M. Kano
A. Koide
T.-K. Liu
B. Ramachandran

INTRODUCTION

Analysis and simulation of
business solutions in a service-
oriented architecture

Modeling and simulation of business processes is a powerful capability for analysis of
business solutions in a service-oriented architecture (SOA). In this paper, we describe
analysis techniques that are applicable during the design-time and runtime
development of business solutions to estimate business process performance. During
the design phase, our analysis framework converts the business process model, which
is annotated with additional information, into a more granular model by using an
underlying middleware model that describes all the middleware components in an
SOA. The resulting model can then be evaluated in terms of performance and cost. We
discuss a prototype implementation that uses WebSphere® Business Integration (WBI)
Modeler and present the results of a case study. After the design phase, several services
required to support the business process execution may exist, but others may need to
be newly developed. Our runtime simulation framework supports this by allowing
users to simulate implementation models consisting of real and simulated services for
function and performance testing. Furthermore, when new services are available, they
can be easily included in the analysis by switching from the Simulator to the new
service. We discuss a prototype implementation for this capability that uses the Process
Choreographer of WBI Server Foundation and present results of a case study.

order to alleviate the needs of constant change, the

Service-oriented architectures (SOAs) have been
proposed as a mechanism to address pressures of IT
organizations to support alignment with business
requirements that are changing at an increasing
rate' and to simultaneously reduce costs. Moreover,
enterprise architectures are heterogeneous and
require integration of new technology with different
types of existing technology in a flexible manner,
while satisfying business performance needs. In

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

enterprise architecture should provide a platform-
independent layer for building loosely coupled
application services. By doing so, SOA can integrate

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

KANO ET AL

669

Strategy l\/Iodels

\F /
Business Operations Models [
} /
PIatform -Independent Models [
J /[
P

\Iatform—Speciﬁc Models/

Model-driven enterprise

| Figure 1
1

business processes within and between enterprises
with the people and data that are required for their
execution.

Web Services offer a specific approach to implement
service-oriented architectures.” A Web service (WS)
separates the interface specification from the im-
plementation and is network-accessible through
standardized XML (Extensible Markup Language)
messaging. It provides a platform-neutral program-
ming model that can be used to integrate loosely
coupled business systems. The Web service is
described using a standard, formal XML notation,
called its service description, that can be published
with a service registry. Service requestors may find
the service through the registry and then directly
bind to the service and invoke it.

In a related development, the Object Management
Group, Inc. is promoting the concept of Model
Driven Architecture** (MDA**) as an enabler of
flexibility in IT infrastructures.” MDA allows ma-
chine-readable-application and data models to be
defined that can enable (1) longer-term flexibility in
implementation and integration and (2) ease of
maintenance and testing. The models can be used to
generate code that can be validated against re-
quirements and tested against various infrastruc-
tures. MDA provides an approach to specify a
system independent of its platform and further, to
transform the system specification into a platform-
specific specification. This approach consists of
three types of models:

1. Computation-Independent Model (CIM)—This
models the environment in which the system is

670 KANO ET AL.

expected to operate, thus specifying the system
requirements, and acts as the bridge between
domain experts and system architects.

2. Platform-Independent Model (PIM)—This is a
platform-independent view of the system.

3. Platform-Specific Model (PSM)—Based on the
PIM and the choice of a specific platform for
implementation, a platform-specific view of the
system can be developed, which is the basis for
code generation.

Synthesizing the SOA and MDA concepts for busi-
ness process management, the concept of a model-
driven enterprise has been proposed to design,
develop, deploy, and manage enterprise solutions.*
This is a framework consisting of four layers of
models (see Figure 7). In the topmost layer, strategy
models are used to specify the business objectives
and context. Next, operational models describe
business operations and how they achieve the
strategic objectives. These two layers, when viewed
together, are similar to the CIM layer in MDA, with
the subtle difference that they constitute a business
perspective rather than a system perspective. The
bottom two modeling layers are execution models
and implementation models, and these directly map
to the PIM and PSM layers in the MDA framework.

The focus of this paper is to describe analysis
techniques that are applicable to the model-driven
enterprise framework. The analysis techniques
address one of the core value propositions of the
model-driven approach; that is, the models and the
code generated from them can be validated against
requirements, tested against various infrastructures,
and used to directly simulate the behavior of the
system being designed. As a result, the enterprise
architecture can be changed more readily in
response to changing business needs. The analysis
techniques may be classified further as design-time
or runtime, based on whether they are applicable to
the models, to the generated code, or to both. The
value proposition of such techniques is to identify
potential issues and defects in the business solution
earlier in the business-process-management life
cycle, thereby helping reduce costs in designing and
deploying the business solution.

In the second section of the paper, “Analysis
Methods for the model-driven enterprise frame-
work,” we describe the different analysis techniques
applicable to different layers in the MDA framework.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

In the third section, “Design-time business per-
formance modeling,” we describe how to model and
analyze business processes from the IT-infrastruc-
ture point of view, applicable during design time. In
the fourth section, “Simulating PSMs,” we describe
how to model and analyze business processes
during runtime. The proposed methods are also
illustrated with case studies. We then conclude with
remarks on further directions for this work.

ANALYSIS METHODS FOR THE MODEL-DRIVEN
ENTERPRISE FRAMEWORK

By separating the platform-independent aspects of a
solution from the platform-specific aspects and the
resulting code, SOA and MDA support reuse of
solution components and render the business
solution more flexible and adaptable to changes in
business requirements. Moreover, using machine-
readable application and data models enables
analysis, testing, and refinement during the design
phase, rather than the implementation phase when
the cost of changes is much higher.

In the CIM layer, several techniques such as Systems
Dynamics and Value Modeling can be used to
analyze different aspects of this layer. Systems
Dynamics is an appropriate technique to analyze
high-level implications of different strategies when
sufficient information is not available to develop a
detailed operational model of the business or
system, but high-level information is available on
the key system metrics and their relationships.5 For
example, Reference 5 has detailed descriptions using
Systems Dynamics models of how supply chains can
exhibit oscillations and instabilities that could be
better managed by using different supply chain
strategies. Value Modeling approaches are useful to
assess the business value of different initiatives
based on a value driver tree alpproach.6

When operational details of the business process are
known, techniques such as discrete event simula-
tion are relevant. First, the operational process is
modeled by mapping the business process flows,
identifying the activities and subprocesses contained
therein in a hierarchical manner, and associating
resource requirements and costs, where appropriate.

The entire process can be simulated to estimate
different process metrics, such as resource utiliza-
tions and costs, and used to run different what-if
process scenarios to identify a good process design.7

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

The analysis techniques described earlier are mature
and have been used extensively to model and
optimize business processes. Recently, transforma-
tion methods have been developed to generate
queuing models automatically from a description of
the business process, and these methods offer the
promise of rapidly estimating steady-state metrics for
the business process without performing simulation.®

There has been considerable work in the design-
time and runtime analysis of IT infrastructures
(several references cited in the sections “Design-
time business performance modeling” and “Simu-
lating PSMs.”). Nonetheless, these are disconnected
from operational business process models and
hence are of limited value for analysis in the SOA
context, because changes in the business models
cannot be transformed to infrastructure models and
analyzed automatically. In order to realize the value
proposition of SOAs, one needs to be able to identify
and model implications of process changes in terms
of their impact on the IT infrastructure. These
implications are addressed in this paper by using
MDA as a framework to develop models at different
levels and by applying appropriate analysis tech-
niques to analyze the infrastructure.

The rest of the paper deals with techniques
applicable to design-time and runtime analysis of IT
infrastructures. By design-time analysis of an IT
infrastructure, we refer to the analysis of an opera-
tional model of the business process with IT-level
depth, that is, an operational model composed of IT-
level activities and consuming IT resources. The
overall objective here is to estimate resource and
process bottlenecks, given a workload and deploy-
ment topology, and further, to identify a deployment
topology that meets specified performance targets.
By runtime analysis of an IT infrastructure, we refer
to the analysis performed during an intermediate
stage in the application development life cycle,
wherein executable code has been generated from
the PSM for some business solution components,
and there may exist other solution components for
which either code may not have been developed or
code may exist, but may not yet be integrated with
the business solution. Such situations may occur
often when some parts of the business process are
changed. In using the MDA approach, we may
regenerate code for the components of the process
that have changed but may want to test the process
execution with the new components, without plac-

KANO ET AL

671

ing at risk the already existing components that are
being executed for the business process. The overall
objective here is to validate the application and
process design and enable early functional testing of
the business solution to identify and remove defects
at an early stage of the development and integration
life cycle, thereby reducing costs. Moreover, the
performance of the application design can be tested
against various deployment topologies to provide
estimates for hardware sizing and middleware
configuration.

