
Business-driven application
security: From modeling to
managing secure applications

&

N. Nagaratnam

A. Nadalin

M. Hondo

M. McIntosh

P. Austel

Business-driven development and management of secure applications and solutions is

emerging as a key requirement in the realization of an on demand enterprise. In a given

enterprise, individuals acting in various roles contribute to the modeling, development,

deployment, and management of the security aspects of a business application. We

look at the business-application life cycle and propose a policy-driven approach overlaid

on a model-driven paradigm for addressing security requirements. Our approach

suggests that security policies are to be modeled using policies and rule templates

associated with business processes and models, designed and implemented through

infrastructure-managed or application-managed environments based on modeled

artifacts, deployed into an infrastructure and potentially customized tomeet the security

requirements of the consumer, and monitored and managed to reflect a consistent set

of policies across the enterprise and all layers of its application infrastructure. We use a

pragmatic approach to identify intersection points between the platform-independent

modeling of security policies and their concrete articulation and enforcement. This

approach offers a way to manage and monitor systems behavior for adherence and

compliance to policies. Monitoring may be enabled through both information

technology (IT) and business dashboards. Systematic approaches to connect business

artifacts to implementation artifacts help implement business policies in system

implementations. Best practices and security usage patterns influence the design of

reusable and customizable templates. Because interoperability and portability are

important in service-oriented architecture (SOA) environments, we list enhancements

to standards (e.g., Business Process Execution Language [BPEL], Unified Modeling

Languagee [UMLt]) that must be addressed to achieve an effective life cycle.

INTRODUCTION

Enterprises must continually adapt to changes that

occur due to business, political, or technological

challenges. These on demand businesses require

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NAGARATNAM ET AL. 847

integration of people, information, and processes in

order to conduct business in real time. Meeting the

requirements of such a dynamic environment

requires leveraging business-to-business (B2B)

partnerships and outsourced services by enabling

enhanced integration between business processes.

For example, supply chain integration of manufac-

turers and distributors requires deeper examination

of sales forecasts, production scheduling, product

configuration, and inventory management.

Recently, government requirements for account-

ability of business practices and information man-

agement have transformed security concerns from

an isolated piece of the information technology (IT)

puzzle into an important and far-reaching business

issue that must be addressed. It is no longer

sufficient to delegate responsibility to the IT

organization alone. Doing so may lead to frag-

mented business and IT plans along with misallo-

cation and inefficient use of already scarce

technology resources.

To satisfy the new demands of a changing market-

place, the industry must adopt a fundamental

change in the way application and system integra-

tion is accomplished. This change requires an

infrastructure that supports loose coupling of intra-

and inter-enterprise information among widely

disparate application designs, operating systems,

databases, and application programming interfaces

(APIs). In order to efficiently integrate the varied set

of applications and platforms that make up the

information technology (IT) infrastructure of these

enterprises, the enterprises are beginning to realize

the value of a service-oriented architecture (SOA)

and to refactor their applications into loosely

coupled services. For an enterprise to be a secure on

demand business, the enterprise infrastructure must

be flexible and customizable to reflect new require-

ments and regulations. To provide such flexibility,

the enterprise should not hardwire (permanently

fix) its policies into the infrastructure, but instead

allow the security model of the enterprise to be

implemented through a policy-driven infrastructure.

This is no simple task.

A step-wise approach to model, design, implement,

deploy, and manage secure applications by using

policies to reflect the business goals and to abide by

constraints imposed through regulations (industry,

federal, etc.), corporate security policies, and busi-

ness trust relationships allows organizations to

unlock the true value of IT security. We outline the

importance of using a business-driven development

methodology.
1
This methodology takes advantage of

a business-process-modeling and Model Driven

Architecture** (MDA**)
2,3

approach to separate the

platform-independent model of the application

architecture from the underlying implementation

technology and platform. The value proposition of

MDA is about enabling ‘‘automation and abstraction

using open standards.’’
4
Additionally, a policy-

driven approach to MDA acts as a powerful

mechanism for management of security policies

throughout the application life cycle.

We propose an approach to efficiently model, build,

and manage secure enterprise applications in a

dynamic environment. The process starts with the

modeling of businesses by collecting business

drivers and business requirements. The business

model helps build an understanding of the business

implications of application design and deployment

decisions. This process encourages business ana-

lysts as well as security architects to formally

explore the security aspects throughout the appli-

cation life cycle. Business process modeling may be

used to capture the information flow and process

elements required for new applications. The busi-

ness process model helps build an understanding of

any additional tooling and deployment support that

may be required to handle application development

and management. Each enterprise and each appli-

cation requires different amounts of involvement by

analysts pertaining to its line of business and by

architects and developers with respect to where

security requirements enter the application life

cycle.

Managing a secure on demand business is an

ongoing learning experience. We start with an

assumption that incorporating security planning

into a company’s overall corporate strategy and

business process not only helps mitigate risks but

also helps position an organization for long-term

growth. Using a business-driven security-policy-

management framework that starts with core busi-

ness objectives allows businesses to identify suitable

security mechanisms.

We begin with an overall discussion of the

application life-cycle phases and a set of business

roles. Individuals performing these roles perform

NAGARATNAM ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005848

the tasks within the life-cycle phases in order to

accomplish the business goals. Then, each of the

phases in the application life cycle are discussed in

detail. The details for each phase include the

positioning of the phase in the overall life cycle, the

kind of inputs and outputs that are relevant to a

tooling application in a given phase, the tools and

technologies that are required to accomplish the

approach, and any standardization that is necessary

in relevant technical approaches. We use an

example throughout that illustrates how a higher

level business policy is transformed, implemented,

enforced, managed, and monitored in the process.

APPLICATION LIFE CYCLE AND ROLES

To enable a business so that its processes and

applications are flexible, one must start by expecting

changes—both to process and application logic and

to the policies associated with them. The concept of

change must be part of the conceptualization of the

business idea. One may start by modeling the

business, including business processes, organiza-

tions, system assets, and topology. A second pass

should be made to identify areas in which growth or

change is anticipated.

Software applications are designed and built in new

ways to enable and automate business processes. As

depicted in Figure 1, the life cycle of an application

built around a business-driven development meth-

odology includes the following phases:

� Model business—Modeling the business process

independent of whether the activities of which it is

comprised are based on software,
� Analyze and design—Application modeling in a

platform-independent manner,
� Implement—Implementing and testing applica-

tions on a chosen platform,
� Deploy—Installing an application within an infra-

structure and subscribing for usage by service

consumers,

Figure 1
Refining and defining security policies in a business-driven development process

Develop Iteratively
Focus on Architecture

Continuously Ensure Quality
Manage Change and Assets

Security Policy Officer
Security AuditorBusiness Analyst

Security Architects
Application Architects

Application Programmer
Security Developer

Application Administrator
Security Administrator

IT Administrator
Security Administrator
Operator

Model Business

M
an

ag
e

an
d

M
on

ito
r

Analyze and D
esign

Deploy

Implemen
t

Define business and
corporate security policies

Model security requirements
and application security

Configure infrastructure for
application security; subscribe
and customize security policies

Manage security of the business
application; monitor behavior and
change policies as necessary

Declare application security
policies; build and
test secure applications

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NAGARATNAM ET AL. 849

� Manage and monitor—Managing application con-

figurations and monitoring application behavior.

Such an approach involves iterative development

while focusing on consistent architecture. The need

to continuously ensure quality of development

software and ability to manage changes and assets is

to be taken into account. Applications with these

qualities help build business solutions consisting of

new applications as well as existing application

assets. When working with existing assets, which

may be deployed on different platforms and

environments, an SOA architectural pattern helps to

bridge platform-specific nuances and abstract out

service functionality. The modeling phase identifies

services that are independent of the implementation

phase. A service veneer may be developed to

connect to an existing implementation, or an

entirely new application may be developed. The

primary benefit of this approach is the agility to

respond to changing business requirements while

the underlying technology infrastructure evolves at

its own pace.

Understanding enterprise roles and
responsibilities

Individuals acting in roles within an organization

take on responsibilities within that organization.

They make decisions to ensure that the technology

and implementation meet the business require-

ments, and they increasingly use tools to efficiently

execute the security plan. Thus, tool support is very

important to help individuals acting in various roles

to efficiently fulfill their assigned responsibilities.

These roles also typically represent the organiza-

tional structure of the business. A sample list of

these roles is depicted in Table 1.

