
Events and service-oriented
architecture: The OASIS Web
Services Notification
specifications

&

P. Niblett

S. Graham

The OASIS Web Services Notification (WSN) family of specifications defines a standard

interoperable protocol through which Web services can disseminate events. We

present here a summary of three WSN specification documents that are currently

available: WS-Base Notification, WS-Topics, and WS-Brokered Notification. We

conclude with a brief discussion on the use of the notification pattern in the Enterprise

Services Bus, a service-oriented infrastructure for mediating requests among

cooperating Web services.

INTRODUCTION

Many service-oriented architecture (SOA) imple-

mentations are based upon the request/response

interaction pattern, where a service requestor

identifies a service that it wishes to use and then

sends it a request message. A second entity, the

service provider, accepts the request message,

processes it, and then sends a response message.

This is a pattern that is familiar to any programmer

who has made a procedure or function call in a

procedural programming language or who has

invoked a method in an object-oriented language or

distributed object system. Indeed this pattern is so

familiar that programming interfaces and tools (for

example, those used with Web services) often hide

the underlying message exchange; these tools

present a programming model that looks like a

simple procedure call.

Event-based programming, which has been around

for many years and has been applied in many areas,

is frequently used in user-interface systems, for

example the Smalltalk Model-View-Controller

(MVC) paradigm
1
or the X Window System,

2
where

a change in a model can be reflected in various

views, or where components react to user inter-

actions such as mouse clicks or key presses. Support

for event-based programming is provided in pub-

lish/subscribe systems available from message-

oriented middleware vendors.
3
Event-based

programming is also used with distributed objects;

Object Management Group, Inc. has published two

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NIBLETT AND GRAHAM 869

CORBA** (Common Object Request Broker Archi-

tecture) specifications that relate to event-based

programming: the Event Service Specification
4
and

the Notification Service Specification.
5

Event-based programming features an entity that

represents an occurrence (something that has

happened). In object-oriented systems this is usually

termed an event object; in message-oriented systems

it is variously referred to as a message, event, or

event message. In contrast to the request/response

pattern where the request and response messages

are frequently hidden from the programmer, in

event-based programming the event (be it a message

or object) assumes center stage. Applications

explicitly produce and consume events, and the

producing application has a relationship with the

event that it produces, rather than a direct relation-

ship with the applications that consume the event. A

consumer of events indicates (through a registration

process) the events in which it is interested, and it

interacts with the event itself, rather than with the

application that produced the event. We use the

term notification pattern to refer to the interaction

pattern that involves registration of consumers and

subsequent dissemination of events.

The idea of using the event itself to decouple the

event producer and consumer is a significant

difference between the request/response pattern

and the notification pattern. This decoupling sup-

ports one-to-many and many-to-one message ex-

changes, in addition to the one-to-one exchange

found in the request/response pattern. In addition, it

may have a more natural fit to the real-world

scenario that is being modeled by the application

architecture, and it allows further complex event

processing to be added in a straightforward

fashion.
6

The OASIS Web Services Notification (WSN)
7
family

of specifications defines a standard interoperable

protocol through which Web services can dissem-

inate events. These specifications are being devel-

oped by OASIS (the Organization for the

Advancement of Structured Information Standards),

a not-for-profit international consortium that drives

the development, convergence, and adoption of e-

business standards. The specifications are authored

by an OASIS technical committee whose member-

ship comes from a variety of software vendors,

users, and other professionals.

The intent of WSN is to define a set of royalty-free,

related, interoperable, and modular specifications

that allow the notification pattern to be modeled in

an explicit and standardized fashion. The benefits of

such standardization include interoperation be-

tween application entities written by different

authors, as well as interoperation between different

publish/subscribe messaging middleware providers.

The WSN family is made up of four separate

specification documents.

The WS-Base Notification specification
8
defines the

Web Services interfaces for notification producers

and notification consumers. It includes standard

message exchanges to be implemented by service

providers that wish to act in these roles, along with

operational requirements expected of them. This is

the base document on which the other WSN

specification documents depend.

The WS-Topics specification
9
defines a mechanism

to organize and categorize items of interest for

subscription known as topics. These are used in

conjunction with the notification mechanisms de-

fined in WS-Base Notification. WS-Topics specifies

an XML model for describing meta-data associated

with topics, and it defines some topic expression

dialects that can be used to refer to them.

The WS-Brokered Notification specification
10

defines

the Web Services interfaces for notification brokers.

A notification broker is an intermediary which,

among other things, allows publication of messages

from entities that are not themselves service

providers. It includes standard message exchanges

to be implemented by notification-broker service

providers along with operational requirements ex-

pected of service providers and requestors that

participate in brokered notifications.

The WS-Notification Policy specification defines a set

of policy statements that can be used in conjunction

with the other specifications in the family to request

particular qualities of service or other behavior.

The first three of these specifications are currently

available as drafts and will be the focus of this

paper. The WS-Notification Policy specification is

currently still at an early stage of development.

In the next section, ‘‘Web Services Notification,’’ we

present a summary of the first three WSN specifi-

cations. A discussion section follows in which how

NIBLETT AND GRAHAM IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005870

event-based interactions can be used in SOA along-

side interactions based on the request/response

pattern is discussed. In particular, the use of events

within the Enterprise Services Bus (ESB)
11

and in

the context of Complex Event Processing (CEP) is

discussed.
6

WEB SERVICES NOTIFICATION

WSN specifications standardize the syntax and

semantics of the message exchanges that establish

and manage subscriptions and the message ex-

changes that distribute information to subscribers.

An information provider, known as a notification

producer, that conforms to WSN can be subscribed

to by any WSN-compliant subscriber. If subscriber

and producer are using a common Web-service

binding—for example SOAP (Simple Object Access

Protocol)/HTTP (HyperText Transfer Protocol)—

and have appropriate network connectivity, they

could in principle interoperate even if they had been

designed by different people and were running in

different organizations on different continents.

We start our review of WSN with a section on the

terminology used in the specifications. Then, we

describe in sequence WS-Base Notification, WS-

Topics, and WS-Brokered Notification.

To illustrate aspects of the WSN specifications, we

use two example scenarios. The first is a stock-

trading scenario in which the service Stock Feed is

provided to a number of stock-trading applications.

The Stock Feed service supplies a stream of

messages indicating a change of price in some

traded stock or instrument. The trading applications

(possibly automated, possibly involving a human

trader) receive these messages and react to them.

Our second example is from the systems-manage-

ment world, where an organization has deployed

some printer management software to manage and

monitor the printers that it owns. The printers in the

organization generate events when they encounter

particular situations, both normal and abnormal,

and these are monitored by the printer management

software.

Terminology and concepts
WSN defines a set of terms, the most important of

which we list in this section and use throughout the

paper. The terms defined here are intended to

eliminate certain inconsistencies that used to plague

discussions related to events. For example, the term

‘‘subscriber’’ sometimes referred to the entity that

received notifications, sometimes to the entity that

set up the subscription, and sometimes even to the

entity that paid for the service. The specifications

avoid using the term event because this word is

susceptible to multiple interpretations.