DESIGN-TIME BUSINESS PERFORMANCE
MODELING

The execution of most business processes requires
the support of IT services to achieve the objectives
of the business processes. The business processes
designed for a business transformation project
typically have objectives, such as improving human
productivity, cutting cost, increasing process
throughput, and improving the visibility of business
operation for Business Performance Management
(BPM). It is very crucial for a business to understand
the potential benefits and cost in designing a
business process with the supporting IT services.

IT services can be loosely classified into three types
according to their primary benefits to a business. One
type of IT service provides users with the information
that is needed or helpful for completing a task in a
business process. This type of IT service improves the
productivity of human resources by shortening the
time that it takes for users to complete a task, for
example, a Web-portal application that assists users
in filling out procurement orders. A second type of IT
service automates the tasks of a business process by
running business applications on computers. This
type of IT service can reduce labor cost and human
error, shorten the process cycle time (elapsed time
between process instantiation and termination), and
increase the throughput of a business process, among
other benefits, for example, an enterprise-applica-
tion-integration (EAI) system that sends an update
message to an SAP application upon receiving a
notification message from a Siebel Systems, Inc.
application, signaling the change of customer contact
information. An EAI system can automate the
synchronization of customer contact information
stored on different enterprise applications without
human involvement. The third type of IT service
provides visibility into the business operation for
BPM, for example, a workflow-monitoring system

672 KANO ET AL.

that receives events about the status of workflow
instances and presents a management dashboard for
users. On the dashboard users can spot problematic
workflow instances in real time and take actions, such
as reassigning a work item or terminating a process
instance. Some dashboards, for example, Websphere
Business Integration (WBI) Monitor,9 allow users to
see the performance of workflow instances that have
terminated in a historic view. The real-time and
historic views can track how well business processes
are meeting their goals so that timely management
actions can be taken when necessary.

At design time, for any of the preceding three types
of IT services, it is important for a business to be able
to assess whether a given hardware configuration
can meet the performance objective of the business
process, which is often expressed in terms of process
throughput, process cycle time, and user-perceived
response time. It is equally important to be able to
estimate the cost of the IT services that support the
execution of a business process. The cost of IT
services includes hardware, software licensing, and
maintenance. The rest of this section focuses on
assessing whether a hardware configuration can
meet the performance requirement of the business
process, given a set of supporting IT services.

Related work

Performance modeling of IT systems at design time
has gained significant attention recently. The UML
Profile for Scheduling, Performance and Time'® is an
OMG standard for designing a software system in
UML** (Unified Modeling Language**) at design
time. It uses activity diagrams, among others, to
describe how software components interact in a
scenario and the required resources in each activity.
Various types of analysis, such as scheduling
analysis for real-time systems and performance
analysis, can be done by transforming the activity
diagrams into analytical or simulation models that
can be handled by various analysis techniques or
tools. Our work recognizes the difficulty of specify-
ing the resource demand of IT services at design
time and proposes a middleware library that
encapsulates prior knowledge of the performance
characteristics of middleware components.

More detailed modeling of middleware servers for
sizing the hardware for a business-process-integra-
tion solution has been attempted in Reference 11.

Using a combination of layered queuing modeling

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

and the architecture of a business-process-integra-
tion middleware server, potential software bottle-
necks, such as thread pools and database
connection pools, that can impact system perfor-
mance (especially on multiprocessor machines) are
shown. However, it requires significant work to
develop such a detailed model, and it may be
impractical for business solutions that require many
middleware components. We believe that the mid-
dleware model presented in this paper has the right
level of detail for answering questions related to the
cost and performance of a BPM solution at design
time.

A business operations model with IT depth

In this section, we discuss design-time business
performance modeling based on a business oper-
ations model. Our approach for design-time busi-
ness performance modeling relies on first creating a
knowledge store containing performance-related
attributes of IT services that have been developed
and benchmarked. The knowledge store is then
referenced by a tool that maps the IT services
required by a business process to the IT services
contained in the knowledge store. To make this
mapping easier, a business process can be annotated
with the attributes used by the knowledge store, for
example, the names of the IT services. After the
mapping is done, the result is a business process
with IT depth that is ready for performance analysis
and that can answer what-if questions.

A business process model with IT depth can be used
to relate the performance of a business process to
the performance of the supporting IT services. For
example, the number of business process instances
to be handled per unit time determines the number
of invocations of the supporting IT services per unit
time, which in turn determines the throughput and
response time of the IT services deployed on a given
hardware configuration. The cycle time of the
business process can then be obtained by summing
up the elapsed time of the activities of the business
process, which can be obtained from the elapsed
time of the activities performed by human resources
and the response times of the supporting IT services.
Without specifying IT services in the context of a
business process model, one cannot easily see how
individual IT services impact business performance.

A business process can be modeled using a combi-
nation of predefined constructs, such as Tasks,

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Subprocesses, Fork, Merge, and Join. A detailed
description of business process modeling is beyond
the scope of this paper, but further details can be
found in textbooks and product manuals, for instance
Reference 7. The resource demand of an activity of a
business operations model specifies the resources
required to complete the activity. These can be
human resources or IT resources. Resource demand
for human resources is usually specified in terms of
the type and quantity of roles required and their
corresponding durations. Resource demand for IT
resources can be specified similarly to demand for
human resources at a high level. This high-level view
is useful for the analysis of IT cost and cycle time of
business processes at an early stage of the solution
development cycle. However, if the objective is to
estimate the hardware configuration required for
solution provisioning, IT resources need to be
specified at a finer granularity. This can be achieved
by specifying the required IT resource as an IT service
that can be realized by a multitier IT infrastructure.
The mapping from an IT resource in a business
operations model to an IT service can be described as
an annotation to the model. A business operations
model, thus annotated, can provide a holistic view of
the required resources for the execution of a business
process. Utilization and response time of IT resources
can be analyzed in the context of the given business
process. The specification of IT services as part of the
annotation of a business process model is discussed
in this subsection.

The performance of a business solution depends on
the functions of the business solution, the middle-
ware components used to realize the functions, and
the hardware used to host the middleware compo-
nents. An IT service that provides the function
required for a business activity can be realized by
one or more middleware components and enter-
prise-information-system (EIS) components, such as
those provided by SAP AG and PeopleSoft, Inc.
Typical middleware components include Web-
Sphere Application Server, WBI message brokers,
WBI InterChange Server (WICS), and DB2*. In
addition, middleware components also include
components based on J2EE** (Java 2 Platform,
Enterprise Edition) that are developed on top of
application servers such as WebSphere Application
Server. An example of a J2EE-based middleware
component is the Common Event Infrastructure
(CEI).12 When middleware and EIS components
work in concert to complete a request to a particular

KANO ET AL

673

Operational Data Store ETL Extract ETL_Transformiodd | pata Warehouse
1 t
. . . OLAP Server
Active Correlation Services
Portal Server) Queries
I Common Event Infrastructure
Events

i Event Source :
|
|) X |
: Business Business |
I Process Application l
: Workflow — _ :
: » T M T > oo :
I |
I |
I |
| |
| I

Figure 2

Middleware components of Business Performance Management

IT service, each component incurs certain CPU
demand and I/O demand, collectively called hard-
ware resource demand. Figure 2 illustrates inter-
actions of the middleware components of a general
BPM solution, which are further detailed in the next
subsection. The hardware resource demand is
component-dependent and service-dependent. Quite
often, for the same service and the same component,
the hardware resource demand is further dependent
on the parameters associated with a given IT service
request. For example, the CPU demand for pro-
cessing an event by CEI is found to depend on the
size of the event, more specifically the number of
extended elements in a Common Base Event (CBE)
to be handled by CEI In order to come up with an
estimate of the required hardware configuration
(i.e., capacity sizing), one needs to be able to
characterize the hardware resource demand of
middleware components. This characterization can
be in terms of the IT services that are intended to be
supported by the middleware components. This is
the subject of the next subsection.

Middleware modeling

A middleware component provides a set of services
according to the application logic deployed on the
middleware. For example, WebSphere Application

674 KANO ET AL.

Server is middleware on which Enterprise
JavaBeans** (EJBs**) and servlets can be deployed.
The deployed EJBs and servlets determine the kinds
of service that an application server can provide.
Middleware components often work in concert to
provide the IT services required by the activities in a
business operations model; for example, DB2 can
work with WebSphere Application Server to provide
the IT services that the deployed servlets and EJBs
intend to provide. To facilitate the specification of
the IT services needed by the activities of a business
operations model, it is desirable to reference a
workload library that contains a list of workloads. A
workload in a workload library specifies how
middleware components interact to support a given
IT service. The hardware resource demand required
for each middleware component to support the IT
services specified in a workload library is described
in a middleware component library. The hardware
resource demand of middleware components can be
measured by benchmark tests performed in labo-
ratories. The separation of the middleware compo-
nent library from the workload library has the
following advantages.