If the life-cycle model is to be successful, it is

important to understand the roles that individuals

will perform during the application life cycle and the

tasks they must perform. Depending on the

responsibilities assigned to each role and which part

of the business they represent, the associated tasks

may vary. A set of roles is defined to manage

security and business policies.

As shown in Figure 1, certain roles in an orga-

nization contribute toward creating, defining, refin-

ing, or managing security policies throughout the

life cycle. They include the following:

� Corporate security officers and equivalent execu-

tives defining corporate security policies and

outlining regulations with which the business

must comply,
� Business analysts working with security policy

officers, translating corporate policies in terms of a

business vocabulary and a business process

during the business-process-modeling phase and

providing a set of choices to be customized,
� Application architects and security architects

modeling the security and access policies in the

model (based on the choices provided by a

business analyst) during the application-modeling

phase,
� Application developers factoring in these security

policies by declaring these requirements for the

infrastructure to enforce, or when infrastructure

support is not sufficient, implementing them in

their applications; or application deployers install-

ing the applications and working with security

administrators to configure these applications and

the security policies as relevant to the deployed

environment,
� IT and security administrators managing the

security policies throughout a set of applications

and an infrastructure to meet the requirements

that may continue to change over time,
� Operators monitoring the system behavior and

detecting situations that are potential security

threats and feeding that back to administrators to

make any changes necessary for the application

infrastructure to adhere to the goals; similarly, a

Table 1 Security-defining roles in an organization

Organization Roles

Business Strategy and Decision Making Chief security officer, security policy officer, security architect, security
auditor, business analyst

Development Application programmer, identity/security developer

Operations and Administration Security administrator, system/application administrator, operator

NAGARATNAM ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005850

business analyst viewing business dashboards to

observe the impact to the business due to certain

system security events.

It is significant to observe that security policies are

specified and refined throughout the life cycle,

undergoing transformations from one phase to the

next. In the current state of the art, it may be

realistic to expect this to happen in a unidirectional

manner—from modeling to monitoring and man-

agement. In order to accommodate bidirectional

flow within the life cycle, traceability support and

sophisticated transformation support between arti-

facts from one phase to the next phase is required.

For example, for Web service development based on

the Java** platform, conversion from the Web

Services Definition Language (WSDL) to Java as

well as from Java to WSDL must be possible. As

long as the transformations are symmetric and

consistent, the potential exists for iteration in both

directions; therefore, any possible iteration required

from one phase to a previous phase (e.g., from

implementation back to modeling) should be part of

the evolution of tooling.

Authoring corporate security policies
As part of formulating a security strategy and

authoring corporate security policies, the chief

security officer is responsible for knowing the set of

legal, business, and financial policies to which the

organization must comply. It is part of the respon-

sibility of the individual playing that role to

articulate these requirements to the organization.

Often this is done through the authoring of docu-

ments that contain some level of detail or directives

about the requirements in natural language.

At this level, the business security policies are

usually goals and guidelines and are often expressed

in corporate documents, not development artifacts.

The process of identification is part of the security

risk assessment and uses a methodology such as

OCTAVE** (Operationally Critical Threat, Asset,

and Vulnerability Evaluation)
5
or the FISMA (Fed-

eral Information Security Management Act)
6
guid-

ance from NIST (National Institute for Standards

and Technology).

Within the staff of the security office, there are

security policy officers (SPOs) and security archi-

tects. SPOs and security architects usually take on

the responsibility of translating the corporate

policies and guidelines and defining the security

policies in a form that may be used by the rest of the

organization. The task of translation may involve

translating policies written in natural language

expressions into forms that are usable by tools. Such

corporate policies could be creating or annotating a

business requirement by using a security vocabu-

lary, as appropriate. The SPO may use a tool that

transforms the natural language expressions into

machine- or tool-usable form for an efficient

development life cycle. For example, a policy stating

that ‘‘travel agents may view and change the

traveler’s itinerary’’ may be transformed into XML

(Extensible Markup Language) fragments as shown

below. Such XML fragments may then be attached to

modeling artifacts later in the life cycle of applica-

tion development.

,role. Travel agent ,/role.

,actions.

,action. view ,/action.

,action. change ,/action.

,/actions.

,resource. traveler itinerary ,/resource.

MODELING SECURE BUSINESS PROCESSES

SOA design patterns help an enterprise to identify

and eliminate redundant implementations of com-

mon business processes by facilitating coordinated,

consistent, and efficient implementation and man-

agement of enterprise-wide policies. Business pro-

cess modeling provides a means for business

analysts to formally define a process to reflect the

inner workings of a business. Formalizing this

process with a standard methodology by using

business process modeling helps to efficiently

implement the idea. For example, the IBM Web-

Sphere* Business Integrator (WBI) Modeler is a tool

that allows a visual model of a business process to

be built, resulting in both a visual representation

and potentially some set of artifacts representing the

business process (i.e., WSDL, policy templates).

In the process of modeling business processes, some

activities may be automated through the imple-

mentation of software components. This automation

may require a transformation to map a business

function into a new application component, into a

new programming element, or into a system

element that previously existed in the deployment

environment but which is being retasked. For

example, a transformation from WBI Modeler to

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NAGARATNAM ET AL. 851

Business Process Execution Language (BPEL)
7
may

be further transformed into application artifacts

represented by UML** (Unified Modeling Lan-

guage**), which are then manipulated using tools

such as the Rational* Solution Modeler or Rational

Solution Architect.

Depending on tool sophistication, traceability, and

point of entry into the life cycle for a particular

business, the transformation may be one way, from

the business process visualization to business

service or activity design, or bidirectional, whereby

changes in application modeling reflect back in the

business process models. Nonetheless, experience

indicates that business analysts do not want random

changes to the business process to occur based on

some change to implementation artifacts.

Business process modeling is an ideal time in the life

cycle of a business solution and a repeatable process

mechanism to begin to capture the business security

requirements that address any security concerns

that relate to the business, thus performing security

risk assessment. A business analyst working with an

SPO is typically involved at this point. The business

analyst (e.g., with help from the SPO) determines

which policies apply to a given business in the

context of the business process. For example, in a

travel business process, the business analyst might

model the requirement to control authorized access

to a business activity (such as a travel reservation)

and to ensure that the business information flow is

protected for confidentiality. The business security

requirements can be defined within the business

process models. These models provide a reference

that may be used by enterprise compliance officers,

such as security auditors, to verify and monitor

adherence to enterprise security policies.

Among the tasks performed during this phase, a

business analyst may specify the requirements for

the artifacts of a business process that are generated

during a particular phase of the life cycle. Note that

business analysts will not likely define these

requirements in terms of security technology like

secure sockets layer (SSL), message security, or

encryption, but they will typically define the broad

goals and ranges of offerings and thus, allow for

flexible implementations that meet these objectives.

As shown in Figure 2, a business analyst may specify

the requirement to allow authorized access for travel

agents to view and change itinerary. Also, the analyst

can describe these requirements using security

categories. For example, a travel service consumer

may be able to select an appropriate service level,

which includes High or Medium security as part of

the Platinum or Gold offerings, respectively.

Individual policies pertaining to specific business

process elements may be defined at this stage. These

policies would reflect objectives from various

sources, including regulations, compliance, indus-

try, competition, or business-specific objectives.

Mechanisms should be available to enable these

policies to be defined and associated with appro-

priate points in the business process that are

constrained by these policies. Such policies will

normally be defined in terms of business domain

vocabulary and may be derived from sources

established by other agents in the business (e.g.,

Chief Privacy Officer), as appropriate.

To facilitate reuse from existing, well-known objec-

tives that must be met, policy authoring should

leverage policy templates that reflect well-known

policies and rules. For example, a travel industry

regulation states that a travel agent may only look at

customer information for the purposes of ticketing.

During business process modeling, one should be

able to review these policies and contextually apply

them to the appropriate business objects being

modeled. For example, what constitutes a ticketing

activity is specific to a given business process.

Similarly, sensitive business objects may be tagged

to be protected.

A business analyst may be cross-trained and also be

responsible for interpreting security requirements

(e.g., an audit of Sarbanes-Oxley
8
compliance) and

modeling the point of enforcement within the

process itself. For example, if the requirement

articulated by an SPO is to audit all travel approvals,

the business analyst may create an activity to

perform an audit (after travel approval activity), and

this may be modeled within several business

processes.

In addition to modeling requirements and policies,

one should be able to specify any key performance

indicators (KPIs) (if they are known) that are to be

met—which, in turn, must be monitored and

managed by some other element in the workflow.