Situation—A situation is an occurrence (something

has happened) that is noted by one party and is of

interest to other parties. A paper jam in a printer and

a sports result are two examples of situations. Often

a situation reflects a change of state of some object,

such as a stock-price change, a temperature change,

or a change in the internal state of a running

software program. Although the type of occurrence

related to the situation is immaterial as far as WS

Notification is concerned, it is important that

information relating to it can be communicated to

other services.

Notification—WS-Notification uses this term to refer

to the one-way message that conveys information

about a situation to other services. The sender of a

notification message could choose to format this

information in whatever way it sees fit and could

even use a different representation for each time the

situation occurs. To keep things simpler for

receivers, the sender of information typically

chooses a specific message type for each kind of

situation that the receiver is interested in. The type

of message specifies the information items that it

contains; it may also specify the format of this

information as a sequence of bytes. In WSN a

message type is represented by an XML Schema
12

global element definition.

The association between a situation and the type of

corresponding notification message is not necessar-

ily one-to-one. It is possible that an application

might associate several different notification mes-

sage types with a given situation. This could be the

case if there are multiple receivers and the aspects of

a situation that are of interest to the receiver vary

from receiver to receiver. Consider, for example, a

‘‘new employee hired’’ situation. A payroll applica-

tion requires the employee’s name, serial number,

job level, and starting salary, whereas a physical

security application requires the employee’s office

location.

Conversely, the same message type could be used

for a variety of situations. For example, a general-

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NIBLETT AND GRAHAM 871

purpose error message type could be used for a

number of different kinds of error situations.

Publisher—An entity that creates notification mes-

sage instances. The publisher selects the appropriate

type of notification message for the situation and

constructs an instance of this type containing

information relevant to the situation. In some cases

a publisher may be reacting to an external situation,

in which case its job might simply be to reformat

data from the external source into the format

dictated by the notification message type. The

publisher does not have the responsibility for

sending the message to the appropriate receivers

(see Notification Producer).

Notification Producer—A service that is responsible

for sending notifications to the appropriate con-

sumers. In some cases, a notification producer also

assumes the role of publisher and is responsible for

detecting situations and creating message instances.

If the notification producer does not act as publish-

er, it is referred to as a notification broker (or broker,

for short) and does not actually create notification

messages, but instead manages the notification

process on behalf of one or more publishers.

The notification producer is responsible for main-

taining a list of interested consumers and arranging

for notification messages to be sent to those

receivers. This may involve a matching step that

compares each notification against the interests

expressed by the individual consumers.

Notification Consumer—The counterpart of a notifi-

cation producer, an entity that receives the notifi-

cations distributed by notification producers. The

most common kind of consumer is a push consumer,

which is able to receive notifications sent directly

from the notification producer. WS-Notification also

supports pull consumers, which interact with the

notification producer (or some intermediary) when

they wish to receive a notification. A pull consumer

might be behind a firewall, which prevents it from

operating as a push consumer.

Subscription—An entity that represents the rela-

tionship between a notification consumer and a

notification producer. It records the fact that the

notification consumer is interested in some or all of

the notifications that the notification producer can

provide. A subscription can contain filter expres-

sions, policies, and context information. Each

notification producer holds a list of active sub-

scriptions, and when it has a notification to send, it

matches this notification against the interest regis-

tered in each subscription in its list. It determines

the set of consumers that are interested and notifies

them.

A subscription may be long-running, in which case

it lasts as long as the notification producer does, or it

may have a limited lifetime. In loosely coupled

environments such as SOAs, it is often desirable to

apply a finite lifetime to a subscription so as to avoid

situations where consumers disappear or lose

interest in a subscription without canceling it.

Subscriber—Although subscriptions may be defined

statically as part of a system design, event-driven

architectures typically involve dynamic subscrip-

tions. WS-Notification uses the term subscriber to

refer to an entity that requests creation of a

subscription. A subscriber creates a subscription by

sending a subscribe request message to a notification

producer. This subscribe-request message identifies

a notification consumer. If the notification producer

is willing to accept this request, it creates a new

subscription and adds the subscription to its list of

active subscriptions. The notification producer can

then start sending relevant notifications to the

notification consumer.

Note that a subscriber may play roles of both

consumer and subscriber by subscribing on its own

behalf. WS-Notification separates the two roles to

allow third-party subscriptions, in other words, to

allow a service to create a subscription on behalf of

a separate notification consumer. Although the

notification consumer is required to be a service

provider, the subscriber need only be a service

requestor.

Subscription Manager—Once a subscription has

been created, it is possible that the subscriber, the

notification consumer, or even some third party may

inquire about the subscription properties, may

delete the subscription, or may renew the subscrip-

tion (in the case where the subscription had a

limited lifetime). The subscription manager is a

service that manages requests to query, delete, or

renew subscriptions. Each subscription manager is

subordinate to the notification producer that owns

the subscriptions in question. It is possible for a

NIBLETT AND GRAHAM IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005872

single service to take both the subscription manager

and notification producer roles. WS-Notification

distinguishes the roles to enable a notification

producer to delegate subscription management to

another service.

These various roles are illustrated in Figure 1. This

figure shows a subscriber making a subscribe

request to a notification producer on behalf of a

notification consumer. As a direct result of this

request, the notification producer adds a subscrip-

tion to its list of subscriptions and sends a response

to the subscriber. The list of subscriptions is

represented by the scroll; each subscription entry

records the notification consumer (NC1 in this case)

along with other properties of the subscription. In

this figure these other properties are shown in

stylized form as ‘‘xxx, yyy. . .’’, but in practice they

include things like the termination time of the

subscription and any filter expressions associated

with it.

At some later stage, the publisher detects a situation

(bottom left), and the notification producer sends a

notification to the notification consumer.

WS-Base Notification

WS-Base Notification provides the foundation for

the WSN family of specifications. It defines the basic

roles and message exchanges needed to express the

notification pattern. The specification can be used as

it stands, or it can be used in combination with the

WS-Topics and WS-Brokered Notification specifica-

tions in more sophisticated scenarios.

The specification defines the message exchanges

between four of the roles that we described in the

section ‘‘Terminology and concepts’’: notification

producer, notification consumer, subscriber, and

subscription manager.

Figure 2 illustrates the stock trade scenario, a simple

one-to-many scenario that involves direct notifica-

tion; that is the producer, the Stock Feed service,

also assumes the role of publisher.

Figure 3 illustrates the printer management scenar-

io, which involves direct notification with multiple

producers and a single consumer. There is a

notification-producer Web service representing each

printer in a department or organization and a single

manager program that is monitoring the printers and

is acting as the notification consumer. Each printer

has a set of states (offline, printing, out of paper,

paper jammed, etc.) and generates notifications

when its state changes. The monitoring application

subscribes to each printer in the department. It can

then monitor the state of each printer by receiving a

notification from that printer when its state changes,

rather than having to continually poll each printer.

Any Web service can act as a notification producer,

but in order to do so it must meet the following

requirements, in addition to any other interfaces or

functions that it may provide:

1. It must support the subscribe message exchange

defined by WS-Base Notification.

