Fvents and service-oriented
architecture: The OASIS Web
Services Notification

specifications

The OASIS Web Services Notification (WSN) family of specifications defines a standard
interoperable protocol through which Web services can disseminate events. We

P. Niblett
S. Graham

present here a summary of three WSN specification documents that are currently
available: WS-Base Notification, WS-Topics, and WS-Brokered Notification. We

conclude with a brief discussion on the use of the notification pattern in the Enterprise
Services Bus, a service-oriented infrastructure for mediating requests among

cooperating Web services.

INTRODUCTION

Many service-oriented architecture (SOA) imple-
mentations are based upon the request/response
interaction pattern, where a service requestor
identifies a service that it wishes to use and then
sends it a request message. A second entity, the
service provider, accepts the request message,
processes it, and then sends a response message.
This is a pattern that is familiar to any programmer
who has made a procedure or function call in a
procedural programming language or who has
invoked a method in an object-oriented language or
distributed object system. Indeed this pattern is so
familiar that programming interfaces and tools (for
example, those used with Web services) often hide
the underlying message exchange; these tools
present a programming model that looks like a
simple procedure call.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Event-based programming, which has been around
for many years and has been applied in many areas,
is frequently used in user-interface systems, for
example the Smalltalk Model-View-Controller
(MVC) paradigrnl or the X Window System,2 where
a change in a model can be reflected in various
views, or where components react to user inter-
actions such as mouse clicks or key presses. Support
for event-based programming is provided in pub-
lish/subscribe systems available from message-
oriented middleware vendors.> Event-based
programming is also used with distributed objects;
Object Management Group, Inc. has published two

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

NIBLETT AND GRAHAM

869

CORBA** (Common Object Request Broker Archi-
tecture) specifications that relate to event-based
programming: the Event Service Speciﬁcation4 and
the Notification Service Speciﬁcation.5

Event-based programming features an entity that
represents an occurrence (something that has
happened). In object-oriented systems this is usually
termed an event object; in message-oriented systems
it is variously referred to as a message, event, or
event message. In contrast to the request/response
pattern where the request and response messages
are frequently hidden from the programmer, in
event-based programming the event (be it a message
or object) assumes center stage. Applications
explicitly produce and consume events, and the
producing application has a relationship with the
event that it produces, rather than a direct relation-
ship with the applications that consume the event. A
consumer of events indicates (through a registration
process) the events in which it is interested, and it
interacts with the event itself, rather than with the
application that produced the event. We use the
term notification pattern to refer to the interaction
pattern that involves registration of consumers and
subsequent dissemination of events.

The idea of using the event itself to decouple the
event producer and consumer is a significant
difference between the request/response pattern
and the notification pattern. This decoupling sup-
ports one-to-many and many-to-one message ex-
changes, in addition to the one-to-one exchange
found in the request/response pattern. In addition, it
may have a more natural fit to the real-world
scenario that is being modeled by the application
architecture, and it allows further complex event
processing to be added in a straightforward
fashion.’

The OASIS Web Services Notification (WSN)7 family
of specifications defines a standard interoperable
protocol through which Web services can dissem-
inate events. These specifications are being devel-
oped by OASIS (the Organization for the
Advancement of Structured Information Standards),
a not-for-profit international consortium that drives
the development, convergence, and adoption of e-
business standards. The specifications are authored
by an OASIS technical committee whose member-
ship comes from a variety of software vendors,
users, and other professionals.

870 NIBLETT AND GRAHAM

The intent of WSN is to define a set of royalty-free,
related, interoperable, and modular specifications
that allow the notification pattern to be modeled in
an explicit and standardized fashion. The benefits of
such standardization include interoperation be-
tween application entities written by different
authors, as well as interoperation between different
publish/subscribe messaging middleware providers.
The WSN family is made up of four separate
specification documents.

The WS-Base Notification speciﬁcation8 defines the
Web Services interfaces for notification producers
and notification consumers. It includes standard
message exchanges to be implemented by service
providers that wish to act in these roles, along with
operational requirements expected of them. This is
the base document on which the other WSN
specification documents depend.

The WS-Topics speciﬁcation9 defines a mechanism
to organize and categorize items of interest for
subscription known as topics. These are used in
conjunction with the notification mechanisms de-
fined in WS-Base Notification. WS-Topics specifies
an XML model for describing meta-data associated
with topics, and it defines some topic expression
dialects that can be used to refer to them.

The WS-Brokered Notification speciﬁcation10 defines
the Web Services interfaces for notification brokers.
A notification broker is an intermediary which,
among other things, allows publication of messages
from entities that are not themselves service
providers. It includes standard message exchanges
to be implemented by notification-broker service
providers along with operational requirements ex-
pected of service providers and requestors that
participate in brokered notifications.

The WS-Notification Policy specification defines a set
of policy statements that can be used in conjunction
with the other specifications in the family to request
particular qualities of service or other behavior.

The first three of these specifications are currently
available as drafts and will be the focus of this
paper. The WS-Notification Policy specification is
currently still at an early stage of development.

In the next section, “Web Services Notification,” we

present a summary of the first three WSN specifi-
cations. A discussion section follows in which how

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

event-based interactions can be used in SOA along-
side interactions based on the request/response
pattern is discussed. In particular, the use of events
within the Enterprise Services Bus (ESB)11 and in
the context of Complex Event Processing (CEP) is
discussed.’

WEB SERVICES NOTIFICATION

WSN specifications standardize the syntax and
semantics of the message exchanges that establish
and manage subscriptions and the message ex-
changes that distribute information to subscribers.
An information provider, known as a notification
producer, that conforms to WSN can be subscribed
to by any WSN-compliant subscriber. If subscriber
and producer are using a common Web-service
binding—for example SOAP (Simple Object Access
Protocol)/HTTP (HyperText Transfer Protocol)—
and have appropriate network connectivity, they
could in principle interoperate even if they had been
designed by different people and were running in
different organizations on different continents.

We start our review of WSN with a section on the
terminology used in the specifications. Then, we
describe in sequence WS-Base Notification, WS-
Topics, and WS-Brokered Notification.

To illustrate aspects of the WSN specifications, we
use two example scenarios. The first is a stock-
trading scenario in which the service Stock Feed is
provided to a number of stock-trading applications.
The Stock Feed service supplies a stream of
messages indicating a change of price in some
traded stock or instrument. The trading applications
(possibly automated, possibly involving a human
trader) receive these messages and react to them.
Our second example is from the systems-manage-
ment world, where an organization has deployed
some printer management software to manage and
monitor the printers that it owns. The printers in the
organization generate events when they encounter
particular situations, both normal and abnormal,
and these are monitored by the printer management
software.

Terminology and concepts

WSN defines a set of terms, the most important of
which we list in this section and use throughout the
paper. The terms defined here are intended to
eliminate certain inconsistencies that used to plague
discussions related to events. For example, the term

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

“subscriber” sometimes referred to the entity that
received notifications, sometimes to the entity that
set up the subscription, and sometimes even to the
entity that paid for the service. The specifications
avoid using the term event because this word is
susceptible to multiple interpretations.

