
Analysis and simulation of
business solutions in a service-
oriented architecture

&

M. Kano

A. Koide

T.-K. Liu

B. Ramachandran

Modeling and simulation of business processes is a powerful capability for analysis of

business solutions in a service-oriented architecture (SOA). In this paper, we describe

analysis techniques that are applicable during the design-time and runtime

development of business solutions to estimate business process performance. During

the design phase, our analysis framework converts the business process model, which

is annotated with additional information, into a more granular model by using an

underlying middleware model that describes all the middleware components in an

SOA. The resulting model can then be evaluated in terms of performance and cost. We

discuss a prototype implementation that uses WebSphere
t

Business Integration (WBI)

Modeler and present the results of a case study. After the design phase, several services

required to support the business process execution may exist, but others may need to

be newly developed. Our runtime simulation framework supports this by allowing

users to simulate implementation models consisting of real and simulated services for

function and performance testing. Furthermore, when new services are available, they

can be easily included in the analysis by switching from the Simulator to the new

service. We discuss a prototype implementation for this capability that uses the Process

Choreographer of WBI Server Foundation and present results of a case study.

INTRODUCTION

Service-oriented architectures (SOAs) have been

proposed as a mechanism to address pressures of IT

organizations to support alignment with business

requirements that are changing at an increasing

rate
1

and to simultaneously reduce costs. Moreover,

enterprise architectures are heterogeneous and

require integration of new technology with different

types of existing technology in a flexible manner,

while satisfying business performance needs. In

order to alleviate the needs of constant change, the

enterprise architecture should provide a platform-

independent layer for building loosely coupled

application services. By doing so, SOA can integrate

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 KANO ET AL. 669

business processes within and between enterprises

with the people and data that are required for their

execution.

Web Services offer a specific approach to implement

service-oriented architectures.
2

A Web service (WS)

separates the interface specification from the im-

plementation and is network-accessible through

standardized XML (Extensible Markup Language)

messaging. It provides a platform-neutral program-

ming model that can be used to integrate loosely

coupled business systems. The Web service is

described using a standard, formal XML notation,

called its service description, that can be published

with a service registry. Service requestors may find

the service through the registry and then directly

bind to the service and invoke it.

In a related development, the Object Management

Group, Inc. is promoting the concept of Model

Driven Architecture** (MDA**) as an enabler of

flexibility in IT infrastructures.
3

MDA allows ma-

chine-readable-application and data models to be

defined that can enable (1) longer-term flexibility in

implementation and integration and (2) ease of

maintenance and testing. The models can be used to

generate code that can be validated against re-

quirements and tested against various infrastruc-

tures. MDA provides an approach to specify a

system independent of its platform and further, to

transform the system specification into a platform-

specific specification. This approach consists of

three types of models:

1. Computation-Independent Model (CIM)—This

models the environment in which the system is

expected to operate, thus specifying the system

requirements, and acts as the bridge between

domain experts and system architects.

2. Platform-Independent Model (PIM)—This is a

platform-independent view of the system.

3. Platform-Specific Model (PSM)—Based on the

PIM and the choice of a specific platform for

implementation, a platform-specific view of the

system can be developed, which is the basis for

code generation.

Synthesizing the SOA and MDA concepts for busi-

ness process management, the concept of a model-

driven enterprise has been proposed to design,

develop, deploy, and manage enterprise solutions.
4

This is a framework consisting of four layers of

models (see Figure 1). In the topmost layer, strategy

models are used to specify the business objectives

and context. Next, operational models describe

business operations and how they achieve the

strategic objectives. These two layers, when viewed

together, are similar to the CIM layer in MDA, with

the subtle difference that they constitute a business

perspective rather than a system perspective. The

bottom two modeling layers are execution models

and implementation models, and these directly map

to the PIM and PSM layers in the MDA framework.

The focus of this paper is to describe analysis

techniques that are applicable to the model-driven

enterprise framework. The analysis techniques

address one of the core value propositions of the

model-driven approach; that is, the models and the

code generated from them can be validated against

requirements, tested against various infrastructures,

and used to directly simulate the behavior of the

system being designed. As a result, the enterprise

architecture can be changed more readily in

response to changing business needs. The analysis

techniques may be classified further as design-time

or runtime, based on whether they are applicable to

the models, to the generated code, or to both. The

value proposition of such techniques is to identify

potential issues and defects in the business solution

earlier in the business-process-management life

cycle, thereby helping reduce costs in designing and

deploying the business solution.

In the second section of the paper, ‘‘Analysis

Methods for the model-driven enterprise frame-

work,’’ we describe the different analysis techniques

applicable to different layers in the MDA framework.

Figure 1
Model-driven enterprise

Platform-Specific Models

Platform-Independent Models

Business Operations Models

Strategy Models

KANO ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005670

In the third section, ‘‘Design-time business per-

formance modeling,’’ we describe how to model and

analyze business processes from the IT-infrastruc-

ture point of view, applicable during design time. In

the fourth section, ‘‘Simulating PSMs,’’ we describe

how to model and analyze business processes

during runtime. The proposed methods are also

illustrated with case studies. We then conclude with

remarks on further directions for this work.

ANALYSIS METHODS FOR THE MODEL-DRIVEN
ENTERPRISE FRAMEWORK

By separating the platform-independent aspects of a

solution from the platform-specific aspects and the

resulting code, SOA and MDA support reuse of

solution components and render the business

solution more flexible and adaptable to changes in

business requirements. Moreover, using machine-

readable application and data models enables

analysis, testing, and refinement during the design

phase, rather than the implementation phase when

the cost of changes is much higher.

In the CIM layer, several techniques such as Systems

Dynamics and Value Modeling can be used to

analyze different aspects of this layer. Systems

Dynamics is an appropriate technique to analyze

high-level implications of different strategies when

sufficient information is not available to develop a

detailed operational model of the business or

system, but high-level information is available on

the key system metrics and their relationships.
5

For

example, Reference 5 has detailed descriptions using

Systems Dynamics models of how supply chains can

exhibit oscillations and instabilities that could be

better managed by using different supply chain

strategies. Value Modeling approaches are useful to

assess the business value of different initiatives

based on a value driver tree approach.
6

When operational details of the business process are

known, techniques such as discrete event simula-

tion are relevant. First, the operational process is

modeled by mapping the business process flows,

identifying the activities and subprocesses contained

therein in a hierarchical manner, and associating

resource requirements and costs, where appropriate.

The entire process can be simulated to estimate

different process metrics, such as resource utiliza-

tions and costs, and used to run different what-if

process scenarios to identify a good process design.
7

The analysis techniques described earlier are mature

and have been used extensively to model and

optimize business processes. Recently, transforma-

tion methods have been developed to generate

queuing models automatically from a description of

the business process, and these methods offer the

promise of rapidly estimating steady-state metrics for

the business process without performing simulation.
8

There has been considerable work in the design-

time and runtime analysis of IT infrastructures

(several references cited in the sections ‘‘Design-

time business performance modeling’’ and ‘‘Simu-

lating PSMs.’’). Nonetheless, these are disconnected

from operational business process models and

hence are of limited value for analysis in the SOA

context, because changes in the business models

cannot be transformed to infrastructure models and

analyzed automatically. In order to realize the value

proposition of SOAs, one needs to be able to identify

and model implications of process changes in terms

of their impact on the IT infrastructure. These

implications are addressed in this paper by using

MDA as a framework to develop models at different

levels and by applying appropriate analysis tech-

niques to analyze the infrastructure.

The rest of the paper deals with techniques

applicable to design-time and runtime analysis of IT

infrastructures. By design-time analysis of an IT

infrastructure, we refer to the analysis of an opera-

tional model of the business process with IT-level

depth, that is, an operational model composed of IT-

level activities and consuming IT resources. The

overall objective here is to estimate resource and

process bottlenecks, given a workload and deploy-

ment topology, and further, to identify a deployment

topology that meets specified performance targets.

By runtime analysis of an IT infrastructure, we refer

to the analysis performed during an intermediate

stage in the application development life cycle,

wherein executable code has been generated from

the PSM for some business solution components,

and there may exist other solution components for

which either code may not have been developed or

code may exist, but may not yet be integrated with

the business solution. Such situations may occur

often when some parts of the business process are

changed. In using the MDA approach, we may

regenerate code for the components of the process

that have changed but may want to test the process

execution with the new components, without plac-

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 KANO ET AL. 671

ing at risk the already existing components that are

being executed for the business process. The overall

objective here is to validate the application and

process design and enable early functional testing of

the business solution to identify and remove defects

at an early stage of the development and integration

life cycle, thereby reducing costs. Moreover, the

performance of the application design can be tested

against various deployment topologies to provide

estimates for hardware sizing and middleware

configuration.