2. It must send a notification to each notification

consumer that has a subscription registered with

it whenever it has a message to deliver and any

Figure 1
Web Services Notification entities

Subscribe
Request/Response

Notification

Notification
Consumer
(NC1)

Publisher

Notification
Producer

Subscriptions
{ NC1,xxx,yyy...;
.....
}

Situation

Subscriber

Figure 2
Direct notification with a single producer
and multiple consumers

 Trader
 Trader

 Stock Feed
(Notification
 Producer)

 Trader
(Notification
 Consumer)

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NIBLETT AND GRAHAM 873

filter conditions expressed in the subscription are

satisfied.

In addition it may support a message exchange that

allows other services to determine the set of topics

(if any) that are supported by the notification

producer. We discuss this in the section ‘‘WS-

Topics.’’

The first requirement means that the Web Services

Definition Language (WSDL) specification must

include in its portType definition an operation that

contains the subscribe request and response mes-

sage defined by WS-Base Notification. The specifi-

cation provides an XML Schema that defines these

messages as global elements in the Base Notification

XML namespace and, as a convenience, provides a

WSDL portType definition that uses them. The

author of a notification-producer Web service can

cut and paste this portType definition (or just the

operation from the portType definition if preferred)

into the WSDL for his or her service.

Figure 4 shows the message exchanges that take

place when a subscriber creates a subscription and

when the notification producer sends a few notifi-

cation messages to the consumer. The subscriber

sends a subscribe request message (1) to the

notification producer. This is in effect a ‘‘control

message’’ whose format is defined by the WS-Base

Notification specification. The request message

includes the address of the notification consumer,

encoded as an endpoint reference as defined by WS-

Addressing.
13

The request may also include filter

expressions that constrain the kind of notifications

that the subscription is to cover. In response to this

message, the notification producer creates a sub-

scription resource and sends a subscribe response

(2) which contains another endpoint reference. This

endpoint reference refers to the subscription itself

(more about what this means shortly).

At some later time, the notification producer may

detect a situation and issue a notification. This

happens twice in our example—interactions (3) and

(4).

WSN allows the notification producer to send the

notification message in one of two formats:

1. It can use an application-specific one-way mes-

sage exchange, defined as part of the notification

consumer’s portType. In our printer example, the

monitor application might support a number of

printer-specific messages, one for busy, one for

error, and so on.

2. It can use the notify message format defined by

WS-Base Notification. This is an envelope or

wrapper message format. It contains the appli-

cation-specific message along with other control

information, such as the endpoint reference of the

subscription. The format of the notify message

allows the notification producer to package

several application-level messages into a single

Web service message.

The subscriber may attach a ‘‘policy’’ to the

subscribe request to indicate which of these formats

Figure 3
Direct notification with multiple producers
and a single consumer

Manager
(Notification
 Consumer)

Printer
(Notification
 Producer)

Printer
(Notification
 Producer)

Printer
(Notification
 Producer)

Figure 4
Message flows: creating a subscription, notifying
the consumer

1: subscribe

 <<return>>
2: subscribe

3: Notification
 Message

4: Notification
 Message

Subscriber Notification Producer Notification Consumer

NIBLETT AND GRAHAM IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005874

the notification producer is to use for the particular

subscription.

WS-Base Notification does not specify the details of

how notification message instances are created and

does not define any interface between a publisher

and the notification producer. As far as the

specification is concerned, this is hidden behind the

notification-producer interface. It is possible that the

notification-producer Web service itself takes re-

sponsibility for matching notifications to its list of

subscriptions and for sending copies of the message

to the relevant consumers. Alternatively, the pro-

ducer service might delegate this work to some other

entity, for example, utility classes provided by the

application server that is hosting it or a separate

notification broker service. We discuss notification

brokers in a later section.

Subscription filtering

The simplest form of a subscribe request message

just contains an endpoint reference for a notification

consumer. This form of request instructs the

notification producer to send each and every

notification that it produces to the notification

consumer. This is satisfactory if the notification

producer only produces a limited variety of notifi-

cations (for example, if it only detects a single kind

of situation), but in more complex cases it has the

following disadvantages:

� It is an inefficient use of resources to send

messages that the consumer is not interested in.
� The consumer might not be able to understand the

format of certain messages. Over time a producer

might add support for new types of notification for

use by other consumers. The original consumer

might not be able to process these new messages

successfully.
� The producer might wish to control access to the

information in some of its notifications, while

allowing open access to others.

To address these concerns, the subscribe request

message can optionally contain one or more filter

expressions. The filter expressions indicate the kind

of notification that the consumer requires by

restricting the kinds of notification that are to be

sent for this subscription. This is on a subscription-

by-subscription basis; a given notification producer

may have several active subscriptions each with

different filter expressions. Moreover, a notification

consumer can be the target of multiple subscrip-

tions, each with different filter expressions.

WS-Base Notification defines the following three

kinds of filter expression (although implementors

are free to augment this set with filter expressions

defined outside the standard):

1. Topic filters—These provide a convenient way of

categorizing kinds of notification. A topic filter

excludes all notifications which do not corre-

spond to the specified topic or topics. We will

return to the subject of topics in the section on

WS-Topics.

2. Message filters—This is a Boolean expression

evaluated over the content of the notification

message—for example, Payment/amount .

1000. A message filter excludes all messages that

do not evaluate to true.

3. Producer state filters—These filters are based on

some state of the notification producer itself—for

example, DebugMode¼ON, or Day¼Tuesday—that is

not carried in the message (so a message filter

cannot be used). In order to use this kind of filter

expression, the subscriber needs to know some-

thing about the properties of the notification

producer.

Each filter expression evaluates either to True or

False; a notification producer only sends a notifica-

tion to the consumer of a subscription if all the filter

expressions evaluate to True.

Subscription manager

We mentioned earlier that when a notification

producer accepts a subscription request, it returns

an endpoint reference in its response to this request,

and we loosely referred to this as a reference to the

subscription. The Web service whose address is

carried in the endpoint reference is in fact a

subscription manager. You will recall our definition

of a subscription manager as a service that allows a

service requestor to query, delete, or renew sub-

scriptions. The subscription manager provides this

query capability by supporting a number of resource

properties that return, for example, the subscrip-

tion’s filter expressions, the consumer endpoint

reference, and the scheduled termination time.

The subscription manager is an example of a

‘‘stateful’’Web service, as described in Reference 14,

and makes use of WS-Resource Properties and WS-

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NIBLETT AND GRAHAM 875

Resource Lifetime. For more information about

resource properties, see References 14 and 15.

Subscription lifetime

In a loosely coupled environment, particularly in an

Internet-based deployment, it is possible for an

application to submit a subscription request, accept

messages for a period of time, and then simply

disappear. What should a notification producer do

in such circumstances? Should it continue to keep

the subscription active just in case the notification

consumer reappears? To help answer these ques-

tions, WS-Base Notification allows a notification

producer to support a time-based expiration scheme.

The subscribe request message contains an initial-

termination-time parameter. This can take one of

the following forms:

� An absolute termination time, in Coordinated

Universal Time (UTC), at which the subscriber

wishes the subscription to end
� The duration relative to the current time, for

which the subscriber wishes the subscription to

last
� A special value (nil) meaning that the subscriber

does not wish to set a termination time and would

prefer the subscription to exist indefinitely

On receipt of the subscribe request, the notification

producer decides whether it can honor the request.

