

nications between processors. A system using

multiple nodes based on the Cell BE architecture can

distribute the application further across the nodes.

Hence, the physical simulation application can

leverage the layered bandwidth of the server system

based on the Cell BE architecture to distribute the

latency- or bandwidth-sensitive operations over

multiple processing elements within the Cell BE

processor and the less sensitive operations over

multiple Cell BE nodes.

PROJECT OVERVIEW

The purpose of the project presented here was to

assess the viability of using Cell BE technology to

implement high-performance compute servers for

the next generation of online games. The method-

ology used was to develop a client/server-based

online game which would utilize a Cell BE server to

implement rigid body dynamics in addition to global

state management, relying on a Wintel (Microsoft

Windows** and Intel) client for rendering. The team

focused on determining the programmability and

performance of the Cell BE server by porting pre-

existing Wintel code and developing new code using

the tool chain provided for the Cell BE architecture.

The most powerful Cell BE architectural character-

istic for which we designed was the eight SPEs.

Their 256 GFLOPS of computing power could

potentially provide a significant performance boost

to physically based simulations not available

through current Intel Architecture IA-32 or IA-64

implementations.

In our implementation we began as a game

developer might by simply porting existing code

to the relatively mature and well-understood

PowerPC core. Following this, we utilized the SPEs

to perform some of the more computationally

intensive physics simulation required for a game

server. We used the SPEs to perform a hybrid

integration calculation required to compute rigid

body displacements in a multibody game scene. We

also investigated the potential for utilizing the SPEs

to perform narrow-phase collision detection.

Although our experience suggests that simply

porting code to the Cell BE processor PowerPC core

with minimal use of the SPEs should not be expected

to produce significant performance gains early in the

process, the potential of the Cell BE processor SPEs

to improve performance is considerable.

Our research was conducted in three phases. Phase I

utilized a Wintel-based prototype with a single client

and server. Performance was characterized on this

system by determining frame rates and time spent in

specific sections of code. Frame rates in this context

indicate the number of frames simulated per second,

rather than the number rendered. Streaming SIMD

(single instruction multiple data) extensions (SSE)

were utilized to accelerate server-side computation-

ally intensive functions, such as numerical integra-

tion and collision detection. SIMD extensions are

API (application programming interface) extensions

to the C programming language that allow the

programmer to utilize the SIMD extensions to the

Cell BE architecture without having to write

assembly language. The Wintel system serves as a

reference performance benchmark. During Phase II

of this study, server code was ported to the Mambo

simulation environment for the Cell BE processor.

We utilized a stand-alone 3D physics editor to

determine specific bottlenecks in the physical

simulations and to compute projected frame rates.

Phase III focused on porting the server-side code

base to engineering prototype boards connected via

gigabit Ethernet networks to Wintel client systems.

Performance was characterized and compared with

previous projections. We describe design and

implementation decisions, with programmability

issues being especially noted.

GAME DESCRIPTION AND CHALLENGES
The story line for the game involves mechanical

robots attacking a city inhabited by humans who

defend themselves by using a variety of weapons.

These weapons include handheld rocket launchers,

machine guns, and satchel explosives. A robot can

be destroyed by firing weapons at vulnerable points.

Alternatively, humans can destroy static structures,

causing indirect damage to a robot.

Several technical challenges were involved in

implementing the articulation of robot and human
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joints resulting in realistic movement. First, collision

detection was needed to determine when moving

bodies intersected with other moving or static

bodies, such as walkways, buildings, and terrain.

Collision detection was implemented with a two-

phase approach, using a broad phase to quickly

eliminate bodies that could not physically collide

with each other during any given frame update and

a narrow phase to specifically determine if pairs of

bodies would intersect within each given frame

update. This process was both integer- and floating-

point-intensive. Figure 1 shows a large robot with

many articulating joints. Each pair of joints is

represented in a database of collision bodies.

Robot and player movement and balance were

expected to be a difficult problem. Specifically, we

did not want moving bodies to look like they were

‘‘floating’’ over terrain or paved surfaces. The

articulation of joints was intended to look smooth

and coordinated. This was especially challenging

because network bandwidth limitations would

require differential updates of bodies to reduce data

flow from server to client. We had to consider what

granularity of updates in the time line would be

appropriate to ensure that articulating joints did not

‘‘drift’’ and separate over several frames.