DESIGN-TIME BUSINESS PERFORMANCE
MODELING

The execution of most business processes requires

the support of IT services to achieve the objectives

of the business processes. The business processes

designed for a business transformation project

typically have objectives, such as improving human

productivity, cutting cost, increasing process

throughput, and improving the visibility of business

operation for Business Performance Management

(BPM). It is very crucial for a business to understand

the potential benefits and cost in designing a

business process with the supporting IT services.

IT services can be loosely classified into three types

according to their primary benefits to a business. One

type of IT service provides users with the information

that is needed or helpful for completing a task in a

business process. This type of IT service improves the

productivity of human resources by shortening the

time that it takes for users to complete a task, for

example, a Web-portal application that assists users

in filling out procurement orders. A second type of IT

service automates the tasks of a business process by

running business applications on computers. This

type of IT service can reduce labor cost and human

error, shorten the process cycle time (elapsed time

between process instantiation and termination), and

increase the throughput of a business process, among

other benefits, for example, an enterprise-applica-

tion-integration (EAI) system that sends an update

message to an SAP application upon receiving a

notification message from a Siebel Systems, Inc.

application, signaling the change of customer contact

information. An EAI system can automate the

synchronization of customer contact information

stored on different enterprise applications without

human involvement. The third type of IT service

provides visibility into the business operation for

BPM, for example, a workflow-monitoring system

that receives events about the status of workflow

instances and presents a management dashboard for

users. On the dashboard users can spot problematic

workflow instances in real time and take actions, such

as reassigning a work item or terminating a process

instance. Some dashboards, for example, Websphere

Business Integration (WBI) Monitor,
9

allow users to

see the performance of workflow instances that have

terminated in a historic view. The real-time and

historic views can track how well business processes

are meeting their goals so that timely management

actions can be taken when necessary.

At design time, for any of the preceding three types

of IT services, it is important for a business to be able

to assess whether a given hardware configuration

can meet the performance objective of the business

process, which is often expressed in terms of process

throughput, process cycle time, and user-perceived

response time. It is equally important to be able to

estimate the cost of the IT services that support the

execution of a business process. The cost of IT

services includes hardware, software licensing, and

maintenance. The rest of this section focuses on

assessing whether a hardware configuration can

meet the performance requirement of the business

process, given a set of supporting IT services.

Related work

Performance modeling of IT systems at design time

has gained significant attention recently. The UML

Profile for Scheduling, Performance and Time
10

is an

OMG standard for designing a software system in

UML** (Unified Modeling Language**) at design

time. It uses activity diagrams, among others, to

describe how software components interact in a

scenario and the required resources in each activity.

Various types of analysis, such as scheduling

analysis for real-time systems and performance

analysis, can be done by transforming the activity

diagrams into analytical or simulation models that

can be handled by various analysis techniques or

tools. Our work recognizes the difficulty of specify-

ing the resource demand of IT services at design

time and proposes a middleware library that

encapsulates prior knowledge of the performance

characteristics of middleware components.

More detailed modeling of middleware servers for

sizing the hardware for a business-process-integra-

tion solution has been attempted in Reference 11.

Using a combination of layered queuing modeling

KANO ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005672

and the architecture of a business-process-integra-

tion middleware server, potential software bottle-

necks, such as thread pools and database

connection pools, that can impact system perfor-

mance (especially on multiprocessor machines) are

shown. However, it requires significant work to

develop such a detailed model, and it may be

impractical for business solutions that require many

middleware components. We believe that the mid-

dleware model presented in this paper has the right

level of detail for answering questions related to the

cost and performance of a BPM solution at design

time.

A business operations model with IT depth

In this section, we discuss design-time business

performance modeling based on a business oper-

ations model. Our approach for design-time busi-

ness performance modeling relies on first creating a

knowledge store containing performance-related

attributes of IT services that have been developed

and benchmarked. The knowledge store is then

referenced by a tool that maps the IT services

required by a business process to the IT services

contained in the knowledge store. To make this

mapping easier, a business process can be annotated

with the attributes used by the knowledge store, for

example, the names of the IT services. After the

mapping is done, the result is a business process

with IT depth that is ready for performance analysis

and that can answer what-if questions.

A business process model with IT depth can be used

to relate the performance of a business process to

the performance of the supporting IT services. For

example, the number of business process instances

to be handled per unit time determines the number

of invocations of the supporting IT services per unit

time, which in turn determines the throughput and

response time of the IT services deployed on a given

hardware configuration. The cycle time of the

business process can then be obtained by summing

up the elapsed time of the activities of the business

process, which can be obtained from the elapsed

time of the activities performed by human resources

and the response times of the supporting IT services.

Without specifying IT services in the context of a

business process model, one cannot easily see how

individual IT services impact business performance.

A business process can be modeled using a combi-

nation of predefined constructs, such as Tasks,

Subprocesses, Fork, Merge, and Join. A detailed

description of business process modeling is beyond

the scope of this paper, but further details can be

found in textbooks and product manuals, for instance

Reference 7. The resource demand of an activity of a

business operations model specifies the resources

required to complete the activity. These can be

human resources or IT resources. Resource demand

for human resources is usually specified in terms of

the type and quantity of roles required and their

corresponding durations. Resource demand for IT

resources can be specified similarly to demand for

human resources at a high level. This high-level view

is useful for the analysis of IT cost and cycle time of

business processes at an early stage of the solution

development cycle. However, if the objective is to

estimate the hardware configuration required for

solution provisioning, IT resources need to be

specified at a finer granularity. This can be achieved

by specifying the required IT resource as an IT service

that can be realized by a multitier IT infrastructure.

The mapping from an IT resource in a business

operations model to an IT service can be described as

an annotation to the model. A business operations

model, thus annotated, can provide a holistic view of

the required resources for the execution of a business

process. Utilization and response time of IT resources

can be analyzed in the context of the given business

process. The specification of IT services as part of the

annotation of a business process model is discussed

in this subsection.

The performance of a business solution depends on

the functions of the business solution, the middle-

ware components used to realize the functions, and

the hardware used to host the middleware compo-

nents. An IT service that provides the function

required for a business activity can be realized by

one or more middleware components and enter-

prise-information-system (EIS) components, such as

those provided by SAP AG and PeopleSoft, Inc.

Typical middleware components include Web-

Sphere Application Server, WBI message brokers,

WBI InterChange Server (WICS), and DB2*. In

addition, middleware components also include

components based on J2EE** (Java 2 Platform,

Enterprise Edition) that are developed on top of

application servers such as WebSphere Application

Server. An example of a J2EE-based middleware

component is the Common Event Infrastructure

(CEI).
12

When middleware and EIS components

work in concert to complete a request to a particular

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 KANO ET AL. 673

IT service, each component incurs certain CPU

demand and I/O demand, collectively called hard-

ware resource demand. Figure 2 illustrates inter-

actions of the middleware components of a general

BPM solution, which are further detailed in the next

subsection. The hardware resource demand is

component-dependent and service-dependent. Quite

often, for the same service and the same component,

the hardware resource demand is further dependent

on the parameters associated with a given IT service

request. For example, the CPU demand for pro-

cessing an event by CEI is found to depend on the

size of the event, more specifically the number of

extended elements in a Common Base Event (CBE)

to be handled by CEI. In order to come up with an

estimate of the required hardware configuration

(i.e., capacity sizing), one needs to be able to

characterize the hardware resource demand of

middleware components. This characterization can

be in terms of the IT services that are intended to be

supported by the middleware components. This is

the subject of the next subsection.

Middleware modeling

A middleware component provides a set of services

according to the application logic deployed on the

middleware. For example, WebSphere Application

Server is middleware on which Enterprise

JavaBeans** (EJBs**) and servlets can be deployed.

The deployed EJBs and servlets determine the kinds

of service that an application server can provide.

Middleware components often work in concert to

provide the IT services required by the activities in a

business operations model; for example, DB2 can

work with WebSphere Application Server to provide

the IT services that the deployed servlets and EJBs

intend to provide. To facilitate the specification of

the IT services needed by the activities of a business

operations model, it is desirable to reference a

workload library that contains a list of workloads. A

workload in a workload library specifies how

middleware components interact to support a given

IT service. The hardware resource demand required

for each middleware component to support the IT

services specified in a workload library is described

in a middleware component library. The hardware

resource demand of middleware components can be

measured by benchmark tests performed in labo-

ratories. The separation of the middleware compo-

nent library from the workload library has the

following advantages.

1. Middleware component libraries can be kept up

to date by middleware product owners; whereas

Figure 2
Middleware components of Business Performance Management

ETL_Extract

Common Event Infrastructure

Business
Process
Workflow

Events

ETL_TransformLoad

Queries

Event Source

Business
Application

T T

Active Correlation Services

Operational Data Store Data Warehouse

OLAP Server

Portal Server

KANO ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005674

workload libraries can be created and managed

by various solution owners who decide which

middleware components are used in a solution.