Situation—A situation is an occurrence (something
has happened) that is noted by one party and is of
interest to other parties. A paper jam in a printer and
a sports result are two examples of situations. Often
a situation reflects a change of state of some object,
such as a stock-price change, a temperature change,
or a change in the internal state of a running
software program. Although the type of occurrence
related to the situation is immaterial as far as WS
Notification is concerned, it is important that
information relating to it can be communicated to
other services.

Notification—WS-Notification uses this term to refer
to the one-way message that conveys information
about a situation to other services. The sender of a
notification message could choose to format this
information in whatever way it sees fit and could
even use a different representation for each time the
situation occurs. To keep things simpler for
receivers, the sender of information typically
chooses a specific message type for each kind of
situation that the receiver is interested in. The type
of message specifies the information items that it
contains; it may also specify the format of this
information as a sequence of bytes. In WSN a
message type is represented by an XML Schema'”
global element definition.

The association between a situation and the type of
corresponding notification message is not necessar-
ily one-to-one. It is possible that an application
might associate several different notification mes-
sage types with a given situation. This could be the
case if there are multiple receivers and the aspects of
a situation that are of interest to the receiver vary
from receiver to receiver. Consider, for example, a
“new employee hired” situation. A payroll applica-
tion requires the employee’s name, serial number,
job level, and starting salary, whereas a physical
security application requires the employee’s office
location.

Conversely, the same message type could be used
for a variety of situations. For example, a general-

NIBLETT AND GRAHAM

871

purpose error message type could be used for a
number of different kinds of error situations.

Publisher—An entity that creates notification mes-
sage instances. The publisher selects the appropriate
type of notification message for the situation and
constructs an instance of this type containing
information relevant to the situation. In some cases
a publisher may be reacting to an external situation,
in which case its job might simply be to reformat
data from the external source into the format
dictated by the notification message type. The
publisher does not have the responsibility for
sending the message to the appropriate receivers
(see Notification Producer).

Notification Producer—A service that is responsible
for sending notifications to the appropriate con-
sumers. In some cases, a notification producer also
assumes the role of publisher and is responsible for
detecting situations and creating message instances.
If the notification producer does not act as publish-
er, it is referred to as a notification broker (or broker,
for short) and does not actually create notification
messages, but instead manages the notification
process on behalf of one or more publishers.

The notification producer is responsible for main-
taining a list of interested consumers and arranging
for notification messages to be sent to those
receivers. This may involve a matching step that
compares each notification against the interests
expressed by the individual consumers.

Notification Consumer—The counterpart of a notifi-
cation producer, an entity that receives the notifi-
cations distributed by notification producers. The
most common Kind of consumer is a push consumer,
which is able to receive notifications sent directly
from the notification producer. WS-Notification also
supports pull consumers, which interact with the
notification producer (or some intermediary) when
they wish to receive a notification. A pull consumer
might be behind a firewall, which prevents it from
operating as a push consumer.

Subscription—An entity that represents the rela-
tionship between a notification consumer and a
notification producer. It records the fact that the
notification consumer is interested in some or all of
the notifications that the notification producer can
provide. A subscription can contain filter expres-

872 NIBLETT AND GRAHAM

sions, policies, and context information. Each
notification producer holds a list of active sub-
scriptions, and when it has a notification to send, it
matches this notification against the interest regis-
tered in each subscription in its list. It determines
the set of consumers that are interested and notifies
them.

A subscription may be long-running, in which case
it lasts as long as the notification producer does, or it
may have a limited lifetime. In loosely coupled
environments such as SOAs, it is often desirable to
apply a finite lifetime to a subscription so as to avoid
situations where consumers disappear or lose
interest in a subscription without canceling it.

Subscriber—Although subscriptions may be defined
statically as part of a system design, event-driven
architectures typically involve dynamic subscrip-
tions. WS-Notification uses the term subscriber to
refer to an entity that requests creation of a
subscription. A subscriber creates a subscription by
sending a subscribe request message to a notification
producer. This subscribe-request message identifies
a notification consumer. If the notification producer
is willing to accept this request, it creates a new
subscription and adds the subscription to its list of
active subscriptions. The notification producer can
then start sending relevant notifications to the
notification consumer.

Note that a subscriber may play roles of both
consumer and subscriber by subscribing on its own
behalf. WS-Notification separates the two roles to
allow third-party subscriptions, in other words, to
allow a service to create a subscription on behalf of
a separate notification consumer. Although the
notification consumer is required to be a service
provider, the subscriber need only be a service
requestor.

Subscription Manager—Once a subscription has
been created, it is possible that the subscriber, the
notification consumer, or even some third party may
inquire about the subscription properties, may
delete the subscription, or may renew the subscrip-
tion (in the case where the subscription had a
limited lifetime). The subscription manager is a
service that manages requests to query, delete, or
renew subscriptions. Each subscription manager is
subordinate to the notification producer that owns
the subscriptions in question. It is possible for a

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

single service to take both the subscription manager
and notification producer roles. WS-Notification
distinguishes the roles to enable a notification
producer to delegate subscription management to
another service.

These various roles are illustrated in Figure 1. This
figure shows a subscriber making a subscribe
request to a notification producer on behalf of a
notification consumer. As a direct result of this
request, the notification producer adds a subscrip-
tion to its list of subscriptions and sends a response
to the subscriber. The list of subscriptions is
represented by the scroll; each subscription entry
records the notification consumer (NC1 in this case)
along with other properties of the subscription. In
this figure these other properties are shown in
stylized form as “xxx, yyy...”, but in practice they
include things like the termination time of the
subscription and any filter expressions associated
with it.

At some later stage, the publisher detects a situation
(bottom left), and the notification producer sends a
notification to the notification consumer.

WS-Base Notification

WS-Base Notification provides the foundation for
the WSN family of specifications. It defines the basic
roles and message exchanges needed to express the
notification pattern. The specification can be used as
it stands, or it can be used in combination with the
WS-Topics and WS-Brokered Notification specifica-
tions in more sophisticated scenarios.

The specification defines the message exchanges
between four of the roles that we described in the
section “Terminology and concepts”: notification
producer, notification consumer, subscriber, and
subscription manager.

Figure 2 illustrates the stock trade scenario, a simple
one-to-many scenario that involves direct notifica-
tion; that is the producer, the Stock Feed service,
also assumes the role of publisher.

Figure 3 illustrates the printer management scenar-
io, which involves direct notification with multiple
producers and a single consumer. There is a

notification-producer Web service representing each
printer in a department or organization and a single
manager program that is monitoring the printers and

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Subscriber ’
\‘

Subscribe
Request/Response
rNotiﬁcation rNotiﬁcation
Producer Consumer

(NC1)

Notification
Publisher Subscriptions
{ NC1,xxx,yyy...;
Situation
y -
- N
Figure 1
Web Services Notification entities
1

is acting as the notification consumer. Each printer
has a set of states (offline, printing, out of paper,
paper jammed, etc.) and generates notifications
when its state changes. The monitoring application
subscribes to each printer in the department. It can
then monitor the state of each printer by receiving a
notification from that printer when its state changes,
rather than having to continually poll each printer.

