N. Nagaratnam
A. Nadalin

M. Hondo

M. McIntosh
P. Austel

INTRODUCTION

Enterprises must continually adapt to changes that

Business-driven application
security: From modeling to
managing secure applications

Business-driven development and management of secure applications and solutions is
emerging as a key requirement in the realization of an on demand enterprise. In a given
enterprise, individuals acting in various roles contribute to the modeling, development,
deployment, and management of the security aspects of a business application. We
look at the business-application life cycle and propose a policy-driven approach overlaid
on a model-driven paradigm for addressing security requirements. Our approach
suggests that security policies are to be modeled using policies and rule templates
associated with business processes and models, designed and implemented through
infrastructure-managed or application-managed environments based on modeled
artifacts, deployed into an infrastructure and potentially customized to meet the security
requirements of the consumer, and monitored and managed to reflect a consistent set
of policies across the enterprise and all layers of its application infrastructure. We use a
pragmatic approach to identify intersection points between the platform-independent
modeling of security policies and their concrete articulation and enforcement. This
approach offers a way to manage and monitor systems behavior for adherence and
compliance to policies. Monitoring may be enabled through both information
technology (IT) and business dashboards. Systematic approaches to connect business
artifacts to implementation artifacts help implement business policies in system
implementations. Best practices and security usage patterns influence the design of
reusable and customizable templates. Because interoperability and portability are
important in service-oriented architecture (SOA) environments, we list enhancements
to standards (e.g., Business Process Execution Language [BPEL], Unified Modeling
Language™ [UML®]) that must be addressed to achieve an effective life cycle.

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed

occur due to business, I)Ohﬁcal, or teChHOlOgiCal royalty free without further permission by computer-based and other

information-service systems. Permission to republish any other portion of the

challenges. These on demand businesses require paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NAGARATNAM ET AL.

847

integration of people, information, and processes in
order to conduct business in real time. Meeting the
requirements of such a dynamic environment
requires leveraging business-to-business (B2B)
partnerships and outsourced services by enabling
enhanced integration between business processes.
For example, supply chain integration of manufac-
turers and distributors requires deeper examination
of sales forecasts, production scheduling, product
configuration, and inventory management.

Recently, government requirements for account-
ability of business practices and information man-
agement have transformed security concerns from
an isolated piece of the information technology (IT)
puzzle into an important and far-reaching business
issue that must be addressed. It is no longer
sufficient to delegate responsibility to the IT
organization alone. Doing so may lead to frag-
mented business and IT plans along with misallo-
cation and inefficient use of already scarce
technology resources.

To satisfy the new demands of a changing market-
place, the industry must adopt a fundamental
change in the way application and system integra-
tion is accomplished. This change requires an
infrastructure that supports loose coupling of intra-
and inter-enterprise information among widely
disparate application designs, operating systems,
databases, and application programming interfaces
(APIs). In order to efficiently integrate the varied set
of applications and platforms that make up the
information technology (IT) infrastructure of these
enterprises, the enterprises are beginning to realize
the value of a service-oriented architecture (SOA)
and to refactor their applications into loosely
coupled services. For an enterprise to be a secure on
demand business, the enterprise infrastructure must
be flexible and customizable to reflect new require-
ments and regulations. To provide such flexibility,
the enterprise should not hardwire (permanently
fix) its policies into the infrastructure, but instead
allow the security model of the enterprise to be
implemented through a policy-driven infrastructure.
This is no simple task.

A step-wise approach to model, design, implement,
deploy, and manage secure applications by using

policies to reflect the business goals and to abide by
constraints imposed through regulations (industry,
federal, etc.), corporate security policies, and busi-

848 NAGARATNAM ET AL.

ness trust relationships allows organizations to
unlock the true value of IT security. We outline the
importance of using a business-driven development
rnethodology.l This methodology takes advantage of
a business-process-modeling and Model Driven
Architecture** (MDA**)Z’3 approach to separate the
platform-independent model of the application
architecture from the underlying implementation
technology and platform. The value proposition of
MDA is about enabling “automation and abstraction
using open standards.” Additionally, a policy-
driven approach to MDA acts as a powerful
mechanism for management of security policies
throughout the application life cycle.

We propose an approach to efficiently model, build,
and manage secure enterprise applications in a
dynamic environment. The process starts with the
modeling of businesses by collecting business
drivers and business requirements. The business
model helps build an understanding of the business
implications of application design and deployment
decisions. This process encourages business ana-
lysts as well as security architects to formally
explore the security aspects throughout the appli-
cation life cycle. Business process modeling may be
used to capture the information flow and process
elements required for new applications. The busi-
ness process model helps build an understanding of
any additional tooling and deployment support that
may be required to handle application development
and management. Each enterprise and each appli-
cation requires different amounts of involvement by
analysts pertaining to its line of business and by
architects and developers with respect to where
security requirements enter the application life
cycle.

Managing a secure on demand business is an
ongoing learning experience. We start with an
assumption that incorporating security planning
into a company’s overall corporate strategy and
business process not only helps mitigate risks but
also helps position an organization for long-term
growth. Using a business-driven security-policy-
management framework that starts with core busi-
ness objectives allows businesses to identify suitable
security mechanisms.

We begin with an overall discussion of the

application life-cycle phases and a set of business
roles. Individuals performing these roles perform

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Define business and
corporate security policies

Security Policy Officer
Security AuditorBusiness Analyst

wodel BUSinesS

Manage security of the business
application; monitor behavior and

Model security requirements
and application security

2’
change policies as necessary & /)% Security Architects
§ & Application Architects
IT Administrator S S
Security Administrator ;:D g
Operator - Develop Iteratively &
Bg Focus on Architecture >
5 Continuously Ensure Quality
= Manage Change and Assets
0%6
Z &
o)

Application Administrator
Security Administrator

Configure infrastructure for
application security; subscribe
and customize security policies

Figure 1

o
Declare application security
policies; build and
test secure applications

Application Programmer
Security Developer

Refining and defining security policies in a business-driven development process

the tasks within the life-cycle phases in order to
accomplish the business goals. Then, each of the
phases in the application life cycle are discussed in
detail. The details for each phase include the
positioning of the phase in the overall life cycle, the
kind of inputs and outputs that are relevant to a
tooling application in a given phase, the tools and
technologies that are required to accomplish the
approach, and any standardization that is necessary
in relevant technical approaches. We use an
example throughout that illustrates how a higher
level business policy is transformed, implemented,
enforced, managed, and monitored in the process.

APPLICATION LIFE CYCLE AND ROLES

To enable a business so that its processes and
applications are flexible, one must start by expecting
changes—both to process and application logic and
to the policies associated with them. The concept of
change must be part of the conceptualization of the
business idea. One may start by modeling the

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

business, including business processes, organiza-
tions, system assets, and topology. A second pass
should be made to identify areas in which growth or
change is anticipated.

Software applications are designed and built in new
ways to enable and automate business processes. As
depicted in Figure 1, the life cycle of an application
built around a business-driven development meth-
odology includes the following phases:

® Model business—Modeling the business process
independent of whether the activities of which it is
comprised are based on software,

* Analyze and design—Application modeling in a
platform-independent manner,

* Implement—Implementing and testing applica-
tions on a chosen platform,

® Deploy—Installing an application within an infra-
structure and subscribing for usage by service
consumers,

NAGARATNAM ET AL.

849

Table 1 Security-defining roles in an organization

Organization Roles

Business Strategy and Decision Making

Development

Operations and Administration

Chief security officer, security policy officer, security architect, security
auditor, business analyst

Application programmer, identity/security developer

Security administrator, system/application administrator, operator

® Manage and monitor—Managing application con-
figurations and monitoring application behavior.

Such an approach involves iterative development
while focusing on consistent architecture. The need
to continuously ensure quality of development
software and ability to manage changes and assets is
to be taken into account. Applications with these
qualities help build business solutions consisting of
new applications as well as existing application
assets. When working with existing assets, which
may be deployed on different platforms and
environments, an SOA architectural pattern helps to
bridge platform-specific nuances and abstract out
service functionality. The modeling phase identifies
services that are independent of the implementation
phase. A service veneer may be developed to
connect to an existing implementation, or an
entirely new application may be developed. The
primary benefit of this approach is the agility to
respond to changing business requirements while
the underlying technology infrastructure evolves at
its own pace.