1. Middleware component libraries can be kept up
to date by middleware product owners; whereas

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

<WorkloadLibrary>

<Components>
<Component ID="1" Name="CEIl" />
<Component ID="2" Name="ACS"/>
<Component ID="3" Name="0DS"/>
<Component ID="4" Name="PortalServer"/>
<Component ID="5" Name="OLAPServer"/>
<Component ID="6" Name="DW"/>

</Components>

<Workloads>

<Workload ID="1" Name="EventProcessing'"™>

<Visit From="0" To="1" AvgNumOfCalls="1" Type="a"/>
<Visit From="1" To="2" AvgNumOfCalls="1" Type="a"/>
<Visit From="2" To="3" AvgNumOfCalls="1" Type="s"/>

</Workload>

<Workload ID="2" Name="WorkflowDashboardQuery">

<Visit From="0" To="4" AvgNumOfCalls="1" Type="s"/>
<Visit From="4" To="3" AvgNumOfCalls="1" Type="s"/>

</Workload>

<Workload ID="3" Name="BusinessDashboardQuery">

<Visit From="0" To="4" AvgNumOfCalls="1" Type="s"/>
<Visit From="4" To="5" AvgNumOfCalls="1" Type="s"/>
<Visit From="5" To="6" AvgNumOfCalls="1" Type="s"/>

</Workload>
<Workload ID="4" Name="ETL_Extract"™>

<Visit From="0" To="3" AvgNumOfCalls="1" Type="s"/>

</Workload>
<Workload ID="5" Name="ETL_TransformLoad">

<Visit From="0" To="6" AvgNumOfCalls="1" Type="s"/>

</Workload>
</Workloads>
</WorkloadLibrary>

Figure 3

Workload library for Business Performance Management

workload libraries can be created and managed
by various solution owners who decide which
middleware components are used in a solution.
2. Business-process-solution designers can work

with a high-level tool such as WBI Modeler, at the
same time, letting the high-level tool reference
the appropriate workload and middleware-com-
ponent libraries that support the domain of the
business processes to be designed. An example of
a workload and a middleware-component library
is discussed next in the context of BPM solutions.

A BPM solution provides visibility into corporate
performance at the business-strategy and operations
levels. The visibility comes from continuously
monitoring business events, updating business
performance metrics and key performance indica-
tors (KPIs), identifying the occurrence of important
business situations that need attention, and pre-
senting alerts and exceptions to process owners to
take timely management action. For the remainder
of this section, we consider a generic BPM solution

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

that has the following middleware components for
monitoring business events and KPIs:

. Common Event Infrastructure (CEI)

. Active Correlation Services (ACS)

. Operational Data Store (ODS)

. Portal server

. Online analytical processing (OLAP) server
. Data warehouse (DW)

QN Ul W W N

We consider five types of workloads in a BPM context.
Figure 2 illustrates interactions among the middle-
ware components in the five workloads, including the
ETL (data extraction, transformation, and loading)
function. The workload library specifies the middle-
ware components that interact to provide the services
required by each workload, as illustrated in Figure 3.
A component with an ID of 0 refers to an external
component that is outside the scope of performance
analysis. Visit specifies a connection between two
middleware components. The From component calls
the To component. AvgNumOfCalls specifies how

KANO ET AL

675

often the From component calls the To component
after the From component is called in the workload. If
AvgNum0OfCallsis 1, the From component always calls
the To component after the From component is called.
Type specifies whether an invocation is synchronous
(s) or asynchronous (a). The invocation type (syn-
chronous or asynchronous) affects the response time
of the IT service that the components intend to
support. The five workload types are:

1. EventProcessing—Various types of transaction
information are emitted as events with a common
format into the CEI. Examples of event sources
are business process workflows and inventory
management systems. The details of event
sources vary, depending on the specific business
solution. The ACS captures events from the CEI
and maps attributes of events to metrics and
calculates several types of KPIs. The KPIs are
stored in the ODS. Invocation of the ODS is
synchronous, but others are asynchronous.

2. WorkflowDashboardQuery—This workload is for
real-time observation of workflow progress and
performance. Each query is submitted from the
workflow dashboard to the portal server, and
then the portal server queries the ODS. All the
invocations are synchronous. A workflow dash-
board is outside the scope of our performance
analysis and is abstracted as a component with
an ID of 0.

3. BusinessDashboardQuery—This workload is
submitted from the business dashboard to the
portal server. The portal server calls the OLAP
server, and then the OLAP server executes an
analysis that queries the DW. All invocations are
synchronous. A business dashboard is outside
the scope of our performance analysis and is
abstracted as a component with an ID of 0.

4. ETL_Extract—This workload extracts data from
the ODS into an intermediate format such as XML
for further processing. The data being extracted
are those related to workflow instances that have
been completed.

5. ETL_TransformLoad—This workload converts
the operational data from an intermediate format
into a format that can be loaded into the DW and
moves the data into the DW.

Figure 4 illustrates a snippet of the middleware
component library, which documents performance
characteristics of the middleware components for
different workloads. The hardware resource demand

676 KANO ET AL.

is given as a function of several solution-level
parameters. For example, the hardware resource
demand of CEI in serving the event-processing
workload is given as a function of the event size in
bytes. In general, this kind of hardware-resource-
demand function has to be obtained by benchmark
tests under a set of varying solution-level parame-
ters. Without sufficient benchmark testing, point
measurements can be logged in a middleware
component library as potential starting points for
extrapolating the hardware resource demand. In
Figure 4, the service demand of each component
depends on the following solution-specific parame-
ters that are fed by the AdditionalSolutionInfo.xml
file, as illustrated in Figure 5.

* EventSize—Average size of events (in bytes)

* NumOfMaps—Number of metrics to be mapped
from attributes of events

* NumOfKPIs—Number of KPIs to be calculated

* NumOfSituations—Number of situations to be
detected

e ComplexityFactorPerRecord—Relative complexity
of a record in a database

The AdditionalSolutionInfo.xml file also specifies
generation rates (per second) of respective work-
loads.

In this paper, we approximate service demands as
linear functions of a set of application-specific
parameters for illustration purposes. For example,
the component ODS is called in three workloads:
EventProcessing, WorkflowDashboardQuery, and
ETL_Extract. Each service demand is calculated by a
service demand function specified in the middleware
component library. The unit of measurement for
service demands is seconds (sec). For example:

Service Demand (sec) of the ODS in EventProcessing
workload = 0.006 - (NumOfMaps) + 0.006 -
(NumOfKPIs) + 0.0055 - (NumOfSituations) +
0.0075.

Service Demand (sec) of the ODS in

WorkflowDashboardQuery workload = 0.006.

Service Demand (sec) of the ODS in ETL_Extract
workload = 0.001 - (ComplexityFactorPerRecord) -+
0.001.

In general, service demand functions are middle-
ware-component-specific and application-specific.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

<ComponentLibrary>
<Component ID="1" Name="CEI">
<Workload Name="EventProcessing">

<ServiceDemandModel ModelName="LinearModel">

<ModelPara Name="EventSize" Coefficient="6.25e-7"/>
<ModelPara Name="Constant" Coefficient="0.00444"/>

</SenviceDemandModel>
</Workload>
</Component>
<Component ID="2" Name="ACS">

</éomponent>
<Component ID="3" Name="0ODS'">
<Workload Name="EventProcessing'"™>

<ServiceDemandModel ModelName="LinearModel">

<ModelPara Name="NumOfMaps" Coefficient="0.006"/>
<ModelPara Name="NumOfKPIs" Coefficient="0.006"/>
<ModelPara Name="NumOfSituations" Coefficient="0.0055"/>
<ModelPara Name="Constant" Coefficient="0.0075"/>

</ServiceDemandModel>
</Workload>
<Workload Name="WorkflowDashboardQuery">

<ServiceDemandModel ModelName="LinearModel">

<ModelPara Name="Constant" Coefficient="0.006"/>

</ServiceDemandModel>
</Workload>
<Workload Name="ETL_Extract"™

<ServiceDemandModel ModelName="LinearModel">

<ModelPara Name="ComplexityFactorPerRecord" Coefficient="0.001"/>
<ModelPara Name="Constant" Coefficient="0.001"/>

</ServiceDemandModel>
</Workload>
</Component>
<Component ID="4" Name="PortalServer"™

</éomponem‘>
<Component ID="5" Name="OLAPServer'">

</Component>
<Component ID="6" Name="DW'">

</éomponem‘>
</ComponentLibrary>

Figure 4
Middleware component library

They should be determined empirically. Modeling
tools should have built-in support for more complex
service demand functions, for example, nonlinear or
piecewise linear models.