Any Web service can act as a notification producer,
but in order to do so it must meet the following
requirements, in addition to any other interfaces or
functions that it may provide:

1. It must support the subscribe message exchange
defined by WS-Base Notification.

2. It must send a notification to each notification
consumer that has a subscription registered with
it whenever it has a message to deliver and any

U Jader []

Vo m
I Stock Feed Trader
(Notification (Notification

Producer) Consumer)

Figure 2
Direct notification with a single producer
and multiple consumers

NIBLETT AND GRAHAM

873

(Notification
Producer)

(Notification (Notification
Producer) Consumer)

(Notification
Producer)

Figure 3
Direct notification with multiple producers
and a single consumer

filter conditions expressed in the subscription are
satisfied.

In addition it may support a message exchange that
allows other services to determine the set of topics
(if any) that are supported by the notification
producer. We discuss this in the section “WS-
Topics.”

The first requirement means that the Web Services
Definition Language (WSDL) specification must
include in its portType definition an operation that
contains the subscribe request and response mes-
sage defined by WS-Base Notification. The specifi-
cation provides an XML Schema that defines these

Subscrib
| 1

I I
— |

| :
| |
I

I

Notification Prod Notification Cons
I
I
I

Figure 4
Message flows: creating a subscription, notifying
the consumer

874 NIBLETT AND GRAHAM

messages as global elements in the Base Notification
XML namespace and, as a convenience, provides a
WSDL portType definition that uses them. The
author of a notification-producer Web service can
cut and paste this portType definition (or just the
operation from the portType definition if preferred)
into the WSDL for his or her service.

Figure 4 shows the message exchanges that take
place when a subscriber creates a subscription and
when the notification producer sends a few notifi-
cation messages to the consumer. The subscriber
sends a subscribe request message (1) to the
notification producer. This is in effect a “control
message” whose format is defined by the WS-Base
Notification specification. The request message
includes the address of the notification consumer,
encoded as an endpoint reference as defined by WS-
Addressing.13 The request may also include filter
expressions that constrain the kind of notifications
that the subscription is to cover. In response to this
message, the notification producer creates a sub-
scription resource and sends a subscribe response
(2) which contains another endpoint reference. This
endpoint reference refers to the subscription itself
(more about what this means shortly).

At some later time, the notification producer may
detect a situation and issue a notification. This
happens twice in our example—interactions (3) and

4).

WSN allows the notification producer to send the
notification message in one of two formats:

1. It can use an application-specific one-way mes-
sage exchange, defined as part of the notification
consumer’s portType. In our printer example, the
monitor application might support a number of
printer-specific messages, one for busy, one for
error, and so on.

2. It can use the notify message format defined by
WS-Base Notification. This is an envelope or
wrapper message format. It contains the appli-
cation-specific message along with other control
information, such as the endpoint reference of the
subscription. The format of the notify message
allows the notification producer to package
several application-level messages into a single
Web service message.

The subscriber may attach a “policy” to the
subscribe request to indicate which of these formats

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

the notification producer is to use for the particular
subscription.

WS-Base Notification does not specify the details of
how notification message instances are created and
does not define any interface between a publisher
and the notification producer. As far as the
specification is concerned, this is hidden behind the
notification-producer interface. It is possible that the
notification-producer Web service itself takes re-
sponsibility for matching notifications to its list of
subscriptions and for sending copies of the message
to the relevant consumers. Alternatively, the pro-
ducer service might delegate this work to some other
entity, for example, utility classes provided by the
application server that is hosting it or a separate
notification broker service. We discuss notification
brokers in a later section.

Subscription filtering

The simplest form of a subscribe request message
just contains an endpoint reference for a notification
consumer. This form of request instructs the
notification producer to send each and every
notification that it produces to the notification
consumer. This is satisfactory if the notification
producer only produces a limited variety of notifi-
cations (for example, if it only detects a single kind
of situation), but in more complex cases it has the
following disadvantages:

e It is an inefficient use of resources to send
messages that the consumer is not interested in.

* The consumer might not be able to understand the
format of certain messages. Over time a producer
might add support for new types of notification for
use by other consumers. The original consumer
might not be able to process these new messages
successfully.

® The producer might wish to control access to the
information in some of its notifications, while
allowing open access to others.

To address these concerns, the subscribe request
message can optionally contain one or more filter
expressions. The filter expressions indicate the kind
of notification that the consumer requires by
restricting the kinds of notification that are to be
sent for this subscription. This is on a subscription-
by-subscription basis; a given notification producer
may have several active subscriptions each with
different filter expressions. Moreover, a notification

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

consumer can be the target of multiple subscrip-
tions, each with different filter expressions.

WS-Base Notification defines the following three
kinds of filter expression (although implementors
are free to augment this set with filter expressions
defined outside the standard):

1. Topic filters—These provide a convenient way of
categorizing kinds of notification. A topic filter
excludes all notifications which do not corre-
spond to the specified topic or topics. We will
return to the subject of topics in the section on
WS-Topics.

2. Message filters—This is a Boolean expression
evaluated over the content of the notification
message—for example, Payment/amount >
1000. A message filter excludes all messages that
do not evaluate to true.

3. Producer state filters—These filters are based on
some state of the notification producer itself—for
example, DebugMode=O0N, or Day=Tuesday—that is
not carried in the message (so a message filter
cannot be used). In order to use this kind of filter
expression, the subscriber needs to know some-
thing about the properties of the notification
producer.

Each filter expression evaluates either to True or
False; a notification producer only sends a notifica-
tion to the consumer of a subscription if all the filter
expressions evaluate to True.

Subscription manager

We mentioned earlier that when a notification
producer accepts a subscription request, it returns
an endpoint reference in its response to this request,
and we loosely referred to this as a reference to the
subscription. The Web service whose address is
carried in the endpoint reference is in fact a
subscription manager. You will recall our definition
of a subscription manager as a service that allows a
service requestor to query, delete, or renew sub-
scriptions. The subscription manager provides this
query capability by supporting a number of resource
properties that return, for example, the subscrip-
tion’s filter expressions, the consumer endpoint
reference, and the scheduled termination time.

The subscription manager is an example of a

“stateful” Web service, as described in Reference 14,
and makes use of WS-Resource Properties and WS-

NIBLETT AND GRAHAM

875

Resource Lifetime. For more information about
resource properties, see References 14 and 15.

Subscription lifetime

In a loosely coupled environment, particularly in an
Internet-based deployment, it is possible for an
application to submit a subscription request, accept
messages for a period of time, and then simply
disappear. What should a notification producer do
in such circumstances? Should it continue to keep
the subscription active just in case the notification
consumer reappears? To help answer these ques-
tions, WS-Base Notification allows a notification
producer to support a time-based expiration scheme.
The subscribe request message contains an initial-
termination-time parameter. This can take one of
the following forms:

* An absolute termination time, in Coordinated
Universal Time (UTC), at which the subscriber
wishes the subscription to end

e The duration relative to the current time, for
which the subscriber wishes the subscription to
last

* A special value (nil) meaning that the subscriber
does not wish to set a termination time and would
prefer the subscription to exist indefinitely

On receipt of the subscribe request, the notification
producer decides whether it can honor the request.
If it cannot, it rejects the entire request. If it can
honor the request, then it sets an initial termination
time for the subscription that is at least as long as
the time requested by the subscriber. When this
time has been reached, the notification producer is
free to delete the subscription and stop sending any
related notifications.