Understanding enterprise roles and
responsibilities

Individuals acting in roles within an organization
take on responsibilities within that organization.
They make decisions to ensure that the technology
and implementation meet the business require-
ments, and they increasingly use tools to efficiently
execute the security plan. Thus, tool support is very
important to help individuals acting in various roles
to efficiently fulfill their assigned responsibilities.
These roles also typically represent the organiza-
tional structure of the business. A sample list of
these roles is depicted in Table 1.

If the life-cycle model is to be successful, it is
important to understand the roles that individuals
will perform during the application life cycle and the
tasks they must perform. Depending on the

850 NAGARATNAM ET AL.

responsibilities assigned to each role and which part
of the business they represent, the associated tasks
may vary. A set of roles is defined to manage
security and business policies.

As shown in Figure 1, certain roles in an orga-
nization contribute toward creating, defining, refin-
ing, or managing security policies throughout the
life cycle. They include the following:

e Corporate security officers and equivalent execu-
tives defining corporate security policies and
outlining regulations with which the business
must comply,

* Business analysts working with security policy
officers, translating corporate policies in terms of a
business vocabulary and a business process
during the business-process-modeling phase and
providing a set of choices to be customized,

e Application architects and security architects
modeling the security and access policies in the
model (based on the choices provided by a
business analyst) during the application-modeling
phase,

* Application developers factoring in these security
policies by declaring these requirements for the
infrastructure to enforce, or when infrastructure
support is not sufficient, implementing them in
their applications; or application deployers install-
ing the applications and working with security
administrators to configure these applications and
the security policies as relevant to the deployed
environment,

* IT and security administrators managing the
security policies throughout a set of applications
and an infrastructure to meet the requirements
that may continue to change over time,

* Operators monitoring the system behavior and
detecting situations that are potential security
threats and feeding that back to administrators to
make any changes necessary for the application
infrastructure to adhere to the goals; similarly, a

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

business analyst viewing business dashboards to
observe the impact to the business due to certain
system security events.

It is significant to observe that security policies are
specified and refined throughout the life cycle,
undergoing transformations from one phase to the
next. In the current state of the art, it may be
realistic to expect this to happen in a unidirectional
manner—from modeling to monitoring and man-
agement. In order to accommodate bidirectional
flow within the life cycle, traceability support and
sophisticated transformation support between arti-
facts from one phase to the next phase is required.
For example, for Web service development based on
the Java** platform, conversion from the Web
Services Definition Language (WSDL) to Java as
well as from Java to WSDL must be possible. As
long as the transformations are symmetric and
consistent, the potential exists for iteration in both
directions; therefore, any possible iteration required
from one phase to a previous phase (e.g., from
implementation back to modeling) should be part of
the evolution of tooling.

Authoring corporate security policies

As part of formulating a security strategy and
authoring corporate security policies, the chief
security officer is responsible for knowing the set of
legal, business, and financial policies to which the
organization must comply. It is part of the respon-
sibility of the individual playing that role to
articulate these requirements to the organization.
Often this is done through the authoring of docu-
ments that contain some level of detail or directives
about the requirements in natural language.

At this level, the business security policies are
usually goals and guidelines and are often expressed
in corporate documents, not development artifacts.
The process of identification is part of the security
risk assessment and uses a methodology such as
OCTAVE** (Operationally Critical Threat, Asset,
and Vulnerability Evaluation)5 or the FISMA (Fed-
eral Information Security Management Act)6 guid-
ance from NIST (National Institute for Standards
and Technology).

Within the staff of the security office, there are
security policy officers (SPOs) and security archi-
tects. SPOs and security architects usually take on
the responsibility of translating the corporate

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

policies and guidelines and defining the security
policies in a form that may be used by the rest of the
organization. The task of translation may involve
translating policies written in natural language
expressions into forms that are usable by tools. Such
corporate policies could be creating or annotating a
business requirement by using a security vocabu-
lary, as appropriate. The SPO may use a tool that
transforms the natural language expressions into
machine- or tool-usable form for an efficient
development life cycle. For example, a policy stating
that “travel agents may view and change the
traveler’s itinerary” may be transformed into XML
(Extensible Markup Language) fragments as shown
below. Such XML fragments may then be attached to
modeling artifacts later in the life cycle of applica-
tion development.

<role> Travel agent </role>
<actions>
<action> view </action>
<action> change </action>
</actions>
<resource> traveler itinerary </resource>

MODELING SECURE BUSINESS PROCESSES

SOA design patterns help an enterprise to identify
and eliminate redundant implementations of com-
mon business processes by facilitating coordinated,
consistent, and efficient implementation and man-
agement of enterprise-wide policies. Business pro-
cess modeling provides a means for business
analysts to formally define a process to reflect the
inner workings of a business. Formalizing this
process with a standard methodology by using
business process modeling helps to efficiently
implement the idea. For example, the IBM Web-
Sphere* Business Integrator (WBI) Modeler is a tool
that allows a visual model of a business process to
be built, resulting in both a visual representation
and potentially some set of artifacts representing the
business process (i.e., WSDL, policy templates).

In the process of modeling business processes, some
activities may be automated through the imple-
mentation of software components. This automation
may require a transformation to map a business
function into a new application component, into a
new programming element, or into a system
element that previously existed in the deployment
environment but which is being retasked. For
example, a transformation from WBI Modeler to

NAGARATNAM ET AL.

851

Business Process Execution Language (BPEL)7 may
be further transformed into application artifacts
represented by UML** (Unified Modeling Lan-
guage**), which are then manipulated using tools
such as the Rational* Solution Modeler or Rational
Solution Architect.

Depending on tool sophistication, traceability, and
point of entry into the life cycle for a particular
business, the transformation may be one way, from
the business process visualization to business
service or activity design, or bidirectional, whereby
changes in application modeling reflect back in the
business process models. Nonetheless, experience
indicates that business analysts do not want random
changes to the business process to occur based on
some change to implementation artifacts.

Business process modeling is an ideal time in the life
cycle of a business solution and a repeatable process
mechanism to begin to capture the business security
requirements that address any security concerns
that relate to the business, thus performing security
risk assessment. A business analyst working with an
SPO is typically involved at this point. The business
analyst (e.g., with help from the SPO) determines
which policies apply to a given business in the
context of the business process. For example, in a
travel business process, the business analyst might
model the requirement to control authorized access
to a business activity (such as a travel reservation)
and to ensure that the business information flow is
protected for confidentiality. The business security
requirements can be defined within the business
process models. These models provide a reference
that may be used by enterprise compliance officers,
such as security auditors, to verify and monitor
adherence to enterprise security policies.

Among the tasks performed during this phase, a
business analyst may specify the requirements for
the artifacts of a business process that are generated
during a particular phase of the life cycle. Note that
business analysts will not likely define these
requirements in terms of security technology like
secure sockets layer (SSL), message security, or
encryption, but they will typically define the broad
goals and ranges of offerings and thus, allow for
flexible implementations that meet these objectives.
As shown in Figure 2, a business analyst may specify
the requirement to allow authorized access for travel
agents to view and change itinerary. Also, the analyst

852 NAGARATNAM ET AL.

can describe these requirements using security
categories. For example, a travel service consumer
may be able to select an appropriate service level,
which includes High or Medium security as part of
the Platinum or Gold offerings, respectively.

Individual policies pertaining to specific business
process elements may be defined at this stage. These
policies would reflect objectives from various
sources, including regulations, compliance, indus-
try, competition, or business-specific objectives.
Mechanisms should be available to enable these
policies to be defined and associated with appro-
priate points in the business process that are
constrained by these policies. Such policies will
normally be defined in terms of business domain
vocabulary and may be derived from sources
established by other agents in the business (e.g.,
Chief Privacy Officer), as appropriate.

To facilitate reuse from existing, well-known objec-
tives that must be met, policy authoring should
leverage policy templates that reflect well-known
policies and rules. For example, a travel industry
regulation states that a travel agent may only look at
customer information for the purposes of ticketing.
During business process modeling, one should be
able to review these policies and contextually apply
them to the appropriate business objects being
modeled. For example, what constitutes a ticketing
activity is specific to a given business process.
Similarly, sensitive business objects may be tagged
to be protected.

A business analyst may be cross-trained and also be
responsible for interpreting security requirements
(e.g., an audit of Sarbanes-Oxley8 compliance) and
modeling the point of enforcement within the
process itself. For example, if the requirement
articulated by an SPO is to audit all travel approvals,
the business analyst may create an activity to
perform an audit (after travel approval activity), and
this may be modeled within several business
processes.