2. Business-process-solution designers can work

with a high-level tool such as WBI Modeler, at the

same time, letting the high-level tool reference

the appropriate workload and middleware-com-

ponent libraries that support the domain of the

business processes to be designed. An example of

a workload and a middleware-component library

is discussed next in the context of BPM solutions.

A BPM solution provides visibility into corporate

performance at the business-strategy and operations

levels. The visibility comes from continuously

monitoring business events, updating business

performance metrics and key performance indica-

tors (KPIs), identifying the occurrence of important

business situations that need attention, and pre-

senting alerts and exceptions to process owners to

take timely management action. For the remainder

of this section, we consider a generic BPM solution

that has the following middleware components for

monitoring business events and KPIs:

1. Common Event Infrastructure (CEI)

2. Active Correlation Services (ACS)

3. Operational Data Store (ODS)

4. Portal server

5. Online analytical processing (OLAP) server

6. Data warehouse (DW)

We consider five types of workloads in a BPM context.

Figure 2 illustrates interactions among the middle-

ware components in the five workloads, including the

ETL (data extraction, transformation, and loading)

function. The workload library specifies the middle-

ware components that interact to provide the services

required by each workload, as illustrated in Figure 3.

A component with an ID of 0 refers to an external

component that is outside the scope of performance

analysis. Visit specifies a connection between two

middleware components. The From component calls

the To component. AvgNumOfCalls specifies how

Figure 3
Workload library for Business Performance Management

<WorkloadLibrary>
 <Components>
 <Component ID=“1” Name="CEI“ />
 <Component ID=“2” Name="ACS"/>
 <Component ID=“3” Name="ODS"/>
 <Component ID=“4” Name="PortalServer"/>
 <Component ID=“5” Name="OLAPServer"/>
 <Component ID=“6” Name="DW"/>
 </Components>
 <Workloads>
 <Workload ID="1" Name="EventProcessing">
 <Visit From="0" To="1" AvgNumOfCalls="1" Type="a"/>
 <Visit From="1" To="2" AvgNumOfCalls="1" Type="a"/>
 <Visit From="2" To="3" AvgNumOfCalls="1" Type="s"/>
 </Workload>
 <Workload ID="2" Name="WorkflowDashboardQuery">
 <Visit From="0" To="4" AvgNumOfCalls="1" Type="s"/>
 <Visit From="4" To="3" AvgNumOfCalls="1" Type="s"/>
 </Workload>
 <Workload ID="3" Name="BusinessDashboardQuery">
 <Visit From="0" To="4" AvgNumOfCalls="1" Type="s"/>
 <Visit From="4" To="5" AvgNumOfCalls="1" Type="s"/>
 <Visit From="5" To="6" AvgNumOfCalls="1" Type="s"/>
 </Workload>
 <Workload ID="4" Name="ETL_Extract">
 <Visit From="0" To="3" AvgNumOfCalls="1" Type="s"/>
 </Workload>
 <Workload ID="5" Name="ETL_TransformLoad">
 <Visit From="0" To="6" AvgNumOfCalls="1" Type="s"/>
 </Workload>
 </Workloads>
</WorkloadLibrary>

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 KANO ET AL. 675

often the From component calls the To component

after the From component is called in the workload. If

AvgNumOfCalls is 1, the From component always calls

the To component after the From component is called.

Type specifies whether an invocation is synchronous

(s) or asynchronous (a). The invocation type (syn-

chronous or asynchronous) affects the response time

of the IT service that the components intend to

support. The five workload types are:

1. EventProcessing—Various types of transaction

information are emitted as events with a common

format into the CEI. Examples of event sources

are business process workflows and inventory

management systems. The details of event

sources vary, depending on the specific business

solution. The ACS captures events from the CEI

and maps attributes of events to metrics and

calculates several types of KPIs. The KPIs are

stored in the ODS. Invocation of the ODS is

synchronous, but others are asynchronous.

2. WorkflowDashboardQuery—This workload is for

real-time observation of workflow progress and

performance. Each query is submitted from the

workflow dashboard to the portal server, and

then the portal server queries the ODS. All the

invocations are synchronous. A workflow dash-

board is outside the scope of our performance

analysis and is abstracted as a component with

an ID of 0.

3. BusinessDashboardQuery—This workload is

submitted from the business dashboard to the

portal server. The portal server calls the OLAP

server, and then the OLAP server executes an

analysis that queries the DW. All invocations are

synchronous. A business dashboard is outside

the scope of our performance analysis and is

abstracted as a component with an ID of 0.

4. ETL_Extract—This workload extracts data from

the ODS into an intermediate format such as XML

for further processing. The data being extracted

are those related to workflow instances that have

been completed.

5. ETL_TransformLoad—This workload converts

the operational data from an intermediate format

into a format that can be loaded into the DW and

moves the data into the DW.

Figure 4 illustrates a snippet of the middleware

component library, which documents performance

characteristics of the middleware components for

different workloads. The hardware resource demand

is given as a function of several solution-level

parameters. For example, the hardware resource

demand of CEI in serving the event-processing

workload is given as a function of the event size in

bytes. In general, this kind of hardware-resource-

demand function has to be obtained by benchmark

tests under a set of varying solution-level parame-

ters. Without sufficient benchmark testing, point

measurements can be logged in a middleware

component library as potential starting points for

extrapolating the hardware resource demand. In

Figure 4, the service demand of each component

depends on the following solution-specific parame-

ters that are fed by the AdditionalSolutionInfo.xml

file, as illustrated in Figure 5.

� EventSize—Average size of events (in bytes)
� NumOfMaps—Number of metrics to be mapped

from attributes of events
� NumOfKPIs—Number of KPIs to be calculated
� NumOfSituations—Number of situations to be

detected
� ComplexityFactorPerRecord—Relative complexity

of a record in a database

The AdditionalSolutionInfo.xml file also specifies

generation rates (per second) of respective work-

loads.

In this paper, we approximate service demands as

linear functions of a set of application-specific

parameters for illustration purposes. For example,

the component ODS is called in three workloads:

EventProcessing, WorkflowDashboardQuery, and

ETL_Extract. Each service demand is calculated by a

service demand function specified in the middleware

component library. The unit of measurement for

service demands is seconds (sec). For example:

Service Demand (sec) of the ODS in EventProcessing

workload ¼ 0.006 � (NumOfMaps) þ 0.006 �
(NumOfKPIs) þ 0.0055 � (NumOfSituations) þ
0.0075.

Service Demand (sec) of the ODS in

WorkflowDashboardQuery workload ¼ 0.006.

Service Demand (sec) of the ODS in ETL_Extract

workload ¼ 0.001 � (ComplexityFactorPerRecord) þ
0.001.

In general, service demand functions are middle-

ware-component-specific and application-specific.

KANO ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005676

They should be determined empirically. Modeling

tools should have built-in support for more complex

service demand functions, for example, nonlinear or

piecewise linear models.

Computational examples

Using WBI Modeler, we have developed a prototype

called the BPM Performance Advisor for the mid-

dleware modeling methodology and applied it to the

generic BPM solution considered in this section. In

this prototype, we annotate the business operations

model of WBI Modeler indirectly by creating an XML

file (AdditionalSolutionInfo.xml) that describes

the characteristics of the business process being

monitored and the workload intensity, for example,

the event-generation and query-generation rates and

the ETL-initiation rate. In general, the event-

generation rate depends on the number of workflow

activities per workflow instance and the number of

business measures to be evaluated that are defined

in the business operations model. The performance

analysis is performed by using fluid models that

have been described elsewhere in detail, including

the methodology and assumptions.
8

Alternatively,

the discrete event simulation engine in WBI Modeler

can also be used for this purpose.