A notification producer may also allow its sub-
scriptions to be renewed. If it does, then a subscriber
is free to request an extension of its subscription at
any time by sending a renewal request to the
subscription manager. The subscription manager is
free to accept or reject the renewal request. If a
subscriber wants to ensure that its notification
consumer does not miss messages, it needs to renew
the subscription before it expires.

This mechanism allows the notification producer a
reasonable degree of control. Suppose a producer
wishes to impose a requirement that a given
consumer check in (provide a “heartbeat™) every
five minutes. This could be done by accepting only

876 NIBLETT AND GRAHAM

subscription and renewal requests that contain
termination times less than five minutes in the
future. This means that the subscriber has to issue a
renewal request every five minutes or risk losing the
subscription.

In addition to this time-based approach, subscrip-
tion managers also support an explicit subscription-
deletion message exchange.

WS-Topics

We briefly introduced the concept of topics in the
discussion of filters in the section “WS-Base
Notification.” In WSN, topics are described in the
WS-Topics specification. In summary, a topic is a
concept used to categorize kinds of notification and
their associated notification message types. Topics
are used in WSN to provide the following:

1. A straightforward way for a subscriber to indicate
the kinds of notification or the underlying
situation in which it is interested. A subscriber
does this by supplying a topic filter rather than a
filter specified in terms of the message body. This
allows more flexibility as topic filters are not tied
to the notification message. In particular:

* The name of the topic might not appear in
the message itself;

* More than one message type might be
associated with a given topic. (In our stock
news-feed example, we could have a topic
for each ticker symbol but have a subscrip-
tion against a given symbol give rise to
several different types of notification mes-
sage.)

* A given message type might be associated
with more than one topic; for example, the
Common Base Event'’ specification defines a
common message format that may be used to
express a wide range of error, trace, man-
agement, and business events.

2. A way for a producer to describe the kinds of
notification that it can produce which can be
recognized by subscribers without their needing
to have detailed knowledge of the producer.

3. A subject that a notification producer can use as a
basis for an access control scheme.

Topic namespaces
Allowing independently developed applications to
work together is a WSN design point. These

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

applications might be running in different orga-
nizations and might attempt to connect to each other
over the Internet. Because all topics in WSN have
names, there is the possibility that two such
independently developed applications might be
using the same topic name—for example, ErrorRe-
port—but describing two different things. In partic-
ular the two topics might send radically different
kinds of information in their notifications. If one of
these applications were to subscribe to the other,
then confusion would result. In order to stop this
from happening WS-Topics allows every topic to be
assigned to an XML namespace.” Each XML
namespace has a globally unique uniform resource
identifier (URI). The combination of the URI of this
namespace and the name of the topic is therefore
globally unique. You do not need to assign a
separate namespace and URI to each topic; in fact, it
is often convenient to group together a set of related
topic definitions and use the same namespace for all
of them.

We refer to the set of topics that share a common
namespace as a topic namespace. As well as
providing a unique naming scheme for topics, topic
namespaces also define meta-data associated with a
topic, in particular the type or types of message that
a notification producer will send on a given topic.
This meta-data in effect augments the notification
producer’s interface. If a notification consumer
recognizes a topic and its meta-data, then it knows
what kinds of notification it is going to receive if it
subscribes to any notification producer that supports
that topic. Although support for the right topics is
obviously important, a subscriber might want to use
additional criteria when deciding whether to sub-
scribe to a particular notification producer. A
subscriber might, for example, be concerned about
reliability of delivery, cost, or the quality of the
information.

Topic namespaces can be defined by many different
people or organizations, for example:

* The designer of a particular notification producer
or notification consumer,

* An enterprise application or infrastructure archi-
tect, wishing to define a set of standard topics to
be used by various applications within the enter-
prise,

* An enterprise wishing to expose one or more
notification producers to suppliers or business
partners, or

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

tns:t1 ’ tns:t4 ’

V) , t3 ' t5 ’ 6 b
Topic Namespace xmlins:tns=
"http://example.org/topicSpace/example1”

Adapted from Web Services Topics 1.2, Working Draft 01. ©OASIS Open (2004).
Reprinted with permission.

Figure 5
An example topic namespace

* A business consortium or standards body defining
a specialization of WSN for a particular applica-
tion domain.

A topic namespace is not tied to a particular
notification producer. It contains an abstract set of
topic definitions that can be used by many different
notification producers. It is also possible for a given
notification producer to support topics from several
different topic namespaces.

Topics within a topic namespace can be organized

into topic trees. As its name might suggest, a topic

tree is a hierarchy with a Root Topic at the top, and
zero or more descendant topics gathered together in
a tree-like fashion under this root.

In Figure 5 we illustrate this idea with the simple
example topic namespace given in Reference 9. The
XML namespace corresponding to this topic
namespace is http://example.org/topicSpace/
examplel, and, as with other XML namespaces, it is
customary to use a short prefix (in this case tns:) to
refer to this namespace. The topic namespace has
two topic trees, with roots tns:t1 and tns:t4. In
this simple example, the trees only contain one level
of nesting—Topic t1 has two child topics, t2 and t3.
Topic t4 has two child topics, t5 and t6.

Each topic in a topic tree has a simple name, and
WS-Topics imposes an important restriction on
these names. It forbids any topic from having two
child topics with the same name—you will see this
is obeyed in our example (for instance t1 has only
one child called t2). This means that any topic can

NIBLETT AND GRAHAM 877

be uniquely referred to by a combination of its
namespace and a simple path expression. For
example the path expression for the topic at the
bottom right of Figure 5 would be tns:t4/t6 (in this
syntax tns: is a prefix identifying the topic name-
space, and the forward slash (/) separator character
is interpreted as “select a child of the topic identified
by the expression preceding the /).

Although our example does not show this, it is
possible for two nonroot topics in the same topic
space (or even the same topic tree) to have the same
name. They are treated as completely separate
topics. A company news-feed service might want to
define a root topic for each company on which it
reports, and then have each topic contain child
topics that have the same name, for example:
CompanyA/Price, CompanyA/Volume, CompanyB/
Price, CompanyB/Volume.

Topic trees are useful for the following reasons:

* They provide a structured naming scheme against
which subscribers can issue wild-card subscrip-
tions. A subscriber uses a wild-card subscription
to subscribe against multiple topics. It can
subscribe against an entire topic tree or a subset of
topics in a topic tree in a single subscribe
operation.

They allow related topics to be grouped together
for administrative purposes. In particular an
administrator might wish to apply a particular
security policy to an entire tree or subtree.

WS-Topics defines a way to represent topic name-
space meta-data as an XML document. The example
shown in Figure 6 is from Reference 9 and matches
the example shown in Figure 5.