Client/server synchronization was another impor-

tant challenge. Due to network latency time, we

would need to compensate on the client for player

response time that could not tolerate a round-trip

communication between client and server. For a

low-performance client, this compensation would

require approximations that could result in a

desynchronization of game-world state between the

client and the server, which computes more

accurately.

Ultimately, aggregate outbound server network

bandwidth was limited to 100 Mb/s, and this

presented a challenge for data movement to the

client during state updates and packaging of

information. Client-to-server communication was

considerably less, and was more susceptible to the

limitations of higher latency than those of overall

bandwidth.

GAME DESIGN
The prototypical game was designed to execute on

both client and server. The client used in this project

was an IBM Intellistation* M-Pro with a 3.2 GHz P4

processor and 1 GB of RAM. The graphics adapter

used was an nVidia GeForce** 6800 adapter with

256 MB of unified frame buffer memory. Client

execution primarily involved the rendering of each

frame. The client software processed player inputs

in the form of mouse and keyboard actions. In order

to accommodate very low-latency game actions, the

client software received entity state input from the

server and performed an ‘‘approximated’’ simula-

tion. The client model of the game-world state was

then updated, and the frame was rendered. A client

world-state update was subsequently sent to the

server. The approximated simulation could be

performed on the client by using an extrapolation of

entity positions from the last known positions or an

interpolation based on information transferred from

the server running the simulation at a slightly higher

frame rate than the client updates.

The server was an engineering prototype board

based upon the Cell BE architecture. The Cell BE

processor was running at 2.4 MHz, and the available

system memory was 512 MB. The Ethernet con-

troller was a PCI (Peripheral Component Intercon-

nect) E1000 card and could achieve a bandwidth of

up to 100 Mb/s. The focus of the project was to test

the feasibility of using the server to perform accurate

real-time physical modeling of the rigid body

dynamics required to simulate the movement of

robot entities as they attack a virtual city. This

modeling consisted of repeatedly performing colli-

sion detection by using the current positions of the

Figure 1
Mechanical robot
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objects in the game world followed by numerical

integration to obtain the positions and orientations

of the objects for the next time step, based on the

application of an external force. Both collision

detection and integration are very computationally

intensive tasks. They accounted for at least 90

percent of the server-simulation computational

workload.

Finally, the server executable was tasked with

keeping an inventory of state changes for the entire

virtual world, a complete copy of the entire entity

database representing all assets, managing network

communications including determination of client

updates, packaging of data, input event processing,

player login, and so forth. The state of each body

can change from frame to frame. These tasks,

although many, did not represent a significant

amount of the server workload on the reference

platform. Figure 2 describes the overall flow of data

between client and server and the distribution of

game functionality.

GAME PHYSICS

The physics engine provided the real-time simu-

lation of a simplified model of real-world physics.

The goal was not to provide a perfectly realistic

model of reality, but rather to robustly and

efficiently provide a reasonable model for building

game worlds.

The engine supported a large number of rigid

bodies. The collision representation was a union of

convex hulls. Various control forces were provided

to allow interaction. Several types of constraints

were provided to allow construction of hinges,

joints, and so forth. Client code interfaced with the

physics engine via an object-oriented Cþþ interface.

Client code instantiated rigid body, force, and

simulator objects.

The most important distinction among physics

engines is the method of integration. Physics

simulation is fundamentally about solving the

measure differential inclusions that describe the

time evolution of a dynamic system. A common

method is to reformulate this as a mixed comple-

mentary problem.
5

However, an alternate method

was chosen for this project that was more robust,

efficient, and better suited to SIMD hardware,

namely semi-implicit integration
6

of a penalty force-

based system, that is, a dynamic system that

enforces constraints by applying a restorative force

when the constraint is violated.

Contact and other constraints were internally

reformulated as ‘‘stiff’’ penalty forces designed to

enforce the desired behavior.
7

(Forces are said to be

stiff if they are difficult or expensive to integrate

explicitly.) The system was evolved by numerically

integrating a system of ordinary differential equa-

tions. To handle the stiffness of these forces, implicit

Figure 2
Data flow and game functionality
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integration of the equations of motion was required.

A fully implicit integration requires solving a system

of nonlinear equations, or alternatively, minimizing

a nonlinear function of the system, which can be

very expensive. Thus, a semi-implicit formulation

was used. First, a first-order Taylor series of the

equations of motion was expanded around the

current state, producing a local model that was a

linear approximation of the actual nonlinear system.