If it cannot, it rejects the entire request. If it can

honor the request, then it sets an initial termination

time for the subscription that is at least as long as

the time requested by the subscriber. When this

time has been reached, the notification producer is

free to delete the subscription and stop sending any

related notifications.

A notification producer may also allow its sub-

scriptions to be renewed. If it does, then a subscriber

is free to request an extension of its subscription at

any time by sending a renewal request to the

subscription manager. The subscription manager is

free to accept or reject the renewal request. If a

subscriber wants to ensure that its notification

consumer does not miss messages, it needs to renew

the subscription before it expires.

This mechanism allows the notification producer a

reasonable degree of control. Suppose a producer

wishes to impose a requirement that a given

consumer check in (provide a ‘‘heartbeat’’) every

five minutes. This could be done by accepting only

subscription and renewal requests that contain

termination times less than five minutes in the

future. This means that the subscriber has to issue a

renewal request every five minutes or risk losing the

subscription.

In addition to this time-based approach, subscrip-

tion managers also support an explicit subscription-

deletion message exchange.

WS-Topics
We briefly introduced the concept of topics in the

discussion of filters in the section ‘‘WS-Base

Notification.’’ In WSN, topics are described in the

WS-Topics specification. In summary, a topic is a

concept used to categorize kinds of notification and

their associated notification message types. Topics

are used in WSN to provide the following:

1. A straightforward way for a subscriber to indicate

the kinds of notification or the underlying

situation in which it is interested. A subscriber

does this by supplying a topic filter rather than a

filter specified in terms of the message body. This

allows more flexibility as topic filters are not tied

to the notification message. In particular:

� The name of the topic might not appear in

the message itself;
� More than one message type might be

associated with a given topic. (In our stock

news-feed example, we could have a topic

for each ticker symbol but have a subscrip-

tion against a given symbol give rise to

several different types of notification mes-

sage.)
� A given message type might be associated

with more than one topic; for example, the

Common Base Event
16

specification defines a

common message format that may be used to

express a wide range of error, trace, man-

agement, and business events.

2. A way for a producer to describe the kinds of

notification that it can produce which can be

recognized by subscribers without their needing

to have detailed knowledge of the producer.

3. A subject that a notification producer can use as a

basis for an access control scheme.

Topic namespaces

Allowing independently developed applications to

work together is a WSN design point. These

NIBLETT AND GRAHAM IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005876

applications might be running in different orga-

nizations and might attempt to connect to each other

over the Internet. Because all topics in WSN have

names, there is the possibility that two such

independently developed applications might be

using the same topic name—for example, ErrorRe-

port—but describing two different things. In partic-

ular the two topics might send radically different

kinds of information in their notifications. If one of

these applications were to subscribe to the other,

then confusion would result. In order to stop this

from happening WS-Topics allows every topic to be

assigned to an XML namespace.
17

Each XML

namespace has a globally unique uniform resource

identifier (URI). The combination of the URI of this

namespace and the name of the topic is therefore

globally unique. You do not need to assign a

separate namespace and URI to each topic; in fact, it

is often convenient to group together a set of related

topic definitions and use the same namespace for all

of them.

We refer to the set of topics that share a common

namespace as a topic namespace. As well as

providing a unique naming scheme for topics, topic

namespaces also define meta-data associated with a

topic, in particular the type or types of message that

a notification producer will send on a given topic.

This meta-data in effect augments the notification

producer’s interface. If a notification consumer

recognizes a topic and its meta-data, then it knows

what kinds of notification it is going to receive if it

subscribes to any notification producer that supports

that topic. Although support for the right topics is

obviously important, a subscriber might want to use

additional criteria when deciding whether to sub-

scribe to a particular notification producer. A

subscriber might, for example, be concerned about

reliability of delivery, cost, or the quality of the

information.

Topic namespaces can be defined by many different

people or organizations, for example:

� The designer of a particular notification producer

or notification consumer,
� An enterprise application or infrastructure archi-

tect, wishing to define a set of standard topics to

be used by various applications within the enter-

prise,
� An enterprise wishing to expose one or more

notification producers to suppliers or business

partners, or

� A business consortium or standards body defining

a specialization of WSN for a particular applica-

tion domain.

A topic namespace is not tied to a particular

notification producer. It contains an abstract set of

topic definitions that can be used by many different

notification producers. It is also possible for a given

notification producer to support topics from several

different topic namespaces.

Topics within a topic namespace can be organized

into topic trees. As its name might suggest, a topic

tree is a hierarchy with a Root Topic at the top, and

zero or more descendant topics gathered together in

a tree-like fashion under this root.

In Figure 5 we illustrate this idea with the simple

example topic namespace given in Reference 9. The

XML namespace corresponding to this topic

namespace is http://example.org/topicSpace/

example1, and, as with other XML namespaces, it is

customary to use a short prefix (in this case tns:) to

refer to this namespace. The topic namespace has

two topic trees, with roots tns:t1 and tns:t4. In

this simple example, the trees only contain one level

of nesting—Topic t1 has two child topics, t2 and t3.

Topic t4 has two child topics, t5 and t6.

Each topic in a topic tree has a simple name, and

WS-Topics imposes an important restriction on

these names. It forbids any topic from having two

child topics with the same name—you will see this

is obeyed in our example (for instance t1 has only

one child called t2). This means that any topic can

Figure 5
An example topic namespace

tns:t1 tns:t4

t2 t3 t5 t6

Topic Namespace xmlns:tns=
“http://example.org/topicSpace/example1”

Adapted from Web Services Topics 1.2, Working Draft 01. ©OASIS Open (2004).
Reprinted with permission.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NIBLETT AND GRAHAM 877

be uniquely referred to by a combination of its

namespace and a simple path expression. For

example the path expression for the topic at the

bottom right of Figure 5 would be tns:t4/t6 (in this

syntax tns: is a prefix identifying the topic name-

space, and the forward slash (/) separator character

is interpreted as ‘‘select a child of the topic identified

by the expression preceding the /).

Although our example does not show this, it is

possible for two nonroot topics in the same topic

space (or even the same topic tree) to have the same

name. They are treated as completely separate

topics. A company news-feed service might want to

define a root topic for each company on which it

reports, and then have each topic contain child

topics that have the same name, for example:

CompanyA/Price, CompanyA/Volume, CompanyB/

Price, CompanyB/Volume.

Topic trees are useful for the following reasons:

� They provide a structured naming scheme against

which subscribers can issue wild-card subscrip-

tions. A subscriber uses a wild-card subscription

to subscribe against multiple topics. It can

subscribe against an entire topic tree or a subset of

topics in a topic tree in a single subscribe

operation.
� They allow related topics to be grouped together

for administrative purposes. In particular an

administrator might wish to apply a particular

security policy to an entire tree or subtree.

WS-Topics defines a way to represent topic name-

space meta-data as an XML document. The example

shown in Figure 6 is from Reference 9 and matches

the example shown in Figure 5.

This document acts as a kind of schema for the topic

namespace itself. The TopicNamespace element

assigns the topic namespace to the http://example.

org/topicSpace/example1 namespace. The topics

within the topic namespace are defined by using

Topic elements, the nesting of these Topic elements

matching the topic hierarchy.