From a security perspective, such monitorable

aspects may be defined in terms of security

NAGARATNAM ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005852

situations, intrusions, security breaches, or policies

pertaining to accessing sensitive information. In-

formation categorization (e.g., highly confidential,

informational) during modeling may help clarify

what level of security enforcement is required.

In most currently deployed applications these types

of enterprise-level decisions and policies have been

codified and enforced redundantly and inconsis-

tently in individual applications under the auspices

of application programmers. When a business-

driven approach is used, business process models

that capture the intent of the business have policies

associated with them to indicate these types of

requirements and decisions. These policies may

then be used to drive the behavior of common

service components that implement important

business logic. The business may then build a

coordinated administration and configuration de-

sign. This helps ensure that enterprise-level policies

reflecting the intent of the business stakeholders are

accurately and consistently implemented across all

applications in the enterprise. The enterprise may

track any changes to policies and ensure that they

are efficiently propagated.

Input
Typical security concerns that would be considered

as part of the definition of a business vocabulary and

reflected in related business process models would

include the following:

� Controlled access to customer and employee

business information,
� Monitoring and audit of security situations and

events, including those related to storage, access,

and retention,
� Confidentiality protection from inadvertent dis-

closure of information contained in or derived

from data flows,
� Integrity of data in data flows or storage, protect-

ing it from accidental or purposeful modification,
� Nonrepudiation of data origin and data receipt,

including concerns related to authentication and

audit controls,

Figure 2
Business-level security policies in business process modeling

mess...Start inch... Trav... Busi... IBM I... scree...

TripOptions

TripSelection

TripSelection

No

TripSelection

Trip
Search

Trip
Reservation

Trip
Approval

Notify of
Approval

Notify of
Rejection

Trip
Confirmation

TripConfirmation

TripCancelation

Trip
Cancelation

approval?

approved?

Trip
Selection

TripReservation

TripReservation

TripReservation

ApprovalInfo

ApprovalInfo

ApprovalInfo
Yes

TripInfo

Elements

Connections

Annotation

This is the top-level process which
integrates the individual business
processes and provides a travel
business solution.

File Edit View Navigate

Travel Process Trip Search Find Airline Providers TripInfo

100%

Search Project Modeling Window Help

Business Modeling - Travel Process - WebSphere Business Integration Modeler Advanced Edition

Diagram Specification Key performance indicators

Authorize traveler and travel agent to view and change itinerary

Gold and Platinum are specific security levels

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NAGARATNAM ET AL. 853

� Trust of entities operating within business pro-

cesses, including business partners, service pro-

viders, and users and system components, both

internal and external (e.g. partners).

Output
The outputs from this phase typically include

business process definitions reflecting high level

business objectives, organization, roles, partner

relationships, and process components. Included in

this model would be elements denoting any busi-

ness level security concerns. From these models,

security policies may be generated to drive con-

formance by concrete instantiations of these model

elements.

Standards and technologies
From an SOA perspective, the primary standard

related to this phase is BPEL. At the time of this

writing, BPEL extensions may be used to accomplish

articulating policies; formalization of these exten-

sions to profile policy definitions within BPEL is

envisioned. There may be other mechanisms some

tools may use; for example, one may model using

tools such as IBM WBI Modeler, using standardized

notations such as Business Process Model Nota-

tion** (BPMN**),
9
to capture the business process

which ultimately may be exported to a BPEL

workflow. Similar to BPEL requirements, the ability

to attach policies and rules to BPMN is useful. One

may use the annotations capability in BPMN as well

as BPEL extensibility mechanisms.
7
If BPEL is used

to represent the enterprise business processes, it is

important to represent security policies and con-

straints by using first-class notations and artifacts. In

addition to corporate policies, industry- and locality-

specific regulations will apply to a business process,

and therefore, tools should allow for working with

profiles of these policies targeted to a specific

industry. Part of any industry-specific standardiza-

tion of a BPEL pattern should be a recommendation

to profile the policies of the specific industry as an

input pattern for individual businesses to exploit.

An emerging standard business process definition

metamodel (BPDM)
10

being developed at Object

Management Group (OMG) and led by IBM and

other BPM vendors defines how MDA concepts and

standards may be used to support the definition of

� the business process model (with appropriate

links to business rules as well as organizational

models),

� support for multiple visual notations mapped to

this model (i.e., BPMN for a business analyst,

UML for a IT architect and security architect), and
� transformations (mappings) from the metamodel

to Web Services artifacts, such as BPEL, WSDL,

and XML schema.

This initiative exemplifies how elements of model-

driven security architecture may be integrated with

business process modeling and business perfor-

mance management.

The requirements may go beyond simple security

attribute notations to include cross-level (business

modeling to application modeling) modeling, policy

generation and validation, traceability, discovery

and validation of business processes through anal-

ysis of deployed implementation artifacts, and a

useful visual method for depicting a model of

security patterns and practices.

DESIGNING SECURE BUSINESS APPLICATIONS

For application modeling and design, system archi-

tects typically employ UML
11

and its profiles to

model the concerns of the service domain. Toward

this, the Meta Object Facility (MOF**) and its

implementation are an enabling technology foun-

dation to achieve these goals.
12

The security architects should keep implementation-

specific security concerns out of the application

model. At the same time, security should not be an

afterthought. One should be able to capture generic

security requirements and constraints in a model in

a consistent fashion. Given the complexity of

security implementations and its impact on system

design and deployment, security requirements and

policies place additional constraints and require-

ments on the IT infrastructure supporting the

services. Security design patterns are becoming

increasingly popular and useful at this stage. If

weaknesses are discovered, they should be given to

the system architect for alternative approaches.

Applying the modeling concepts to security, we

assume that users define abstract security intentions

at a higher level, and then they are refined at a lower

concrete level. UML may be used at the lower three

levels. It is not clear how to model with UML at the

strategy level; therefore, we begin by addressing

security at the operation level. We summarize what

is described for security at each level as follows:

NAGARATNAM ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005854

� Platform-independent model—Only security in-

tentions are added to the business process models.

Primitives for security policies should be abstract

enough so that business users understand them.

Policies may be implemented on any software

platform.
� Platform-specific profiles—Security requirements

derived from the intentions are added to the

executable artifacts such as the J2EE** (Java 2

Enterprise Edition) application packages. While

security may be included in application code, we

assume that security requirements are described

with policy in the configuration of application

packages; for example, the deployment descriptor

(DD) for J2EE.
13,14

� Protocol- and technology-specific profiles—The

security requirements at the execution level are

bound to specific message protocols, security

infrastructures, and technologies available to the

application hosting environment. For example, we

may consider security mechanisms, such as PKI

and Kerberos, and cryptographic algorithms for

signatures and encryptions.

In order to address business-level-security intent in

a manner that is easy to understand, even for

business users, we adapt and modify the security

primitives proposed in Reference 15. These primi-

tives are abstract enough for our purposes and may

be represented in UML. Examples of the security

policy elements or primitives can be found in

Table 2.

The primitives in the table may be represented in

UML by using model artifacts like UML stereotypes,

constraints, and so forth. It is useful to have a

standardized security profile in UML that defines

some of the security primitives in terms of UML

stereotypes. As shown in Figure 3, one can model

authorization policy as a UML stereotype with a set

of roles about who can access a Reservation object.

Additional conditions about time of access, type of

access, and purpose can be encapsulated. Policies

are also applicable to invocations as shown—to

ensure a makeReservation() method invocation for

confidentiality. Such an approach helps an applica-

tion designer capture the security policies at the

application-modeling phase.

Input
The inputs to the design phase are policies and rules

which were transformed from business process

models into UML artifacts and security requirements

applicable to the application design. Depending on

the design details, these requirements may include

platform-dependent requirements (e.g., based on

the J2EE security model).

Output
The outputs from the application modeling and

design phase typically include model specifications

(UML) and code-generated skeletons of implemen-

tations (e.g., J2EE application components). In-

cluded in the model and implementation artifacts

would be declarative descriptors denoting design-

level security requirements and possibly codified

policies.