Then, the integration step was achieved by solving a

large sparse linear algebra problem.
3

Continuous collision detection was not supported,

and collision detection was implemented only at a

fixed frequency. This frequency was a small multi-

ple of the game update frequency. Because of this,

tunneling (the complete passage of a fast-moving

object through another object due to running

collision detection only at discrete time steps) could

occur. This presented a game-design constraint,

imposing a restriction on the size versus the speed of

simulated objects. Objects that did not fit within this

size/speed envelope, such as bullets, were simu-

lated outside of the physics engine.

Offline force construction

For the semi-implicit integrator to work, the

derivatives of forces needed to be calculated. Often

this is performed with an in-place automatic differ-

entiation library.
8

However, we took a better

approach: in a preprocessing step, force expressions

were compiled, and derivative code was generated.

For example, we examine the functioning of a point-

to-point constraint. The constraint function

C ¼ Pb� Pa

indicates that the constraint is satisfied (i.e., C ¼ 0)

when the positions of the constraint points are equal

(note this is a vector-valued equation). The formula

is hard-coded as a Cþþ expression in the force

compiler tool.

Pa and Pb are functions of the underlying state

variables:

Pa ¼ Xaþ Ra�Pa bs

where Xa is the position of the center of mass of

body a, Ra is the orientation matrix for body a, and

Pa_bs is the body space position of the constraint

point.

Next, we convert the constraint equation to a

penalty function:

Fa ¼ ]C=]Ca�ðKs�C þ Kd�dC=dtÞ;

where Fa is the force on body a and Ca is the vector

of the 6 degrees of freedom of body a’s position.

The force compiler symbolically calculates this

expression and then symbolically generates the

partial derivative matrices required for the integra-

tors as follows:

]Fa=]Xa
]Fa=]Va
]Fa=]Cb
]Fa=]Vb

where Va is the vector of the 6 degrees of freedom of

body a’s velocity. Each partial derivative is a 6 3 6

matrix. Similar expressions are evaluated for Fb.

The expressions are internally represented as an

expression tree that allows the taking of derivatives.

The output expressions are then optimized with

some simple identity rules, passed through a

common subexpression eliminator, and output as C

code. The C code is compiled into the game runtime.

The preceding description presents the science of

force formulation. The art is in the manner in which

constraints are formulated. For example, we also

could have written the point-to-point constraint as

C ¼ jjPb� Pajj

This expression provides a continuous function that

is zero when the constraint is satisfied and nonzero

when it is not. This second formulation works, but

results in significantly worse stability (and therefore

performance), because the first formulation is a

much more linear function of the degrees of freedom

than the second and therefore, is much better

approximated by the first order Taylor series

approximation used in semi-implicit integration.

Runtime step

A runtime step consists of collision detection using

the current positions of the rigid bodies in the game

world, revising the groups of active versus sleeping

objects based on the result, and integrating to obtain

the positions of the rigid bodies for the next step.

Collision detection

The broad phase of collision detection compares

objects pair-wise based on their axis-aligned
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bounding boxes. Alternatively, bounding spheres

could have been used, but ultimately boxes were

chosen because they can be made to tightly fit a

variety of geometric shapes. If the bounding boxes

intersect, the objects are passed along to the narrow

phase for a more detailed examination to see

whether the objects intersect. Bodies that are static

are referred to as ‘‘sleeping,’’ and moving bodies are

referred to as ‘‘active.’’

In the broad phase, all of the active bodies’

bounding boxes are tested against each other. Each

active body is then tested against all of the sleeping

bodies. It is not necessary to test the sleeping bodies

against each other because they are not moving.

The narrow phase collision detection takes a pair of

convex hulls and outputs a set of contacts. First, a

best separating plane is found, as shown in Figure 3.

The definition of ‘‘separating’’ is generalized to

handle the case of penetration, when ordinary

separation is not possible. In this case, a generalized

conception of separation could be a plane that has

the normal of the direction of minimum translation

(to separate) and a position that converges to the

ordinary separating plane as the two hulls separate.

The best separating plane P on hull A versus hull B

is the plane that produces the maximal separating

distance, where separating distance is the minimum

signed distance of all the vertices of hull B from

plane P. Planes from all the faces of both hulls are

tested. If at any point an actual separating plane is

found, the algorithm ends because the hulls are

disjoint. The contact list is then generated. The two

hulls are ‘‘intersected,’’ that is, an algorithm is run

which finds some attributes of the volume of

intersection, and a contact point is generated for

each edge-face intersection and each contained

vertex.