Each Topic element can have a messageTypes

attribute indicating one or more types of notification

message that are associated with the topic. If it

supports a given topic from a given topic name-

space, a notification producer undertakes to trans-

mit only notifications whose type matches one of the

types specified by this attribute. Likewise a notifi-

cation consumer that is subscribed to a particular

topic should be able to process all messages whose

types are listed by this attribute.

Topic expressions
Part of the rationale for hierarchical topic name-

spaces is to allow filter expressions that select

multiple topics through the use of wild-card

subscription expressions. Wild-card expressions are

widely used in publish/subscribe messaging sys-

tems, but the characters used and their meaning

vary among products. WS-Topics defines a standard

set of wild cards based on the search capabilities of

the XML Path Language.
18

Because supporting wild cards is somewhat onerous

for a simple notification producer, particularly one

that supports only a few root topics, the following

levels of topic expression are defined by WS-Topics:

1. Simple Topic Expression—An XML QName,
19

consisting of a namespace prefix and a topic

name. Simple topic expressions can only be used

to refer to root topics (because a forward slash [/]

separator is not permitted). A notification pro-

ducer that only supports root topics might choose

only to accept subscriptions that contain simple

topic expressions.

2. Concrete Topic Expression—A namespace prefix

and a sequence of topic names, using a forward

slash (/) as the separator character, for example,

tns:t1/t3. By using a concrete topic expression

any topic in a topic namespace can be addressed.

A concrete topic expression picks one and only

one topic.

3. Full Topic Expression—This extends the concrete

topic expression to allow it to pick multiple

topics. It includes the double forward slash (//),

asterisk (*), and period (.) XPath wild-card

characters.

WS-Brokered Notification
Figures 2 and 3 in the section ‘‘WS-Base Notifica-

tion’’ showed examples of direct notification, in

which the notification producer also acts as pub-

lisher. In fact, the WS-Base Notification specification

does not really distinguish between these roles. It

merely defines the notification-producer interface

and does not concern itself with whether there is a

separate publisher entity behind this interface. This

means that in addition to providing its normal

business functions, detecting situations, and creat-

NIBLETT AND GRAHAM IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005878

ing notification messages, the notification producer

is responsible for matching notifications against the

list of subscriptions and for sending notification

messages to each appropriately subscribed con-

sumer. This task, however, can be delegated to

another entity. WS Brokered Notification, illustrated

in Figure 7, defines a new role—the notification

broker—that can perform the tasks of a notification

producer on behalf of a publisher. Because a

notification broker is itself a Web service, it can be

hosted remotely from both the publisher and the

notification consumers, if required.

The WS-Brokered Notification specification defines

the concept of a notification broker as an interme-

diary Web service that decouples publishers and

notification producers. The specification defines the

message exchanges that a notification broker is

required to support. It also discusses some of the

other characteristics that are special to the broker’s

intermediary role.

The notification-broker role builds on the concepts

and message exchanges in WS-Base Notification. In

particular a notification broker is itself both a

notification producer and a notification consumer.

This means that a subscriber creates a subscription

with a notification broker by using exactly the same

subscribe request as it would when subscribing to a

standard notification producer.

The brokered notification pattern can provide some

or all of the following benefits over the direct

notification pattern:

1. It relieves a publisher from having to implement

message exchanges associated with the notifica-

tion producer; the notification broker takes on the

duties of a subscription manager (managing

subscriptions) and notification producer (distrib-

uting notifications) on behalf of the publisher.

2. It can reduce the number of interservice con-

nections and references. Consider our printer

monitoring scenario and suppose there are two

monitor applications and 100 printers. If direct

Figure 6
The topic namespace of Figure 5 as an XML document

<?xml version="1.0" encoding="UTF-8"?>
<wstop:TopicNamespace name="TopicSpaceExample1"
 targetNamespace="http://example.org/topicSpace/example1"
 xmlns:tns="http://example.org/topicSpace/example1"
 xmlns:xyz="http://example.org/anotherNamespace"
 xmlns:wstop="http://docs.oasis-open.org/wsn/t-1" >
 <wstop:Topic name="t1">
 <wstop:Topic name="t2" messageTypes="xyz:m1 tns:m2"/>
 <wstop:Topic name="t3" messageTypes="xyz:m3"/>
 </wstop:Topic>
 <wstop:Topic name="t4">
 <wstop:Topic name="t5" messageTypes="tns:m3"/>
 <wstop:Topic name="t6"/>
 </wstop:Topic>
</wstop:TopicNamespace>

Adapted from Web Services Topics 1.2, Working Draft 01. ©OASIS Open (2004). Reprinted with permission.

Figure 7
Brokered notification

Publisher

Publisher

Notification
Consumer

Notification
Consumer

Publisher

Notification
Broker

From Web Services Brokered Notification 1.3, Public Review Draft 01.
©OASIS Open (2004-2005). Reprinted with permission.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NIBLETT AND GRAHAM 879

notification is used, the monitor applications both

have to issue 100 subscriptions, and each printer

has to remember two consumers. Each time a

printer changes state, it has to send messages to

both consumers. Although this is much more

efficient than a polling solution, there are still 200

interservice relationships being maintained. In

contrast, if the brokered notification pattern is

used, then each monitoring application makes

just a single subscription request (to the broker),

and the printers simply publish each state change

once (again to the broker).

3. A notification broker can act as a kind of finder

service, putting potential publishers and con-

sumers in touch with each other. Let us return to

our printer example and suppose that printer 101

is added. If this printer starts publishing to the

broker, then its notifications can be distributed by

the broker to the monitor applications without

those monitor applications having to issue any

new subscription requests.

4. It can provide anonymous notification, so that

the publishers and notification consumers need

not be aware of each other’s identity. This is

useful in some, but, of course, not all scenarios.

For example, our printer monitoring scenario is

one where anonymous notification is not appro-

priate; a monitor application would usually want

to know which printer sent the notification.

5. An implementation of a notification broker may

provide additional added-value function, for

example, logging notification messages or trans-

forming topics or notification message content.

Additional function provided by a notification

broker can apply to all publishers that use it.

Publishing to a notification broker

There are several ways in which a publisher can

interact with a notification broker. The simplest

way, illustrated in Figure 8, has the publisher just

send one-way notification messages to the broker.

By wrapping the notification messages in the WSN

notify message, the publisher can associate the

message with a topic. The broker then distributes a

copy of the notification message to all consumers

registered to receive messages on that topic, subject,

of course, to any additional filters that the sub-

scriptions may contain.

A broker may choose not to accept just any

publisher; instead, it may require that publishers

preregister before they can start publishing. In some

ways registering as a publisher is similar to

registering a subscription. The publisher supplies an

endpoint reference for itself as part of the Regis-

terPublisher request message, and the publication

registration can be subject to the same kind of time-

based expiry that is used to manage subscriptions.

The difference is that instead of undertaking to

deliver messages to a consumer, when it accepts a

publication registration, the broker undertakes to

receive (and pass on) messages from the publisher.

There are cases where it is expensive for a publisher

to detect a situation or create a notification message

instance. A problem with the simple publisher

approach is that even when there are no relevant

subscriptions, publishers still have to do both of

these things. As an optimization, a broker may offer

support for demand-based publishing, illustrated in

Figure 9.