In addition to modeling requirements and policies,
one should be able to specify any key performance
indicators (KPIs) (if they are known) that are to be
met—which, in turn, must be monitored and
managed by some other element in the workflow.
From a security perspective, such monitorable
aspects may be defined in terms of security

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

4 Business Modeling - Travel Process - WebSphere Business Integration Modeler Advanced Edition

File Edit View Navigate Search Project Modeling Window Help

Ix-maalle-8-léaa|000[s(ee--

|96 & | ~]R Q] « =

3 et

| f2Find Ailine Providers

| :'ﬁTripInfo

! This is the top-level process which
integrates the individual business
processes and provides a travel
business solution.

Authorize traveler and travel agent to view and change itinerary

, Connections Trip
Reservation
o Tripinfo
: L —» Trip
- Annotation Search
B H TripOptions

Trip
Selection

[E—

Gold and Platinum are specific security levels

TripSelection

TripSelection

if Trip
E Notify of _
Re?:zyti:n > Cancelation
Approvalinfo
Approvalinfo A TripCancelation
TripReservation
> Trip P approved?
Approval »
>
Yes >
Approvalinfo 5
Notify of
Approval
approval? TripConfirmation
TripReservation
‘No
| Tripselection Tip L

TripReservation
—_—

" Confirmation

»

B | OO 8D

Figure 2

|J gmssx. | @ inch... | g'lrav... "eBusi.“ EIIBM l.. [Escree... | Lh0e 04 aiss

Business-level security policies in business process modeling

situations, intrusions, security breaches, or policies
pertaining to accessing sensitive information. In-
formation categorization (e.g., highly confidential,
informational) during modeling may help clarify
what level of security enforcement is required.

In most currently deployed applications these types
of enterprise-level decisions and policies have been
codified and enforced redundantly and inconsis-
tently in individual applications under the auspices
of application programmers. When a business-
driven approach is used, business process models
that capture the intent of the business have policies
associated with them to indicate these types of
requirements and decisions. These policies may
then be used to drive the behavior of common
service components that implement important
business logic. The business may then build a
coordinated administration and configuration de-
sign. This helps ensure that enterprise-level policies
reflecting the intent of the business stakeholders are
accurately and consistently implemented across all

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

applications in the enterprise. The enterprise may
track any changes to policies and ensure that they
are efficiently propagated.

Input

Typical security concerns that would be considered
as part of the definition of a business vocabulary and
reflected in related business process models would
include the following:

e Controlled access to customer and employee
business information,

* Monitoring and audit of security situations and
events, including those related to storage, access,
and retention,

¢ Confidentiality protection from inadvertent dis-
closure of information contained in or derived
from data flows,

e Integrity of data in data flows or storage, protect-
ing it from accidental or purposeful modification,

e Nonrepudiation of data origin and data receipt,
including concerns related to authentication and
audit controls,

NAGARATNAM ET AL.

853

* Trust of entities operating within business pro-
cesses, including business partners, service pro-
viders, and users and system components, both
internal and external (e.g. partners).

Output

The outputs from this phase typically include
business process definitions reflecting high level
business objectives, organization, roles, partner
relationships, and process components. Included in
this model would be elements denoting any busi-
ness level security concerns. From these models,
security policies may be generated to drive con-
formance by concrete instantiations of these model
elements.

Standards and technologies

From an SOA perspective, the primary standard
related to this phase is BPEL. At the time of this
writing, BPEL extensions may be used to accomplish
articulating policies; formalization of these exten-
sions to profile policy definitions within BPEL is
envisioned. There may be other mechanisms some
tools may use; for example, one may model using
tools such as IBM WBI Modeler, using standardized
notations such as Business Process Model Nota-
tion** (BPMN**),9 to capture the business process
which ultimately may be exported to a BPEL
workflow. Similar to BPEL requirements, the ability
to attach policies and rules to BPMN is useful. One
may use the annotations capability in BPMN as well
as BPEL extensibility mechanisms.” If BPEL is used
to represent the enterprise business processes, it is
important to represent security policies and con-
straints by using first-class notations and artifacts. In
addition to corporate policies, industry- and locality-
specific regulations will apply to a business process,
and therefore, tools should allow for working with
profiles of these policies targeted to a specific
industry. Part of any industry-specific standardiza-
tion of a BPEL pattern should be a recommendation
to profile the policies of the specific industry as an
input pattern for individual businesses to exploit.

An emerging standard business process definition
metamodel (BPDM) "’ being developed at Object
Management Group (OMG) and led by IBM and
other BPM vendors defines how MDA concepts and
standards may be used to support the definition of

e the business process model (with appropriate
links to business rules as well as organizational
models),

854 NAGARATNAM ET AL.

e support for multiple visual notations mapped to
this model (i.e., BPMN for a business analyst,
UML for a IT architect and security architect), and

e transformations (mappings) from the metamodel
to Web Services artifacts, such as BPEL, WSDL,
and XML schema.

This initiative exemplifies how elements of model-
driven security architecture may be integrated with
business process modeling and business perfor-
mance management.

The requirements may go beyond simple security
attribute notations to include cross-level (business
modeling to application modeling) modeling, policy
generation and validation, traceability, discovery
and validation of business processes through anal-
ysis of deployed implementation artifacts, and a
useful visual method for depicting a model of
security patterns and practices.

DESIGNING SECURE BUSINESS APPLICATIONS
For application modeling and design, system archi-
tects typically employ UML"" and its profiles to
model the concerns of the service domain. Toward
this, the Meta Object Facility (MOF**) and its
implementation are an enabling technology foun-
dation to achieve these goals.12

The security architects should keep implementation-
specific security concerns out of the application
model. At the same time, security should not be an
afterthought. One should be able to capture generic
security requirements and constraints in a model in
a consistent fashion. Given the complexity of
security implementations and its impact on system
design and deployment, security requirements and
policies place additional constraints and require-
ments on the IT infrastructure supporting the
services. Security design patterns are becoming
increasingly popular and useful at this stage. If
weaknesses are discovered, they should be given to
the system architect for alternative approaches.

Applying the modeling concepts to security, we
assume that users define abstract security intentions
at a higher level, and then they are refined at a lower
concrete level. UML may be used at the lower three
levels. It is not clear how to model with UML at the
strategy level; therefore, we begin by addressing
security at the operation level. We summarize what
is described for security at each level as follows:

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Table 2 Primitives to capture security constraints

to perform the request
confidentiality
against unauthorized viewing

integrity

Primitive Description

audit Denotes that the specified communication is to be audited. One assumes that the audit will con-
tain both the identity of all parties and any data communicated between the parties

authenticate Denotes that a party that has to be authenticated in the scope of a given context

authorize Denotes that a communication between two parties must ensure that the requestor is authorized

Denotes that the marked information should be treated as confidential and that all reasonable
effort (considering technical implications) should be made to ensure the data remains protected

Denotes that the marked information is guaranteed to reach the recipient unaltered during tran-
sit (e.g. includes the digital signatures of parties related to the document)

e Platform-independent model—Only security in-
tentions are added to the business process models.
Primitives for security policies should be abstract
enough so that business users understand them.
Policies may be implemented on any software
platform.

e Platform-specific profiles—Security requirements
derived from the intentions are added to the
executable artifacts such as the J2EE** (Java 2
Enterprise Edition) application packages. While
security may be included in application code, we
assume that security requirements are described
with policy in the configuration of application
packages; for example, the deployment descriptor
(DD) for J2EE."*™

e Protocol- and technology-specific profiles—The
security requirements at the execution level are
bound to specific message protocols, security
infrastructures, and technologies available to the
application hosting environment. For example, we
may consider security mechanisms, such as PKI
and Kerberos, and cryptographic algorithms for
signatures and encryptions.

In order to address business-level-security intent in
a manner that is easy to understand, even for
business users, we adapt and modify the security
primitives proposed in Reference 15. These primi-
tives are abstract enough for our purposes and may
be represented in UML. Examples of the security
policy elements or primitives can be found in
Table 2.

The primitives in the table may be represented in
UML by using model artifacts like UML stereotypes,

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

constraints, and so forth. It is useful to have a
standardized security profile in UML that defines
some of the security primitives in terms of UML
stereotypes. As shown in Figure 3, one can model
authorization policy as a UML stereotype with a set
of roles about who can access a Reservation object.
Additional conditions about time of access, type of
access, and purpose can be encapsulated. Policies
are also applicable to invocations as shown—to
ensure a makeReservation() method invocation for
confidentiality. Such an approach helps an applica-
tion designer capture the security policies at the
application-modeling phase.