Figure 4
Middleware component library

<ComponentLibrary>
 <Component ID="1" Name="CEI">
 <Workload Name="EventProcessing">
 <ServiceDemandModel ModelName="LinearModel">
 <ModelPara Name="EventSize" Coefficient="6.25e-7"/>
 <ModelPara Name="Constant" Coefficient="0.00444"/>
 </ServiceDemandModel>
 </Workload>
 </Component>
 <Component ID="2" Name="ACS">
 …
 </Component>
 <Component ID="3" Name="ODS">
 <Workload Name="EventProcessing">
 <ServiceDemandModel ModelName="LinearModel">
 <ModelPara Name="NumOfMaps" Coefficient="0.006"/>
 <ModelPara Name="NumOfKPIs" Coefficient="0.006"/>
 <ModelPara Name="NumOfSituations" Coefficient="0.0055"/>
 <ModelPara Name="Constant" Coefficient="0.0075"/>
 </ServiceDemandModel>
 </Workload>
 <Workload Name="WorkflowDashboardQuery">
 <ServiceDemandModel ModelName="LinearModel">
 <ModelPara Name="Constant" Coefficient="0.006"/>
 </ServiceDemandModel>
 </Workload>
 <Workload Name="ETL_Extract">
 <ServiceDemandModel ModelName="LinearModel">
 <ModelPara Name="ComplexityFactorPerRecord" Coefficient="0.001"/>
 <ModelPara Name="Constant" Coefficient="0.001"/>
 </ServiceDemandModel>
 </Workload>
 </Component>
 <Component ID="4" Name="PortalServer">
 …
 </Component>
 <Component ID="5" Name="OLAPServer">
…
 </Component>
 <Component ID="6" Name="DW">
 …
 </Component>
</ComponentLibrary>

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 KANO ET AL. 677

We consider the following case study to illustrate

the utility of the BPM Performance Advisor. An

enterprise, ABC Corp., is interested in deploying a

BPM solution to monitor and manage their business

performance on an ongoing basis. Because the

customer base of ABC Corp. is growing at a

significant rate, they want to ensure that their BPM

solution is deployed on an appropriately sized

infrastructure. In this context, the BPM Performance

Advisor can be used to answer two kinds of

questions: 1) Given a workload and a deployment

topology, where is the resource bottleneck? 2) Given

a workload, what deployment topology can satisfy

the performance objective? When analyzing alter-

native topologies, BPM Performance Advisor allows

two possible options, either change the machine

type or change the cluster by increasing the number

of nodes in the cluster.

In using the BPM Performance Advisor to address

this problem, the business processes to be monitored

in the BPM solution are first modeled using WBI

Modeler. The attributes of the BPM solution, such as

the sources of the business events and the number of

KPIs monitored, are then specified in the BPM

Performance Advisor. Business demands in future

years are modeled as different scenarios to examine

the performance of different deployment topologies

and to identify the topology that can satisfy the

performance objective for the BPM solution (e.g.,

less than 10 seconds of average query response time

under given event/query generation rates).

In this prototype, a list of machine types and their

performance ratings (Rperf
13

) are stored in a

hardware library illustrated in Figure 6. The proto-

type assumes that the service demand associated

with a physical solution component in handling a

request can be ‘‘scaled’’ to estimate the new service

demand when machine type or number of nodes is

changed. In this paper, for simplicity, the perfor-

mance of the machine is proportional to Rperf and

the number of nodes.

Figure 7 illustrates a deployment topology, that is,

the machine on which each middleware component

is deployed. Attributes of each machine are machine

type (BrandModel), number of nodes, and utiliza-

tion target. Note that default utilization target is 1.0

(100 percent). For this case study, Table 1 shows

the resource utilization statistics for each server.

This shows that all the servers will meet the

utilization targets for the average traffic specified in

Figure 5
Additional Solution Information

<AdditionalSolutionInfo>
 <SourceEvent SourceName="BusinessProcessWorkflow" GenerationRate="10.0" EventSize="1500"
 NumOfMaps="2" NumOfKPIs="2" NumOfSituations="2"/>
 <WorkflowDashboardQuery SourceName="WorkflowDashboard" GenerationRate="5.7"/>
 <BusinessDashboardQuery SourceName="BusinessDashboard" GenerationRate="10.4"/>
 <ETL GenerationRate="1.157e-5" ComplexityFactorPerRecord="1.5"/>
</AdditionalSolutionInfo>

Figure 6
Server library

<ServerLibrary>
 <Server BrandModel="IBM p640 P3II_375 1-way" Rperf="1"/>
 <Server BrandModel="IBM p640 P3II_375 3-way" Rperf="2.55"/>
 <Server BrandModel="IBM p640 P3II_375 4-way" Rperf="3.47"/>
 <Server BrandModel="IBM p650 P4+_1450 2-way" Rperf="4.47"/>
 <Server BrandModel="IBM p650 P4+_1200 4-way" Rperf="8.05"/>
 <Server BrandModel="IBM p670 P4_1100 8-way" Rperf="24.18"/>
 <Server BrandModel="IBM p670 P4_1100 16-way" Rperf="34.66"/>
 <Server BrandModel="IBM p690 P4+_1900 32-way" Rperf="104.17"/>
</ServerLibrary>

KANO ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005678

the AdditionalSolutionInfo.xml file (see Figure

5). Table 2 shows response-time statistics for each

workload. Note that if there are one or more

components whose server utilization is over 1.0, the

estimated response time is infinity, and the analysis

result suggests that the system is not stable and the

deployment topology needs to be changed.

Now, we can analyze the middleware performance

under different what-if scenarios. For instance, we

want to analyze the performance in a future time

period when the arrival rate during peak traffic is

four times that during average traffic. More specif-

ically, generation rates of SourceEvent, Workflow-

DashboardQuery, BusinessDashboardQuery, and

ETL_Extract are 40.0/sec, 22.8/sec, 41.6/sec, and

4.628 3 10
�5

/sec, respectively. Analysis results in

the peak traffic scenario are included in Tables 1

and 2. Table 1 shows that machines 2, 3, 4, 5 and 6

will not meet target utilizations under peak traffic.

In addition, since utilization of machines 2, 3, 4, 5 is

over 100 percent, response times of EventProcessing,

WorkflowDashboardQuery, BusinessDashboard-

Query, and ETL_Extract are infinity. For this type of

situation, when several machines are overutilized,

the BPM Performance Advisor provides two types of

recommendation to change the deployment top-

ology:

1. Change server types. The BPM Performance

Advisor recommends a machine type from its

server library in consideration of the utilization

target, as illustrated in Table 3. The appropriate

machine type can be identified by using the

approximation that resource utilization is in-

versely proportional to the performance ratio of

the machine type. Note that the number of nodes

is fixed in this usage mode.

2. Change number of nodes. The BPM Performance

Advisor suggests the minimum number of nodes

required to meet utilization targets, as illustrated

in Table 4. The minimum number of nodes can

also be identified by using the approximation that

resource utilization is inversely proportional to

the number of nodes. Note that the machine type

is fixed in this usage mode.

Figure 7
Initial deployment topology

<DeploymentTopology>
<Machines>

<Machine ID="1" BrandModel="IBM p640 P3II_375 1-way" NumberOfNodes="1"/>
<Machine ID="2" BrandModel="IBM p640 P3II_375 1-way" NumberOfNodes="1" UtilizationTarget=”0.9”/>
<Machine ID="3" BrandModel="IBM p640 P3II_375 1-way" NumberOfNodes="1" UtilizationTarget="0.8"/>
<Machine ID="4" BrandModel="IBM p640 P3II_375 1-way" NumberOfNodes="1" UtilizationTarget="0.7"/>
<Machine ID="5" BrandModel="IBM p640 P3II_375 1-way" NumberOfNodes="1" UtilizationTarget="0.7"/>
<Machine ID="6" BrandModel="IBM p640 P3II_375 1-way" NumberOfNodes="1" UtilizationTarget="0.8"/

</Machines>
<Deploy ComponentName="CEI" MachineID="1"/>
<Deploy ComponentName="ACS" MachineID="2"/>
<Deploy ComponentName="ODS" MachineID="3"/>
<Deploy ComponentName="PortalServer" MachineID="4"/>
<Deploy ComponentName="OLAPServer" MachineID="5"/>
<Deploy ComponentName="DW" MachineID="6"/>

</DeploymentTopology>

Table 1 Resource utilization for initial deployment topology under average and peak traffic

Resource Utilization (%)

Server 1
(IBM p640
P3II_375
1-way)

Server 2
(IBM p640
P3II_375
1-way)

Server 3
(IBM p640
P3II_375
1-way)

Server 4
(IBM p640
P3II_375
1-way)

Server 5
(IBM p640
P3II_375
1-way)

Server 6
(IBM p640
P3II_375
1-way)

Under Average Traffic 5.4 85.0 45.9 43.9 62.4 20.8

Under Peak Traffic 21.5 340.0 183.7 175.5 249.6 83.2

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 KANO ET AL. 679

Based on the first recommendation, we analyzed the

new deployment topology shown in Table 3. The

performance results of the new deployment top-

ology (shown in the last column of Tables 2 and 3)

showed utilization targets could be met even in peak

traffic.

SIMULATION OF PSMS

MDA provides an approach to generate a PIM of a

business process from the design-time business

operations model and then transform the PIM into a

PSM. By doing so, it facilitates longer-term flexibility

in implementation integration and ease of main-

tenance. In the transformation from PIM to PSM,

additional information on a specific platform is

provided by an automated tool or software designers

or both. There are many research publications
14–18

on this, and several commercial tools are also

available.

Business Process Execution Language (BPEL)
19

is an

industry-standard business process definition lan-

guage, which specifies interconnection of Web

Services. Several commercial tools support trans-

formation from a business operations model into a

BPEL model (PIM) that can be further deployed on a

particular platform (PSM). To make the BPEL model

executable, middleware-specific code needs to be

added. For example, a business process model can

be developed in WBI Modeler that can be converted

into its BPEL representation. This representation can

be imported into the WBI Server Foundation where

platform-specific code can be developed that can

enable the deployment of the business process.