Computational examples

Using WBI Modeler, we have developed a prototype
called the BPM Performance Advisor for the mid-
dleware modeling methodology and applied it to the
generic BPM solution considered in this section. In
this prototype, we annotate the business operations
model of WBI Modeler indirectly by creating an XML
file (AdditionalSolutionInfo.xml) that describes

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

the characteristics of the business process being
monitored and the workload intensity, for example,
the event-generation and query-generation rates and
the ETL-initiation rate. In general, the event-
generation rate depends on the number of workflow
activities per workflow instance and the number of
business measures to be evaluated that are defined
in the business operations model. The performance
analysis is performed by using fluid models that
have been described elsewhere in detail, including
the methodology and assumptions.8 Alternatively,
the discrete event simulation engine in WBI Modeler
can also be used for this purpose.

KANO ET AL

677

<AdditionalSolutionInfo>

<SourceEvent SourceName="BusinessProcessWorkflow" GenerationRate="10.0" EventSize="1500"
NumOfMaps="2" NumOfKPIs="2" NumOfSituations="2"/>

<WorkflowDashboardQuery SourceName="WorkflowDashboard" GenerationRate="5.7"/>

<BusinessDashboardQuery SourceName="BusinessDashboard" GenerationRate="10.4"/>

<ETL GenerationRate="1.157e-5" ComplexityFactorPerRecord="1.5"/>

</AdditionalSolutionInfo>

Figure 5
Additional Solution Information

We consider the following case study to illustrate
the utility of the BPM Performance Advisor. An
enterprise, ABC Corp., is interested in deploying a
BPM solution to monitor and manage their business
performance on an ongoing basis. Because the
customer base of ABC Corp. is growing at a
significant rate, they want to ensure that their BPM
solution is deployed on an appropriately sized
infrastructure. In this context, the BPM Performance
Advisor can be used to answer two kinds of
questions: 1) Given a workload and a deployment
topology, where is the resource bottleneck? 2) Given
a workload, what deployment topology can satisfy
the performance objective? When analyzing alter-
native topologies, BPM Performance Advisor allows
two possible options, either change the machine
type or change the cluster by increasing the number
of nodes in the cluster.

In using the BPM Performance Advisor to address
this problem, the business processes to be monitored
in the BPM solution are first modeled using WBI
Modeler. The attributes of the BPM solution, such as
the sources of the business events and the number of
KPIs monitored, are then specified in the BPM
Performance Advisor. Business demands in future

<ServerLibrary>

years are modeled as different scenarios to examine
the performance of different deployment topologies
and to identify the topology that can satisfy the
performance objective for the BPM solution (e.g.,
less than 10 seconds of average query response time
under given event/query generation rates).

In this prototype, a list of machine types and their
performance ratings (Rperfls) are stored in a
hardware library illustrated in Figure 6. The proto-
type assumes that the service demand associated
with a physical solution component in handling a
request can be “scaled” to estimate the new service
demand when machine type or number of nodes is
changed. In this paper, for simplicity, the perfor-
mance of the machine is proportional to Rperf and
the number of nodes.

Figure 7 illustrates a deployment topology, that is,
the machine on which each middleware component
is deployed. Attributes of each machine are machine
type (BrandModel), number of nodes, and utiliza-
tion target. Note that default utilization target is 1.0
(100 percent). For this case study, Table 1 shows
the resource utilization statistics for each server.
This shows that all the servers will meet the
utilization targets for the average traffic specified in

<Server BrandMlodel="IBM p640 P3II_375 1-way" Rperf="1"/>

<Server BrandModel="IBM p640 P3ll_375 3-way" Rperf="2.55"/>
<Server BrandViodel="IBM p640 P3Il_375 4-way" Rperf="3.47"/>
<Server BrandModel="IBM p650 P4+_1450 2-way" Rperf="4.47"/>
<Server BrandModel="IBM p650 P4+_1200 4-way" Rperf="8.05"/>
<Server BrandModel="IBM p670 P4_1100 8-way" Rperf="24.18"/>
<Server BrandMlodel="IBM p670 P4_1100 16-way" Rperf="34.66"/>
<Server BrandModel="IBM p690 P4+_1900 32-way" Rperf="104.17"/>

</ServerLibrary>

Figure 6
Server library

678 KANO ET AL.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

<DeploymentTopology>
<Machines>

<Machine ID="1" BrandModel="IBM p640 P3ll_375 1-way" NumberOfNodes="1"/>

<Machine ID="2" BrandModel="IBM p640 P3II_375 1-way" NumberOfNodes="1" UtilizationTarget="0.9"/>
<Machine ID="3" BrandModel="IBM p640 P3ll_375 1-way" NumberOfNodes="1" UtilizationTarget="0.8"/>
<Machine ID="4" BrandModel="1BM p640 P3Il_375 1-way" NumberOfNodes="1" UtilizationTarget="0.7"/>
<Machine ID="5" BrandModel="IBM p640 P3ll_375 1-way" NumberOfNodes="1" UtilizationTarget="0.7"/>
<Machine ID="6" BrandModel="IBM p640 P3II_375 1-way" NumberOfNodes="1" UtilizationTarget="0.8"/

</Machines>

<Deploy ComponentName="CEI" MachinelD="1"/>
<Deploy ComponentName="ACS" MachinelD="2"/>
<Deploy ComponentName="0DS" MachinelD="3"/>

<Deploy ComponentName="PortalServer" MachinelD="4"/>
<Deploy ComponentName="OLAPServer" MachinelD="5"/>

<Deploy ComponentName="DW" MachinelD="6"/>
</DeploymentTopology>

Figure 7
Initial deployment topology

the AdditionalSolutionInfo.xml file (see Figure
5). Table 2 shows response-time statistics for each
workload. Note that if there are one or more
components whose server utilization is over 1.0, the
estimated response time is infinity, and the analysis
result suggests that the system is not stable and the
deployment topology needs to be changed.

Now, we can analyze the middleware performance
under different what-if scenarios. For instance, we
want to analyze the performance in a future time
period when the arrival rate during peak traffic is
four times that during average traffic. More specif-
ically, generation rates of SourceEvent, Workflow-
DashboardQuery, BusinessDashboardQuery, and
ETL_Extract are 40.0/sec, 22.8/sec, 41.6/sec, and
4.628 X 1075/sec, respectively. Analysis results in
the peak traffic scenario are included in Tables 1
and 2. Table 1 shows that machines 2, 3, 4, 5 and 6
will not meet target utilizations under peak traffic.
In addition, since utilization of machines 2, 3, 4, 5 is
over 100 percent, response times of EventProcessing,
WorkflowDashboardQuery, BusinessDashboard-

Query, and ETL_Extract are infinity. For this type of
situation, when several machines are overutilized,
the BPM Performance Advisor provides two types of
recommendation to change the deployment top-

ology:

1. Change server types. The BPM Performance
Advisor recommends a machine type from its
server library in consideration of the utilization
target, as illustrated in Table 3. The appropriate
machine type can be identified by using the
approximation that resource utilization is in-
versely proportional to the performance ratio of
the machine type. Note that the number of nodes
is fixed in this usage mode.

2. Change number of nodes. The BPM Performance
Advisor suggests the minimum number of nodes
required to meet utilization targets, as illustrated
in Table 4. The minimum number of nodes can
also be identified by using the approximation that
resource utilization is inversely proportional to
the number of nodes. Note that the machine type
is fixed in this usage mode.

Table 1 Resource utilization for initial deployment topology under average and peak traffic

Server 1 Server 2 Server 3 Server 4 Server 5 Server 6
(IBM p640 (IBM p640 (IBM p640 (IBM p640 (IBM p640 (IBM p640
P3l1l_375 P3II_375 P3II_375 P3l1l_375 P3l1l_375 P3l1l_375
Resource Utilization (%) 1-way) 1-way) 1-way) 1-way) 1-way) 1-way)
Under Average Traffic 5.4 85.0 45.9 43.9 62.4 20.8
Under Peak Traffic 21.5 340.0 183.7 175.5 249.6 83.2

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

KANO ET AL

Table 2 Response Times (sec) of initial and new deployment topology under average and peak traffic

Response Time of
Initial Topology

Workload Name under Average Traffic

Response Time of
New Deployment Topology
(changing server type)
under Peak Traffic

Response Time of
Initial Topology
under Peak Traffic

EventProcessing 0.6509
WorkflowDashboardQuery 0.0182
BusinessDashboardQuery 0.2561
ETL_Extract 0.0046
ETL_TransformLoad 0.0069

Inf. 0.1459
Inf. 0.0134
Inf. 0.0924
Inf. 0.0035
0.0327 0.0032

Based on the first recommendation, we analyzed the
new deployment topology shown in Table 3. The
performance results of the new deployment top-
ology (shown in the last column of Tables 2 and 3)
showed utilization targets could be met even in peak
traffic.

SIMULATION OF PSMS

MDA provides an approach to generate a PIM of a
business process from the design-time business
operations model and then transform the PIM into a
PSM. By doing so, it facilitates longer-term flexibility
in implementation integration and ease of main-
tenance. In the transformation from PIM to PSM,
additional information on a specific platform is
provided by an automated tool or software designers
or both. There are many research publicationsm_18
on this, and several commercial tools are also
available.