Input

The inputs to the design phase are policies and rules
which were transformed from business process
models into UML artifacts and security requirements
applicable to the application design. Depending on
the design details, these requirements may include
platform-dependent requirements (e.g., based on
the J2EE security model).

Output

The outputs from the application modeling and
design phase typically include model specifications
(UML) and code-generated skeletons of implemen-
tations (e.g., J2EE application components). In-
cluded in the model and implementation artifacts
would be declarative descriptors denoting design-
level security requirements and possibly codified
policies.

Standards and technologies

As discussed earlier, there are several possible
approaches to model security policies in UML using

NAGARATNAM ET AL.

855

Reservation S~

viewltinerary () —
changeReservation () <<Security.Authorization>>
AccessPolicy

o roles : String

<<conditions>>
{access time = businesshours
access_type = intranet
purpose = ticketing}

Figure 3
Applying security policies to application models

reservation:Reservation airlineProvider:AirlineProvider

1: makeAirlineReservation

{confidential} u

1
1
<<confidential>> }
|
\

profiles, metamodels, constraints, or other mecha-
nisms. Previous publications describe some of these
approaches.ls’m’17 When a stereotype-based ap-
proach is employed, these security stereotypes may
be transformed into appropriate deployment arti-
facts (e.g., Enterprise JavaBeans** [EJB**] deploy-
ment descriptors). Specific profiles may be applied
and artifacts generated through tooling. In other
cases, when an application manages its own
authorization decisions, standardized profiles may
help identify callouts to security decision points to
evaluate and make decisions, which the applications
then enforce.

IMPLEMENTING SECURE SOLUTIONS

Depending on the environment and existing func-
tionality, implementation may entail building new
application components or reusing existing compo-
nents and applications with appropriate wrappers
and configuration supporting the new functionality.
In order to accommodate the changing environment
and SOA, these components may be implemented as
Web services. This implies an interface defined in
Web Services Description Language (WSDL) that
enables access from other services. The service
implementation depends on the underlying plat-
form. For instance, when hosted on a J2EE"®
platform, the Web service implementation may be a
J2EE application comprised of EJBs.

If the implementation phase follows the design

phase, the UML model artifacts may be used to

generate skeleton code (e.g., service components,

EJBs) along with security policies that must be

transformed from the earlier phase so that the Web
. 19 .

services are secured. ~ A profile may be used to

856 NAGARATNAM ET AL.

automate XSD (W3C** XML Schema definition
language) and WSDL generation.20

If the implementation was targeted without any
formal design phase with UML, then the application
implementation must factor in various business
requirements, corporate policies, and other consid-
erations in the application code. Beginning to
implement all the details in this phase is a significant
burden on the developer; whereas, starting from an
earlier phase eases the task of the developer in
dealing with all of these security policies.

When designing a solution, a developer should
identify the components to be integrated to create
the solution. Because our goal is to address an
environment based on SOA, we assume that the
application is exposed by using a service description
that consumers access.

Implementation considerations

From a security perspective, the implementation
phase requires decisions to be made about which
components are responsible for enforcing security
policies (e.g., infrastructure, application) and which
information must be made available to requestors.
In addition to the operational aspects, some of the
design-time policy information (e.g., J2EE deploy-
ment descriptors) may be used to help manage the
application. One of the key implementation deci-
sions is whether business requirements are best met
by implementation of the security model in the
infrastructure or by codifying security enforcement
into each application. Another dimension to imple-
mentation that should be considered is the degree of
variability of the invocation of the service. Is

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

flexibility given to consumers (i.e., are there choices
that are made available for consumers to customize
during subscription)? Lastly, when implementing
secure solutions, the concept of security engineer-
ing, an engineering methodology to build secure
applications, must be considered. An extension to
Rational Unified Process* (RUP*)21 may help enable
this approach in a systematic way.

Security engineering

Security engineering in development of secure
solutions involves following well-defined patterns
and best practices in implementing application
components so that the application does what the
designers and users expect it to. A part of the task is
assessing the risk inherent in each of these
components and designing and implementing in
such a way that we avoid opening them up to
known vulnerabilities (e.g., efficient memory man-
agement, avoiding covert channels). Tooling sup-
port and code reviews are important to improve
good practice in security engineering and to do no
harm or help minimize harm to the environment in
which these solutions may be deployed.

From the viewpoint of security engineering, Java is
well-positioned as a development language due to
its built-in memory management capabilities, plat-
form independence and security sandbox model that
encourages the practice of building secure solutions.
The Java 2 Security model helps define security
policies pertaining to the access of applications to
resources external to the application (e.g., permis-
sions to access files, sockets, threads, etc.).

Infrastructure-managed vs application-managed
security

The application-modeling phase may have intro-
duced decisions about infrastructure-managed vs
application-managed security. For example, one
may choose to attach security policies and require-
ments to UML artifacts (classes, objects, activity
diagrams, etc.). In this case, these requirements are
meta-data attached to these artifacts. During the
implementation phase, more information about the
application platform (e.g., J2EE, Microsoft .NET**)
is likely to be available, and decisions either to let
the infrastructure handle security or to codify
security in the application may be made at this
point. Thus, a security architect should design some
standardized patterns so that these decisions are
made in a consistent manner.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

In cases where the infrastructure-managed approach
is taken, policies attached to modeled artifacts are
transformed into platform-specific policies (e.g.,
UML requirements to J2EE deployment descriptors).
In cases where the application-managed approach is
taken, security enforcement is performed by the
application and the appropriate security callouts
must be implemented. Tools can help translate any
callouts in application models into platform-
specific implementations. For example, the

callout authenticate() can be transformed to
ToginContext.login() by using Java Authentica-
tion and Authorization Service (JAAS),22 and
authorize() can be transformed to policy.
implies() by using authorization checks based on
Java Authorization Contract for Containers
(JACC).”” In either of these cases, platform-specific
transforms and profiles are necessary to help
implement the intended approach and thus enforce
the security policies at desired enforcement points.
Such profiles help improve the security of the
application by reducing the number of security-
specific application programming interfaces (APIs)
and technologies that the developer must use (thus
reducing coding and improving the quality of the
application software). Based on various usage
patterns, the tools may provide certain well-known
implementations based on guidelines, best practices,
and so forth, in which case, a developer works with
patterns instead of making decisions about tech-
nology. Such patterns may help transform the intent
of application modeling where the platform (e.g.,
J2EE) may be known, but a finer selection of
technologies (as relevant to the application) may be
done only during the implementation phase (e.g.,
using JAAS callout for authentication or calling out
to a security framework managed by the IT depart-
ment of the enterprise).

Deciding the flow of authentication and author-
ization becomes a key part of the implementation
phase because the new solution must be imple-
mented within the context of the existing IT
organization. All of these initial security policies for
the applications may be defined by using deploy-
ment artifacts (e.g., deployment descriptors for J2EE
applications). Declarations of policies should be
abstracted and used to provide high-level policy
requirements that may be refined later in the
deployment phase, taking into account any imple-
mentation constraints.

NAGARATNAM ET AL.

857

In the case of authorization, policy abstractions may
be achieved by defining application roles as a
collection of permissions which allow actions on
resources. For example, a travel application may
declare that the view() or change() methods on
ReservationBean may be accessed by a user acting
in the TravelAgent role. (i.e., TravelAgent is a name
of a role that may be used at implementation time to
identify what may be done by a travel agent in terms
of a set of permissions to invoke those methods on
the respective EJBs) as shown in the code below:

<method-permission>
<role-name>TravelAgent</role-name>
<method>
<ejb-name>ReservationBean</ejb-name>
<method-permission>
<role-name>TravelAgent</role-name>
<method>
<ejb-name>ReservationBean</ejb-name>
<method-name> view</method-name>
<method-name> change</method-name>
</method>
</method-permission>

What is not likely associated during the implemen-
tation phase is the specific decision of which users
are able to act as a TravelAgent. Assignment of users
to roles is typically performed during the deploy-
ment phase and managed during the lifetime of the
application.

These authorization policies may not be known to

the individual requestor, and the business policies

should articulate when and to whom these internal
policies are revealed.

Designing authorization enforcement points is an-
other important task. In some organizations, it is left
to the infrastructure to enforce these authorization
policies as message requests are processed by the
infrastructure. In other cases, when applications
require more control with security, applications
have to explicitly perform the authentication,
establishing and maintaining context and enforcing
authorization. There are hybrid cases when the
deployment environment provides support, where
an application may use the infrastructure to perform
authentication and security-context establishment,
and may use the authenticated user identity to
perform its authorization decisions. For instance,
user identity is established by a J2EE runtime after

858 NAGARATNAM ET AL.

authentication. An application may use standard
APIs like isCallerInRole() to verify that an
invoking user identity has been granted the ability to
act in a specific role. In cases where identity is
propagated downstream as part of invoking another
service, the calling application component may use
APIs like getCallerPrincipal() to retrieve infor-
mation about the calling principal identity.