Standards and technologies
As discussed earlier, there are several possible

approaches to model security policies in UML using

Table 2 Primitives to capture security constraints

Primitive Description

audit Denotes that the specified communication is to be audited. One assumes that the audit will con-
tain both the identity of all parties and any data communicated between the parties

authenticate Denotes that a party that has to be authenticated in the scope of a given context

authorize Denotes that a communication between two parties must ensure that the requestor is authorized
to perform the request

confidentiality Denotes that the marked information should be treated as confidential and that all reasonable
effort (considering technical implications) should be made to ensure the data remains protected
against unauthorized viewing

integrity Denotes that the marked information is guaranteed to reach the recipient unaltered during tran-
sit (e.g. includes the digital signatures of parties related to the document)

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NAGARATNAM ET AL. 855

profiles, metamodels, constraints, or other mecha-

nisms. Previous publications describe some of these

approaches.
15,16,17

When a stereotype-based ap-

proach is employed, these security stereotypes may

be transformed into appropriate deployment arti-

facts (e.g., Enterprise JavaBeans** [EJB**] deploy-

ment descriptors). Specific profiles may be applied

and artifacts generated through tooling. In other

cases, when an application manages its own

authorization decisions, standardized profiles may

help identify callouts to security decision points to

evaluate and make decisions, which the applications

then enforce.

IMPLEMENTING SECURE SOLUTIONS
Depending on the environment and existing func-

tionality, implementation may entail building new

application components or reusing existing compo-

nents and applications with appropriate wrappers

and configuration supporting the new functionality.

In order to accommodate the changing environment

and SOA, these components may be implemented as

Web services. This implies an interface defined in

Web Services Description Language (WSDL) that

enables access from other services. The service

implementation depends on the underlying plat-

form. For instance, when hosted on a J2EE
18

platform, the Web service implementation may be a

J2EE application comprised of EJBs.

If the implementation phase follows the design

phase, the UML model artifacts may be used to

generate skeleton code (e.g., service components,

EJBs) along with security policies that must be

transformed from the earlier phase so that the Web

services are secured.
19

A profile may be used to

automate XSD (W3C** XML Schema definition

language) and WSDL generation.
20

If the implementation was targeted without any

formal design phase with UML, then the application

implementation must factor in various business

requirements, corporate policies, and other consid-

erations in the application code. Beginning to

implement all the details in this phase is a significant

burden on the developer; whereas, starting from an

earlier phase eases the task of the developer in

dealing with all of these security policies.

When designing a solution, a developer should

identify the components to be integrated to create

the solution. Because our goal is to address an

environment based on SOA, we assume that the

application is exposed by using a service description

that consumers access.

Implementation considerations
From a security perspective, the implementation

phase requires decisions to be made about which

components are responsible for enforcing security

policies (e.g., infrastructure, application) and which

information must be made available to requestors.

In addition to the operational aspects, some of the

design-time policy information (e.g., J2EE deploy-

ment descriptors) may be used to help manage the

application. One of the key implementation deci-

sions is whether business requirements are best met

by implementation of the security model in the

infrastructure or by codifying security enforcement

into each application. Another dimension to imple-

mentation that should be considered is the degree of

variability of the invocation of the service. Is

Figure 3
Applying security policies to application models

<<conditions>>
{access time = businesshours

access_type = intranet
purpose = ticketing}

Reservation

viewItinerary ()
changeReservation () <<Security.Authorization>>

AccessPolicy

roles : String

c

c

{confidential}

airlineProvider:AirlineProvider

<<confidential>>
1: makeAirlineReservation

reservation:Reservation

NAGARATNAM ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005856

flexibility given to consumers (i.e., are there choices

that are made available for consumers to customize

during subscription)? Lastly, when implementing

secure solutions, the concept of security engineer-

ing, an engineering methodology to build secure

applications, must be considered. An extension to

Rational Unified Process* (RUP*)
21

may help enable

this approach in a systematic way.

Security engineering

Security engineering in development of secure

solutions involves following well-defined patterns

and best practices in implementing application

components so that the application does what the

designers and users expect it to. A part of the task is

assessing the risk inherent in each of these

components and designing and implementing in

such a way that we avoid opening them up to

known vulnerabilities (e.g., efficient memory man-

agement, avoiding covert channels). Tooling sup-

port and code reviews are important to improve

good practice in security engineering and to do no

harm or help minimize harm to the environment in

which these solutions may be deployed.

From the viewpoint of security engineering, Java is

well-positioned as a development language due to

its built-in memory management capabilities, plat-

form independence and security sandbox model that

encourages the practice of building secure solutions.

The Java 2 Security model helps define security

policies pertaining to the access of applications to

resources external to the application (e.g., permis-

sions to access files, sockets, threads, etc.).

Infrastructure-managed vs application-managed
security

The application-modeling phase may have intro-

duced decisions about infrastructure-managed vs

application-managed security. For example, one

may choose to attach security policies and require-

ments to UML artifacts (classes, objects, activity

diagrams, etc.). In this case, these requirements are

meta-data attached to these artifacts. During the

implementation phase, more information about the

application platform (e.g., J2EE, Microsoft .NET**)

is likely to be available, and decisions either to let

the infrastructure handle security or to codify

security in the application may be made at this

point. Thus, a security architect should design some

standardized patterns so that these decisions are

made in a consistent manner.

In cases where the infrastructure-managed approach

is taken, policies attached to modeled artifacts are

transformed into platform-specific policies (e.g.,

UML requirements to J2EE deployment descriptors).

In cases where the application-managed approach is

taken, security enforcement is performed by the

application and the appropriate security callouts

must be implemented. Tools can help translate any

callouts in application models into platform-

specific implementations. For example, the

callout authenticate() can be transformed to

loginContext.login() by using Java Authentica-

tion and Authorization Service (JAAS),
22

and

authorize() can be transformed to policy.

implies() by using authorization checks based on

Java Authorization Contract for Containers

(JACC).
23

In either of these cases, platform-specific

transforms and profiles are necessary to help

implement the intended approach and thus enforce

the security policies at desired enforcement points.

Such profiles help improve the security of the

application by reducing the number of security-

specific application programming interfaces (APIs)

and technologies that the developer must use (thus

reducing coding and improving the quality of the

application software). Based on various usage

patterns, the tools may provide certain well-known

implementations based on guidelines, best practices,

and so forth, in which case, a developer works with

patterns instead of making decisions about tech-

nology. Such patterns may help transform the intent

of application modeling where the platform (e.g.,

J2EE) may be known, but a finer selection of

technologies (as relevant to the application) may be

done only during the implementation phase (e.g.,

using JAAS callout for authentication or calling out

to a security framework managed by the IT depart-

ment of the enterprise).

Deciding the flow of authentication and author-

ization becomes a key part of the implementation

phase because the new solution must be imple-

mented within the context of the existing IT

organization. All of these initial security policies for

the applications may be defined by using deploy-

ment artifacts (e.g., deployment descriptors for J2EE

applications). Declarations of policies should be

abstracted and used to provide high-level policy

requirements that may be refined later in the

deployment phase, taking into account any imple-

mentation constraints.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NAGARATNAM ET AL. 857

In the case of authorization, policy abstractions may

be achieved by defining application roles as a

collection of permissions which allow actions on

resources. For example, a travel application may

declare that the view() or change() methods on

ReservationBean may be accessed by a user acting

in the TravelAgent role. (i.e., TravelAgent is a name

of a role that may be used at implementation time to

identify what may be done by a travel agent in terms

of a set of permissions to invoke those methods on

the respective EJBs) as shown in the code below:

,method-permission.

,role-name.TravelAgent,/role-name.

,method.

,ejb-name.ReservationBean,/ejb-name.

,method-permission.

,role-name.TravelAgent,/role-name.

,method.

,ejb-name.ReservationBean,/ejb-name.

,method-name. view,/method-name.

,method-name. change,/method-name.

,/method.

,/method-permission.

What is not likely associated during the implemen-

tation phase is the specific decision of which users

are able to act as a TravelAgent. Assignment of users

to roles is typically performed during the deploy-

ment phase and managed during the lifetime of the

application.

These authorization policies may not be known to

the individual requestor, and the business policies

should articulate when and to whom these internal

policies are revealed.

Designing authorization enforcement points is an-

other important task. In some organizations, it is left

to the infrastructure to enforce these authorization

policies as message requests are processed by the

infrastructure. In other cases, when applications

require more control with security, applications

have to explicitly perform the authentication,

establishing and maintaining context and enforcing

authorization. There are hybrid cases when the

deployment environment provides support, where

an application may use the infrastructure to perform

authentication and security-context establishment,

and may use the authenticated user identity to

perform its authorization decisions. For instance,

user identity is established by a J2EE runtime after

authentication. An application may use standard

APIs like isCallerInRole() to verify that an

invoking user identity has been granted the ability to

act in a specific role. In cases where identity is

propagated downstream as part of invoking another

service, the calling application component may use

APIs like getCallerPrincipal() to retrieve infor-

mation about the calling principal identity.