A demand-based publisher combines the roles of

notification producer and publisher, but only has to

manage a single subscription. It implements the

subscribe message exchange from the notification

producer interface, and the notification broker uses

this exchange to establish a subscription with the

publisher. The publisher then delivers notifications

to the broker by using the standard notify message.

If the broker detects that there are no relevant

subscriptions, it can pause its subscription with the

publisher, resuming it again when it acquires a

relevant subscription.

In this way the demand-based publisher does not

need to produce messages when there are no

Figure 8
Message flows: simple publisher

1: Notification
 Message

1.1: Notification
 Message

Publisher Notification Broker Notification Consumer

From Web Services Brokered Notification 1.3, Public Review Draft 01.
©OASIS Open (2004-2005). Reprinted with permission.

NIBLETT AND GRAHAM IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005880

consumers, but it can still delegate matching of

notification to subscription and other related issues

(for example, security) to the broker.

DISCUSSION

In this section we discuss how event-based inter-

actions can be used in SOA alongside interactions

based on the request/response pattern. Specifically,

we discuss the use of events within the Enterprise

Services Bus (ESB) and in the context of Complex

Event Processing (CEP).

Notification pattern and SOA

Design patterns are frequently used in software

engineering as a way of capturing knowledge about

software design and reusing it and also as a

mechanism for communicating elements of a design

to others. The use of design patterns was pioneered

by Gamma, Helm, Johnson, and Vlissides
20

(often

referred to as the Gang of Four), primarily in the

context of object-oriented software. Their book

includes an event-based pattern called the observer

pattern, inspired by the Smalltalk MVC model.
1
The

idea of patterns was applied to message-oriented

middleware and enterprise integration by Hohpe

and Woolf in Reference 21, and this book also

includes a number of patterns for event-based

programming.

The WS-Base Notification specification can be

viewed as a rendering of the notification pattern,

which itself can be viewed as an instantiation of the

observer pattern for the SOA environment (and for

this reason we could also refer to it as the SOA

notification pattern). This pattern unifies the prin-

ciples and concepts of SOA with those of event-

based programming.

In the SOA notification pattern, a service distributes

information to a set of other services without

necessarily having prior knowledge of those other

services.

This pattern has the following key characteristics:

1. The services that consume information (notifica-

tion consumers) are registered (either by them-

selves or by a third party) with the service that is

capable of distributing that information (the

notification producer). As part of this registration

process, they may provide filter expressions that

indicate the sort of information that they wish to

receive.

2. The notification-producer service disseminates

information by sending one-way messages to the

relevant notification-consumer services. It is

possible that more than one notification-con-

sumer service is registered to consume the same

information. In such cases, each notification-

consumer service that is registered receives a

separate copy of the information.

3. The notification-producer service may send any

number of messages to each registered notifica-

tion-consumer service; it is not limited to sending

just a single message.

The first of these three characteristics lies at the

heart of the pattern. The notification producer does

not have prior knowledge of the notification

consumers, nor does it look them up in a service

registry. Instead it has to wait for these notification-

consumer services to register with it before it can

start distributing its information to them.

The second characteristic states that a notification

producer must be able to support configurations

where more than one notification consumer is

registered to receive its information. An example is

the stock-trading scenario. In this scenario there

1: Register
 Publisher

5.1: Notification
 Message

Notification Producer Notification Broker Notification Consumer

 <<return>>
2: Register
 Publisher

 <<return>>
4: Subscribe

3: Subscribe

5: Notification
 Message

Figure 9
Message flows: demand-based publisher

From Web Services Brokered Notification 1.3, Public Review Draft 01.
©OASIS Open (2004-2005). Reprinted with permission.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NIBLETT AND GRAHAM 881

might typically be just one notification producer

service that provides the price feed, but at any given

time, there may be many stock-trading services

registered with it.

In the stock-trading scenario there are typically

more notification consumers than producers; in

contrast in a system-monitoring application (such as

the printer management example) things are usually

the other way round. In a typical monitoring

scenario, there are many notification producers

(representing pieces of computing hardware or

software, or even physical devices such as temper-

ature sensors or motion detectors), and relatively

few consumers (monitoring applications).

The third characteristic says that, once registered, a

notification consumer must expect that it could

receive a sequence of successive notification mes-

sages. These notification messages are related to the

original registration request only in as much as they

relate to the interests expressed by that original

request.

Readers familiar with the object-oriented software

design patterns described in Reference 20 will notice

a similarity with the Observer pattern—the notifi-

cation producer is similar to the Observer pattern’s

Subject, and the consumer is like the Observer

pattern’s Observer. The SOA notification pattern

differs in a few ways from the Observer pattern, as it

relates to services rather than to object-oriented

programming:

1. The Observer pattern is primarily concerned with

exchanging the state of an object with other

objects. In the Observer pattern, an Observer

object registers to be notified about changes in

the state of another object (the Subject). Because

services have a much more loosely defined

concept of state than objects, the notification

pattern is more general. It allows a notification

producer to distribute any kind of information.

This may be information about changes in state,

but it does not have to be.

2. In the Observer pattern, a consumer deregisters

with the Subject when it wishes to stop receiving

notifications. As we will see later, the notification

pattern allows for time-based expiry of subscrip-

tions. This is because in a loosely coupled

environment we cannot always rely on sub-

scribers being able to cancel their subscriptions.

3. The classical version of the Observer pattern does

not provide a way for Observers to indicate what

kind of state changes they wish to observe, and it

does not allow for state-change information to be

passed to the Observer in the Update() message.

All that the Observer is told is that the Subject’s

state has changed in some way, and it is then up

to the Observer to request the new state from the

Subject. Since message exchanges between

loosely coupled services can be comparatively

costly, the notification pattern allows the con-

sumer to specify that it is only interested in being

notified when certain conditions apply, and it

allows the notification producer to pass infor-

mation when it notifies the consumer.

In the past year, various analysts and software

vendors have started to use the term event-driven

architecture (EDA) to describe software architec-

tures that utilize event-based programming. This

has raised the question of whether EDAs can be

classified as SOAs. The answer to this question

depends upon your definition of a service.

One definition, used by the Gartner group in

Reference 22, asserts that a key feature of a service

is that it always executes functionality on behalf of a

particular requestor. Under this definition, an entity

that is driven by an event, rather than by being

bound to a requestor, does not qualify as a service.

In this paper we follow the definition of service

given in Reference 14, ‘‘A service has a well-defined

interface with a set of messages that the service

receives and sends, and a set of named operations or

verbs; an implementation of the interface; and, if

deployed, a binding to a documented network

address.’’ With this broader definition there is no

problem in using the term service to describe an

entity that reacts to an event. We therefore view

EDA as being part of the wider SOA concept.

This view is reinforced by observing that the

difference between request/response implementa-

tions and event-based programming is not as great

as it may seem. In particular, there are cases where

the messages exchanged are visible in request/

response implementations. We have already noted

that some SOAs allow request/response services to

be invoked in an asynchronous manner, and this

requires the sending of the request to be separated

from the processing of the reply. In addition, recent

years have seen a growth in the use of document-

NIBLETT AND GRAHAM IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005882

centric request/response services. In a document-

centric service, the interface to the service, and often

the programming model, is expressed in terms of the

request messages and response messages them-

selves, rather than in terms of a function or

procedure call.