Waking, partitioning, and sleeping

With collision detection done, the new contact list is

checked to see if any active bodies have collided

with any sleeping bodies. Any sleep groups (i.e., a

group of bodies that was an integration group but

has been put to sleep) which have been affected are

moved to the list of active bodies. Partitioning takes

the active bodies and separates them into non-

interacting groups (islands), using the disjoint set

forest algorithm.
9

Each group is tested to see if it meets the require-

ments for being put to sleep (velocity tolerance tests

over several frames). If so, it is changed to a sleeping

group and not integrated.

Decoupling

Decoupling forcibly breaks up integration groups

(i.e., a group of bodies that must be integrated due

to their interactions, constraints, etc.) that are too

large to fit in SPE memory. Decoupling is a

constrained combinatoric graph optimization prob-

lem, with the bodies as the nodes of the graph and

the forces, constraints, and contacts as the edges.

The problem can be stated as follows: find the

smallest set of partitions, such that each partition

passes some cost function (involving SPE memory

size), which maximizes some quality function

(involving which edges are broken). As such, it is

probably an NP (nondeterministic polynomial)

problem. The algorithm we currently use for

decoupling uses a very simple heuristic that could

not be called ‘‘greedy,’’ as it does not optimize even

locally. It randomly picks a node to start with and

indiscriminately attempts to grow the group until it

cannot fit any more nodes under the memory limit.

An intrinsic part of the quality of the decoupling is

that the decoupled partitions are randomized from

step to step so that a given group is decoupled

differently at each step. This is necessary in order to

spread decoupling-induced error around the group.

The requirement for randomization makes any

caching system impracticable.

Step control

When the integration step fails for a workload (due

to failure to converge when solving the linear

Figure 3
Narrow-phase collision detection
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system), the step control system acts to keep the

system from ‘‘exploding.’’ This is done by discarding

all results from solution failures (despite the fact

that they may have resulted in a solution which was

close to adequate), reducing the step size, and

reintegrating. For performance and stability, colli-

sion detection is not rerun. Should step size

reduction fail, there are a number of backup

methods to keep the integration from totally failing.

Integration step

In the following, we present a mathematical over-

view and a description of the algorithm used for

performing the integration step.

Mathematical overview

Numerical integration schemes integrate a time-

dependent system Y from state Y0 ¼ Y(t0) to state

Y1¼Y(t1), where the time derivative function of Y is

dY/dt ¼ F(Y). The step time is referred to as

h ¼ t1 � t0.

The simplest integration scheme is known as Euler

integration:

Y1 ¼ Y0 þ h�FðY0Þ:

Euler integration is easy and fast to evaluate.

However, it is inaccurate and, more important,

unstable when presented with stiff systems.

Implicit integration handles stiff forces much more

robustly. The simplest implicit integration scheme is

known as backward Euler integration:

Y1 ¼ Y0 þ h�FðY1Þ:

However, as Y1 depends on F(Y1), one cannot

simply calculate Y1 as one can with forward Euler

integration. Instead, one must solve for a new state

Y1 that satisfies the above equation. As the function

F is generally nonlinear, this requires solving a

system of nonlinear equations. The problem can

also be cast as a nonlinear minimization problem:

minfðYÞ ¼ rðYÞ � rðYÞ;

where

rðYÞ ¼ Y � Y0 � h�FðYÞ:

Semi-implicit integration approximates Y1 by a first

order Taylor expansion of F around Y0:

FðY0 þ delta yÞ’ FðY0Þ þ F 0ðY0Þ�delta y

where

F 0ðYÞ ¼ dFðYÞ=dY

and

delta y ¼ Y1 � Y0:

This gives us

Y1 ¼ Y0 þ h�ðFðY0Þ þ F 0ðY0Þ�delta yÞ
delta y ¼ h�FðY0Þ þ h�F 0ðY0Þ�delta y:

In order to solve for delta_y, we obtain:

ðI � h�F 0ðY0ÞÞ�delta y ¼ h�FðY0Þ:

This is a square linear system that can be solved for

delta_y.

Second-order rigid body dynamics can conceptually

be turned into a first order integration problem like

this:

Y ¼

x
v
x
v
. . .