Flexibility of choice
In cases where certain requirements or constraints

(on the access to the service itself—including

authentication, integrity, and confidentiality re-

quirements) should be made known to a requesting

client runtime, an organization may be capable of

providing a range of options to serve a wide variety

of client runtimes (e.g., browser clients, non-

browser clients, PDA (Personal Digital Assistant)

thin clients, etc.). In this case, policies may be

published that declare the requirement for a

requestor runtime to ensure message confidentiality

and provide some evidence of the identity of the

requesting user (i.e., userid/password or a certifi-

cate). In the case of authentication, policy abstrac-

tions communicate a range of alternatives that

include the types of credentials that must be

presented or limits on the list of trusted authorities

for issuing credentials.

For instance, a TravelService Web service may

declare its intent to require certain token types and

confidentiality requirements. Depending on the

implementation, it may declare its intent in terms of

appropriate descriptors. Tools may in turn generate

necessary machine-level details (e.g., a WS-Policy

expression) as shown in this code:

,wsp:Policy.

,wsp:ExactlyOne.

,wsse:SecurityToken. username ,/.

,wsse:SecurityToken. x509 ,/.

,/ExactlyOne.

,wsp:AttributeCert Issuer¼TravelOrg .

wsp:optional¼true
,wsse:Confidentiality.

,wsse:Issuer¼Verisign.
:

,/wsse:Confidentiality.

,/wsp:Policy.

Input
Input to the implementation phase includes infor-

mation from the application-modeling phase (e.g.,

NAGARATNAM ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005858

UML class diagrams, activity diagrams). In the case

of UML, the input may include application classes

that represent interface abstraction for access,

business object information representing data ob-

jects passed between method invocations, and

activity diagrams. As identified in the application-

modeling phase, any security policies associated

with model artifacts in terms of access policies

(constraints, including authorization that may be

attached to classes, delegation options marked up in

activity diagrams, etc.) may be done through UML

(with necessary enhancements and extensions, as

appropriate). The tools used during the implemen-

tation phase must be able to transform model

artifacts into implementation entities (e.g., EJBs,

service components). Relevant policy information

must be transformed (e.g., J2EE deployment de-

scriptors) and attached to these new implementation

artifacts. This takes advantage of the fact that in

J2EE there is a clear separation between the

application code and associated roles and permis-

sions in the deployment descriptors. The J2EE

container enforces controlled access to the compo-

nents, hiding the details from an application

developer.

Output

Upon implementation and packaging, a solution

includes declared policies that are associated with

application components (e.g., in the case of J2EE

components, in the deployment descriptors). Note

that in addition to deployment descriptors for

individual components, an aggregated deployment

artifact is required to represent the collective

policies of the integrated solution components.

These declarative policies may be either in standard

representations handled by the deployment infra-

structure in the case of infrastructure-managed

security or in some other format or rule interpreted

by the application.

Policy technologies and standards
To support the infrastructure-managed security

pattern, it is necessary to have technology support

for declaring security policies to be enforced by the

infrastructure. In addition to declaring requirements

and intent in deployment descriptors, support for

security is necessary in the infrastructure (e.g., fine-

grained authorization support if fine-grained au-

thorizations are articulated by the developer). Based

on the information and decisions made in previous

phases, verification of support from the infrastruc-

ture is either factored in through patterns in the

earlier phases, or it now must be taken into account

when implementing the application.

In order for applications to be designed to support

flexibility for the consumers’ choice, security poli-

cies should be defined in terms of business value

and security levels. In addition to these categoriza-

tions, tools to help provide techniques, such as

templates to define policies throughout the life cycle

of a solution, are required so that abstract policies

may be further refined through the life cycle. Tools

that help transform these goals and requirements

into technology-dependent artifacts (e.g., J2EE

deployment descriptors) are required.

As noted earlier, one of the features required

throughout the solution life cycle is tooling support

for traceability. Even though traceability throughout

the life cycle is possible, bidirectional traceability

(e.g., changes reflected in implementation or during

deployment in the application model) represents a

potentially impractical challenge. When input poli-

cies from an application-modeling phase (e.g., UML)

are transformed into implementation-specific policy

descriptors (e.g., J2EE deployment descriptors),

technology support is necessary to help correlate

these policies as they have been transformed into

new artifacts. To encourage traceability, an attempt

should be made to reflect any changes to imple-

mentation policies back into application-model

policies. In cases where application-model policies

are implemented as application logic (or for a

variety of other reasons including implementation

platform characteristics), having such information

captured in text as an annotation to the model, even

through non-normative means, would be a useful

addition.

When specifying policies, any user-facing tools

should appropriately provide facilities to allow for

policy configuration or updates from the user’s

perspective, hiding the details of the underlying

runtime policy language (e.g., J2EE deployment

descriptor file format, XACML (Extensible Access

Control Markup Language) files). In a perfect world,

tools should allow the validation of role assignments

across intercomponent invocations within a given

solution package so that inconsistencies in policy

declarations could be identified early (e.g., through

static analysis of solution code). Similar helper

utilities and verification utilities are required, and

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NAGARATNAM ET AL. 859

the security engineering team of an organization

should help automate security best practices to help

avoid security vulnerabilities. Developers should be

provided the necessary tools to build user interface

components for consumer-facing tasks, including

subscription, security-level selection, security re-

quirement specification, and the user login page.

DEPLOYING AND MANAGING SECURE
SOLUTIONS
Modeled and implemented applications become

‘‘real’’ when they are deployed and become acces-

sible to consumers. This may be viewed as the

critical phase in every solution life cycle. Some

solutions may be modeled, implemented, and

deployed; some may be implemented directly and

deployed; and some may be purchased, deployed,

and managed. Regardless of various possible

choices of arrival to this point, it is invariable that an

enterprise will go through the phase that includes

installing a solution, allowing consumers to sub-

scribe to the solution, and managing the solution

throughout its lifetime of service.

Solution deployers, IT administrators, and security

administrators factor in the security-infrastructure

and the enterprise-security requirements to ensure

that the applications—when installed and deployed

for access—are set to meet the requirements. At this

point issues like heterogeneity and cross-platform

support become concerns. Some of these policies

may still be customizable if the services are offered

for subscription by consumers. In that case, further

refinement of applicable policies is performed by

consumers upon subscription. Security administra-

tors are responsible for configuring the systems and

business applications for the security infrastructure

they have deployed (e.g., corporate Lightweight

Direct Access Protocol [LDAP] directory for user

information and authentication or authorization

provider such as IBM Tivoli AccessManager to help

enforce access control both at entry into the intranet

and at application and data access tiers). The

security administrator continues to factor in chang-

ing requirements, threats, technology changes, and

application behavior and manage policies to keep in

synchronization with those changes. Policies of the

applications and the infrastructure are updated and

managed based on changing business and IT

requirements and situations.

As shown in Figure 4, deploying and managing

solutions consists of a few subtasks: solution

installation, subscription, and administration and

management. Needless to say, policies are part of

solution deployment and management. This section

discusses how policies affect this phase of the life

cycle.

Solution installation task
The task of installing includes binding the applica-

tion to the enterprise environment in which it is

deployed, making the solution accessible to con-

sumers, and associating policies with the solution.

This task may be viewed as a solution installation

task. During this task, the life cycle roles that play a

part include Solution Deployer, Security Adminis-

trator, IT Administrator, and Solution Administra-

tor. They take into account the input available in

this phase, which includes application-specific

deployment information (e.g., deployment descrip-

tors) and initial configuration information deduced

through other policies made available to them. The

roles use that information to bind the security

policies to that solution. Depending on the config-

uration options that a solution may make available,

relevant configuration is performed by these per-

sonnel. This is illustrated by the activities in the top

right part of Figure 4. They use the solution-

installation tools available to them to perform this

task. For example, they may deploy a solution using

WebSphere Business Integrator where the security

options are customized using installation tools.

Additionally, in some distributed environments

there may be an additional step. If multiple

providers are possible, after the selection of appro-

priate providers (e.g., Tivoli AccessManager) is

made to manage security decisions, the resource

manager (e.g., application server runtime) distrib-

utes the relevant policies to these policy managers.

The resource managers have the task of distributing

those initial security policies to the policy managers

in order to help improve integration and interoper-

ability between different resource managers and

policy managers. In addition to a standardized

distribution protocol, there may be a requirement to

make the policy information canonical. One may use

standards like XACML
24

to express the policies,

which may require transforming platform-specific

policy descriptions (e.g., J2EE deployment descrip-

tors) into XACML policies. For example, if the policy

is further refined to elements of the application like

portlets, such that a traveler can view itinerary and

descendant pages: (Traveler, (View/Itinerary)), then

NAGARATNAM ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005860

it can be transformed into XACML as shown in

Figure 5.