Business Process Execution Language (BPEL)19 is an
industry-standard business process definition lan-
guage, which specifies interconnection of Web
Services. Several commercial tools support trans-
formation from a business operations model into a
BPEL model (PIM) that can be further deployed on a
particular platform (PSM). To make the BPEL model
executable, middleware-specific code needs to be
added. For example, a business process model can
be developed in WBI Modeler that can be converted
into its BPEL representation. This representation can
be imported into the WBI Server Foundation where
platform-specific code can be developed that can
enable the deployment of the business process.

SOA is a mechanism that enables the reconstruction
of a business solution if business requirements
change by changing only the interconnection of
services. However, when business solutions adapt
to constantly changing business requirements, it is

Table 3 Recommendation to change machine type
under peak traffic

Table 4 Recommendation to change number of
nodes under peak traffic

New New

Target Resource Target Recom- Resource

Utilization Recommended Utilization Utilization mended Utilization
(%) Machine Type (%) (%) Node # (%)
Machine 1 100 IBM p640 P3II_375 1-way 21.5 Machine 1 100 1 21.5
Machine 2 90 IBM p650 P4+ 1450 2-way 76.1 Machine 2 90 4 85.0
Machine 3 80 IBM p640 P3II_375 3-way 72.0 Machine 3 80 3 61.2
Machine 4 70 IBM p640 P3II_375 3-way 68.8 Machine 4 70 3 58.5
Machine 5 70 IBM p650 P4+ 1450 2-way 55.8 Machine 5 70 4 62.4
Machine 6 80 IBM p640 P3II_375 3-way 32.6 Machine 6 80 2 41.6

680 KANO ET AL.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Simulation Management

Event Statistics Gathering

Queue I -

I

: Traffic :

Creation Generator l :

Configuration |

|

) Output Reports :

I

I

l a

SimClient :

Web Application Server i

I

| » Adaptive Entity Engine ~ -———- 4

I

Simulted | ecio L1 =

Resource Configuration Flow Engine ——___ ;
Configuration (XML)

(XML) I

Simulator (WS)

|

it s +—— Connection .
Task Configurator (WS)
Configuration o

(x1\/||§ Applications (WS) .

_——

Figure 8
A framework for PSM simulation

often the case that several services exist but others
need to be newly developed. Early analysis and
testing of business solutions in the development
phase could significantly contribute to the under-
lying SOA value proposition by reducing the overall
time to deployment for the modified business
solution. Our PSM simulation framework supports
this by allowing users to simulate a PSM consisting
of real and simulated services for function and
performance testing. By including services available
in the analysis, deeper insights into a business
solution can be obtained, so that defects are detected
as early as possible and do not propagate further in
the solution development process.

Simulation framework

Figure 8 illustrates a framework for PSM simulation
of business solutions. The Traffic Generator simu-
lates client orders according to instructions from an
artifact-creation configuration file. Each client order
generated by the Traffic Generator is assigned a
simulated submission date and other parameters,
such as the client’s name, the specific item ordered,

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

the quantity of items ordered, and delivery instruc-
tions. These parameters are randomly assigned to
each order. The details of these attributes vary
depending on business solutions. When the simu-
lation is started, client orders are generated and
submitted to the Simulation Management compo-
nent, where the orders are sorted based on their
simulated submission dates and stored in the Event
Queue.

The Event Queue keeps track of business processes
in the implementation model by controlling the
timing and invocation of events. There are two types
of events associated with the implementation model
simulation: (1) events associated with the arrival of
client orders and (2) response events from the
Simulator. The client orders, the first type of event,
are generated by the Traffic Generator and stored in
the Event Queue. The Event Queue sends stored
client orders to the Web application server at
scheduled time stamps, based on the submission
date of the client orders. The Event Queue instructs
a simulated client, (e.g., SimClient), to send the

KANO ET AL

681

Application (WS)

Connection Configurator (WS) Task-Specific | | ———
Operation I execute
—————————————————————————————— | Interface | TaskX
o oA l '
: | convert | invoke |
Flam Common 11 switch T interfface T application | .
Engine —— QO | Operation || connector)) : Simulator (WS)
Interface 1) mmmm———— I -
i T | invoke i Common R I —
! | ! simulator —+——O | operation 1 simulate
| ! [l Interface | TaskX
PSSy g g N S IS g S g S S SR S Sy 1

Configuration
(XML)

Figure 9

imulate
Resource

Configuration
(XML)

Configuration
(XML)

Switching between the Simulator and real solution components

client orders to an Adaptive Entity Engine20 of the
Web application server.

The Adaptive Entity Engine handles adaptive enti-
ties, which are state machines with state-transition
logic. The state-transition logic is externally editable,
and the Adaptive Entity Engine makes it possible to
easily combine multiple processes and manage them
using state-transition logic. An adaptive entity is
generated for each client order and manages process
instances for the client order. In addition, the
Adaptive Entity Engine provides a function for
scheduling a time-out event that is automatically
invoked if no transition event occurs before a
specified time elapses. This function can be used to
detect potential functional defects in an application,
as will be explained later in this section. In general,
Flow Engines provide a time-out event and can also
combine multiple data flows. However, the Adaptive
Entity Engine is an optional feature of the framework
that can easily change the logic of combinations of
multiple processes without redeployment of process
models to the Flow Engine. If the Adaptive Entity
Engine is not used, the SimClient needs to be
configured to directly invoke the Flow Engine.

A Flow Engine is novel technology that allows us to
flexibly invoke a multitude of software assets and
human tasks, according to business process models.
Several Flow Engines supporting BPEL models are
commercially available (see Reference 21 for an

682 KANO ET AL.

example). In our framework of runtime simulation,
the Flow Engine invokes a Connection Configurator
that can be switched between real and simulated
solution components according to instructions in a
connection configuration file. The Flow Engine does
not need to know if the component that it has
invoked is a real solution component or the
Simulator. Thus, if several new solution compo-
nents become ready, the user can easily switch from
the Simulator to real solution components by editing
the connection configuration file. The Flow Engine,
therefore, does not need redeployment of the
process models. After a process model is deployed,
it can be used during all stages of the solution
development phase. All changes are made in the
connection configuration file.

Figure 9 illustrates the switching between the
Simulator and real solution components by the
Connection Configurator WS. The connection con-
figuration file determines whether a task corre-
sponds to a real application or to the Simulator, and
provides information, including the types and
names of the parameters of the input business object
and the output business objects for each task.

If an invoked task is an actual application, the
“switch connector” of the Connection Configurator
invokes the real application by converting the
interface to a task-specific interface. Then, the real
response business object from the application is

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

converted to the common operation interface and
sent back to the Flow Engine by the Connection
Configurator. On the other hand, if an invoked task
is connected to the Simulator WS, then the switch
connector of the Connection Configurator simply
invokes the Simulator and forwards the input
business object to the Simulator. The Connection
Configurator can then simply forward the input
business object to the Simulator because the
Simulator shares the interface with the Connection
Configurator. The Simulator consumes simulated
resources, incurs time delays and generates re-
sponse business objects. Then the Simulator sends a
response event to the Event Queue, consisting of the
response business objects accompanied with a time
stamp accounting for the simulated submission and
completion dates of the task. Thus, the Event Queue
sends the response business object back to the Flow
Engine through the Connection Configurator at the
scheduled time stamp. Note that the response event
is the second type of event controlled by the Event
Queue.

The delay time used by the Simulator refers to the
time elapsed from when the solution component is
invoked to when the solution component completes
the task. More specifically, the delay time consists of
the action cycle time required for execution of a task
and the waiting time due to resource availability.
Based on the delay time, the task completion time is
calculated. In this case, the task submission and
completion times that the Simulator sends to the
Event Queue are time stamps of the simulation
clock. Unlike traditional simulation, the implemen-
tation model simulation involves both real compo-
nents executed with a real clock and simulated
components executed with the simulation clock.
When the Simulator is invoked, the Simulator gets a
current time stamp from the real clock and then
converts it to a time stamp for the simulated task
submission using the simulation clock. Then, the
delay time and the task completion time stamp are
calculated. The Simulator also logs resource utiliza-
tion and queues tasks, based on the simulation clock
time. The Event Queue manages synchronization
and conversion between real and simulation clocks.
Further details on the synchronization and conver-
sion of these clocks are discussed in the section
“Synchronization of real and simulation clocks.”

In the simulation framework, the single Simulator
WS emulates a plurality of types of services

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

according to instructions from the Simulator con-
figuration files that store the behaviors of resources
and tasks. First, the Simulator gets the name of the
task to be emulated as an argument. Then, the
Simulator consumes simulated resource, incurs
action cycle time to execute the task, and generates
the response business object, based on the task
behavior specified in the task configuration file. In
addition, the Simulator incurs waiting time due to
resource availability and resource cost, according to
the resource configuration file.