Flexibility of choice

In cases where certain requirements or constraints
(on the access to the service itself—including
authentication, integrity, and confidentiality re-
quirements) should be made known to a requesting
client runtime, an organization may be capable of
providing a range of options to serve a wide variety
of client runtimes (e.g., browser clients, non-
browser clients, PDA (Personal Digital Assistant)
thin clients, etc.). In this case, policies may be
published that declare the requirement for a
requestor runtime to ensure message confidentiality
and provide some evidence of the identity of the
requesting user (i.e., userid/password or a certifi-
cate). In the case of authentication, policy abstrac-
tions communicate a range of alternatives that
include the types of credentials that must be
presented or limits on the list of trusted authorities
for issuing credentials.

For instance, a TravelService Web service may
declare its intent to require certain token types and
confidentiality requirements. Depending on the
implementation, it may declare its intent in terms of
appropriate descriptors. Tools may in turn generate
necessary machine-level details (e.g., a WS-Policy
expression) as shown in this code:

<wsp:Policy>

<wsp:ExactlyOne>

<wsse:SecurityToken> username </>

<wsse:SecurityToken> x509 </>

</ExactlyOne>

<wsp:AttributeCert Issuer=TravelOrg >

wsp:optional=true

<wsse:Confidentiality>

<wsse:Issuer=Verisign>

</wsse:Confidentiality>
</wsp:Policy>

Input

Input to the implementation phase includes infor-
mation from the application-modeling phase (e.g.,

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

UML class diagrams, activity diagrams). In the case
of UML, the input may include application classes
that represent interface abstraction for access,
business object information representing data ob-
jects passed between method invocations, and
activity diagrams. As identified in the application-
modeling phase, any security policies associated
with model artifacts in terms of access policies
(constraints, including authorization that may be
attached to classes, delegation options marked up in
activity diagrams, etc.) may be done through UML
(with necessary enhancements and extensions, as
appropriate). The tools used during the implemen-
tation phase must be able to transform model
artifacts into implementation entities (e.g., EJBs,
service components). Relevant policy information
must be transformed (e.g., J2EE deployment de-
scriptors) and attached to these new implementation
artifacts. This takes advantage of the fact that in
J2EE there is a clear separation between the
application code and associated roles and permis-
sions in the deployment descriptors. The J2EE
container enforces controlled access to the compo-
nents, hiding the details from an application
developer.

Output

Upon implementation and packaging, a solution
includes declared policies that are associated with
application components (e.g., in the case of J2EE
components, in the deployment descriptors). Note
that in addition to deployment descriptors for
individual components, an aggregated deployment
artifact is required to represent the collective
policies of the integrated solution components.
These declarative policies may be either in standard
representations handled by the deployment infra-
structure in the case of infrastructure-managed
security or in some other format or rule interpreted
by the application.

Policy technologies and standards

To support the infrastructure-managed security
pattern, it is necessary to have technology support
for declaring security policies to be enforced by the
infrastructure. In addition to declaring requirements
and intent in deployment descriptors, support for
security is necessary in the infrastructure (e.g., fine-
grained authorization support if fine-grained au-
thorizations are articulated by the developer). Based
on the information and decisions made in previous
phases, verification of support from the infrastruc-

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

ture is either factored in through patterns in the
earlier phases, or it now must be taken into account
when implementing the application.

In order for applications to be designed to support
flexibility for the consumers’ choice, security poli-
cies should be defined in terms of business value
and security levels. In addition to these categoriza-
tions, tools to help provide techniques, such as
templates to define policies throughout the life cycle
of a solution, are required so that abstract policies
may be further refined through the life cycle. Tools
that help transform these goals and requirements
into technology-dependent artifacts (e.g., J2EE
deployment descriptors) are required.

As noted earlier, one of the features required
throughout the solution life cycle is tooling support
for traceability. Even though traceability throughout
the life cycle is possible, bidirectional traceability
(e.g., changes reflected in implementation or during
deployment in the application model) represents a
potentially impractical challenge. When input poli-
cies from an application-modeling phase (e.g., UML)
are transformed into implementation-specific policy
descriptors (e.g., J2EE deployment descriptors),
technology support is necessary to help correlate
these policies as they have been transformed into
new artifacts. To encourage traceability, an attempt
should be made to reflect any changes to imple-
mentation policies back into application-model
policies. In cases where application-model policies
are implemented as application logic (or for a
variety of other reasons including implementation
platform characteristics), having such information
captured in text as an annotation to the model, even
through non-normative means, would be a useful
addition.

When specifying policies, any user-facing tools
should appropriately provide facilities to allow for
policy configuration or updates from the user’s
perspective, hiding the details of the underlying
runtime policy language (e.g., J2EE deployment
descriptor file format, XACML (Extensible Access
Control Markup Language) files). In a perfect world,
tools should allow the validation of role assignments
across intercomponent invocations within a given
solution package so that inconsistencies in policy
declarations could be identified early (e.g., through
static analysis of solution code). Similar helper
utilities and verification utilities are required, and

NAGARATNAM ET AL.

859

the security engineering team of an organization
should help automate security best practices to help
avoid security vulnerabilities. Developers should be
provided the necessary tools to build user interface
components for consumer-facing tasks, including
subscription, security-level selection, security re-
quirement specification, and the user login page.

DEPLOYING AND MANAGING SECURE
SOLUTIONS

Modeled and implemented applications become
“real” when they are deployed and become acces-
sible to consumers. This may be viewed as the
critical phase in every solution life cycle. Some
solutions may be modeled, implemented, and
deployed; some may be implemented directly and
deployed; and some may be purchased, deployed,
and managed. Regardless of various possible
choices of arrival to this point, it is invariable that an
enterprise will go through the phase that includes
installing a solution, allowing consumers to sub-
scribe to the solution, and managing the solution
throughout its lifetime of service.

Solution deployers, IT administrators, and security
administrators factor in the security-infrastructure
and the enterprise-security requirements to ensure
that the applications—when installed and deployed
for access—are set to meet the requirements. At this
point issues like heterogeneity and cross-platform
support become concerns. Some of these policies
may still be customizable if the services are offered
for subscription by consumers. In that case, further
refinement of applicable policies is performed by
consumers upon subscription. Security administra-
tors are responsible for configuring the systems and
business applications for the security infrastructure
they have deployed (e.g., corporate Lightweight
Direct Access Protocol [LDAP] directory for user
information and authentication or authorization
provider such as IBM Tivoli AccessManager to help
enforce access control both at entry into the intranet
and at application and data access tiers). The
security administrator continues to factor in chang-
ing requirements, threats, technology changes, and
application behavior and manage policies to keep in
synchronization with those changes. Policies of the
applications and the infrastructure are updated and
managed based on changing business and IT
requirements and situations.

As shown in Figure 4, deploying and managing
solutions consists of a few subtasks: solution

860 NAGARATNAM ET AL.

installation, subscription, and administration and
management. Needless to say, policies are part of
solution deployment and management. This section
discusses how policies affect this phase of the life
cycle.

Solution installation task

The task of installing includes binding the applica-
tion to the enterprise environment in which it is
deployed, making the solution accessible to con-
sumers, and associating policies with the solution.
This task may be viewed as a solution installation
task. During this task, the life cycle roles that play a
part include Solution Deployer, Security Adminis-
trator, IT Administrator, and Solution Administra-
tor. They take into account the input available in
this phase, which includes application-specific
deployment information (e.g., deployment descrip-
tors) and initial configuration information deduced
through other policies made available to them. The
roles use that information to bind the security
policies to that solution. Depending on the config-
uration options that a solution may make available,
relevant configuration is performed by these per-
sonnel. This is illustrated by the activities in the top
right part of Figure 4. They use the solution-
installation tools available to them to perform this
task. For example, they may deploy a solution using
WebSphere Business Integrator where the security
options are customized using installation tools.