Transformation and distribution activities are also

illustrated in the bottom half of Figure 4 which

shows policy distribution to policy orchestrators,

policy managers, and so forth. There are cases

where configuration information may be configured

directly into the security policy managers, depend-

ing on the integration of management tasks between

the hosting environment and security providers.

Subscription task
When a solution must be tailored to a given

consumer, a subscription task is part of the process.

During the subscription stage, consumers can

customize the solution to their requirements and

agreements (e.g., selecting a quality of service that is

desired, selecting a service level, and so forth).

When a solution may be customized during the

subscription process, certain security variables may

be allowed to be customized. Such information may

be part of service-level offerings that are provided to

a consumer. In the case of service-level offerings,

the options may have been abstracted in terms of

high-level constructs (e.g., High-Security part of

Platinum service, Medium-Security part of Gold).

Customizing what makes up High Security may be

allowed (e.g., 128-bit SSL using Fabricam or Veri-

sign certificates, using message-level security, using

WS-Security, using tamper-proof audit) during the

subscription phase. Customization is performed by

individuals acting in appropriate roles: service-

consumer business analyst, service-consumer se-

curity administrator and service-provider security

administrator. These are illustrated by the arrow

indicating subscription time changes in Figure 4.

Administration and management task
After a solution has been made available to a

consumer, the solution must be managed and

policies administered to reflect any changes that may

happen during the lifetime of the solution. Changes

to security policies include authorization policy

changes (e.g., adding new roles that may access the

resources or assigning roles to new user groups or

users), user management changes (e.g., users

assigned to additional user groups), or other changes

including audit requirements and constraints like

integrity or confidentiality. When administering

security policies, it is necessary to adhere to

changing corporate business-security policies and

industry and government regulations and compli-

ance requirements. In addition to these sources of

change, another key input factor for change in

policies is the discovery of vulnerabilities and new

Figure 4
Deploying and managing security policies of an application.
The vertical dashed line separates external users and applications from the secure business application.

Subscription
Time
Changes

SUBSCRIPTION

Requestor
(consumer)

Service
Provider

Consumer
Administrator

ERP Travel
Application Runtime Publication of Policies Policy Administration

Corporate, IT PoliciesApplication Policy

SOLUTION INSTALLATION

Transform, persist, and distribute
policies to security provider

Security Policy Manager

Application Server Runtime

ADMINISTRATION AND MANAGEMENT

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NAGARATNAM ET AL. 861

risks that may be identified through solution-

monitoring activities. As we previously described,

monitoring security situations in systems will likely

cause changes in policies. These changes to security

policies must be tightly controlled and access to them

should be traced and audit trails supplied so that the

processes may be adequately monitored.

IT administrators, security administrators, and

operators play a fundamental part in managing and

administering security policies for the enterprise,

including those relevant to any specific solution.

As shown in Figure 4 (Policy Administration

arrows), people playing these roles update security

policies through the resource managers (e.g.,

application server runtime) or administer policies

through security policy managers (e.g., Tivoli

AccessManager).

Regardless of whether policy changes are made after

initial subscription to a service or to reflect the state

of the up-and-running services, the task of managing

security policies is an important ongoing task

throughout the lifetime of a solution.

Input
Input to the deploy-and-manage phase includes the

output from the implementation phase and the

binding of the solution to a given environment.

Output from the implementation phase includes

security policies that are part of a packaged

application, including those declared outside the

application logic (targeted for the implementation or

infrastructure) and those implemented as part of the

application logic itself. In such cases, guidelines for

declarative policies are typically part of the appli-

cation package, because relating security concepts

to implementation is better handled abstractly by an

application developer or a solution integrator (who

integrates applications to deliver a solution). For

J2EE implementations, these initial policies are

captured in deployment descriptors.

There are customizable parameters that bind a

solution to a given environment. These parameters

include initial configuration information that typi-

cally is not part of a solution package; these policies

are communicated through out-of-band or necessary

configuration information that ‘‘binds’’ a given

solution to a given environment. For example, a

user registry in a given enterprise may be a

corporate LDAP directory, or it may be a custom-

built registry. Other possible configuration and

binding information includes trusted certificate

authorities, key store, and certificate validation

services that provide the initial topology to enable

necessary isolation through demilitarized zone

(DMZ) configuration, firewalls, and so forth.

Output
Given the lifetime of a solution and the importance

of the deploy-and-manage phase, the output of that

phase is not only about input that goes into the next

phase (monitoring), but includes artifacts for the

runtime entities in a system that must work with

policies, including requestor runtime.

Figure 5
Generated XACML policies during deployment

<Policy PolicyId=”P1”
 PolicyCombiningAlgoId=
 ”path-more-specific-deny-overrides-with-propagation”>
 <Target>
 <Subjects> <Subject>
 <SubjectMatchMatchId="user-role-match">
 <SubjectAttributeDesignator AttributeId="subject-id”
 DataType="string"/>
 <AttributeValue DataType="string">traveller
 </AttributeValue>
 <AttributeValue DataType="string">
 http://myUserRoleMapping</AttributeValue>
 </SubjectMatch>
 </Subject> </Subjects>
 <Resources> <AnyResource/> </Resources>
 <Actions> <Action>
 <ActionMatch MatchId=“action-id">
 <ActionAttributeDesignator AttributeId="subject-id"
 DataType="string"/>
 <AttributeValue DataType="string">view
 </AttributeValue>
 </ActionMatch>
 </Action> </Actions>
 </Target>
 <Rule RuleId=”R1” Effect=”Permit”>
 <Target>
 <Resources> <Resource>
 <ResourceMatch MatchId=”path-match”>
 <AttributeValue DataType=”pattern-path”>
 /Itinerary</AttributeValue>
 <ResourceAttributeDesignator
 DataType=”simple-path” AttributeId=”resource-id”/>
 </ResourceMatch>
 </Resource> </Resources>
 </Target>
 </Rule>
</Policy>

NAGARATNAM ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005862

Conceptually, with every resource manager there is

an associated policy manager. Access to a resource

is controlled by the resource manager, which

becomes the logical policy enforcement point (PEP)

corresponding to that resource. This logical PEP

performs access control by making decision requests

to policy managers, which act as policy decision

points (PDPs). Therefore, any policy changes,

including initial policies at solution installation,

refinement of policies during subscription, or

changes to administered policies during manage-

ment, are to be communicated between PEPs and

PDPs. This is one of the output activities and part of

the policy flow corresponding to this phase.

Another view of the policy flow is from the

perspective of the requestor runtime. The client

runtime may be required to be aware of certain

constraints and requirements that are part of the

solution policies. This is sometimes referred to as

the ‘‘publish’’ task. For instance, the requirement to

obtain access over a secure channel (e.g., SSL), or

ensure confidentiality of a message (e.g., using

message-level encryption) requires participation

from both sides of the interaction, the requestor

performing a task (e.g., encrypting a message)

complemented by the action taken by the solution

provider runtime (e.g., decrypting the message

before processing).

Policy technologies

In order to meet the goals of coordinated policy

enforcement and decision making, a consistent

policy expression language is required for a given

policy domain or functionality. For example, ex-

change of authorization policies between PDPs and

PEPs is necessary, and given that multiple PEPs may

consult a given PDP, the standard use of an

expression language improves efficient implemen-

tation of policy expression evaluation and trans-

formation adapters within the runtime. In the case

of authorization policy, policy expression languages

such as XACML help to articulate security policies

consistently throughout the enterprise for different

resource managers and solutions.

Distribution of policies between resource managers

and policy managers must be standardized, and

technology to do this must be made available. Note

that in an SOA environment, resource managers and

policy managers may be built and deployed as Web

services in order to be accessed over defined

protocols and bindings. After a policy distribution

mechanism is available, it is used to provide

automated distribution of policies between PDPs

and PEPs. Distribution mechanisms may be used to

combine the management of policies with the

broadcasting of changes to appropriate PEPs or

PDPs. In essence, distribution within a hierarchy of

resource managers, as well as distribution between

resource managers and policy managers, is re-

quired.