Modeling resource behavior during simulation is
mainly relevant for identifying the implications for
resource utilization, such as any resource bottle-
necks and the resulting resource costs. This infor-
mation is used to infer the cost/performance trade-
offs for business integration solutions. The resource
parameters include the name of the resource, the
capacity of the resource, the cost of the resource, the
resource-scheduling policy and resource availabil-
ity. The resource cost is determined based on
resource cost per use or resource cost per unit time.
The resource-scheduling policy is FIFO (first in first
out) or a priority queue. Resource availability is
based on an availability pattern, such as holidays,
weekends, and scheduled maintenance. The repeti-
tion frequency specifies the frequency at which the
pattern repeats, such as weekly, daily, working
days, and so forth. The start time and the end time
determine the duration of the repetition.

Modeling task behavior during simulation is relevant
for identifying the implications for overall cycle time,
queuing behavior, resulting delays, and so forth. This
is also used to infer the cost/performance trade-offs
for business integration solutions. The task parame-
ters include the task name, action-cycle-time distri-
bution, resource requirements, input business
objects, and output-business-object generation. The
action-cycle-time distribution describes the distribu-
tion of the time elapsed during the execution of a task.
The resource requirements describe what resources
are required to complete the task and the quantity of
each resource consumed. This description also
includes the types and names of parameters of the
input business object and the probability distribu-
tions of the parameters of the output business objects.
Note that the Simulator functions independent of any
specific business solution components. Therefore,
new components to be simulated can be added easily
to the implementation model simulation framework.

KANO ET AL

683

After a simulation of an implementation model is
complete, the Statistics Gathering function gathers
the simulation results from the Event Queue, the
Adaptive Entity Engine, the Flow Engine, and the
Simulator. The gathered statistics are somewhat
similar to those available from traditional business
process simulation (see, for example, WBI Work-
bench Version 4.2.4).22 More specifically, the
gathered statistics include tables describing client-
order statistics (such as arrival times, completion
times, cycle times, processing costs, and waiting
times), resource statistics (such as utilization and
total costs), and queue statistics for each task (such
as average queue size, average queue waiting time,
and maximum queue size). This can be useful for
functional and performance testing of the business
integration solution. The gathered statistics are
provided to the user in output reports. The Statistics
Gathering function also identifies whether an
invoked solution component has been completed.
This can be of value from the perspective of
functional testing of business solutions. Our frame-
work can be used for functional testing if the
interaction between the workflow process and
applications is stateless. Further work is necessary
to model state transitions in interactions with end
applications to enable this framework to be used
more broadly. In order to use this framework more
broadly, the Simulator WS needs to obtain the state
as an argument and have some internal logic to
simulate the behavior of the application, which
would require application-specific simulators and is
not within the scope of this paper.

Synchronization of real and simulation clocks
Unlike traditional simulation, the implementation
model simulation method involves both real com-
ponents executed in real time (e.g., the Flow Engine,
the Adaptive Entity Engine, real solution compo-
nents, and network) and simulated components,
executed in virtual time (e.g., client orders and
simulated solution components). Therefore, simu-
lated components should be synchronized to real-
time simulations involving real components. In a
related work, Lendermann et al. also deal with
synchronization issues between the real clock and
simulation clock in the context of integrating
discrete-event simulation models with framework-
based business applications.23 In our framework,
the Event Queue handles the synchronization and
consists of four subcomponents, the Priority Queue,
the Event Invoker, the Response Event Handler, and

684 KANO ET AL.

the Flow Engine Tracker. These components interact
with each other as illustrated in Figure 10.

In the Priority Queue, client order events and
response events are sorted by their scheduled dates.
The scheduled dates can be submission dates of
client orders or task-completion dates. Client-order
events are generated and stored in the Priority
Queue by the Traffic Generator at simulation
startup. In contrast, response events are sent from
the Simulator at simulation runtime and submitted
to the Priority Queue through the Response Event
Handler. The scheduled dates are time stamps of the
simulation clock. The events in the Priority Queue
are invoked by the Event Invoker. During simulation
runtime, the Event Invoker reads the first event in
the Priority Queue and estimates the event invoca-
tion time by converting its scheduled time from the
simulation clock into the equivalent time on the real
clock. Then, at the scheduled time stamp of the real
clock, the Event Invoker invokes the event; that is,
the Event Invoker lets the SimClient send client
orders to a Web server or sends a response message
to the Flow Engine through the Connection Config-
urator. The Response Event Handler receives re-
sponse events with time stamps accounting for the
task submission and completion dates (according to
the simulation clock), and the response business
objects. Then, the Response Event Handler com-
pares the task-completion date with the scheduled
date of the first event in the Priority Queue. If the
task-completion date of the response event is after
the first event, then the Response Event Handler
simply inserts the event into the Priority Queue.
Otherwise, the Response Event Handler inserts the
event and notifies the Event Invoker that the first
event in the Priority Queue is updated. Then, the
Event Invoker rereads the first event and prepares
the invocation for it.

How is the simulation clock synchronized with the
real clock? The naive way would be synchronization
by offsetting the time difference between the time
stamp of the simulated submission date of the first
client order and the real time stamp at simulation
startup. However, this naive synchronization, or a
complete real-time execution, could take a prohib-
itively long time and not be of practical utility if
most solution components are simulated in an early
stage of the solution development phase or if a
process to be simulated contains human tasks.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Event Queue

Priority Queue

. Event — » SimClient
Tierile » | NextEvent ———» Invoker SVent
Generator | dient-order > invocation -
events Connection
Event + Configurator
I
Event -
Event | J
Corresponding pair
EE of time stamps
Simulator E\fgﬁtonse for simulation and
response Handler Event real clocks
4 events .
new pair
Flow Engine o= Flow Engine
Tracker tSr:cLliiSn g
notification Adaptive Entity
| Engine
a new pair of time stamps for simulation and real clocks
Figure 10

Subcomponents of the Event Queue

Generally, human tasks need to be simulated
through the solution development phase and require
much longer action cycle time than IT tasks.
Therefore, we need methods of effectively synchro-
nizing the simulation clock and real clock and
shortening testing time. In this context, this paper
proposes a method for time compression.

The proposed method periodically checks the Flow
Engine and the Adaptive Entity Engine to see if any
real solution components are active. When no real
components are busy, intermediate durations are
compressed (see Figure 11). This is accomplished
by a component called the Flow Engine Tracker,
which uses the APIs of the Flow Engine and the
Adaptive Entity Engine that provide information on
the status of each process instance and adaptive
entity in execution. More specifically, there are two
types of compression. The first type is compression
of intervals of client orders. By polling the Flow
Engine and the Adaptive Entity Engine, it is possible
to identify whether there are any client orders in
execution or not. At any time, if there are no client
orders in execution, intervals between client orders
can be compressed (see duration B in Figure 11).
The second type is compression of delay time in the
Simulator. Regarding all client orders in execution, if
all process instances for them are waiting for
response events from the Simulator, the duration

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

until the next event is invoked can be compressed.
This type of duration can be detected by using the
APIs of the Flow Engine and the Adaptive Entity
Engine and checking the contents of the Priority
Queue (see duration A in Figure 11).

When the Flow Engine Tracker detects a compres-
sible duration, it logs the pair of corresponding time
stamps of real and simulation clocks (see Figure 12)
and notifies the Event Invoker and the Simulator
that the conversion function between real and
simulation clocks is updated. Then, the Event
Invoker re-converts the simulated scheduled date of
the first event into its real scheduled date and
prepares its invocation. Note that, by use of the pairs
of corresponding time stamps of real and simulation
clocks, any time stamp of the real clock can be
converted into the corresponding time stamp of the
simulation clock, and vice versa, as follows:

Let (S, R), (S;,R)), ..., (S, R), (S, 1, R ;) ... be
the pairs of corresponding time stamps of real and
simulation clocks, sorted by their time sequences,
and let R be a time stamp of the real clock. By use of
the corresponding time-stamp logs, R . can be
converted into the corresponding time stamp of the
simulation clock, S, First, a real time stamp R (in
the log) adjacent to the R time stamp is identified
(R, ; <R, <R). Then, §_can be calculated by

KANO ET AL

685

Compressible

v Ti Compressible
Delay Time Client-Order Interval
® o ®
S —— —
} | ! ! Time (in Simulation Clock)
| I I
| : : :
A process instance | . \ \
for Client-Order N Start & i | Aend :
| | | |
A process instance : ! : :
for Client-Order N+1 start A ! /, /Aend :
A process instance : 7 Y {n real In a simulated In real
for Glient-Order N42 } y4 y4 lcomponents component components
/
: S/ S _ starth Aend
I 7 / e .
. | / / s]
: I // // //// L4
I/ /-
} i Time (in Real Clock)
|
\ \
In real : }
A process instance components 1 !
for Client-Order N 44 [| hend|
A process instance : :
for Client-Order N+1 start A fend
\
A process instance |
for Client-Order N+2 start A Aend

Figure 11
Compressible delay time and client-order interval

equation (1).