SOA is a mechanism that enables the reconstruction

of a business solution if business requirements

change by changing only the interconnection of

services. However, when business solutions adapt

to constantly changing business requirements, it is

Table 2 Response Times (sec) of initial and new deployment topology under average and peak traffic

Workload Name

Response Time of
Initial Topology

under Average Traffic

Response Time of
Initial Topology

under Peak Traffic

Response Time of
New Deployment Topology

(changing server type)
under Peak Traffic

EventProcessing 0.6509 Inf. 0.1459

WorkflowDashboardQuery 0.0182 Inf. 0.0134

BusinessDashboardQuery 0.2561 Inf. 0.0924

ETL_Extract 0.0046 Inf. 0.0035

ETL_TransformLoad 0.0069 0.0327 0.0032

Table 3 Recommendation to change machine type

under peak traffic

Target
Utilization

(%)
Recommended
Machine Type

New
Resource
Utilization

(%)

Machine 1 100 IBM p640 P3II_375 1-way 21.5

Machine 2 90 IBM p650 P4þ_1450 2-way 76.1

Machine 3 80 IBM p640 P3II_375 3-way 72.0

Machine 4 70 IBM p640 P3II_375 3-way 68.8

Machine 5 70 IBM p650 P4þ_1450 2-way 55.8

Machine 6 80 IBM p640 P3II_375 3-way 32.6

Table 4 Recommendation to change number of

nodes under peak traffic

Target
Utilization

(%)

Recom-
mended
Node #

New
Resource
Utilization

(%)

Machine 1 100 1 21.5

Machine 2 90 4 85.0

Machine 3 80 3 61.2

Machine 4 70 3 58.5

Machine 5 70 4 62.4

Machine 6 80 2 41.6

KANO ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005680

often the case that several services exist but others

need to be newly developed. Early analysis and

testing of business solutions in the development

phase could significantly contribute to the under-

lying SOA value proposition by reducing the overall

time to deployment for the modified business

solution. Our PSM simulation framework supports

this by allowing users to simulate a PSM consisting

of real and simulated services for function and

performance testing. By including services available

in the analysis, deeper insights into a business

solution can be obtained, so that defects are detected

as early as possible and do not propagate further in

the solution development process.

Simulation framework

Figure 8 illustrates a framework for PSM simulation

of business solutions. The Traffic Generator simu-

lates client orders according to instructions from an

artifact-creation configuration file. Each client order

generated by the Traffic Generator is assigned a

simulated submission date and other parameters,

such as the client’s name, the specific item ordered,

the quantity of items ordered, and delivery instruc-

tions. These parameters are randomly assigned to

each order. The details of these attributes vary

depending on business solutions. When the simu-

lation is started, client orders are generated and

submitted to the Simulation Management compo-

nent, where the orders are sorted based on their

simulated submission dates and stored in the Event

Queue.

The Event Queue keeps track of business processes

in the implementation model by controlling the

timing and invocation of events. There are two types

of events associated with the implementation model

simulation: (1) events associated with the arrival of

client orders and (2) response events from the

Simulator. The client orders, the first type of event,

are generated by the Traffic Generator and stored in

the Event Queue. The Event Queue sends stored

client orders to the Web application server at

scheduled time stamps, based on the submission

date of the client orders. The Event Queue instructs

a simulated client, (e.g., SimClient), to send the

Figure 8
A framework for PSM simulation

Traffic
Generator

Simulation Management

Output Reports

Statistics Gathering

Web Application Server

Adaptive Entity Engine

Flow Engine

SimClient

Simulator (WS)

Applications (WS)

Event
Queue

Artifact
Creation
Configuration
(XML)

Simulated
Resource
Configuration
(XML)

Connection
Configuration
(XML)

Simulated
Task
Configuration
(XML)

Connection
Configurator (WS)

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 KANO ET AL. 681

client orders to an Adaptive Entity Engine
20

of the

Web application server.

The Adaptive Entity Engine handles adaptive enti-

ties, which are state machines with state-transition

logic. The state-transition logic is externally editable,

and the Adaptive Entity Engine makes it possible to

easily combine multiple processes and manage them

using state-transition logic. An adaptive entity is

generated for each client order and manages process

instances for the client order. In addition, the

Adaptive Entity Engine provides a function for

scheduling a time-out event that is automatically

invoked if no transition event occurs before a

specified time elapses. This function can be used to

detect potential functional defects in an application,

as will be explained later in this section. In general,

Flow Engines provide a time-out event and can also

combine multiple data flows. However, the Adaptive

Entity Engine is an optional feature of the framework

that can easily change the logic of combinations of

multiple processes without redeployment of process

models to the Flow Engine. If the Adaptive Entity

Engine is not used, the SimClient needs to be

configured to directly invoke the Flow Engine.

A Flow Engine is novel technology that allows us to

flexibly invoke a multitude of software assets and

human tasks, according to business process models.

Several Flow Engines supporting BPEL models are

commercially available (see Reference 21 for an

example). In our framework of runtime simulation,

the Flow Engine invokes a Connection Configurator

that can be switched between real and simulated

solution components according to instructions in a

connection configuration file. The Flow Engine does

not need to know if the component that it has

invoked is a real solution component or the

Simulator. Thus, if several new solution compo-

nents become ready, the user can easily switch from

the Simulator to real solution components by editing

the connection configuration file. The Flow Engine,

therefore, does not need redeployment of the

process models. After a process model is deployed,

it can be used during all stages of the solution

development phase. All changes are made in the

connection configuration file.

Figure 9 illustrates the switching between the

Simulator and real solution components by the

Connection Configurator WS. The connection con-

figuration file determines whether a task corre-

sponds to a real application or to the Simulator, and

provides information, including the types and

names of the parameters of the input business object

and the output business objects for each task.

If an invoked task is an actual application, the

‘‘switch connector’’ of the Connection Configurator

invokes the real application by converting the

interface to a task-specific interface. Then, the real

response business object from the application is

Connection Configurator (WS)

Simulator (WS)Flow
Engine

Common
Operation
Interface

Figure 9
Switching between the Simulator and real solution components

Simulated
Resource
Configuration
(XML)

Connection
Configuration
(XML)

Simulated
Task
Configuration
(XML)

simulate
TaskX

Application (WS)

Task-Specific
Operation
Interface

execute
TaskX

Common
Operation
Interface

invoke
application

invoke
simulator

convert
interfaceswitch

connector

KANO ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005682

converted to the common operation interface and

sent back to the Flow Engine by the Connection

Configurator. On the other hand, if an invoked task

is connected to the Simulator WS, then the switch

connector of the Connection Configurator simply

invokes the Simulator and forwards the input

business object to the Simulator. The Connection

Configurator can then simply forward the input

business object to the Simulator because the

Simulator shares the interface with the Connection

Configurator. The Simulator consumes simulated

resources, incurs time delays and generates re-

sponse business objects. Then the Simulator sends a

response event to the Event Queue, consisting of the

response business objects accompanied with a time

stamp accounting for the simulated submission and

completion dates of the task. Thus, the Event Queue

sends the response business object back to the Flow

Engine through the Connection Configurator at the

scheduled time stamp. Note that the response event

is the second type of event controlled by the Event

Queue.

The delay time used by the Simulator refers to the

time elapsed from when the solution component is

invoked to when the solution component completes

the task. More specifically, the delay time consists of

the action cycle time required for execution of a task

and the waiting time due to resource availability.

Based on the delay time, the task completion time is

calculated. In this case, the task submission and

completion times that the Simulator sends to the

Event Queue are time stamps of the simulation

clock. Unlike traditional simulation, the implemen-

tation model simulation involves both real compo-

nents executed with a real clock and simulated

components executed with the simulation clock.

When the Simulator is invoked, the Simulator gets a

current time stamp from the real clock and then

converts it to a time stamp for the simulated task

submission using the simulation clock. Then, the

delay time and the task completion time stamp are

calculated. The Simulator also logs resource utiliza-

tion and queues tasks, based on the simulation clock

time. The Event Queue manages synchronization

and conversion between real and simulation clocks.

Further details on the synchronization and conver-

sion of these clocks are discussed in the section

‘‘Synchronization of real and simulation clocks.’’

In the simulation framework, the single Simulator

WS emulates a plurality of types of services

according to instructions from the Simulator con-

figuration files that store the behaviors of resources

and tasks. First, the Simulator gets the name of the

task to be emulated as an argument. Then, the

Simulator consumes simulated resource, incurs

action cycle time to execute the task, and generates

the response business object, based on the task

behavior specified in the task configuration file. In

addition, the Simulator incurs waiting time due to

resource availability and resource cost, according to

the resource configuration file.