Additionally, in some distributed environments
there may be an additional step. If multiple
providers are possible, after the selection of appro-
priate providers (e.g., Tivoli AccessManager) is
made to manage security decisions, the resource
manager (e.g., application server runtime) distrib-
utes the relevant policies to these policy managers.
The resource managers have the task of distributing
those initial security policies to the policy managers
in order to help improve integration and interoper-
ability between different resource managers and
policy managers. In addition to a standardized
distribution protocol, there may be a requirement to
make the policy information canonical. One may use
standards like XACML** to express the policies,
which may require transforming platform-specific
policy descriptions (e.g., J2EE deployment descrip-
tors) into XACML policies. For example, if the policy
is further refined to elements of the application like
portlets, such that a traveler can view itinerary and
descendant pages: (Traveler, (View/Itinerary)), then

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

T i
} | SUBSCRIPTION L
\ \
| Requestor I Sevice P |
| (consumer) ! Provider } }
i P—) |
\ : | & [
| Consumer : _?_il;[]:zcrlptlon] |
Administrator I R
} | Changes i
i
S i ,,,,,,,,,,,,,,,,,,,, l
I
|
|
|
: 2
o
o
o
o
ERP Travel « o
Application ! | Runtime Publication of Policies
b
o
o
o
o
Lo
Figure 4

Deploying and managing security policies of an application.

Application Server Runtime

ADMINISTRATION AND MANAGEMENT

Application Policy

Corporate, IT Policies

Transform, persist, and distribute
policies to security provider

Policy Administration I

Security Policy Manager

The vertical dashed line separates external users and applications from the secure business application.

it can be transformed into XACML as shown in
Figure 5.

Transformation and distribution activities are also
illustrated in the bottom half of Figure 4 which
shows policy distribution to policy orchestrators,
policy managers, and so forth. There are cases
where configuration information may be configured
directly into the security policy managers, depend-
ing on the integration of management tasks between
the hosting environment and security providers.

Subscription task

When a solution must be tailored to a given
consumer, a subscription task is part of the process.
During the subscription stage, consumers can
customize the solution to their requirements and
agreements (e.g., selecting a quality of service that is
desired, selecting a service level, and so forth).
When a solution may be customized during the
subscription process, certain security variables may
be allowed to be customized. Such information may
be part of service-level offerings that are provided to
a consumer. In the case of service-level offerings,
the options may have been abstracted in terms of
high-level constructs (e.g., High-Security part of
Platinum service, Medium-Security part of Gold).
Customizing what makes up High Security may be

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

allowed (e.g., 128-bit SSL using Fabricam or Veri-
sign certificates, using message-level security, using
WS-Security, using tamper-proof audit) during the
subscription phase. Customization is performed by
individuals acting in appropriate roles: service-
consumer business analyst, service-consumer se-
curity administrator and service-provider security
administrator. These are illustrated by the arrow
indicating subscription time changes in Figure 4.

Administration and management task

After a solution has been made available to a
consumer, the solution must be managed and
policies administered to reflect any changes that may
happen during the lifetime of the solution. Changes
to security policies include authorization policy
changes (e.g., adding new roles that may access the
resources or assigning roles to new user groups or
users), user management changes (e.g., users
assigned to additional user groups), or other changes
including audit requirements and constraints like
integrity or confidentiality. When administering
security policies, it is necessary to adhere to
changing corporate business-security policies and
industry and government regulations and compli-
ance requirements. In addition to these sources of
change, another key input factor for change in
policies is the discovery of vulnerabilities and new

NAGARATNAM ET AL.

<Policy Policyld="P1"

PolicyCombiningAlgold=
"path-more-specific-deny-overrides-with-propagation”>
<Target>
<Subjects><Subject>
<SubjectMatchMatchld="user-role-match">
<SubjectAttributeDesignator Attributeld="subject-id"
DataType="string"/>
<AttributeValue DataType="string">traveller
</AttributeValue>
<AttributeValue DataType="string"™>
http://myUserRoleMapping</AttributeValue>
</SubjectMatch>
</Subject></Subjects>
<Resources><AnyResource/></Resources>
<Actions> <Action>
<ActionMatch Matchld="action-id">
<ActionAttributeDesignator Attributeld="subject-id"
DataType="string"/>
<AttributeValue DataType="string">view
</AttributeValue>
</ActionMatch>
</Action></Actions>
</Target>
<Rule Ruleld="R1" Effect="Permit">
<Target>
<Resources> <Resource>
<ResourceMatch Matchld="path-match">
<AttributeValue DataType="pattern-path">
/Mtinerary</AttributeValue>
<ResourceAttributeDesignator
DataType="simple-path” Attributeld="resource-id"/>
</ResourceMatch>
</Resource></Resources>
</Target>
</Rule>

</Policy>

Figure 5
Generated XACML policies during deployment

862

risks that may be identified through solution-
monitoring activities. As we previously described,
monitoring security situations in systems will likely
cause changes in policies. These changes to security
policies must be tightly controlled and access to them
should be traced and audit trails supplied so that the
processes may be adequately monitored.

IT administrators, security administrators, and
operators play a fundamental part in managing and
administering security policies for the enterprise,
including those relevant to any specific solution.

As shown in Figure 4 (Policy Administration
arrows), people playing these roles update security
policies through the resource managers (e.g.,
application server runtime) or administer policies

NAGARATNAM ET AL.

through security policy managers (e.g., Tivoli
AccessManager).

Regardless of whether policy changes are made after
initial subscription to a service or to reflect the state
of the up-and-running services, the task of managing
security policies is an important ongoing task
throughout the lifetime of a solution.

Input

Input to the deploy-and-manage phase includes the
output from the implementation phase and the
binding of the solution to a given environment.

Output from the implementation phase includes
security policies that are part of a packaged
application, including those declared outside the
application logic (targeted for the implementation or
infrastructure) and those implemented as part of the
application logic itself. In such cases, guidelines for
declarative policies are typically part of the appli-
cation package, because relating security concepts
to implementation is better handled abstractly by an
application developer or a solution integrator (who
integrates applications to deliver a solution). For
J2EE implementations, these initial policies are
captured in deployment descriptors.

There are customizable parameters that bind a
solution to a given environment. These parameters
include initial configuration information that typi-
cally is not part of a solution package; these policies
are communicated through out-of-band or necessary
configuration information that “binds” a given
solution to a given environment. For example, a
user registry in a given enterprise may be a
corporate LDAP directory, or it may be a custom-
built registry. Other possible configuration and
binding information includes trusted certificate
authorities, key store, and certificate validation
services that provide the initial topology to enable
necessary isolation through demilitarized zone
(DMZ) configuration, firewalls, and so forth.

Output

Given the lifetime of a solution and the importance
of the deploy-and-manage phase, the output of that
phase is not only about input that goes into the next
phase (monitoring), but includes artifacts for the
runtime entities in a system that must work with
policies, including requestor runtime.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Conceptually, with every resource manager there is
an associated policy manager. Access to a resource
is controlled by the resource manager, which
becomes the logical policy enforcement point (PEP)
corresponding to that resource. This logical PEP
performs access control by making decision requests
to policy managers, which act as policy decision
points (PDPs). Therefore, any policy changes,
including initial policies at solution installation,
refinement of policies during subscription, or
changes to administered policies during manage-
ment, are to be communicated between PEPs and
PDPs. This is one of the output activities and part of
the policy flow corresponding to this phase.

Another view of the policy flow is from the
perspective of the requestor runtime. The client
runtime may be required to be aware of certain
constraints and requirements that are part of the
solution policies. This is sometimes referred to as
the “publish” task. For instance, the requirement to
obtain access over a secure channel (e.g., SSL), or
ensure confidentiality of a message (e.g., using
message-level encryption) requires participation
from both sides of the interaction, the requestor
performing a task (e.g., encrypting a message)
complemented by the action taken by the solution
provider runtime (e.g., decrypting the message
before processing).

Policy technologies

In order to meet the goals of coordinated policy
enforcement and decision making, a consistent
policy expression language is required for a given
policy domain or functionality. For example, ex-
change of authorization policies between PDPs and
PEPs is necessary, and given that multiple PEPs may
consult a given PDP, the standard use of an
expression language improves efficient implemen-
tation of policy expression evaluation and trans-
formation adapters within the runtime. In the case
of authorization policy, policy expression languages
such as XACML help to articulate security policies
consistently throughout the enterprise for different
resource managers and solutions.

Distribution of policies between resource managers
and policy managers must be standardized, and
technology to do this must be made available. Note
that in an SOA environment, resource managers and
policy managers may be built and deployed as Web
services in order to be accessed over defined

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

protocols and bindings. After a policy distribution
mechanism is available, it is used to provide
automated distribution of policies between PDPs
and PEPs. Distribution mechanisms may be used to
combine the management of policies with the
broadcasting of changes to appropriate PEPs or
PDPs. In essence, distribution within a hierarchy of
resource managers, as well as distribution between
resource managers and policy managers, is re-
quired.