Sc=S,1+ R, —R,_1). (1)
Reverse conversion is conducted in similar manner.
R, =R,—1 + (Sy — Su-1) . (2)

Note that equations (1) and (2) are only applicable
outside the compressed times in the simulation
clock. During simulation runtime, the latest pair of
time stamps of real and simulation clocks allows the
Simulator and the Event Invoker to conduct con-
version between time stamps of the real and
simulation clocks.

When a simulation is complete, statistics logged in
real clock times need to be converted into those in
simulation clock times. Regarding process cycle
times, because the start time and completion time of
the real clock for each process can be converted
respectively into those of the simulation clock by
use of the corresponding logs of time-stamp pairs,
the simulated process cycle time can be obtained.
Resource utilization and queue statistics for simu-

686 KANO ET AL.

lated solution components are logged in simulation
clock times by the Simulator. Resource utilization
and queue statistics for real solution components are
logged by other profiling tools in real clock times,
and these statistics in real clock times need to be
converted. Because the compression operation is
conducted only when real components are in the
idle state, the resource utilization in real clock time,
U > can be easily converted into that in simulation
clock time, U, , as follows:

Treal
b
Tsim

Usim = Upear X (3)
where T, is the testing time using the simulation
clock, and T, , is the testing time using the real
clock. Therefore, all the statistics logged in real
clock time can be converted into those in simulation

clock time.
Computational example

We have developed a prototype for simulation of
implementation models using a BPEL Flow Engine

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

in the Process Choreographer of WBI Server
Foundation. An executable BPEL flow was designed
by using WebSphere Studio Application Developer
Integration Edition Version 5.1. The prototype
system was deployed on a Windows XP** computer
with a 3.06 GHz Xeon** CPU and 1.5 GB RAM. We
illustrate the PSM simulation capability now with an
example.

Figure 13 illustrates a sample process for Web-based
shopping for a personal computer (PC). When a
customer visits the Web site, the customer profile is
loaded, and then the customer browses the PC
catalogs. The customer then checks different config-
uration options and checks their supply availability.
After the customer identifies a satisfactory config-
uration that is available, the order is submitted. This
Web shopping process consists of three subpro-
cesses; an access-catalog process, a check-supply
process, and an order-submission process. In the
prototype system, each subprocess is executed in the
Flow Engine, and an adaptive entity in the Adaptive
Entity Engine manages the invocations of the three
subprocesses. Because this is only an illustrative
example, clients’ behaviors such as thinking time
and repetition of browsing catalogs were not
considered, and only IT tasks were analyzed; that is,
when an adaptive entity receives a completion event
of a subprocess (e.g., an access-catalog process), the
adaptive entity promptly invokes the next subprocess
(e.g., a check-supply process).

Figure 14 shows an example of simulated client
orders that was generated by the Traffic Generator
according to an artifact-generation configuration
file. The simulated client orders are stored in the
Event Queue until the Event Queue instructs the
SimClient to send a simulated client order to the
Flow Engine at each scheduled submission time for
a client order. With each submission of a client
order, an adaptive entity and a process instance are
generated. Then, the process instance invokes
specific process tasks.

Table 5 shows sample simulation data sets for
experiments with the implementation model simu-
lation framework. We assumed that all the tasks are
deployed on a WCBE (WebSphere Commerce Busi-
ness Edition) server with two CPUs and that they
consume the CPUs of the server. The cycle times of
the tasks are assumed to be normally distributed
with parameters listed in Table 5.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Simulation Real
Clock Clock
First Client Simulation
Order Start
So | = » = Ro
Ry
Ra
Log of
Corresponding Rn
Pairs of
Time Stamps
Ry
(S0, Ro)
(S1, Ry) Rn+1
(2. R)
(S, Ro)
(Sn-H , Rn+l)
Figure 12
Corresponding pairs of time stamps for simulation and
real clocks
1
Access Catalog Process
Access Access
Customer Profile Catalog ’ “\\
)
/
//
////
! Check Supply Process
\
\\\} Configuration Check
Availability “\\
)
/
//
////
! Order Submission Process
\
AN Order
-5 - —
Submission
Figure 13
A sample process for Web-based PC shopping that
illustrates PSM simulation
1
KANO ET AL 687

Time=2003-10-22 13:00:16,type=EMEA,CustClass=Others,ltem#=4
Time=2003-10-22 13:00:20,type=AP,CustClass=Tier1 ltem#=4
Time=2003-10-22 13:00:28,type=AMERICAS,CustClass=Tier1,ltem#=1
Time=2003-10-22 13:00:48,type=EMEA,CustClass=Tier1 ltem#=1
Time=2003-10-22 13:00:52,type=AP,CustClass=Others, ltem#=2
Time=2003-10-22 13:00:55,type=EMEA,CustClass=Tier1,ltem#=2
Time=2003-10-22 13:01:01,type=AMERICAS,CustClass=Others,ltem#=3
Time=2003-10-22 13:01:18,type=AMERICAS,CustClass=Tier1,ltem#=4
Time=2003-10-22 13:01:24,type=AMERICAS,CustClass=Tier1,ltem#=2
Time=2003-10-22 13:01:28,type=AP,CustClass=Others, ltem#=3

Figure 14
Sample client orders

The simulation framework allows the user to
execute two types of testing: functional testing and
performance testing. Functional testing is used for
identifying the locations of application failures if
they happen. Performance testing is used to provide
estimates for hardware sizing and middleware
configuration.

1. Functional testing
In situations where the interaction between a
workflow process and applications is stateless,
this framework is useful for functional testing. By
detecting time-outs in adaptive entities, failures
in subprocesses can be identified. Then, the
Simulation Management component examines
the processes where the failures occur and finally
identifies the locations of application failures by
using the APIs of the Flow Engine. Table 6 shows
sample statistics for a simulation done in the
functional-testing mode. To show how failures
can be detected, a pseudo failure was set in the
Check Availability task. Table 6 lists several
client orders and the arrival time and the
completion time of each order. Table 6 also lists
whether a defect was identified, and if so, the

Table 5 Sample simulation data for WCBE-CPU
resource

Task Name Mean (sec) Std Dev (sec)
Access Customer Profile 1.0 0.3
Access Catalog 2.0 0.7
Configuration 3.0 1.0
Availability Check 2.0 0.3
Order Submit 5.0 1.7

688 KANO ET AL.

state corresponding to the identified defect. For
instance, in BaseRequest1, the client order
arrived on October 22, 2003 at 13:00:16, and the
order was completed on October 22, 2003 at
13:00.32. Alternatively, in BaseRequest3, the
client order was placed on October 22, 2003 at
13:00:28, but the client order was not completed,
resulting in a time-out. In this example, the
statistics suggest that there is a defect and that the
defect occurred in the Check Availability task.

. Performance testing

In the performance-testing mode, the gathered
statistics are similar to those available from
traditional business process simulations (such as
WBI Workbench Version 4.2.422). Table 6
describes customer order statistics (arrival, com-
pletion times) used for checking whether the
system meets the cycle time requirements. From
the queue statistics of each task (average queue
size, maximum queue size) listed in Table 7, the
locations of any bottlenecks can be identified. In
addition, from resource utilization (i.e., WCBE
CPU = 63.7% and WAS CPU = 24.1%), insights
can be obtained for hardware sizing and mid-
dleware configuration. Note that statistics of both
simulated and real resources are reported. In this
experiment, all the solution components were
assumed to be deployed on a simulated WCBE
server, and the Flow Engine and the Adaptive
Entity Engine were run on a real Web application
server (WebSphere Application Server). Further-
more, the acceleration method enabled short-
ening the testing time for simulating the
execution of 10 client orders illustrated in Figure
14 by 47 percent, compared to a naive synchro-
nization of real and simulation clocks. Although
the extent of shortening testing time will depend
on the specific details of business integration

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Table 6 Customer-order statistics

Completion Time

Identified Problem

2003-10-22 13:00:32

2003-10-22 13:00:38

n/a

n/a

Customer Order ID Arrival Time

BaseRequest1 2003-10-22 13:00:16
BaseRequest2 2003-10-22 13:00:20
BaseRequest3 2003-10-22 13:00:28
BaseRequest4 2003-10-22 13:00:48
BaseRequest5 2003-10-22 13:00:52
BaseRequest6 2003-10-22 13:00:55
BaseRequest? 2003-10-22 13:01:01
BaseRequest8 2003-10-22 13:01:18
BaseRequest9 2003-10-22 13:01:24
BaseRequest10 2003-10-22 13:01:28

n/a Invoke Check Availability
2003-10-22 13:01:07 n/a
2003-10-22 13:01:08 n/a
2003-10-22 13:01:12 n/a

n/a Invoke Check Availability

n/a Invoke Check Availability
2003-10-22 13:01:41 n/a
2003-10-22 13:01:42 n/a

solutions and the progress of the solution
development, this result would be a good
example illustrating the capability of the accel-
eration method.