Modeling resource behavior during simulation is

mainly relevant for identifying the implications for

resource utilization, such as any resource bottle-

necks and the resulting resource costs. This infor-

mation is used to infer the cost/performance trade-

offs for business integration solutions. The resource

parameters include the name of the resource, the

capacity of the resource, the cost of the resource, the

resource-scheduling policy and resource availabil-

ity. The resource cost is determined based on

resource cost per use or resource cost per unit time.

The resource-scheduling policy is FIFO (first in first

out) or a priority queue. Resource availability is

based on an availability pattern, such as holidays,

weekends, and scheduled maintenance. The repeti-

tion frequency specifies the frequency at which the

pattern repeats, such as weekly, daily, working

days, and so forth. The start time and the end time

determine the duration of the repetition.

Modeling task behavior during simulation is relevant

for identifying the implications for overall cycle time,

queuing behavior, resulting delays, and so forth. This

is also used to infer the cost/performance trade-offs

for business integration solutions. The task parame-

ters include the task name, action-cycle-time distri-

bution, resource requirements, input business

objects, and output-business-object generation. The

action-cycle-time distribution describes the distribu-

tion of the time elapsed during the execution of a task.

The resource requirements describe what resources

are required to complete the task and the quantity of

each resource consumed. This description also

includes the types and names of parameters of the

input business object and the probability distribu-

tions of the parameters of the output business objects.

Note that the Simulator functions independent of any

specific business solution components. Therefore,

new components to be simulated can be added easily

to the implementation model simulation framework.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 KANO ET AL. 683

After a simulation of an implementation model is

complete, the Statistics Gathering function gathers

the simulation results from the Event Queue, the

Adaptive Entity Engine, the Flow Engine, and the

Simulator. The gathered statistics are somewhat

similar to those available from traditional business

process simulation (see, for example, WBI Work-

bench Version 4.2.4).
22

More specifically, the

gathered statistics include tables describing client-

order statistics (such as arrival times, completion

times, cycle times, processing costs, and waiting

times), resource statistics (such as utilization and

total costs), and queue statistics for each task (such

as average queue size, average queue waiting time,

and maximum queue size). This can be useful for

functional and performance testing of the business

integration solution. The gathered statistics are

provided to the user in output reports. The Statistics

Gathering function also identifies whether an

invoked solution component has been completed.

This can be of value from the perspective of

functional testing of business solutions. Our frame-

work can be used for functional testing if the

interaction between the workflow process and

applications is stateless. Further work is necessary

to model state transitions in interactions with end

applications to enable this framework to be used

more broadly. In order to use this framework more

broadly, the Simulator WS needs to obtain the state

as an argument and have some internal logic to

simulate the behavior of the application, which

would require application-specific simulators and is

not within the scope of this paper.

Synchronization of real and simulation clocks
Unlike traditional simulation, the implementation

model simulation method involves both real com-

ponents executed in real time (e.g., the Flow Engine,

the Adaptive Entity Engine, real solution compo-

nents, and network) and simulated components,

executed in virtual time (e.g., client orders and

simulated solution components). Therefore, simu-

lated components should be synchronized to real-

time simulations involving real components. In a

related work, Lendermann et al. also deal with

synchronization issues between the real clock and

simulation clock in the context of integrating

discrete-event simulation models with framework-

based business applications.
23

In our framework,

the Event Queue handles the synchronization and

consists of four subcomponents, the Priority Queue,

the Event Invoker, the Response Event Handler, and

the Flow Engine Tracker. These components interact

with each other as illustrated in Figure 10.

In the Priority Queue, client order events and

response events are sorted by their scheduled dates.

The scheduled dates can be submission dates of

client orders or task-completion dates. Client-order

events are generated and stored in the Priority

Queue by the Traffic Generator at simulation

startup. In contrast, response events are sent from

the Simulator at simulation runtime and submitted

to the Priority Queue through the Response Event

Handler. The scheduled dates are time stamps of the

simulation clock. The events in the Priority Queue

are invoked by the Event Invoker. During simulation

runtime, the Event Invoker reads the first event in

the Priority Queue and estimates the event invoca-

tion time by converting its scheduled time from the

simulation clock into the equivalent time on the real

clock. Then, at the scheduled time stamp of the real

clock, the Event Invoker invokes the event; that is,

the Event Invoker lets the SimClient send client

orders to a Web server or sends a response message

to the Flow Engine through the Connection Config-

urator. The Response Event Handler receives re-

sponse events with time stamps accounting for the

task submission and completion dates (according to

the simulation clock), and the response business

objects. Then, the Response Event Handler com-

pares the task-completion date with the scheduled

date of the first event in the Priority Queue. If the

task-completion date of the response event is after

the first event, then the Response Event Handler

simply inserts the event into the Priority Queue.

Otherwise, the Response Event Handler inserts the

event and notifies the Event Invoker that the first

event in the Priority Queue is updated. Then, the

Event Invoker rereads the first event and prepares

the invocation for it.

How is the simulation clock synchronized with the

real clock? The naı̈ve way would be synchronization

by offsetting the time difference between the time

stamp of the simulated submission date of the first

client order and the real time stamp at simulation

startup. However, this naı̈ve synchronization, or a

complete real-time execution, could take a prohib-

itively long time and not be of practical utility if

most solution components are simulated in an early

stage of the solution development phase or if a

process to be simulated contains human tasks.

KANO ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005684

Generally, human tasks need to be simulated

through the solution development phase and require

much longer action cycle time than IT tasks.

Therefore, we need methods of effectively synchro-

nizing the simulation clock and real clock and

shortening testing time. In this context, this paper

proposes a method for time compression.

The proposed method periodically checks the Flow

Engine and the Adaptive Entity Engine to see if any

real solution components are active. When no real

components are busy, intermediate durations are

compressed (see Figure 11). This is accomplished

by a component called the Flow Engine Tracker,

which uses the APIs of the Flow Engine and the

Adaptive Entity Engine that provide information on

the status of each process instance and adaptive

entity in execution. More specifically, there are two

types of compression. The first type is compression

of intervals of client orders. By polling the Flow

Engine and the Adaptive Entity Engine, it is possible

to identify whether there are any client orders in

execution or not. At any time, if there are no client

orders in execution, intervals between client orders

can be compressed (see duration B in Figure 11).

The second type is compression of delay time in the

Simulator. Regarding all client orders in execution, if

all process instances for them are waiting for

response events from the Simulator, the duration

until the next event is invoked can be compressed.

This type of duration can be detected by using the

APIs of the Flow Engine and the Adaptive Entity

Engine and checking the contents of the Priority

Queue (see duration A in Figure 11).

When the Flow Engine Tracker detects a compres-

sible duration, it logs the pair of corresponding time

stamps of real and simulation clocks (see Figure 12)

and notifies the Event Invoker and the Simulator

that the conversion function between real and

simulation clocks is updated. Then, the Event

Invoker re-converts the simulated scheduled date of

the first event into its real scheduled date and

prepares its invocation. Note that, by use of the pairs

of corresponding time stamps of real and simulation

clocks, any time stamp of the real clock can be

converted into the corresponding time stamp of the

simulation clock, and vice versa, as follows:

Let (S
0
, R

0
), (S

1
, R

1
), . . . , (S

n
, R

n
), (S

nþ1
, R

nþ1
) . . . be

the pairs of corresponding time stamps of real and

simulation clocks, sorted by their time sequences,

and let R
x

be a time stamp of the real clock. By use of

the corresponding time-stamp logs, R
x

can be

converted into the corresponding time stamp of the

simulation clock, S
x
. First, a real time stamp R

n�1
(in

the log) adjacent to the R
x

time stamp is identified

(R
n�1

, R
x

, R
n
). Then, S

x
can be calculated by

Adaptive Entity
Engine

Figure 10
Subcomponents of the Event Queue

SimClient
Priority Queue

Event Queue

status
tracking

new pair

a new pair of time stamps for simulation and real clocks

notification

client-order
events

event
invocation

response
events

Connection
Configurator

Flow Engine

Traffic
Generator Next Event

Event

Event

Event

Event

Event

Event
Invoker

Simulator

Corresponding pair
of time stamps

for simulation and
real clocks

Flow Engine
Tracker

Response
Event
Handler

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 KANO ET AL. 685

equation (1).

Sx ¼ Sn�1 þ ðRx � Rn�1Þ : ð1Þ

Reverse conversion is conducted in similar manner.

Rx ¼ Rn�1 þ ðSx � Sn�1Þ : ð2Þ

Note that equations (1) and (2) are only applicable

outside the compressed times in the simulation

clock. During simulation runtime, the latest pair of

time stamps of real and simulation clocks allows the

Simulator and the Event Invoker to conduct con-

version between time stamps of the real and

simulation clocks.