This document acts as a kind of schema for the topic
namespace itself. The TopicNamespace element
assigns the topic namespace to the http://example.
org/topicSpace/examplel namespace. The topics
within the topic namespace are defined by using
Topic elements, the nesting of these Topic elements
matching the topic hierarchy.

Each Topic element can have a messageTypes
attribute indicating one or more types of notification
message that are associated with the topic. If it
supports a given topic from a given topic name-
space, a notification producer undertakes to trans-
mit only notifications whose type matches one of the

878 NIBLETT AND GRAHAM

types specified by this attribute. Likewise a notifi-
cation consumer that is subscribed to a particular
topic should be able to process all messages whose
types are listed by this attribute.

Topic expressions

Part of the rationale for hierarchical topic name-
spaces is to allow filter expressions that select
multiple topics through the use of wild-card
subscription expressions. Wild-card expressions are
widely used in publish/subscribe messaging sys-
tems, but the characters used and their meaning
vary among products. WS-Topics defines a standard
set of wild cards based on the search capabilities of
the XML Path Language.18

Because supporting wild cards is somewhat onerous
for a simple notification producer, particularly one
that supports only a few root topics, the following
levels of topic expression are defined by WS-Topics:

1. Simple Topic Expression—An XML QName,19
consisting of a namespace prefix and a topic
name. Simple topic expressions can only be used
to refer to root topics (because a forward slash [/]
separator is not permitted). A notification pro-
ducer that only supports root topics might choose
only to accept subscriptions that contain simple
topic expressions.

2. Concrete Topic Expression—A namespace prefix
and a sequence of topic names, using a forward
slash (/) as the separator character, for example,
tns:tl/t3. By using a concrete topic expression
any topic in a topic namespace can be addressed.
A concrete topic expression picks one and only
one topic.

3. Full Topic Expression—This extends the concrete
topic expression to allow it to pick multiple
topics. It includes the double forward slash (//),
asterisk (*), and period (.) XPath wild-card
characters.

Ws-Brokered Notification

Figures 2 and 3 in the section “WS-Base Notifica-
tion” showed examples of direct notification, in
which the notification producer also acts as pub-
lisher. In fact, the WS-Base Notification specification
does not really distinguish between these roles. It
merely defines the notification-producer interface
and does not concern itself with whether there is a
separate publisher entity behind this interface. This
means that in addition to providing its normal
business functions, detecting situations, and creat-

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Adapted from Web Services Topics 1.2, Working Draft 01. ©OASIS Open (2004). Reprinted with permission.

Figure 6
The topic namespace of Figure 5 as an XML document

ing notification messages, the notification producer
is responsible for matching notifications against the
list of subscriptions and for sending notification
messages to each appropriately subscribed con-
sumer. This task, however, can be delegated to
another entity. WS Brokered Notification, illustrated
in Figure 7, defines a new role—the notification
broker—that can perform the tasks of a notification
producer on behalf of a publisher. Because a
notification broker is itself a Web service, it can be
hosted remotely from both the publisher and the
notification consumers, if required.

The WS-Brokered Notification specification defines
the concept of a notification broker as an interme-
diary Web service that decouples publishers and
notification producers. The specification defines the
message exchanges that a notification broker is
required to support. It also discusses some of the
other characteristics that are special to the broker’s
intermediary role.

The notification-broker role builds on the concepts
and message exchanges in WS-Base Notification. In
particular a notification broker is itself both a
notification producer and a notification consumer.
This means that a subscriber creates a subscription
with a notification broker by using exactly the same
subscribe request as it would when subscribing to a
standard notification producer.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

The brokered notification pattern can provide some
or all of the following benefits over the direct
notification pattern:

1. It relieves a publisher from having to implement
message exchanges associated with the notifica-
tion producer; the notification broker takes on the
duties of a subscription manager (managing
subscriptions) and notification producer (distrib-
uting notifications) on behalf of the publisher.

2. Tt can reduce the number of interservice con-
nections and references. Consider our printer
monitoring scenario and suppose there are two
monitor applications and 100 printers. If direct

onsumer
e

!

From Web Services Brokered Notification 1.3, Public Review Draft O1.
©OASIS Open (2004-2005). Reprinted with permission.

Figure 7
Brokered notification

NIBLETT AND GRAHAM 879

notification is used, the monitor applications both
have to issue 100 subscriptions, and each printer
has to remember two consumers. Each time a
printer changes state, it has to send messages to
both consumers. Although this is much more
efficient than a polling solution, there are still 200
interservice relationships being maintained. In
contrast, if the brokered notification pattern is
used, then each monitoring application makes
just a single subscription request (to the broker),
and the printers simply publish each state change
once (again to the broker).

3. A notification broker can act as a kind of finder
service, putting potential publishers and con-
sumers in touch with each other. Let us return to
our printer example and suppose that printer 101
is added. If this printer starts publishing to the
broker, then its notifications can be distributed by
the broker to the monitor applications without
those monitor applications having to issue any
new subscription requests.

4. It can provide anonymous notification, so that
the publishers and notification consumers need
not be aware of each other’s identity. This is
useful in some, but, of course, not all scenarios.
For example, our printer monitoring scenario is
one where anonymous notification is not appro-
priate; a monitor application would usually want
to know which printer sent the notification.

5. An implementation of a notification broker may
provide additional added-value function, for
example, logging notification messages or trans-
forming topics or notification message content.
Additional function provided by a notification
broker can apply to all publishers that use it.

Publishing to a notification broker

There are several ways in which a publisher can
interact with a notification broker. The simplest
way, illustrated in Figure 8, has the publisher just
send one-way notification messages to the broker.
By wrapping the notification messages in the WSN
notify message, the publisher can associate the
message with a topic. The broker then distributes a
copy of the notification message to all consumers
registered to receive messages on that topic, subject,
of course, to any additional filters that the sub-
scriptions may contain.

A broker may choose not to accept just any
publisher; instead, it may require that publishers
preregister before they can start publishing. In some

880 NIBLETT AND GRAHAM

Publisher. Notification Broker | Notification Consumer |
1: Notification
Message
1.1: Notification
Message

From Web Services Brokered Notification 1.3, Public Review Draft O1.
©OASIS Open (2004-2005). Reprinted with permission.

Figure 8
Message flows: simple publisher

ways registering as a publisher is similar to
registering a subscription. The publisher supplies an
endpoint reference for itself as part of the Regis-
terPublisher request message, and the publication
registration can be subject to the same kind of time-
based expiry that is used to manage subscriptions.
The difference is that instead of undertaking to
deliver messages to a consumer, when it accepts a
publication registration, the broker undertakes to
receive (and pass on) messages from the publisher.

There are cases where it is expensive for a publisher
to detect a situation or create a notification message
instance. A problem with the simple publisher
approach is that even when there are no relevant
subscriptions, publishers still have to do both of
these things. As an optimization, a broker may offer
support for demand-based publishing, illustrated in
Figure 9.