In cases where customization is necessary func-
tionality for a consumer, template artifacts that
capture security policies in a parameterized form,
with the option of refining the policy information
throughout the life cycle, are important. As de-
scribed in the modeling section, policy templates
may be defined in any of the upstream (early)
stages, and the relation between these templates and
the effective policies is handled by the underlying
system. In the case of subscriptions, templates
provide a mechanism to effectively customize the
service instance for consumers, regardless of which
presentation tool (e.g., a user interface tool, script-
ing tool) is used to present the options.

It may be necessary for policies to be distributed to
the requestor runtime in order for the requestor to
make necessary choices when submitting message
requests. An expected approach is to use the WS-
Policyzs’26 framework to publish Web Services
policies, and for a requestor to use WS-Metada-
taExchange to retrieve relevant policies pertaining to
a target service. In the case of security, WS-
SecurityPolicy27 framework would be used to
express the security requirements and constraints as
applicable to a requestor in order to access a given
service.

Standards

Based on the various tasks and scenarios discussed
in this section pertaining to the implementation
phase, there is an identified requirement for
consistency and standardization in various aspects
of the policy life cycle in this phase in order to
reduce the complexity. Some of the key areas where
standardization is necessary are

e policy expressions to express domain-specific
policies (e.g., WS-SecurityPolicy to express mes-
sage security policies, XACML to express autho-
rization policies),

NAGARATNAM ET AL.

863

Monitor

Metrics,
Indicators

!—‘—\

!—‘—\
(9

Deploy event emitter
configurations

Instrument

Application Business

Server

Enterprise
Applications

Runtime
Events

Event Emitter
Event Emitter

Event Emitter

Configure, Monitor

Applications

> T Ll

State of
Monitored

Correlation Engine n
Entities

Correlate

Drive changes Notify Events
for autonomic and
response Symptoms

Common Event Infrastructure

Figure 6
Flow of security events within a monitored system

® policy management services (e.g., WS-Autho-
rization to manage authorization policies), and

e contracts between PEP and PDP proxies (local
stubs specific to the bindings such as JACC in J2EE
environments).

There is a requirement for a standard mechanism to
publish requirements and constraints that a re-
questor must know in order to ensure interoper-
ability between consumers and providers that are
hosted on different platforms (e.g., WS-Policy
framework, where the policies may be retrieved
through means including WS-MetadataExchange).

MONITORING SECURITY SITUATIONS

Monitoring the health of enterprise systems and
business applications may be performed by business
stakeholders, IT operators, and administrators.
Using a set of tools, consoles, and dashboards (e.g.,
Tivoli Enterprise Console*, and WBI Monitor), they
monitor system behavior at runtime (e.g., denial-of-
service attacks, or compliance with business secu-
rity policies).

Based on changes which occur during the operation
of the application, actions may be taken by

864 NAGARATNAM ET AL.

administrators to manage or change policies or
make changes to the deployment environment (e.g.,
take an application out of the network). Business
analysts focus on business level monitoring (e.g.,
assess if key performance indicators are tracking
business goals) while IT analysts focus on the
underlying system events.

Solution behavior is monitored by observing actual
runtime characteristics, through metrics monitored
(e.g., number of authentication failures) in a given
context and measured against the desired behavior.
These desired metrics and the location of measure-
ment points are derived through activities that occur
during any of the phases—model, implement, or
deploy. For example, as shown in Figure 6, metrics,
thresholds, limits, key risk indicators (KRIs), and
KPIs may be defined at the business process
modeling stage. These metrics are then transformed
later in the life cycle into enforceable runtime
metrics. Such business performance metrics may be
correlated against a set of conditions (e.g., multiple
authentication failures for a given user ID) to detect
security situations (e.g., intrusion). Such security
situations are of critical interest to the monitored
solution behavior. These situations by themselves or

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

in a business context (e.g., a human-resource
application being infiltrated) provide a sense of
urgency for taking necessary action. Such actions
may include alerting administration staff who may
change policies as appropriate (as part of the
management phase), or having the system auto-
nomically react to such changes based on a set of
predefined behavior rules (e.g., isolate set of
applications from external access).

The monitoring phase of the solution life cycle
consists of a few subtasks: monitor the measure-
ment points, correlate and analyze security events,
and plan actions. Actions may be planned based on
IT information (e.g., a detected intrusion) or busi-
ness impact (e.g., break in a trust relationship with a
business partner). Thus system management tasks
(e.g., isolate affected systems) or changes to busi-
ness processes (e.g., change the trust relationship
with a partner) may be appropriate actions.

Monitoring, analyzing, and planning tasks make up
the entire monitoring phase of the solution life cycle.
Details of the input, output, and technologies
involved in this phase are discussed in following
subsections.

Input

Similar to policy enforcement being application-
managed or infrastructure-managed, instrumenta-
tion for certain monitored metrics may be either
application instrumented or infrastructure instru-
mented. When policy enforcement is instrumented
in the infrastructure, the monitoring infrastructure
may be able to detect certain events. The input to
the monitoring phase includes application-specific
or application-independent monitored metrics,
threshold values against which they are checked,
and rules to help correlate events in order to detect
security situations.

As depicted in Figure 6, during the model phase, the
thresholds and limits are modeled for desired
performance indicators or metrics to be monitored.
During the implementation phase, these metrics are
either instrumented in the application, or declared
outside the application for the infrastructure to
monitor the metrics. Based on the behavior against
the metrics, events are generated by the resource
managers, including applications. These events
include security events. When these events flow

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

over a common event infrastructure, they may be
correlated by event-filtering engines.

Output

Using a monitor framework and dashboards, these
events and situations may be compared against
monitoring thresholds. Output from the monitoring
phase and the monitoring systems is a set of: (1)
detected situations, including deviations in metrics
or anomalies (e.g., abnormal credit card activity),
(2) alerts for appropriate action, and (3) possible
relevant actions that may be recommended for the
events analyzed and their estimated impact. This is
illustrated in the top right part of Figure 6. These
alerts and information may be sent back to the
individuals acting in the appropriate roles (e.g.,
security administrator, IT administrator, business
analyst, etc.). In an automated system, one such
output may be another higher-level event that helps
to capture the impact of certain low-level events.

Policy technologies

A common event infrastructure is necessary to
support various events (IT and business), propagate
them across various components in a given system,
and allow for rules and plug-in points to perform
filtering, analysis, and correlation of events. These
may be based on a message infrastructure. In order
to efficiently filter, correlate, and thus handle
multiple events, a common event format may be
used to capture event information consistently (e.g.,
using Common Base Event format [CBE]).

In addition to support to allow instrumentation and
to flow and filter events, an ability to define rules for
event correlation is necessary. Visualization of event
situations helps depict the impact of a situation to
both the IT and business environments. Event
dashboards and relevant action management con-
soles may be used to define recommended actions.

Standards

Due to the nature of various systems from various
vendors that are integrated in an enterprise, it is
important to have a standard mechanism such as
CBE to create events in a common format and then
send them over a common event infrastructure. This
is required for interoperability among systems.

SUMMARY
We have outlined a policy-driven approach based
upon business and model-driven development and

NAGARATNAM ET AL.

865

management methodologies to achieve effective
management of security policies for applications.
This approach helps meet the changing requirements
of an on demand business. It has factored in the
interactions among the different people playing
different roles in an organization and the importance
of tools to help them perform their responsibilities in
a consistent manner. We described the tools,
technologies, standards, and runtime necessary to
meet the requirements of managing security policies
during the life cycle of a business application. This
proposal used a pragmatic approach to find inter-
section points between platform-independent mod-
eling of security policies and the concrete articulation
of policies and their enforcement. This type of
approach offers a way to leverage the monitoring of
adherence and compliance to policies in both IT and
business dashboards and to manage and map the
relationship between business artifacts and imple-
mentation artifacts, so that business policies are
reflected in implementation. We outlined a set of
technologies and tools that should be provided. We
described runtime enhancements and a dashboard to
help monitor the security policies throughout the life
cycle. We recognized the importance of open stan-
dards to enable an on demand business and proposed
areas where extensions and enhancements in stan-
dards should be introduced.