When a simulation is complete, statistics logged in

real clock times need to be converted into those in

simulation clock times. Regarding process cycle

times, because the start time and completion time of

the real clock for each process can be converted

respectively into those of the simulation clock by

use of the corresponding logs of time-stamp pairs,

the simulated process cycle time can be obtained.

Resource utilization and queue statistics for simu-

lated solution components are logged in simulation

clock times by the Simulator. Resource utilization

and queue statistics for real solution components are

logged by other profiling tools in real clock times,

and these statistics in real clock times need to be

converted. Because the compression operation is

conducted only when real components are in the

idle state, the resource utilization in real clock time,

U
real

, can be easily converted into that in simulation

clock time, U
sim

, as follows:

Usim ¼ Ureal 3
Treal

Tsim
; ð3Þ

where T
sim

is the testing time using the simulation

clock, and T
real

is the testing time using the real

clock. Therefore, all the statistics logged in real

clock time can be converted into those in simulation

clock time.

Computational example

We have developed a prototype for simulation of

implementation models using a BPEL Flow Engine

Figure 11
Compressible delay time and client-order interval

A process instance
for Client-Order N

A process instance
for Client-Order N+1

A process instance
for Client-Order N+2

A process instance
for Client-Order N

A process instance
for Client-Order N+1

A process instance
for Client-Order N+2

In a simulated
component

In real
components

In real
components

Time (in Simulation Clock)

start end

start end

start end

Compressible
Delay Time

Compressible
Client-Order Interval

(A) (B)

Time (in Real Clock)

start end

start end

start end

In real
components

KANO ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005686

in the Process Choreographer of WBI Server

Foundation. An executable BPEL flow was designed

by using WebSphere Studio Application Developer

Integration Edition Version 5.1. The prototype

system was deployed on a Windows XP** computer

with a 3.06 GHz Xeon** CPU and 1.5 GB RAM. We

illustrate the PSM simulation capability now with an

example.

Figure 13 illustrates a sample process for Web-based

shopping for a personal computer (PC). When a

customer visits the Web site, the customer profile is

loaded, and then the customer browses the PC

catalogs. The customer then checks different config-

uration options and checks their supply availability.

After the customer identifies a satisfactory config-

uration that is available, the order is submitted. This

Web shopping process consists of three subpro-

cesses; an access-catalog process, a check-supply

process, and an order-submission process. In the

prototype system, each subprocess is executed in the

Flow Engine, and an adaptive entity in the Adaptive

Entity Engine manages the invocations of the three

subprocesses. Because this is only an illustrative

example, clients’ behaviors such as thinking time

and repetition of browsing catalogs were not

considered, and only IT tasks were analyzed; that is,

when an adaptive entity receives a completion event

of a subprocess (e.g., an access-catalog process), the

adaptive entity promptly invokes the next subprocess

(e.g., a check-supply process).

Figure 14 shows an example of simulated client

orders that was generated by the Traffic Generator

according to an artifact-generation configuration

file. The simulated client orders are stored in the

Event Queue until the Event Queue instructs the

SimClient to send a simulated client order to the

Flow Engine at each scheduled submission time for

a client order. With each submission of a client

order, an adaptive entity and a process instance are

generated. Then, the process instance invokes

specific process tasks.

Table 5 shows sample simulation data sets for

experiments with the implementation model simu-

lation framework. We assumed that all the tasks are

deployed on a WCBE (WebSphere Commerce Busi-

ness Edition) server with two CPUs and that they

consume the CPUs of the server. The cycle times of

the tasks are assumed to be normally distributed

with parameters listed in Table 5.

Figure 13
A sample process for Web-based PC shopping that
illustrates PSM simulation

Access
Customer Profile

Access
Catalog

Access Catalog Process

Order
Submission

Order Submission Process

Configuration Check
Availability

Check Supply Process

Figure 12
Corresponding pairs of time stamps for simulation and
real clocks

Simulation
Clock

Real
Clock

R0

R1

R2

Compression

Compression

Com
pressio

n

Log of
Corresponding

Pairs of
Time Stamps

First Client
Order

Simulation
Start

Rn

Rn+1

Rx

S0

S1

S2

Sn

Sn+1

Sx

(S0 , R0)
(S1 , R1)
(S2 , R2)

(Sn , Rn)
(Sn+1 , Rn+1)

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 KANO ET AL. 687

The simulation framework allows the user to

execute two types of testing: functional testing and

performance testing. Functional testing is used for

identifying the locations of application failures if

they happen. Performance testing is used to provide

estimates for hardware sizing and middleware

configuration.

1. Functional testing

In situations where the interaction between a

workflow process and applications is stateless,

this framework is useful for functional testing. By

detecting time-outs in adaptive entities, failures

in subprocesses can be identified. Then, the

Simulation Management component examines

the processes where the failures occur and finally

identifies the locations of application failures by

using the APIs of the Flow Engine. Table 6 shows

sample statistics for a simulation done in the

functional-testing mode. To show how failures

can be detected, a pseudo failure was set in the

Check Availability task. Table 6 lists several

client orders and the arrival time and the

completion time of each order. Table 6 also lists

whether a defect was identified, and if so, the

state corresponding to the identified defect. For

instance, in BaseRequest1, the client order

arrived on October 22, 2003 at 13:00:16, and the

order was completed on October 22, 2003 at

13:00.32. Alternatively, in BaseRequest3, the

client order was placed on October 22, 2003 at

13:00:28, but the client order was not completed,

resulting in a time-out. In this example, the

statistics suggest that there is a defect and that the

defect occurred in the Check Availability task.

2. Performance testing

In the performance-testing mode, the gathered

statistics are similar to those available from

traditional business process simulations (such as

WBI Workbench Version 4.2.4
22

). Table 6

describes customer order statistics (arrival, com-

pletion times) used for checking whether the

system meets the cycle time requirements. From

the queue statistics of each task (average queue

size, maximum queue size) listed in Table 7, the

locations of any bottlenecks can be identified. In

addition, from resource utilization (i.e., WCBE

CPU ¼ 63.7% and WAS CPU ¼ 24.1%), insights

can be obtained for hardware sizing and mid-

dleware configuration. Note that statistics of both

simulated and real resources are reported. In this

experiment, all the solution components were

assumed to be deployed on a simulated WCBE

server, and the Flow Engine and the Adaptive

Entity Engine were run on a real Web application

server (WebSphere Application Server). Further-

more, the acceleration method enabled short-

ening the testing time for simulating the

execution of 10 client orders illustrated in Figure

14 by 47 percent, compared to a naı̈ve synchro-

nization of real and simulation clocks. Although

the extent of shortening testing time will depend

on the specific details of business integration

Figure 14
Sample client orders

Time=2003-10-22 13:00:16,type=EMEA,CustClass=Others,Item#=4
Time=2003-10-22 13:00:20,type=AP,CustClass=Tier1,Item#=4
Time=2003-10-22 13:00:28,type=AMERICAS,CustClass=Tier1,Item#=1
Time=2003-10-22 13:00:48,type=EMEA,CustClass=Tier1,Item#=1
Time=2003-10-22 13:00:52,type=AP,CustClass=Others,Item#=2
Time=2003-10-22 13:00:55,type=EMEA,CustClass=Tier1,Item#=2
Time=2003-10-22 13:01:01,type=AMERICAS,CustClass=Others,Item#=3
Time=2003-10-22 13:01:18,type=AMERICAS,CustClass=Tier1,Item#=4
Time=2003-10-22 13:01:24,type=AMERICAS,CustClass=Tier1,Item#=2
Time=2003-10-22 13:01:28,type=AP,CustClass=Others,Item#=3

Table 5 Sample simulation data for WCBE-CPU

resource

Task Name Mean (sec) Std Dev (sec)

Access Customer Profile 1.0 0.3

Access Catalog 2.0 0.7

Configuration 3.0 1.0

Availability Check 2.0 0.3

Order Submit 5.0 1.7

KANO ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005688

solutions and the progress of the solution

development, this result would be a good

example illustrating the capability of the accel-

eration method.

CONCLUDING REMARKS

In this paper, we have discussed the role of analysis

and simulation of business solutions in a SOA in

realizing the business value inherent in an SOA;

namely, flexibility, cost, and time to adapt business

process deployments. In particular, we presented

methodologies that can be used to analyze business

solutions during the design and the development,

testing, and deployment of the business solution.

There is considerable scope for future research in

this area. In order for the solution design-time

analysis to be used widely, workload and middle-

ware models that can be applied across different

business solutions have to be developed and

calibrated. Also, more accurate and fast quantita-

tive-analysis techniques need to be further devel-

oped. The PSM simulation capabilities need to be

further developed and integrated with deployment

testing and analysis tools.

ACKNOWLEDGMENTS
We wish to acknowledge Jay Benayon, Kumar

Bhaskaran, Steve Buckley, Henry Chang, David

Gamarnik, Ying Huang, Santhosh Kumaran, Young

Lee, Yingdong Lu, Mark Squillante, Vincent Szaloky

and Frederick Wu, who have contributed to different

aspects of this work.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc., Sun Microsystems, Inc., Intel
Corporation, or Microsoft Corporation.