CONCLUDING REMARKS

In this paper, we have discussed the role of analysis
and simulation of business solutions in a SOA in
realizing the business value inherent in an SOA;
namely, flexibility, cost, and time to adapt business
process deployments. In particular, we presented
methodologies that can be used to analyze business
solutions during the design and the development,
testing, and deployment of the business solution.
There is considerable scope for future research in
this area. In order for the solution design-time
analysis to be used widely, workload and middle-
ware models that can be applied across different
business solutions have to be developed and
calibrated. Also, more accurate and fast quantita-

Table 7 Queue statistics

Max Average
Task Name Queue Size Queue Size
Access Customer Profile 1 0.171
Access Catalog 2 0.382
Configuration 1 0.248
Check Availability 2 0.274
Order Submission 2 0.625

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

tive-analysis techniques need to be further devel-

oped. The PSM simulation capabilities need to be

further developed and integrated with deployment
testing and analysis tools.

ACKNOWLEDGMENTS

We wish to acknowledge Jay Benayon, Kumar
Bhaskaran, Steve Buckley, Henry Chang, David
Gamarnik, Ying Huang, Santhosh Kumaran, Young
Lee, Yingdong Lu, Mark Squillante, Vincent Szaloky
and Frederick Wu, who have contributed to different
aspects of this work.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc., Sun Microsystems, Inc., Intel
Corporation, or Microsoft Corporation.

CITED REFERENCES
1. M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P.
Krogdahl, M. Luo, and T. Newling, Patterns: Service
Oriented Architecture and Web Services, IBM Redbook,
April 2004, ISBN: 073845317X, http://www.
redbooks.ibm.com.

2. K. Gottschalk, S. Graham, H. Kreger, and J. Snell,
“Introduction to Web Services Architecture,” IBM Sys-
tems Journal 41, No. 2, 170-177 (2002).

3. “MDA Guide, Version 1.0.1,” The Object Management
Group, June 2003, http://www.omg.org/mda.

4. S. Kumaran, “Model Driven Enterprise,” presented at
Global EAI (Enterprise Application Integration) Summit
2004, Banff, Canada, pp. 166-180.

5. J. D. Sterman, Business Dynamics: Systems Thinking and
Modeling for a Complex World, McGraw-Hill Publishers
(2000).

KANO ET AL

689

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

W. Grey, K. Katircioglu, S. Bagchi, D. Shi, G. Gallego, D.
Seybold, and S. Stefanis, “An Analytic Approach for
Quantifying the Value of e-Business Initiatives,” IBM
Systems Journal 42, No. 3, pp. 484-497 (2003).

M. Laguna and J. Marklund, Business Process Modeling,
Simulation and Design, Prentice Hall (2005).

D. Gamarnik, N. Jengte, Y. Lu, B. Ramachandran, M.
Squillante, A. Radovanovic, J. Benayon, and V. Szaloky,
“Analysis of Business Processes Using Queuing Ana-
lytics,” Submitted to BPM 2005 Conference (2005).

Websphere Business Integration Monitor, http://
www-306.ibm.com/software/integration/wbimonitor/.

UML Profile for Schedulability, Performance, and Time
Specification, Object Management Group, http://
www.omg.org/docs/ptc/02-03-02.pdf.

T.-K. Liu, A. Behroozi, and S. Kumaran, “A Performance
Model for a Business Process Integration Middleware,”
Proceedings of IEEE Conference on eCommerce, 2003, pp.
191-198.

Common Event Infrastructure, International Business
Machines Corp., http://www-306.ibm.com/software/
tivoli/features/cei/.

IBM System p5, eServer p5S, pSeries, OpenPower, and IBM
RS/6000 Performance Report, October 5, 2005, http://
www-03.ibm.com/systems/p/hardware/system_perf.
pdf.

B. Appukuttan, T. Clark, S. Reddy, L. Tratt, and R.
Venkatesh, “A Model Driven Approach to Building
Implementable Model Transformations,” Proceedings of
Workshop in Software Model Engineering, Sixth Interna-
tional Conference on the Unified Modeling Language,
2003, http://www.metamodel.com/wisme-2003/04.pdf.

K. Czarnecki and S. Helsen, “Classification of Model
Transformation Approaches,” Proceedings of OOPSLA
2003, Workshop in Generative Techniques in the Context
of Model Driven Architecture, 2003, http://www.
softmetaware.com/oopsla2003/czarnecki.pdf.

M. deMiguel, D. Exertier, and S. Salicki, “Specification of
Model Transformations Based on MetaTemplates,” Pro-
ceedings of Workshop in Software Model Engineering,
Fifth International Conference on the Unified Modeling
Language, 2002, http://www.metamodel.com/
wisme-2002/papers/deMiguel.pdf.

W. Witthawaskul and R. Johnson, “Specifying Persis-
tence in Platform Independent Models,” Proceedings of
Workshop in Software Model Engineering, Sixth Interna-
tional Conference on the Unified Modeling Language,
2003, http://www.metamodel.com/wisme-2003/10.pdf.

T. Ziadi, B. Traverson, and J. Jezequel, “From a UML
Platform Independent Component Model to Platform
Specific Component Models,” Proceedings of Workshop in
Software Model Engineering, Fifth International Confer-
ence on the Unified Modeling Language, 2002, http://
www.metamodel.com/wisme-2002/papers/ziadi.pdf.

Business Process Execution Language for Web Services
(BPEL4WS), Version 1.1, May 2003, http://www-128.
ibm.com/developerworks/library/specification/ws-bpel/.

P. Nandi, S. Kumaran, and K. Bhaskaran, “Method and
System for Process Brokering and Content Integration for
Collaborative Business Process Management,” Pending

United States Patent Application, 20030187743AI, 2002.

Working with WebSphere Business Integration Server
Foundation Process Choreographer, International Busi-
ness Machines Corp., http://www-106.ibm.com/
developerworks/websphere/zones/was/wpc.html.

690 KANO ET AL.

22. WebSphere Business Integration Workbench V4.2.4,
International Business Machines Corp., http://
www-306.ibm.com/software/integration/wbimodeler/
workbench/.

23. P. Lendermann, N. Julka, L. Chan, and B. Gan,
“Integration of Discrete Event Simulation Models with
Framework-Based Business Applications,” Proceedings of
2003 Winter Simulation Conference, IEEE, pp. 1797-1804.

Accepted for publication April 13, 2005.
Published online October 18, 2005.

Makoto Kano

IBM Research Division, Tokyo Research Laboratory 1623-14,
Shimotsuruma, Yamato, Kanagawa, Japan
(mkano@jp.ibm.com). Mr. Kano is a research staff member at
the IBM Tokyo Research Laboratory. He received a Master’s
degree in mechanical engineering from the University of
Tokyo in 2002. He is currently focusing on developing
analysis techniques for business performance and information
management. His research interests include bio-informatics
and information visualization techniques.

Akio Koide

IBM Research Division, Tokyo Research Laboratory 1623-14,
Shimotsuruma, Yamato, Kanagawa, Japan

(03097 @jp.ibm.com). Dr. Koide leads the research group on
Business Performance and Information Management at the
IBM Tokyo Research Laboratory. He received a Ph.D. degree
in theoretical physics in 1975 from the University of Tokyo. He
joined in IBM in 1981 and has worked on the design of
integrated application systems such as drug and chemical
design systems and on medical imaging and database systems.
More recently, he has applied his experience in system design
combined with his background in theoretical physics to the
performance analysis of business and its infrastructure.

Te-Kai Liu

IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, NY 10598
(tekailiu@us.ibm.com). Dr. Liu is a research staff member at
the IBM Watson Research Center. He is currently focusing on
applying performance engineering disciplines to model-driven
development of business-performance-management and
business-process-integration solutions. His research interests
include software performance engineering, performance
modeling, wireless communication networks, radio frequency
identification, intelligent vehicle highway systems, and
pervasive computing. He is the author of 30 journal and
conference papers and holds eight United States patents. He
received a Ph.D. degree in computer engineering from the
University of Southern California and is a member of IEEE and
ACM.

Bala Ramachandran

IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, NY 10598
(rbala@us.ibm.com). Dr. Ramachandran is a research staff
member in the Mathematical Sciences department at the IBM
Watson Research Center. He received a B.Tech. degree in
Chemical Engineering from the Indian Institute of Technology,
Madras, India in 1991, and a Ph.D. degree from Purdue
University in 1996, specializing in operations research. At
IBM, he has focused on developing analysis techniques for
business process management and risk management. M

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