The debate about whether EDA is a branch of SOA

or whether it is something different is academic.

From a practical viewpoint it is important to note the

following:

� Many applications need a mixture of request/

response and event-based programming.
� Both approaches decouple the services involved,

leading to more flexible, loosely coupled systems.
� Both approaches bring with them infrastructural

requirements, for example, application registries,

service management, monitoring, security, and

reliability. Enterprises are better served by having

a consistent approach to service orientation that

accommodates both patterns, and having a single

infrastructure to manage—rather than having

separate infrastructures for the two patterns.

A particular example of an application domain that

can take advantage of both request/response and

event-based programming is system management

(for example, see Web Services Distributed Man-

agement
23
). The request/response pattern is used

for sending commands from a manager to a resource

or by a resource to request assistance from a

manager; however, a manager can use events to

monitor the behavior of resources.

In many monitoring situations the event-based

approach results in less network traffic and better

responsiveness than the alternative request/re-

sponse pattern approach. In the request/response

approach the manager has to poll each device

periodically to see if its status has changed. The

monitoring program has to choose the time interval

between polls. If a long interval is chosen (say one

poll per hour) this increases the average time taken

for the monitor to notice changes in the resources

that it is managing; alternatively, choosing a short

interval increases the amount of network traffic, and

there is an increased likelihood that the resources,

when polled, will have no new status to report. In

contrast, in the event-based approach there is no

need to choose a polling interval; resources can send

messages when they need to; and resources need

only send messages if they have new information to

report. For an example of how the event-driven

approach has been used to simplify programming

and reduce processor utilization, see Reference 24.

The Enterprise Service Bus and Complex Event

Processing

An Enterprise Service Bus (ESB), outlined in

Reference 11, is a service-oriented infrastructure

that mediates requests between participating ser-

vices. This includes both traditional request/re-

sponse style message exchanges, as well as the

event-based message exchanges. In this final sec-

tion, we look at how the ESB embodies the

notification pattern, and how the ESB can add value

by augmenting the pattern with further processing.

The aspects of an ESB that concern us here are the

following:

� The ESB provides an infrastructure that virtualizes

the services which are made available on it.

Services that connect to the bus need have no

awareness of the physical realization of the

applications with which they communicate. These

partner services may be conventional service

request-ors and providers, or they may be event-

oriented notification producers or consumers.

Services that connect to the bus need not care

about implementation details (the programming

language, runtime environment, hardware plat-

form, network address, etc.) or current availability

of their partners.
� This infrastructure is itself virtualized and is

capable of spanning wide area networks and

involving multiple infrastructure servers, if re-

quired.
� The ESB provides a mediation capability that can

transform or route messages flowing through the

ESB or perform other CEP.

An ESB provides support for the following kinds of

event-oriented application:

1. Traditional message-oriented middleware appli-

cations coded to use publish/subscribe, for

example, C applications written to use IBM

WebSphere* MQ, IBM WebSphere Business

Integration Message Broker, or Java** applica-

tions that use the Java Message Service (JMS)

publish/subscribe interfaces.
25

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NIBLETT AND GRAHAM 883

2. Notification producers or notification consumers

as defined by WSN, connecting across a variety of

bindings.

3. Applications coded to emit events by using the

IBM Common Event Infrastructure interfaces.

An ESB allows these different kinds of application to

connect together; for example, a notification mes-

sage might be published by a JMS application and

received by a notification consumer as defined by

WSN. In addition, the ESB can mediate between

request/response services and event-oriented ser-

vices. The ESB provides this support by managing

collections of topics in its registry and by providing

an implementation of one or more distributed

notification brokers as defined by WSN.

Traditional message-oriented middleware applica-

tions are unaware of the WSN aspect of these

brokers—they simply publish or subscribe to topics

on the broker of their choice (in JMS, applications

are shielded from these details by topic and

connection factory administered objects). The ESB

administrator can configure one or more WSN-style

notification brokers to be used by WSN publishers

or subscribers, and the ESB administrator can

arrange that these be federated with each other, with

traditional publish/subscribe applications, or with

both.

To give a concrete example, an administrator could

create a topic namespace containing stock price

symbols as topics, then create a notification broker

instance, and then publish the port for this broker

instance for use by subscribers or notification

consumers that connect over SOAP/HTTP.

The administrator could then take an existing JMS

application that provides the price feed and attach it

to the bus as a publisher. In order to do this, the

administrator configures a mapping from one or

more topics used by the JMS application into topics

from the topic namespace. The administrator might

also need to configure a mediation to convert the

payload of the notification messages into a format

that matches the type defined by the topic name-

space.

In another example, the administrator might want to

configure two notification brokers in two different

physical locations and have them interconnected via

the ESB messaging infrastructure. Publishers or

notification consumers in each location might

connect to their local broker via SOAP/HTTP on

their internal network. The ESB infrastructure can

then optimize the number of notification messages

that have to flow between the two sites. For

example, if there are 20 consumers at one site, the

infrastructure need only flow a single copy of each

message, not 20 copies.

The ESB supports both dynamic subscription, where

a notification consumer registers itself (or is

registered by a third-party subscriber) at runtime,

and a more static administrator-defined subscription

mechanism where consumers are automatically

registered when they start up. The stock price

example we used earlier is likely to use dynamic

subscription because individual traders can come

and go during the day. Alternatively, our other

example (printer management) might be more

suited to a static configuration because a monitoring

application is likely to be long-running and prede-

fined in the ESB registry.

The mediation capability of the ESB can be used to

provide additional CEP. Examples of this range from

basic logging of notification messages for subse-

quent retrieval and analysis to more advanced

scenarios involving aggregation or correlation to

produce additional derived events.

CEP mediations frequently do not modify the

notification messages themselves. The ESB delivers

notifications from producers and consumers in the

normal fashion, but the mediations examine the

messages that flow through, logging them in

storage, which could be a simple in-memory buffer

or a relational database. Each time a new notifica-

tion message passes through the mediations, they

analyze it and compare it with information recorded

in storage. The mediations may then detect a new

situation and publish a new notification message in

addition to the message that originally triggered this

behavior. We call this a derived notification, and the

content of its message may be totally different from

that of the original notification. Derived notifications

conform to the notification pattern; notification

consumers can subscribe to the ESB to receive them

in exactly the same way that they subscribe to

receive any other kind of notification.

As an example, let us return for the last time to the

printer monitoring scenario. CEP mediations could

be added to the ESB to allow the printer monitoring

NIBLETT AND GRAHAM IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005884

application to subscribe to the following derived

events:

� Floor problem—All the printers on the same floor

are offline at the same time. The mediation uses

information in the printer-offline notification to

identify the location of the printer (if the floor

information is not carried in the message, the

mediation can extract a printer ID from the

message and discover the floor by looking in a

database). It then maintains a count of the number

of printers available on each floor and generates a

new derived event if this count drops to zero.
� Frequent jams—A printer has more than three

paper jams within a single working day. This

mediation simply records the printer jam mes-

sages that it receives from each printer, and each

time it receives a new one, it generates a derived

event if the threshold for the day (in this case three

jams) has been exceeded.
� ‘‘Mean time to repair’’ problem (the mean time

that a printer stays offline within a week is more

than 45 minutes)—This is a more complex time-

based mediation. The mediation logs error-related

printer online and offline messages and computes

a weekly rolling average for the repair time,

generating a derived event if this exceeds 45

minutes.