½0�
½0�
½1�
½1�

0
BBBB@

1
CCCCA

where x[0] is the generalized position of body 0 (or

the 0th element of the system x vector), and v[0] is

the generalized velocity of body 0.

The derivatives are:

FðYÞ ¼

v½0�
W½0�
v½1�
W½1�

� f ½0�

� f ½1�
. . .

0
BBBB@

1
CCCCA

where

W[0] ¼M[0]
�1

, is the inverse of the generalized

mass matrix of body 0, and f[0] is the force on body

0, that is, the 0th component of the force vector f

(not to be confused with system derivative F).

We can see that this results in Newton’s familiar

formulation of dynamics:

dx=dt ¼ v
M �dv=dt ¼ f

We could directly use such as setup to do a semi-

implicit integration, but by directly expanding F(Y)
in terms of delta_x and delta_v, we can halve the
size of the linear solution:

Fðx0 þ delta x; v0 þ delta vÞ
’ Fðx0; v0Þ þ dFðx0; v0Þ=dx�delta x

þ dFðx0; v0Þ=dv�delta v:
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Because

delta x ¼ h�v1 ¼ h�ðv0 þ delta vÞ;

we can remove delta_x and solve for delta_v only:

I � h�W � df ðx0; v0Þ=dvþ
h�df ðx0; v0Þ=dx

� �� �
�

delta v ¼ h�ðW�ðf0 þ h�ð=df ðx0; v0Þ =dx�v0ÞÞÞ:

By introducing some abbreviations,

df dx ¼ df ðx0; v0Þ=dx;
df dv ¼ df ðx0; v0Þ=dv;

we arrive at our final problem:

ðI � h�W �ðdf dvþ h�df xÞÞ �
delta v ¼ h�ðW �ðf0 þ h�ðdf dx�v0ÞÞÞ

Once again, this is a linear algebra problem, but now

we are only solving for delta_v.

A � delta v ¼ b

where

A ¼ I � h � W � ðdf dvþ h � df dxÞ
b ¼ h � ðW � ðf0 þ h � ðdf dx � v0ÞÞÞ

In the maximal coordinates representation, each

body contributes six components to v (three linear

and three angular). df_dx and df_dv are of size

6 � num_bodies by 6 � num_bodies and are 6 3 6

block sparse. The sparseness pattern is such that the

diagonal blocks are nonzero, and there are a pair of

off-diagonal nonzero blocks for each pair of inter-

acting bodies (i.e., those with a force between

them).

Algorithm

The integration algorithm consists of several logical

steps:

1. Calculate the components of A and b; v0 and W

are trivial to extract, f0 must be calculated, and

df_dx and df_dv both require considerable

computational effort to calculate.

2. Form A and b.

3. Solve A � delta_v ¼ b by a conjugate gradient

method.

4. Step the system from Y0 to Y1 by delta_v.

IMPLEMENTATION

This project was executed on a much accelerated

schedule and was intended to assess the pro-

grammability of the Cell BE architecture. To that

end, the team started with an established code base

that included a general game database, game engine,

network manager, event handlers, and a 2D physics

engine. Four fundamental challenges were identified

up front:

1. Creating a 3D physics engine optimized for the

eight SPEs;

2. Porting some portion of the existing Cþþ code to

C because there was no SPE compiler support for

Cþþ;

3. Porting Windows-specific code to Linux**;

4. Providing additional network management logic

to handle endianness differences between Cell

BE- and Intel-based server and client platforms.

These four challenges resulted in a fairly quick

divergence between the Wintel and Cell BE code

base. In order to create a stable, robust reference

system, the team decided to develop the game on a

Wintel platform first. In reality, the Wintel version

of the game was not completed before work started

on the Cell BE version, and there was some dual

development that occurred throughout the latter

stages of the project.

Implementing an application for the Cell BE

architecture requires that programmers design for

one of its key architectural features, that is, the eight

asynchronous SPEs. The SPEs represent an aggre-

gate 256 GFLOPS of vector float performance.

Fundamentally, to achieve optimal performance, the

code needs to be partitioned across both the PPE

(PowerPC Processor Element) and the SPEs. Ideally,

it was our goal to port most of the code to the SPEs;

practically, this was not possible, given the time

constraints of the project. We focused our efforts on

porting the code that represented the bulk of the

workload.