A demand-based publisher combines the roles of
notification producer and publisher, but only has to
manage a single subscription. It implements the
subscribe message exchange from the notification
producer interface, and the notification broker uses
this exchange to establish a subscription with the
publisher. The publisher then delivers notifications
to the broker by using the standard notify message.
If the broker detects that there are no relevant
subscriptions, it can pause its subscription with the
publisher, resuming it again when it acquires a
relevant subscription.

In this way the demand-based publisher does not
need to produce messages when there are no

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

consumers, but it can still delegate matching of
notification to subscription and other related issues
(for example, security) to the broker.

DISCUSSION

In this section we discuss how event-based inter-
actions can be used in SOA alongside interactions
based on the request/response pattern. Specifically,
we discuss the use of events within the Enterprise
Services Bus (ESB) and in the context of Complex
Event Processing (CEP).

Notification pattern and SOA

Design patterns are frequently used in software
engineering as a way of capturing knowledge about
software design and reusing it and also as a
mechanism for communicating elements of a design
to others. The use of design patterns was pioneered
by Gamma, Helm, Johnson, and Vlissides™ (often
referred to as the Gang of Four), primarily in the
context of object-oriented software. Their book
includes an event-based pattern called the observer
pattern, inspired by the Smalltalk MVC model.' The
idea of patterns was applied to message-oriented
middleware and enterprise integration by Hohpe
and Woolf in Reference 21, and this book also
includes a number of patterns for event-based
programming.

The WS-Base Notification specification can be
viewed as a rendering of the notification pattern,
which itself can be viewed as an instantiation of the
observer pattern for the SOA environment (and for
this reason we could also refer to it as the SOA
notification pattern). This pattern unifies the prin-
ciples and concepts of SOA with those of event-
based programming.

In the SOA notification pattern, a service distributes
information to a set of other services without
necessarily having prior knowledge of those other
services.

This pattern has the following key characteristics:

1. The services that consume information (notifica-
tion consumers) are registered (either by them-
selves or by a third party) with the service that is
capable of distributing that information (the
notification producer). As part of this registration
process, they may provide filter expressions that

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Notification Producer INotification Broker INotiﬁcation Consumer

1: Register
Publisher

<lreturn>>
2: Register
Publisher

3: Subscribe

<lreturn>>
4: Subscribe

5: Notification
Message
5.1: Notification
Message

From Web Services Brokered Notification 1.3, Public Review Draft O1.
©OASIS Open (2004-2005). Reprinted with permission.

Figure 9
Message flows: demand-based publisher

indicate the sort of information that they wish to
receive.

2. The notification-producer service disseminates
information by sending one-way messages to the
relevant notification-consumer services. It is
possible that more than one notification-con-
sumer service is registered to consume the same
information. In such cases, each notification-
consumer service that is registered receives a
separate copy of the information.

3. The notification-producer service may send any
number of messages to each registered notifica-
tion-consumer service; it is not limited to sending
just a single message.

The first of these three characteristics lies at the
heart of the pattern. The notification producer does
not have prior knowledge of the notification
consumers, nor does it look them up in a service
registry. Instead it has to wait for these notification-
consumer services to register with it before it can
start distributing its information to them.

The second characteristic states that a notification
producer must be able to support configurations
where more than one notification consumer is
registered to receive its information. An example is
the stock-trading scenario. In this scenario there

NIBLETT AND GRAHAM

881

might typically be just one notification producer
service that provides the price feed, but at any given
time, there may be many stock-trading services
registered with it.

In the stock-trading scenario there are typically
more notification consumers than producers; in
contrast in a system-monitoring application (such as
the printer management example) things are usually
the other way round. In a typical monitoring
scenario, there are many notification producers
(representing pieces of computing hardware or
software, or even physical devices such as temper-
ature sensors or motion detectors), and relatively
few consumers (monitoring applications).

The third characteristic says that, once registered, a
notification consumer must expect that it could
receive a sequence of successive notification mes-
sages. These notification messages are related to the
original registration request only in as much as they
relate to the interests expressed by that original
request.

Readers familiar with the object-oriented software
design patterns described in Reference 20 will notice
a similarity with the Observer pattern—the notifi-
cation producer is similar to the Observer pattern’s
Subject, and the consumer is like the Observer
pattern’s Observer. The SOA notification pattern
differs in a few ways from the Observer pattern, as it
relates to services rather than to object-oriented
programming:

1. The Observer pattern is primarily concerned with
exchanging the state of an object with other
objects. In the Observer pattern, an Observer
object registers to be notified about changes in
the state of another object (the Subject). Because
services have a much more loosely defined
concept of state than objects, the notification
pattern is more general. It allows a notification
producer to distribute any kind of information.
This may be information about changes in state,
but it does not have to be.

2. In the Observer pattern, a consumer deregisters
with the Subject when it wishes to stop receiving
notifications. As we will see later, the notification
pattern allows for time-based expiry of subscrip-
tions. This is because in a loosely coupled
environment we cannot always rely on sub-
scribers being able to cancel their subscriptions.

882 NIBLETT AND GRAHAM

3. The classical version of the Observer pattern does
not provide a way for Observers to indicate what
kind of state changes they wish to observe, and it
does not allow for state-change information to be
passed to the Observer in the Update() message.
All that the Observer is told is that the Subject’s
state has changed in some way, and it is then up
to the Observer to request the new state from the
Subject. Since message exchanges between
loosely coupled services can be comparatively
costly, the notification pattern allows the con-
sumer to specify that it is only interested in being
notified when certain conditions apply, and it
allows the notification producer to pass infor-
mation when it notifies the consumer.

In the past year, various analysts and software
vendors have started to use the term event-driven
architecture (EDA) to describe software architec-
tures that utilize event-based programming. This
has raised the question of whether EDAs can be
classified as SOAs. The answer to this question
depends upon your definition of a service.

One definition, used by the Gartner group in
Reference 22, asserts that a key feature of a service
is that it always executes functionality on behalf of a
particular requestor. Under this definition, an entity
that is driven by an event, rather than by being
bound to a requestor, does not qualify as a service.
In this paper we follow the definition of service
given in Reference 14, “A service has a well-defined
interface with a set of messages that the service
receives and sends, and a set of named operations or
verbs; an implementation of the interface; and, if
deployed, a binding to a documented network
address.” With this broader definition there is no
problem in using the term service to describe an
entity that reacts to an event. We therefore view
EDA as being part of the wider SOA concept.

This view is reinforced by observing that the
difference between request/response implementa-
tions and event-based programming is not as great
as it may seem. In particular, there are cases where
the messages exchanged are visible in request/
response implementations. We have already noted
that some SOAs allow request/response services to
be invoked in an asynchronous manner, and this
requires the sending of the request to be separated
from the processing of the reply. In addition, recent
years have seen a growth in the use of document-

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

centric request/response services. In a document-
centric service, the interface to the service, and often
the programming model, is expressed in terms of the
request messages and response messages them-
selves, rather than in terms of a function or
procedure call.

The debate about whether EDA is a branch of SOA
or whether it is something different is academic.
From a practical viewpoint it is important to note the
following:

* Many applications need a mixture of request/
response and event-based programming.