In cases where customization is necessary func-

tionality for a consumer, template artifacts that

capture security policies in a parameterized form,

with the option of refining the policy information

throughout the life cycle, are important. As de-

scribed in the modeling section, policy templates

may be defined in any of the upstream (early)

stages, and the relation between these templates and

the effective policies is handled by the underlying

system. In the case of subscriptions, templates

provide a mechanism to effectively customize the

service instance for consumers, regardless of which

presentation tool (e.g., a user interface tool, script-

ing tool) is used to present the options.

It may be necessary for policies to be distributed to

the requestor runtime in order for the requestor to

make necessary choices when submitting message

requests. An expected approach is to use the WS-

Policy
25,26

framework to publish Web Services

policies, and for a requestor to use WS-Metada-

taExchange to retrieve relevant policies pertaining to

a target service. In the case of security, WS-

SecurityPolicy
27

framework would be used to

express the security requirements and constraints as

applicable to a requestor in order to access a given

service.

Standards

Based on the various tasks and scenarios discussed

in this section pertaining to the implementation

phase, there is an identified requirement for

consistency and standardization in various aspects

of the policy life cycle in this phase in order to

reduce the complexity. Some of the key areas where

standardization is necessary are

� policy expressions to express domain-specific

policies (e.g., WS-SecurityPolicy to express mes-

sage security policies, XACML to express autho-

rization policies),

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NAGARATNAM ET AL. 863

� policy management services (e.g., WS-Autho-

rization to manage authorization policies), and
� contracts between PEP and PDP proxies (local

stubs specific to the bindings such as JACC in J2EE

environments).

There is a requirement for a standard mechanism to

publish requirements and constraints that a re-

questor must know in order to ensure interoper-

ability between consumers and providers that are

hosted on different platforms (e.g., WS-Policy

framework, where the policies may be retrieved

through means including WS-MetadataExchange).

MONITORING SECURITY SITUATIONS

Monitoring the health of enterprise systems and

business applications may be performed by business

stakeholders, IT operators, and administrators.

Using a set of tools, consoles, and dashboards (e.g.,

Tivoli Enterprise Console*, and WBI Monitor), they

monitor system behavior at runtime (e.g., denial-of-

service attacks, or compliance with business secu-

rity policies).

Based on changes which occur during the operation

of the application, actions may be taken by

administrators to manage or change policies or

make changes to the deployment environment (e.g.,

take an application out of the network). Business

analysts focus on business level monitoring (e.g.,

assess if key performance indicators are tracking

business goals) while IT analysts focus on the

underlying system events.

Solution behavior is monitored by observing actual

runtime characteristics, through metrics monitored

(e.g., number of authentication failures) in a given

context and measured against the desired behavior.

These desired metrics and the location of measure-

ment points are derived through activities that occur

during any of the phases—model, implement, or

deploy. For example, as shown in Figure 6, metrics,

thresholds, limits, key risk indicators (KRIs), and

KPIs may be defined at the business process

modeling stage. These metrics are then transformed

later in the life cycle into enforceable runtime

metrics. Such business performance metrics may be

correlated against a set of conditions (e.g., multiple

authentication failures for a given user ID) to detect

security situations (e.g., intrusion). Such security

situations are of critical interest to the monitored

solution behavior. These situations by themselves or

Figure 6
Flow of security events within a monitored system

Metrics,
Indicators

Application
Server

Enterprise
Applications

Business
Applications

Runtime
Events

Correlation Engine

Deploy event emitter
configurations

Configure, Monitor

Notify Events
and
Symptoms

Drive changes
for autonomic
response

Ev
en

t E
m

itt
er

Common Event Infrastructure

Ev
en

t E
m

itt
er

Ev
en

t E
m

itt
er

State of
Monitored
Entities

Correlate

Instrument

Model Monitor

NAGARATNAM ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005864

in a business context (e.g., a human-resource

application being infiltrated) provide a sense of

urgency for taking necessary action. Such actions

may include alerting administration staff who may

change policies as appropriate (as part of the

management phase), or having the system auto-

nomically react to such changes based on a set of

predefined behavior rules (e.g., isolate set of

applications from external access).

The monitoring phase of the solution life cycle

consists of a few subtasks: monitor the measure-

ment points, correlate and analyze security events,

and plan actions. Actions may be planned based on

IT information (e.g., a detected intrusion) or busi-

ness impact (e.g., break in a trust relationship with a

business partner). Thus system management tasks

(e.g., isolate affected systems) or changes to busi-

ness processes (e.g., change the trust relationship

with a partner) may be appropriate actions.

Monitoring, analyzing, and planning tasks make up

the entire monitoring phase of the solution life cycle.

Details of the input, output, and technologies

involved in this phase are discussed in following

subsections.

Input

Similar to policy enforcement being application-

managed or infrastructure-managed, instrumenta-

tion for certain monitored metrics may be either

application instrumented or infrastructure instru-

mented. When policy enforcement is instrumented

in the infrastructure, the monitoring infrastructure

may be able to detect certain events. The input to

the monitoring phase includes application-specific

or application-independent monitored metrics,

threshold values against which they are checked,

and rules to help correlate events in order to detect

security situations.

As depicted in Figure 6, during the model phase, the

thresholds and limits are modeled for desired

performance indicators or metrics to be monitored.

During the implementation phase, these metrics are

either instrumented in the application, or declared

outside the application for the infrastructure to

monitor the metrics. Based on the behavior against

the metrics, events are generated by the resource

managers, including applications. These events

include security events. When these events flow

over a common event infrastructure, they may be

correlated by event-filtering engines.

Output
Using a monitor framework and dashboards, these

events and situations may be compared against

monitoring thresholds. Output from the monitoring

phase and the monitoring systems is a set of: (1)

detected situations, including deviations in metrics

or anomalies (e.g., abnormal credit card activity),

(2) alerts for appropriate action, and (3) possible

relevant actions that may be recommended for the

events analyzed and their estimated impact. This is

illustrated in the top right part of Figure 6. These

alerts and information may be sent back to the

individuals acting in the appropriate roles (e.g.,

security administrator, IT administrator, business

analyst, etc.). In an automated system, one such

output may be another higher-level event that helps

to capture the impact of certain low-level events.

Policy technologies

A common event infrastructure is necessary to

support various events (IT and business), propagate

them across various components in a given system,

and allow for rules and plug-in points to perform

filtering, analysis, and correlation of events. These

may be based on a message infrastructure. In order

to efficiently filter, correlate, and thus handle

multiple events, a common event format may be

used to capture event information consistently (e.g.,

using Common Base Event format [CBE]).
28

In addition to support to allow instrumentation and

to flow and filter events, an ability to define rules for

event correlation is necessary. Visualization of event

situations helps depict the impact of a situation to

both the IT and business environments. Event

dashboards and relevant action management con-

soles may be used to define recommended actions.

Standards

Due to the nature of various systems from various

vendors that are integrated in an enterprise, it is

important to have a standard mechanism such as

CBE to create events in a common format and then

send them over a common event infrastructure. This

is required for interoperability among systems.

SUMMARY

We have outlined a policy-driven approach based

upon business and model-driven development and

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NAGARATNAM ET AL. 865

management methodologies to achieve effective

management of security policies for applications.

This approach helps meet the changing requirements

of an on demand business. It has factored in the

interactions among the different people playing

different roles in an organization and the importance

of tools to help them perform their responsibilities in

a consistent manner. We described the tools,

technologies, standards, and runtime necessary to

meet the requirements of managing security policies

during the life cycle of a business application. This

proposal used a pragmatic approach to find inter-

section points between platform-independent mod-

eling of security policies and the concrete articulation

of policies and their enforcement. This type of

approach offers a way to leverage the monitoring of

adherence and compliance to policies in both IT and

business dashboards and to manage and map the

relationship between business artifacts and imple-

mentation artifacts, so that business policies are

reflected in implementation. We outlined a set of

technologies and tools that should be provided. We

described runtime enhancements and a dashboard to

help monitor the security policies throughout the life

cycle. We recognized the importance of open stan-

dards to enable an on demand business and proposed

areas where extensions and enhancements in stan-

dards should be introduced.

ACKNOWLEDGMENTS
The authors would like to acknowledge the input

from various people in IBM who have directly or

indirectly contributed towards some of the concepts

identified in this paper. Special thanks go to the

following colleagues: Donald Ferguson, John

Sweitzer, Sridhar Iyengar, Jeffrey Frey, Michael

Swanson, Mark Linehan, Allen Gilbert, David

Kaminsky, Asit Dan, John Rofrano, Balaji

Krishnamachari, Clare Marie Karat, John Karat,

Carolyn Brodie, Steve Adler, Rick Cohen, and

Jayashree Ramanathan.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark service mark, or registered trademark of Object
Management Group, Inc., Sun Microsystems, Inc., Massa-
chusetts Institute of Technology, Carnegie Mellon University,
or Microsoft Corporation.