Because the application relied heavily on rigid body

dynamics to provide interesting game play, it was

heavily dependent on collision detection and nu-

merical integration. Either task-level or data-level

parallelism could have been employed across the

SPEs, but because the integration code was compact

enough to reside in the 256-KB local storage area of

a single SPE, we chose a data parallelization scheme

across all available SPEs. This also facilitated

workload balancing and hence optimal SPE utiliza-

tion. The scheme was applied to the port of the

numerical integration code onto the SPEs. Numer-

ical integration required an iterative solution to the
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conjugate gradient squared algorithm
10

as outlined

in the following pseudocode:

r ¼ rt¼ p ¼ u ¼ b � A(x)

rho ¼ dot (r,rt)

if rho¼¼0, return (method fails)

while (1)f
vhat ¼ A(p)

alpha ¼ rho/dot (rt,vhat)

q ¼ u � (alpha)vhat

u þ¼ q

x þ¼ (alpha) u

qhat ¼ A(u)

r �¼ (alpha)qhat

if converged, return (ok)

if maximum iteration count

exceeded, return

(not converged)

rhoprev ¼ rho

rho¼ dot(r, rt)

ifrho¼¼0,return(methodfails)
beta ¼ rho/rhoprev

u ¼ r þ (beta)q

p ¼ q þ (beta)p

p ¼ u þ (beta)p

g

A biconjugate gradient algorithm, as shown in the

following pseudocode, was also tested:

r ¼ rt¼ p ¼ pt ¼ b� A(x)
rho ¼ dot (r,rt)
if rho¼¼0, return (method fails)
while (1)f

q ¼ A(p)
qt ¼ (transpose(A))(pt)
alpha ¼ rho/dot(pt, q)
x þ¼ (alpha)p
r �¼ (alpha)q
rt �¼ (alpha)qt
if converged, return (ok)
if maximum iteration count

exceeded, return
(not converged)

rhoprev ¼ rho
rho¼ dot(r, rt)
ifrho¼¼0,return(methodfails)
beta ¼ rho/rhoprev
p ¼ r þ (beta)p
pt ¼ r þ (beta)pt

g

The latter algorithm required some additional

storage for the multiplication by the transposition of

the matrix. The two algorithms yielded similar

performance results, and the conjugate gradient

squared algorithm was ultimately chosen because of

its smaller memory footprint. DMA (direct memory

access) was driven from the SPEs, and a single-

buffer implementation was used for input and

output data storage. The option of double-buffering

data I/O between the SPE local store and system

memory was identified, but the decision of whether

to do this was deferred until the performance

analysis phase of the project. The following input

and output data structures were used for transfer of

rigid body metrics to and from the SPEs:

struct Rigid_Bodyf

//---------state---------
Vec3 position;
Quaternion orientation;
Vec3 velocity;
Vec3 angular_velocity;

//----mass parameters----
float inverse_mass;
Matrix33 inverse_inertia;

//----other parameters----
float coefficient_friction;
float coefficient_damping;
. . .

g bodies[num_bodies];

struct Rigid_Body_Step f
Vec3 delta_velocity;
Vec3 delta_angular_velocity;

g delta[num_bodies];

The remainder of the server code was targeted to

run on the PPE. This included the network-

management, arithmetic-coding, and particle-sys-

tems code. The network-management code was

broken into two levels. The team initially focused on

networked scene management. Even with low-level

compression, because there was far too much data

to send all of it to each client as changes occurred,

the server needed to have a ‘‘scene management’’

layer that decided which state updates needed to be

sent and to which clients. This layer was constantly

working to minimize the error in each client’s view
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of the world and, at the same time, stay within a

bandwidth budget.

Initially, the problem of networked scene manage-

ment may seem difficult to allocate to the SPEs

because it requires random access to all client-

observable game states, and this involves much

more data than can fit into an SPE’s local memory.

However, even in a monolithic CPU situation,

because the ‘‘brute force’’ version of this algorithm

requires prohibitive amounts of memory, the algo-

rithm must be modified to reduce memory expen-

diture. Generally, this involves developing some

heuristics that coarsely approximate each client’s

state-knowledge error. Such approximations often

involve grouping entities into equivalence classes;

such a grouping strategy, if properly chosen, could

also help the system run on the SPEs.

The nature of this grouping heuristic depends on

many factors that are not yet finalized (the number

of objects in the game world, how many data items

describing them need to be communicated and at

what precision, how quickly and predictably the

values tend to change, and so forth). The most likely

approach would be to perform the broad phase,

which requires many random memory accesses, on

the PPE and allocate the narrow phase to the SPEs.