CITED REFERENCES
1. M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P.

Krogdahl, M. Luo, and T. Newling, Patterns: Service
Oriented Architecture and Web Services, IBM Redbook,
April 2004, ISBN: 073845317X, http://www.
redbooks.ibm.com.

2. K. Gottschalk, S. Graham, H. Kreger, and J. Snell,
‘‘Introduction to Web Services Architecture,’’ IBM Sys-
tems Journal 41, No. 2, 170–177 (2002).

3. ‘‘MDA Guide, Version 1.0.1,’’ The Object Management
Group, June 2003, http://www.omg.org/mda.

4. S. Kumaran, ‘‘Model Driven Enterprise,’’ presented at
Global EAI (Enterprise Application Integration) Summit
2004, Banff, Canada, pp. 166–180.

5. J. D. Sterman, Business Dynamics: Systems Thinking and
Modeling for a Complex World, McGraw-Hill Publishers
(2000).

Table 6 Customer-order statistics

Customer Order ID Arrival Time Completion Time Identified Problem

BaseRequest1 2003–10–22 13:00:16 2003–10–22 13:00:32 n/a

BaseRequest2 2003–10–22 13:00:20 2003–10–22 13:00:38 n/a

BaseRequest3 2003–10–22 13:00:28 n/a Invoke Check Availability

BaseRequest4 2003–10–22 13:00:48 2003–10–22 13:01:07 n/a

BaseRequest5 2003–10–22 13:00:52 2003–10–22 13:01:08 n/a

BaseRequest6 2003–10–22 13:00:55 2003–10–22 13:01:12 n/a

BaseRequest7 2003–10–22 13:01:01 n/a Invoke Check Availability

BaseRequest8 2003–10–22 13:01:18 n/a Invoke Check Availability

BaseRequest9 2003–10–22 13:01:24 2003–10–22 13:01:41 n/a

BaseRequest10 2003–10–22 13:01:28 2003–10–22 13:01:42 n/a

Table 7 Queue statistics

Task Name

Max
Queue Size

Average
Queue Size

Access Customer Profile 1 0.171

Access Catalog 2 0.382

Configuration 1 0.248

Check Availability 2 0.274

Order Submission 2 0.625

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 KANO ET AL. 689

6. W. Grey, K. Katircioglu, S. Bagchi, D. Shi, G. Gallego, D.
Seybold, and S. Stefanis, ‘‘An Analytic Approach for
Quantifying the Value of e-Business Initiatives,’’ IBM
Systems Journal 42, No. 3, pp. 484–497 (2003).

7. M. Laguna and J. Marklund, Business Process Modeling,
Simulation and Design, Prentice Hall (2005).

8. D. Gamarnik, N. Jengte, Y. Lu, B. Ramachandran, M.
Squillante, A. Radovanovic, J. Benayon, and V. Szaloky,
‘‘Analysis of Business Processes Using Queuing Ana-
lytics,’’ Submitted to BPM 2005 Conference (2005).

9. Websphere Business Integration Monitor, http://
www-306.ibm.com/software/integration/wbimonitor/.

10. UML Profile for Schedulability, Performance, and Time
Specification, Object Management Group, http://
www.omg.org/docs/ptc/02-03-02.pdf.

11. T.-K. Liu, A. Behroozi, and S. Kumaran, ‘‘A Performance
Model for a Business Process Integration Middleware,’’
Proceedings of IEEE Conference on eCommerce, 2003, pp.
191–198.

12. Common Event Infrastructure, International Business
Machines Corp., http://www-306.ibm.com/software/
tivoli/features/cei/.

13. IBM System p5, eServer p5, pSeries, OpenPower, and IBM
RS/6000 Performance Report, October 5, 2005, http://
www-03.ibm.com/systems/p/hardware/system_perf.
pdf.

14. B. Appukuttan, T. Clark, S. Reddy, L. Tratt, and R.
Venkatesh, ‘‘A Model Driven Approach to Building
Implementable Model Transformations,’’ Proceedings of
Workshop in Software Model Engineering, Sixth Interna-
tional Conference on the Unified Modeling Language,
2003, http://www.metamodel.com/wisme-2003/04.pdf.

15. K. Czarnecki and S. Helsen, ‘‘Classification of Model
Transformation Approaches,’’ Proceedings of OOPSLA
2003, Workshop in Generative Techniques in the Context
of Model Driven Architecture, 2003, http://www.
softmetaware.com/oopsla2003/czarnecki.pdf.

16. M. deMiguel, D. Exertier, and S. Salicki, ‘‘Specification of
Model Transformations Based on MetaTemplates,’’ Pro-
ceedings of Workshop in Software Model Engineering,
Fifth International Conference on the Unified Modeling
Language, 2002, http://www.metamodel.com/

17. W. Witthawaskul and R. Johnson, ‘‘Specifying Persis-
tence in Platform Independent Models,’’ Proceedings of
Workshop in Software Model Engineering, Sixth Interna-
tional Conference on the Unified Modeling Language,
2003, http://www.metamodel.com/wisme-2003/10.pdf.

18. T. Ziadi, B. Traverson, and J. Jezequel, ‘‘From a UML
Platform Independent Component Model to Platform
Specific Component Models,’’ Proceedings of Workshop in
Software Model Engineering, Fifth International Confer-
ence on the Unified Modeling Language, 2002, http://
www.metamodel.com/wisme-2002/papers/ziadi.pdf.

19. Business Process Execution Language for Web Services
(BPEL4WS), Version 1.1, May 2003, http://www-128.
ibm.com/developerworks/library/specification/ws-bpel/.

20. P. Nandi, S. Kumaran, and K. Bhaskaran, ‘‘Method and
System for Process Brokering and Content Integration for
Collaborative Business Process Management,’’ Pending
United States Patent Application, 20030187743AI, 2002.

21. Working with WebSphere Business Integration Server
Foundation Process Choreographer, International Busi-
ness Machines Corp., http://www-106.ibm.com/
developerworks/websphere/zones/was/wpc.html.

22. WebSphere Business Integration Workbench V4.2.4,
International Business Machines Corp., http://
www-306.ibm.com/software/integration/wbimodeler/
workbench/.

23. P. Lendermann, N. Julka, L. Chan, and B. Gan,
‘‘Integration of Discrete Event Simulation Models with
Framework-Based Business Applications,’’ Proceedings of
2003 Winter Simulation Conference, IEEE, pp. 1797–1804.

Accepted for publication April 13, 2005.

Makoto Kano
IBM Research Division, Tokyo Research Laboratory 1623-14,
Shimotsuruma, Yamato, Kanagawa, Japan
(mkano@jp.ibm.com). Mr. Kano is a research staff member at
the IBM Tokyo Research Laboratory. He received a Master’s
degree in mechanical engineering from the University of
Tokyo in 2002. He is currently focusing on developing
analysis techniques for business performance and information
management. His research interests include bio-informatics
and information visualization techniques.

Akio Koide
IBM Research Division, Tokyo Research Laboratory 1623-14,
Shimotsuruma, Yamato, Kanagawa, Japan
(e03097@jp.ibm.com). Dr. Koide leads the research group on
Business Performance and Information Management at the
IBM Tokyo Research Laboratory. He received a Ph.D. degree
in theoretical physics in 1975 from the University of Tokyo. He
joined in IBM in 1981 and has worked on the design of
integrated application systems such as drug and chemical
design systems and on medical imaging and database systems.
More recently, he has applied his experience in system design
combined with his background in theoretical physics to the
performance analysis of business and its infrastructure.

Te-Kai Liu
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, NY 10598
(tekailiu@us.ibm.com). Dr. Liu is a research staff member at
the IBM Watson Research Center. He is currently focusing on
applying performance engineering disciplines to model-driven
development of business-performance-management and
business-process-integration solutions. His research interests
include software performance engineering, performance
modeling, wireless communication networks, radio frequency
identification, intelligent vehicle highway systems, and
pervasive computing. He is the author of 30 journal and
conference papers and holds eight United States patents. He
received a Ph.D. degree in computer engineering from the
University of Southern California and is a member of IEEE and
ACM.

Bala Ramachandran
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, NY 10598
(rbala@us.ibm.com). Dr. Ramachandran is a research staff
member in the Mathematical Sciences department at the IBM
Watson Research Center. He received a B.Tech. degree in
Chemical Engineering from the Indian Institute of Technology,
Madras, India in 1991, and a Ph.D. degree from Purdue
University in 1996, specializing in operations research. At
IBM, he has focused on developing analysis techniques for
business process management and risk management. &

KANO ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005690

Published online October 18, 2005.8

wisme-2002/papers/deMiguel.pdf.