* Both approaches decouple the services involved,
leading to more flexible, loosely coupled systems.

* Both approaches bring with them infrastructural
requirements, for example, application registries,
service management, monitoring, security, and
reliability. Enterprises are better served by having
a consistent approach to service orientation that
accommodates both patterns, and having a single
infrastructure to manage—rather than having
separate infrastructures for the two patterns.

A particular example of an application domain that
can take advantage of both request/response and
event-based programming is system management
(for example, see Web Services Distributed Man-
agementzs). The request/response pattern is used
for sending commands from a manager to a resource
or by a resource to request assistance from a
manager; however, a manager can use events to
monitor the behavior of resources.

In many monitoring situations the event-based
approach results in less network traffic and better
responsiveness than the alternative request/re-
sponse pattern approach. In the request/response
approach the manager has to poll each device
periodically to see if its status has changed. The
monitoring program has to choose the time interval
between polls. If a long interval is chosen (say one
poll per hour) this increases the average time taken
for the monitor to notice changes in the resources
that it is managing; alternatively, choosing a short
interval increases the amount of network traffic, and
there is an increased likelihood that the resources,
when polled, will have no new status to report. In
contrast, in the event-based approach there is no
need to choose a polling interval; resources can send
messages when they need to; and resources need

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

only send messages if they have new information to
report. For an example of how the event-driven
approach has been used to simplify programming
and reduce processor utilization, see Reference 24.

The Enterprise Service Bus and Complex Event
Processing

An Enterprise Service Bus (ESB), outlined in
Reference 11, is a service-oriented infrastructure
that mediates requests between participating ser-
vices. This includes both traditional request/re-
sponse style message exchanges, as well as the
event-based message exchanges. In this final sec-
tion, we look at how the ESB embodies the
notification pattern, and how the ESB can add value
by augmenting the pattern with further processing.

The aspects of an ESB that concern us here are the
following:

e The ESB provides an infrastructure that virtualizes
the services which are made available on it.
Services that connect to the bus need have no
awareness of the physical realization of the
applications with which they communicate. These
partner services may be conventional service
request-ors and providers, or they may be event-
oriented notification producers or consumers.
Services that connect to the bus need not care
about implementation details (the programming
language, runtime environment, hardware plat-
form, network address, etc.) or current availability
of their partners.

e This infrastructure is itself virtualized and is
capable of spanning wide area networks and
involving multiple infrastructure servers, if re-
quired.

e The ESB provides a mediation capability that can
transform or route messages flowing through the
ESB or perform other CEP.

An ESB provides support for the following kinds of
event-oriented application:

1. Traditional message-oriented middleware appli-
cations coded to use publish/subscribe, for
example, C applications written to use IBM
WebSphere* MQ, IBM WebSphere Business
Integration Message Broker, or Java** applica-
tions that use the Java Message Service (JMS)
publish/subscribe interfaces.”

NIBLETT AND GRAHAM

883

2. Notification producers or notification consumers
as defined by WSN, connecting across a variety of
bindings.

3. Applications coded to emit events by using the
IBM Common Event Infrastructure interfaces.

An ESB allows these different kinds of application to
connect together; for example, a notification mes-
sage might be published by a JMS application and
received by a notification consumer as defined by
WSN. In addition, the ESB can mediate between
request/response services and event-oriented ser-
vices. The ESB provides this support by managing
collections of topics in its registry and by providing
an implementation of one or more distributed
notification brokers as defined by WSN.

Traditional message-oriented middleware applica-
tions are unaware of the WSN aspect of these
brokers—they simply publish or subscribe to topics
on the broker of their choice (in JMS, applications
are shielded from these details by topic and
connection factory administered objects). The ESB
administrator can configure one or more WSN-style
notification brokers to be used by WSN publishers
or subscribers, and the ESB administrator can
arrange that these be federated with each other, with
traditional publish/subscribe applications, or with
both.

To give a concrete example, an administrator could
create a topic namespace containing stock price
symbols as topics, then create a notification broker
instance, and then publish the port for this broker
instance for use by subscribers or notification
consumers that connect over SOAP/HTTP.

The administrator could then take an existing JMS
application that provides the price feed and attach it
to the bus as a publisher. In order to do this, the
administrator configures a mapping from one or
more topics used by the JMS application into topics
from the topic namespace. The administrator might
also need to configure a mediation to convert the
payload of the notification messages into a format
that matches the type defined by the topic name-
space.

In another example, the administrator might want to
configure two notification brokers in two different
physical locations and have them interconnected via
the ESB messaging infrastructure. Publishers or
notification consumers in each location might

884 NIBLETT AND GRAHAM

connect to their local broker via SOAP/HTTP on
their internal network. The ESB infrastructure can
then optimize the number of notification messages
that have to flow between the two sites. For
example, if there are 20 consumers at one site, the
infrastructure need only flow a single copy of each
message, not 20 copies.

The ESB supports both dynamic subscription, where
a notification consumer registers itself (or is
registered by a third-party subscriber) at runtime,
and a more static administrator-defined subscription
mechanism where consumers are automatically
registered when they start up. The stock price
example we used earlier is likely to use dynamic
subscription because individual traders can come
and go during the day. Alternatively, our other
example (printer management) might be more
suited to a static configuration because a monitoring
application is likely to be long-running and prede-
fined in the ESB registry.

The mediation capability of the ESB can be used to
provide additional CEP. Examples of this range from
basic logging of notification messages for subse-
quent retrieval and analysis to more advanced
scenarios involving aggregation or correlation to
produce additional derived events.

CEP mediations frequently do not modify the
notification messages themselves. The ESB delivers
notifications from producers and consumers in the
normal fashion, but the mediations examine the
messages that flow through, logging them in
storage, which could be a simple in-memory buffer
or a relational database. Each time a new notifica-
tion message passes through the mediations, they
analyze it and compare it with information recorded
in storage. The mediations may then detect a new
situation and publish a new notification message in
addition to the message that originally triggered this
behavior. We call this a derived notification, and the
content of its message may be totally different from
that of the original notification. Derived notifications
conform to the notification pattern; notification
consumers can subscribe to the ESB to receive them
in exactly the same way that they subscribe to
receive any other kind of notification.

As an example, let us return for the last time to the

printer monitoring scenario. CEP mediations could
be added to the ESB to allow the printer monitoring

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

application to subscribe to the following derived
events:

e Floor problem—All the printers on the same floor
are offline at the same time. The mediation uses
information in the printer-offline notification to
identify the location of the printer (if the floor
information is not carried in the message, the
mediation can extract a printer ID from the
message and discover the floor by looking in a
database). It then maintains a count of the number
of printers available on each floor and generates a
new derived event if this count drops to zero.

e Frequent jams—A printer has more than three
paper jams within a single working day. This
mediation simply records the printer jam mes-
sages that it receives from each printer, and each
time it receives a new one, it generates a derived
event if the threshold for the day (in this case three
jams) has been exceeded.