This model does not fit perfectly because networked

scene management is a somewhat stream-oriented

rather than a batch-oriented task, but it can be a

good starting point. This would constitute a server-

side optimization. Whereas the client does tend to

perform some tasks related to networked scene

management, these are not very expensive com-

pared to what the server does. The server must

perform computations for each client, and these

computations are more expensive.

PERFORMANCE

We were concerned primarily with server-side

performance, based on the premise of the project,

which was that servers based on the Cell BE

architecture could be used to accelerate game play

for MMOGs. We profiled the server-side components

to determine both qualitative and quantitative

performance differences between an Intel Pentium-4

(P4) 3.0 GHz system and a Cell BE processor 2.4

GHz system. The Cell BE processor performance

profiling was done on early hardware that was not

running at full clock speed (4 GHz) and had only six

(as opposed to eight) functioning SPEs.

During the implementation phase, we had consid-

ered double buffering data I/O to and from the SPE

local store. Profiling determined that numerical

integration executing on the SPE had an extremely

high ratio of computation time to DMA time

(approximately 182); that is, DMA time (single

buffered) was less than 1 percent of all SPE

execution time. This suggested that double buffering

input and output buffers would likely reduce overall

performance by lowering maximum workload size

without providing a speedup.

Two benchmarks were used to determine relative

performance differences between the Intel and Cell

BE processor platforms:

� The ‘‘Ben25’’ benchmark (see Figure 4 for a

screen capture) is a synthetic benchmark. It

contains 25 ‘‘ben’’ robots and is designed to stress

integration.
� The ‘‘City_Busy’’ benchmark (see Figure 5 for a

screen capture) is a realistic game scenario. It was

created with data captured from a level during

actual game play. It contains two ‘‘ben’’ robots, two

‘‘sparkimus_prime’’ robots, two ‘‘heshbot’’ robots,

and a lot of rubble.

The results are normalized so that the P4 perfor-

mance is 1.0.

Ben25 benchmark

Figure 6A shows the relative performance of the

Ben25 benchmark using various processor combi-

nations. The first obvious result is that the PPE

(VMX) is less than a fifth of the speed of the P4

(SSE). This result has roughly held true for all P4-to-

PPE comparisons made in this code base (VMX-to-

SSE or scalar-to-scalar).

The SPE versus PPE performance gap is huge.

Measuring the exact SPE performance shows that

one SPE runs at more than 11 times the speed of the

PPE and at more than twice the speed of the P4.

Figure 6A shows a 1.5 times speedup for one SPE,

which indicates that even with one SPE, the PPE is a

major drag on performance. This is despite the fact

that most of the PPE integration code is run in

parallel on the SPE. The PPE overhead in this

benchmark is mostly due to packing and unpacking

SPE workloads, although there is some small over-

head for SPE scheduling. The multi-SPE scheduling

is less than optimal, as well. The multi-SPE
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performance continues to scale until the PPE over-

head dominates at around three or four SPEs.

Figure 7B shows that the non-SPE parts of the code

take a much larger proportion of the time on the Cell

BE processor than on the P4, in particular when

performing decoupling. The PPE is obviously a

limiting factor in the current SPE optimized code.

SPE optimizing of 90 percent of the P4 profile (of the

integration core) results in 1.3 times the perfor-

mance.

City_Busy benchmark
Compared to the Ben25 benchmark, we see that for

the City_Busy benchmark (Figure 6B), the SPEs

perform less well. This is probably due to less ideal

workload generation, resulting in higher PPE over-

head. This is confirmed by a higher ratio of the

number of workloads to the number of bodies and

the leveling off of performance at two SPEs. Another

factor is that the City_Busy benchmark is less stiff

than the Ben25 test (as indicated by the ratio of the

number of solution steps to the number of bodies).

As shown in Figure 7B, the non-SPE parts of the

code take a much larger proportion of time on the

Cell BE processor than on the P4. In particular,

collision detection time now dominates the Cell BE

processor profile. SPE optimizing of 61 percent of

the P4 profile (of the integration core) results in 0.4

times the overall performance. The modest per-

formance gains in SPE code are swamped by huge

performance losses in the PPE code.