ACKNOWLEDGMENTS

The authors would like to acknowledge the input
from various people in IBM who have directly or
indirectly contributed towards some of the concepts
identified in this paper. Special thanks go to the
following colleagues: Donald Ferguson, John
Sweitzer, Sridhar Iyengar, Jeffrey Frey, Michael
Swanson, Mark Linehan, Allen Gilbert, David
Kaminsky, Asit Dan, John Rofrano, Balaji
Krishnamachari, Clare Marie Karat, John Karat,
Carolyn Brodie, Steve Adler, Rick Cohen, and
Jayashree Ramanathan.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark service mark, or registered trademark of Object
Management Group, Inc., Sun Microsystems, Inc., Massa-
chusetts Institute of Technology, Carnegie Mellon University,
or Microsoft Corporation.

CITED REFERENCES
1. IBM Rational Software Development Platform, IBM
Corporation, http://www-128.ibm.com/
developerworks/platform/.

866 NAGARATNAM ET AL.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

OMG Architecture Board MDA Drafting Team, “Model
Driven Architecture: A Technical Perspective,” Object
Management Group, http://www.omg.org/cgi-bin/
doc?ormsc/2001-07-01.

Model Driven Architecture, Object Management Group,
http://www.omg.org/mda.

G. Booch, A. W. Brown, S. Iyengar, J. Rumbaugh, and B.
Selic, “An MDA Manifesto,” Chapter 11, MDA Journal,
D. S. Frankel and J. Parodi, editors, Meghan-Kiffer Press,
Tampa, FL (2004).

C. Alberts and and A. Dorofee, Managing Information
Security Risks: The OCTAVE (SM) Approach, Addison

Wesley Professional, Boston, MA, ISBN: 0-321-11886-3
(2003).

FISMA Implementation Project, National Institute of
Standards and Technology, http://csrc.nist.gov/sec-cert/.

Business Process Execution Language for Web Services,
BEA Systems, IBM, Microsoft, SAP AG and Siebel
Systems, http://www-128.ibm.com/developerworks/
library/specification/ws-bpel/.

Sarbanes-Oxley Act of 2002, http://www.sec.gov/about/
laws/s0a2002.pdf.

Business Process Modeling Notation Information, Busi-
ness Process Management Initiative, http://www.
bpmn.org/.

Business Process Definition Meta-model, http://
www.omg.org/cgi-bin/doc?bei/2003-01-03.

Unified Modeling Language, Object Management Group,
http://www.omg.org/uml.

Eclipse Modeling Framework, Eclipse Project, www.
eclipse.org/emf.

M. Pistoia, N. Nagaratnam, L. Koved, and A. Nadalin,

Enterprise Java Security: Building Secure J2EE Applica-

tions, Addison-Wesley Professional, Boston, MA, ISBN:
0-321-11889-8 (2004).

L. Koved, A. Nadalin, N. Nagaratnam, M. Pistoia, and T.
Shrader, “Security Challenges for Enterprise Java in an
e-business Environment,” IBM Systems Journal, 40, No.
1, 130-154 (2001).

S. Johnston, “Modeling security concerns in service-
oriented architectures,” IBM developerWorks, http://
www-106.ibm.com/developerworks/rational/library/
4860.html?ca=dnp-322.

J. Asensio, V. Villagra, J. Lopez, and J. Berrocal, “UML
Profiles for the Specification and Instrumentation of QoS
Management Information in Distributed Object-Based
Applications,” Proceedings of the Fifth World Multi-
Conference on Systemics, Cybernetics and Informatics,
ISBN: 980-07-7543-9 (July 2001), pp. 22-25.

T. Lodderstedt, D. Basin, and J. Doser, “SecureUML: A
UML-Based Modeling Language for Model-Driven Secur-
ity,” Proceedings of the 5th International Conference on
The Unified Modeling Language, pp. 426-441 (2002).

Java 2 Platform, Enterprise Edition (J2EE), Sun Micro-
systems, http://java.sun.com/j2ee/.

M. Hondo, N. Nagaratnam, and A. Nadalin, “Securing
Web Services,” IBM Systems Journal, 41, No. 2, 228-241
(2002).

S. Johnston, “UML Profile for Software Services,” IBM
developerWorks, http://www-128.ibm.com/
developerworks/rational/library/05/419_soa/.

P. Kruchten, “The Rational Unified Process: An Intro-
duction (2nd Edition),” Addison-Wesley Professional,
Boston, MA (2000), ISBN: 0-201-70710-1.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

22. Java Authentication and Authorization Service API, Sun
Microsystems, http://java.sun.com/products/jaas/.

23. Java Authorization Contract for Containers API, Sun
Microsystems, http://java.sun.com/j2ee/javaacc/.

24. OASIS eXtensible Access Control Markup Language,
OASIS, http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=xacml.

25. Web Services Policy Framework, IBM, BEA, Microsoft,
SAP, Sonic Software, Verisign, http://www-128.ibm.
com/developerworks/library/specification/ws-polfram/.

26. Security in a Web Services World: A Proposed Architecture
and Roadmap, IBM and Microsoft, http://
www-106.ibm.com/developerworks/webservices/
library/ws-secmap/.

27. Web Services Security Policy, http://www-128.ibm.com/
developerworks/library/ws-secpol/.

28. Common Base Event Specification, IBM Corporation,
http://www-128.ibm.com/developerworks/
webservices/library/ws-cbe/.

Accepted for publication June 16, 2005.
Published online October 25, 2005.

Nataraj Nagaratnam

IBM Software Group, 3901 S. Miami Blvd, Durham NC 27703
(natarajn@us.ibm.com). Dr. Nagaratnam is the Chief
Architect for Identity Management and lead security architect
for on demand security infrastructure and technical strategy.
As a Senior Technical Staff Member, he drives security
architecture and design activities across IBM products and
platforms. In his career at IBM, he has been the lead security
architect for WebSphere Application Server and then, the lead
security architect for the WebSphere Platform. He leads and
participates in various open standards activities in standards
organizations, including JCP, OASIS, WS-I, and GGF. He has
authored and co-authored numerous journal papers, books,
and security specifications, including Enterprise Java Security
published by Addison Wesley.

Anthony Nadalin

IBM Software Group, 11501 Burnet Road, Austin TX 78758
(drsecure@us.ibm.com). Mr. Nadalin is the chief security
architect for IBM Software Group. As a Distinguished
Engineer, he is responsible for security infrastructure design
and development. He serves as the primary security liaison to
Sun Microsystems JavaSoft Division for Java security design
and development collaboration. In his 22-year career with
IBM, he has held the following positions, lead security
architect for VM/SP, security architect for AS/400, and
security architect for OS/2. He has also authored and co-
authored over 40 technical-journal and conference articles and
published several books on Java security and the Internet.

Maryann Hondo

IBM Software Group, One Rogers St, Cambridge MA 02142
(mhondo@us.ibm.com). Ms. Hondo is the Web Services
Security Standards lead in Emerging Technology for IBM
Software Group. She joined IBM/Lotus in 1996 as security
architect for the Lotus e-Suite, participating in the
development of Java security (JAAS). Her previous
background includes working for Hewlett Packard
Corporation on DCE and PKI Smartcard-based Single SignOn,
working for Digital Equipment Corporation on a B1/CMW
operating system, and working for AT&T Bell Labs on B2
Unix. She is one of the co-authors of the WS-Security, Policy,
Trust, and Secure Conversation specifications announced by

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

IBM and other business partners in 2002-2004. Before joining
the Emerging Technology group, she managed the IBM/Tivoli
IETF PKIX reference implementation development group
(Jonah) and was part of a research team working on service-
oriented architecture, which produced the first Emerging
Technology toolkit (see IBM developerWorks™). Her
standards activities include chairing the working group on
Single Sign On at the Open Group, chairing the Security team
for ebXML, leading the Security working group at UDDI,
participating in OASIS technical committees (SAML, WS-Sec,
and XACML), and participating in the Open Mobile Alliance,
MWS, and Security working groups.

Michael Mcintosh

IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne N.Y. 10532 (mikemci@us.ibm.com). Mr. McIntosh
is a Senior Software Engineer in the Java and Web Service
Security Group at the Watson Research Center. He represents
IBM in the WS-I Basic Security Profile working group as an
editor of the Profile and in the OASIS Web Services Security
technical committee. He has worked in the information
technology industry for 22 years and for the past three years at
IBM.

Paula Austel

IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, N.Y. 10532 (pka@us.ibm.com). Ms. Austel is a
Senior Software Engineer in the Java and Web Service Security
Group at the Watson Research Center. She has participated in
the following: OASIS Web Services Security technical
committee, OASIS Security Services technical committee, and
WS-I Basic Security Profile working group. M

NAGARATNAM ET AL.

867