® “Mean time to repair” problem (the mean time
that a printer stays offline within a week is more
than 45 minutes)—This is a more complex time-
based mediation. The mediation logs error-related
printer online and offline messages and computes
a weekly rolling average for the repair time,
generating a derived event if this exceeds 45
minutes.

For more information on CEP and some discussion
of its uses and implementation, see References 6 and
26.

SUMMARY

We have reviewed the OASIS WSN specification as a
way of illustrating how event-based programming
can be introduced in SOA in a standardized way and
have observed how the pattern embodied in these
specifications, the SOA notification pattern, can be
viewed as an instantiation of the well-known
observer design pattern for the SOA environment.

We concluded with a brief discussion of CEP and an
examination of the role of the SOA notification
pattern within the ESB and saw how the ESB
combines request/response and event-oriented SOA
into a single infrastructure. This combination brings
many advantages. There is a single infrastructure to
support, manage, and secure, and there is uniform-
ity in the transport bindings that are available to
both styles of application. Quality-of-service options
such as reliable delivery, message logging, or store
and forward can be applied to either pattern, and it

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

does not make sense to deploy two infrastructures to
provide similar functionality for the two patterns. In
addition, because it is quite common for a single
service to combine both request/response and
event-oriented message exchanges, for this sort of
application a single infrastructure is a necessity.

One further advantage of combining both patterns in
the same infrastructure is that opportunities for
cross-over emerge. For example, an ESB adminis-
trator can insert a mediation into a request/response
route through the bus. This mediation does not
affect the contents of the request or response
messages, but it can analyze the messages and
publish a notification if and when it detects an out-
of-line situation. Adding and removing such medi-
ations is made more straightforward if the mediation
framework, the messaging, and the event-handling
fabrics are all a single integrated whole.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc. and Sun Microsystems, Inc.

CITED REFERENCES
1. G. Krasner and S. Pope, “A Cookbook for Using the
Model-View Controller User Interface Paradigm in
Smalltalk-80,” Journal of Object Oriented Programming 1,
Issue 3, 26-49 (August/September 1988).

2. R. Scheifler, J. Gettys, A. Mento, and D. Converse, X
Window System: Core and Extension Protocols 4th
Edition, Butterworth-Heinemann (1997).

3. M. Perry, C. Delporte, F. Demi, A. Ghosh, and M. Luong,
MQSeries Publish/Subscribe Applications, IBM Redbook
(2001).

4. Event Service Specification, Object Management Group
(2004), http://www.omg.org/technology/documents/
formal/event_service.htm.

5. Notification Service Specification, Object Management
Group (2004), http://www.omg.org/technology/
documents/formal/notification_service.htm.

6. D. Luckham, The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise
Systems, Addison Wesley, Reading, MA (2002).

7. OASIS Web Services Notification Technical Committee,
OASIS, http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsn.

8. Web Services Base Notification 1.3, OASIS (2005), http://
WWWw.oasis-open.org/committees/download.php/13488/
wsn-ws-base_notification-1.3-spec-pr-01.pdf.

9. Web Services Topics 1.2, OASIS (2004), http://docs.
oasis-open.org/wsn/2004/06/wsn-WS-Topics-1.
2-draft-01.pdf.

10. Web Services Brokered Notification 1.3, OASIS (2005),

http://www.oasis-open.org/committees/download.php/
13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf.

NIBLETT AND GRAHAM

885

11. M.-T. Schmidt, B. Hutchison, P. Lambros, and R.
Phippen, “The Enterprise Service Bus—Making Service-
Oriented Architecture Real,” IBM Systems Journal 44, No.
4, 781-798 (2005, this issue).

12. XML Schema Part 1: Structures, World Wide Web
Consortium (2004), http://www.w3.org/TR/
xmlschema-1/.

13. Web Services Addressing 1.0—Core, World Wide Web
Consortium (2005), http://www.w3.org/TR/
ws-addr-core/.

14. D. F. Ferguson and M. L. Stockton, “Service Oriented
Architecture: Programming Model and Product Architec-
ture,” IBM Systems Journal 44, No. 4, 753-780 (2005, this
issue).

15. Web Services Resource Properties, OASIS (2004), http://
docs.oasis-open.org/wsrf/2004/06/
wsrf-WS-ResourceProperties-1.2-draft-04.pdf.

16. Canonical Situation Data Format: The Common Base Event
V1.0.1, The Eclipse consortium (2003), http://dev.eclipse.
org/viewcvs/indextools.cgi/~checkout~/hyades-home/
docs/components/common_base_event/cbel0lspec/
CommonBaseEvent_SituationData_V1.0.1.pdf.

17. Namespaces in XML, World Wide Web Consortium
(1999), http://www.w3.0org/TR/1999/
REC-xml-names-19990114/.

18. XML Path Language, World Wide Web Consortium
(1999), http://www.w3.org/TR/xpath.

19. Extensible Markup Language (XML) 1.0, World Wide
Web Consortium (2004), http://www.w3.org/TR/
REC-xml.

20. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns, Addison Wesley, Reading, MA (1995).

21. G. Hohpe and B. Woolf, Enterprise Integration Patterns,
Addison Wesley, Reading, MA (2003).

22. R. Schulte and Y. Natis, “Event-Driven Architecture
Complements SOA” Gartner Research Note DF-20-1154,
Gartner, Inc. (2003).

23. Web Services Distributed Management Technical Com-
mittee, OASIS, http://oasis-open.org/committees/
tc_home.php?wg_abbrev=wsdm.

24. H. Muller and C. Randell, “An Event-Driven Sensor
Architecture for Low Power Wearables,” Proceedings of
the International Conference on Software Engineering
ICSE2000, Workshop on Software Engineering for Wear-
able and Pervasive Computing, ACM, New York (2000),
pp. 39-41, http://www.cs.washington.edu/sewpc/
papers/muller.pdf.

25. Java Message Service 1.1 Documentation, Sun Micro-
systems, Inc., http://java.sun.com/products/jms/docs.
html.

26. A. Adi and O. Etzion, “Amit—the Situation Manager,”
VLDB Journal 13, No. 2, 173-203 (May 2004).

Accepted for publication July 12, 2005.
Published online October 26, 2005.

Peter Niblett

IBM United Kingdom Limited, Hursley Park, Winchester,
Hampshire SO21 2JN, United Kingdom (peter_niblett@uk.
ibm.com). Mr. Niblett, a Senior Technical Staff Member, is
lead architect for WebSphere Messaging software. He was the
IBM lead on the working group that wrote the Java Message
Service specification and is now co-chairing the OASIS Web
Service Notification Technical Committee.

886 NIBLETT AND GRAHAM

Steve Graham

IBM Software Group, 4400 Silicon Dr, Durham NC 27713
(sggraham@us.ibm.com). Steve Graham is a Senior Technical
Staff Member in IBM’s Software Group and a member of the
IBM Academy of Technology. He is a Web services architect
involved in standards-related activities within the IBM on
demand initiative. He has spent the last five years working on
service-oriented architectures. He is the lead author of
Building Web Services with Java: Making Sense of XML, SOAP,
WSDL and UDDI (Second Edition), published by Sams
Publishing. W

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