Next steps

Clearly, the PPE is a bottleneck in the current

implementation. Since much of the game code runs

on the PPE, most of the advantage of the SPEs is

negated. In order to improve performance, we are

Figure 4
Ben-25 benchmark screen capture
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focusing on moving more code to the SPEs.

Ultimately, this will require considerable redesign of

the current game code. One component that is

currently being ported to the SPEs is collision

detection. The narrow-phase function is highly

vectorizable, and this would reduce a significant

bottleneck in current game play.

Another important design change that would alle-

viate the PPE bottleneck involves the data structures

used to store the game scene data, which must be

transferred to the SPEs for the collision-detection

and integration calculations. These structures,

which describe such things as rigid bodies, collision

bodies, and forces, were designed as Cþþ structures

in the code base with which we started, and tend to

be somewhat complex. For example, a collision

body includes (among other things) a vector of

shared faces, each of which has a normal, a vector of

edges, and a vector indicating which face is on the

opposite side of each edge. This complexity allows a

degree of abstraction in Cþþ that makes algorithm

development much easier. When we moved the

integration to the SPEs, we had two options: packing

the information from the various structures needed

for each workload into contiguous storage on the

PPE side and copying it to the SPE as one ‘‘chunk,’’

or sending the addresses of the structures to the SPE

and letting it crawl through the Cþþ structures to get

the necessary data. We chose the former approach

because the latter would have been difficult to

program and error-prone, and we expected the PPE

performance to be somewhat better than it turned

out to be. However, the packing step is highly

inefficient and further burdens the PPE with a data-

processing task that not only would be unnecessary

on an Intel platform, but would execute five times

faster. An extension to the SPE compiler which

Figure 5
City-busy benchmark screen capture
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would read the PPE’s Cþþ data structures would be

helpful in porting the code, but ultimately the data

structures need to be simplified to obtain maximum

performance.

For collision detection, we are investigating ways to

simplify the data structures on the PPE side so that

we can transfer blocks of contiguous storage, with

pointers to vectors (again in contiguous storage) for

some of the variable-sized data structures. This will

require some additional discipline on the PPE side.

We can store pointers to Cþþ vectors without

resetting them every time we send them to the SPE

as long as we do not add elements to the vectors

during game play, because this may cause the data

to be moved. This simplification also requires more

complex code on the SPE side to transfer the data,

but should make it possible to improve performance

significantly. If so, we would investigate doing

something similar with the data structures that are

used in the integration step in order to break the

bottleneck there.

The goal of providing a high-performance server

platform for MMOGs requires significant design

work to support a multiprocessor implementation.

The game currently supports a ‘‘stateless’’ model to

distribute the data for entities in the virtual world.

The entities in the virtual world are maintained by

one or more nodes in the system, which dispatch

work to helper nodes. Workload balancing is easier

to accomplish with this scheme, but the dispatcher

node can become a bottleneck, and there may be

long latencies to move data to remote helper nodes.

Another approach would be the ‘‘territorial’’ model,

in which the virtual-world entities are distributed

throughout all the nodes in the system, and each

node is responsible for processing data in a

particular geographic area of the world. This

approach presents several challenges. First, as

objects or players move from one geographical

region to another, their representative data must be

transferred between the appropriate nodes, leading

to longer latencies in this event. Second, if play is

concentrated in a subset of the geographical regions,

other nodes are idle, making load balancing a

challenge.

Figure 7
Time spent for code segments; (A) using Ben-25 
benchmark, (B) using City-busy benchmark
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CONCLUSIONS
It is clear that from the point of view of theoretical

maximum performance, the Cell BE processor’s low-

latency local store with bandwidth-efficient DMA

and manually managed memory latency offers

significant advantages. However, from a software-

engineering perspective, the impact of porting some

types of legacy game software is daunting. It is not

enough to identify computationally expensive sub-

processes and fit them onto the SPEs; the data which

supports those subprocesses must be stored in a

compact way on the PPE side to simplify data

transfer without requiring repacking by the PPE. It is

possible to envision applications for which this

could be done without great difficulty, but our game

was not one of them.

The lower performance of the PPE is the major

factor in considering overall system performance

when porting legacy code. The SPEs performed very

well, beyond our expectations, and we did not

experience any DMA-related performance issues.

Nevertheless, it is clear that with the current Cell BE

hardware, there is not a performance advantage

unless most of the non-SPE-optimized profile is

moved to SPE code. Even using the SPEs to process

scalar codes would offer a significant advantage

over executing the same code on the PPE.
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