CITED REFERENCES
1. IBM Rational Software Development Platform, IBM

Corporation, http://www-128.ibm.com/
developerworks/platform/.

2. OMG Architecture Board MDA Drafting Team, ‘‘Model
Driven Architecture: A Technical Perspective,’’ Object
Management Group, http://www.omg.org/cgi-bin/
doc?ormsc/2001-07-01.

3. Model Driven Architecture, Object Management Group,
http://www.omg.org/mda.

4. G. Booch, A. W. Brown, S. Iyengar, J. Rumbaugh, and B.
Selic, ‘‘An MDA Manifesto,’’ Chapter 11, MDA Journal,
D. S. Frankel and J. Parodi, editors, Meghan-Kiffer Press,
Tampa, FL (2004).

5. C. Alberts and and A. Dorofee, Managing Information
Security Risks: The OCTAVE (SM) Approach, Addison
Wesley Professional, Boston, MA, ISBN: 0-321-11886-3
(2003).

6. FISMA Implementation Project, National Institute of
Standards and Technology, http://csrc.nist.gov/sec-cert/.

7. Business Process Execution Language for Web Services,
BEA Systems, IBM, Microsoft, SAP AG and Siebel
Systems, http://www-128.ibm.com/developerworks/
library/specification/ws-bpel/.

8. Sarbanes-Oxley Act of 2002, http://www.sec.gov/about/
laws/soa2002.pdf.

9. Business Process Modeling Notation Information, Busi-
ness Process Management Initiative, http://www.
bpmn.org/.

10. Business Process Definition Meta-model, http://
www.omg.org/cgi-bin/doc?bei/2003-01-03.

11. Unified Modeling Language, Object Management Group,
http://www.omg.org/uml.

12. Eclipse Modeling Framework, Eclipse Project, www.
eclipse.org/emf.

13. M. Pistoia, N. Nagaratnam, L. Koved, and A. Nadalin,
Enterprise Java Security: Building Secure J2EE Applica-
tions, Addison-Wesley Professional, Boston, MA, ISBN:
0-321-11889-8 (2004).

14. L. Koved, A. Nadalin, N. Nagaratnam, M. Pistoia, and T.
Shrader, ‘‘Security Challenges for Enterprise Java in an
e-business Environment,’’ IBM Systems Journal, 40, No.
1, 130–154 (2001).

15. S. Johnston, ‘‘Modeling security concerns in service-
oriented architectures,’’ IBM developerWorks, http://
www-106.ibm.com/developerworks/rational/library/
4860.html?ca¼dnp-322.

16. J. Asensio, V. Villagra, J. Lopez, and J. Berrocal, ‘‘UML
Profiles for the Specification and Instrumentation of QoS
Management Information in Distributed Object-Based
Applications,’’ Proceedings of the Fifth World Multi-
Conference on Systemics, Cybernetics and Informatics,
ISBN: 980-07-7543-9 (July 2001), pp. 22–25.

17. T. Lodderstedt, D. Basin, and J. Doser, ‘‘SecureUML: A
UML-Based Modeling Language for Model-Driven Secur-
ity,’’ Proceedings of the 5th International Conference on
The Unified Modeling Language, pp. 426–441 (2002).

18. Java 2 Platform, Enterprise Edition (J2EE), Sun Micro-
systems, http://java.sun.com/j2ee/.

19. M. Hondo, N. Nagaratnam, and A. Nadalin, ‘‘Securing
Web Services,’’ IBM Systems Journal, 41, No. 2, 228–241
(2002).

20. S. Johnston, ‘‘UML Profile for Software Services,’’ IBM
developerWorks, http://www-128.ibm.com/
developerworks/rational/library/05/419_soa/.

21. P. Kruchten, ‘‘The Rational Unified Process: An Intro-
duction (2nd Edition),’’ Addison-Wesley Professional,
Boston, MA (2000), ISBN: 0-201-70710-1.

NAGARATNAM ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005866

22. Java Authentication and Authorization Service API, Sun
Microsystems, http://java.sun.com/products/jaas/.

23. Java Authorization Contract for Containers API, Sun
Microsystems, http://java.sun.com/j2ee/javaacc/.

24. OASIS eXtensible Access Control Markup Language,
OASIS, http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev¼xacml.

25. Web Services Policy Framework, IBM, BEA, Microsoft,
SAP, Sonic Software, Verisign, http://www-128.ibm.
com/developerworks/library/specification/ws-polfram/.

26. Security in a Web Services World: A Proposed Architecture
and Roadmap, IBM and Microsoft, http://
www-106.ibm.com/developerworks/webservices/
library/ws-secmap/.

27. Web Services Security Policy, http://www-128.ibm.com/
developerworks/library/ws-secpol/.

28. Common Base Event Specification, IBM Corporation,
http://www-128.ibm.com/developerworks/
webservices/library/ws-cbe/.

Accepted for publication June 16, 2005.

Nataraj Nagaratnam
IBM Software Group, 3901 S. Miami Blvd, Durham NC 27703
(natarajn@us.ibm.com). Dr. Nagaratnam is the Chief
Architect for Identity Management and lead security architect
for on demand security infrastructure and technical strategy.
As a Senior Technical Staff Member, he drives security
architecture and design activities across IBM products and
platforms. In his career at IBM, he has been the lead security
architect for WebSphere Application Server and then, the lead
security architect for the WebSphere Platform. He leads and
participates in various open standards activities in standards
organizations, including JCP, OASIS, WS-I, and GGF. He has
authored and co-authored numerous journal papers, books,
and security specifications, including Enterprise Java Security
published by Addison Wesley.

Anthony Nadalin
IBM Software Group, 11501 Burnet Road, Austin TX 78758
(drsecure@us.ibm.com). Mr. Nadalin is the chief security
architect for IBM Software Group. As a Distinguished
Engineer, he is responsible for security infrastructure design
and development. He serves as the primary security liaison to
Sun Microsystems JavaSoft Division for Java security design
and development collaboration. In his 22-year career with
IBM, he has held the following positions, lead security
architect for VM/SP, security architect for AS/400, and
security architect for OS/2. He has also authored and co-
authored over 40 technical-journal and conference articles and
published several books on Java security and the Internet.

Maryann Hondo
IBM Software Group, One Rogers St, Cambridge MA 02142
(mhondo@us.ibm.com). Ms. Hondo is the Web Services
Security Standards lead in Emerging Technology for IBM
Software Group. She joined IBM/Lotus in 1996 as security
architect for the Lotus e-Suite, participating in the
development of Java security (JAAS). Her previous
background includes working for Hewlett Packard
Corporation on DCE and PKI Smartcard-based Single SignOn,
working for Digital Equipment Corporation on a B1/CMW
operating system, and working for AT&T Bell Labs on B2
Unix. She is one of the co-authors of the WS-Security, Policy,
Trust, and Secure Conversation specifications announced by

IBM and other business partners in 2002–2004. Before joining
the Emerging Technology group, she managed the IBM/Tivoli
IETF PKIX reference implementation development group
(Jonah) and was part of a research team working on service-
oriented architecture, which produced the first Emerging
Technology toolkit (see IBM developerWorkse). Her
standards activities include chairing the working group on
Single Sign On at the Open Group, chairing the Security team
for ebXML, leading the Security working group at UDDI,
participating in OASIS technical committees (SAML, WS-Sec,
and XACML), and participating in the Open Mobile Alliance,
MWS, and Security working groups.

Michael McIntosh
IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne N.Y. 10532 (mikemci@us.ibm.com). Mr. McIntosh
is a Senior Software Engineer in the Java and Web Service
Security Group at the Watson Research Center. He represents
IBM in the WS-I Basic Security Profile working group as an
editor of the Profile and in the OASIS Web Services Security
technical committee. He has worked in the information
technology industry for 22 years and for the past three years at
IBM.

Paula Austel
IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, N.Y. 10532 (pka@us.ibm.com). Ms. Austel is a
Senior Software Engineer in the Java and Web Service Security
Group at the Watson Research Center. She has participated in
the following: OASIS Web Services Security technical
committee, OASIS Security Services technical committee, and
WS-I Basic Security Profile working group. &

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 NAGARATNAM ET AL. 867

Published online October 25, 2005.