For more information on CEP and some discussion

of its uses and implementation, see References 6 and

26.

SUMMARY
We have reviewed the OASIS WSN specification as a

way of illustrating how event-based programming

can be introduced in SOA in a standardized way and

have observed how the pattern embodied in these

specifications, the SOA notification pattern, can be

viewed as an instantiation of the well-known

observer design pattern for the SOA environment.

We concluded with a brief discussion of CEP and an

examination of the role of the SOA notification

pattern within the ESB and saw how the ESB

combines request/response and event-oriented SOA

into a single infrastructure. This combination brings

many advantages. There is a single infrastructure to

support, manage, and secure, and there is uniform-

ity in the transport bindings that are available to

both styles of application. Quality-of-service options

such as reliable delivery, message logging, or store

and forward can be applied to either pattern, and it

does not make sense to deploy two infrastructures to

provide similar functionality for the two patterns. In

addition, because it is quite common for a single

service to combine both request/response and

event-oriented message exchanges, for this sort of

application a single infrastructure is a necessity.

One further advantage of combining both patterns in

the same infrastructure is that opportunities for

cross-over emerge. For example, an ESB adminis-

trator can insert a mediation into a request/response

route through the bus. This mediation does not

affect the contents of the request or response

messages, but it can analyze the messages and

publish a notification if and when it detects an out-

of-line situation. Adding and removing such medi-

ations is made more straightforward if the mediation

framework, the messaging, and the event-handling

fabrics are all a single integrated whole.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc. and Sun Microsystems, Inc.

CITED REFERENCES
1. G. Krasner and S. Pope, ‘‘A Cookbook for Using the

Model-View Controller User Interface Paradigm in

Issue 3, 26–49 (August/September 1988).

2. R. Scheifler, J. Gettys, A. Mento, and D. Converse, X
Window System: Core and Extension Protocols 4th
Edition, Butterworth-Heinemann (1997).

3. M. Perry, C. Delporte, F. Demi, A. Ghosh, and M. Luong,
MQSeries Publish/Subscribe Applications, IBM Redbook
(2001).

4. Event Service Specification, Object Management Group
(2004), http://www.omg.org/technology/documents/
formal/event_service.htm.

5. Notification Service Specification, Object Management
Group (2004), http://www.omg.org/technology/
documents/formal/notification_service.htm.

6. D. Luckham, The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise

7. OASIS Web Services Notification Technical Committee,
OASIS, http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev¼wsn.

8. Web Services Base Notification 1.3, OASIS (2005), http://
www.oasis-open.org/committees/download.php/13488/
wsn-ws-base_notification-1.3-spec-pr-01.pdf.

9. Web Services Topics 1.2, OASIS (2004), http://docs.
oasis-open.org/wsn/2004/06/wsn-WS-Topics-1.
2-draft-01.pdf.

10. Web Services Brokered Notification 1.3, OASIS (2005),
http://www.oasis-open.org/committees/download.php/
13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NIBLETT AND GRAHAM 885

Smalltalk-80,’’ Journal of Object Oriented Programming 1,

Systems, Addison Wesley, Reading, MA (2002).

11. M.-T. Schmidt, B. Hutchison, P. Lambros, and R.
Phippen, ‘‘The Enterprise Service Bus—Making Service-
Oriented Architecture Real,’’ IBM Systems Journal 44, No.
4, 781–798 (2005, this issue).

12. XML Schema Part 1: Structures, World Wide Web
Consortium (2004), http://www.w3.org/TR/
xmlschema-1/.

13. Web Services Addressing 1.0—Core, World Wide Web
Consortium (2005), http://www.w3.org/TR/
ws-addr-core/.

14. D. F. Ferguson and M. L. Stockton, ‘‘Service Oriented
Architecture: Programming Model and Product Architec-
ture,’’ IBM Systems Journal 44, No. 4, 753–780 (2005, this
issue).

15. Web Services Resource Properties, OASIS (2004), http://
docs.oasis-open.org/wsrf/2004/06/
wsrf-WS-ResourceProperties-1.2-draft-04.pdf.

16. Canonical Situation Data Format: The Common Base Event
V1.0.1, The Eclipse consortium (2003), http://dev.eclipse.
org/viewcvs/indextools.cgi/;checkout;/hyades-home/
docs/components/common_base_event/cbe101spec/
CommonBaseEvent_SituationData_V1.0.1.pdf.

17. Namespaces in XML, World Wide Web Consortium
(1999), http://www.w3.org/TR/1999/
REC-xml-names-19990114/.

18. XML Path Language, World Wide Web Consortium
(1999), http://www.w3.org/TR/xpath.

19. Extensible Markup Language (XML) 1.0, World Wide
Web Consortium (2004), http://www.w3.org/TR/
REC-xml.

20. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns, Addison Wesley, Reading, MA (1995).

21. G. Hohpe and B. Woolf, Enterprise Integration Patterns,
Addison Wesley, Reading, MA (2003).

22. R. Schulte and Y. Natis, ‘‘Event-Driven Architecture
Complements SOA’’ Gartner Research Note DF-20–1154,
Gartner, Inc. (2003).

23. Web Services Distributed Management Technical Com-
mittee, OASIS, http://oasis-open.org/committees/
tc_home.php?wg_abbrev¼wsdm.

24. H. Muller and C. Randell, ‘‘An Event-Driven Sensor
Architecture for Low Power Wearables,’’ Proceedings of
the International Conference on Software Engineering
ICSE2000, Workshop on Software Engineering for Wear-
able and Pervasive Computing, ACM, New York (2000),
pp. 39–41, http://www.cs.washington.edu/sewpc/
papers/muller.pdf.

25. Java Message Service 1.1 Documentation, Sun Micro-
systems, Inc., http://java.sun.com/products/jms/docs.
html.

26. A. Adi and O. Etzion, ‘‘Amit—the Situation Manager,’’
VLDB Journal 13, No. 2, 173–203 (May 2004).

Accepted for publication July 12, 2005.

Peter Niblett
IBM United Kingdom Limited, Hursley Park, Winchester,
Hampshire SO21 2JN, United Kingdom (peter_niblett@uk.
ibm.com). Mr. Niblett, a Senior Technical Staff Member, is
lead architect for WebSphere Messaging software. He was the
IBM lead on the working group that wrote the Java Message
Service specification and is now co-chairing the OASIS Web
Service Notification Technical Committee.

Steve Graham
IBM Software Group, 4400 Silicon Dr, Durham NC 27713
(sggraham@us.ibm.com). Steve Graham is a Senior Technical
Staff Member in IBM’s Software Group and a member of the
IBM Academy of Technology. He is a Web services architect
involved in standards-related activities within the IBM on
demand initiative. He has spent the last five years working on
service-oriented architectures. He is the lead author of
Building Web Services with Java: Making Sense of XML, SOAP,
WSDL and UDDI (Second Edition), published by Sams
Publishing. &

NIBLETT AND GRAHAM IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005886

Published online October 26, 2005.

