D. E. Cox
H. Kreger

Management of the service-
oriented-architecture life cycle

Service-oriented architecture (SOA) development and deployment generally builds on
a service view of the world in which a set of services are assembled and reused to
quickly adapt to new business needs. This flexibility is seen by many IT organizations
as the core value of SOA and has been driving some deep transformations in the way
software is being built. Although SOA technology addresses many of the traditional
problems of integrating disparate business processes and applications, deploying
service-based applications introduces new aspects of the information technology (IT)
environment that must be managed. These new aspects include developing and
testing applications composed of operational services, deploying and provisioning
distributed service-based applications across organizational boundaries in a secure,
reliable, and repeatable manner, and tracking the business impact of services on the
business processes that those services support. This paper describes the management
capabilities needed to ensure that an SOA fulfills its promise of increasing integration

and improving business adaptability.

INTRODUCTION

The traditional solution life cycle, including require-
ments analysis, modeling, and architectural design,
followed by detailed design and construction in an
IDE (integrated development environment) for de-
ployment to a runtime environment, is evolving
toward a more integrated process. As management
technology expands in scope, management tasks and
capabilities (and thus the enablement of a manage-
ment solution) are introduced earlier in the solution
life cycle, into the phases of modeling, development,
and testing, not just in the runtime environment.

The solution life cycle can be broadly divided into

the preproduction phase and the production phase,
as shown in Figure 1. The steps of the preproduc-

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

tion phase are typically performed by architecture,
design, and development organizations. The prod-
uct of the preproduction phase is a packaged, tested
set of solution artifacts (software components,
installation programs, database and interface sche-
ma definitions, documentation, etc.). The steps of
the production phase are typically performed by
deployment and IT organizations. The product of
the production phase is a running solution that is
optimized for availability, IT resource usage and

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

COX AND KREGER

709

e

Production

ma

Figure 1
SOA solution life cycle

-

cost, and meeting business commitments. The
production phase also includes steps to introduce
maintenance and upgrades, as well as steps to phase
out solution components (solution-life-cycle man-
agement).

The preproduction environment includes tools and
processes for planning, modeling, development,
function testing, and load testing. Management
requirements in the preproduction environment
center around developing, testing and debugging the
solution by using tools and techniques traditionally
used in the production environment, and preparing
the solution for management in the production
environment.

The production environment includes deployment
and patches, upgrades and rollbacks, control oper-
ations, monitoring and optimization, security, and
life-cycle management. Management in the produc-
tion environment centers around the new manage-
ment issues introduced by the nature of Web
Services and service-oriented architecture (SOA).
The requirements for the development, testing and

710 COX AND KREGER

debugging, and production environments are listed
in Table 1.

Some requirements are similar between the different
SOA life-cycle phases but may be implemented by
using different technology or targeted toward
different roles. For example, development require-
ments might be best implemented in a development
environment such as Eclipse,1 whereas the produc-
tion requirements might be best implemented by
using a standard management server/agent infra-
structure. This paper describes the management
systems and capabilities needed to manage the full
life cycle of an SOA.

SOA CHARACTERISTICS

One of the key distinctions between an SOA and
other distributed application architectures is the
granularity and formality of the application compo-
nents. There are many documented best practices
about the recommended granularity of services in an
SOA. Some are focused on performance, and others
are focused on achieving the proper level of reuse
and composability.z’3 Composability is the ability to

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Table 1 Requirements for an SOA solution

Development Requirements

Testing and Debugging Requirements

Production Requirements

Ability to visualize SOA components

Ability to visualize the architecture by

means of models that can also feed de-
velopment, testing tools, and manage-

ment

Ability to generate the proper instru-
mentation (static or dynamic) to make
the solution and solution artifacts man-
ageable

Ability to capture relationship informa-
tion

Ability to advertise to a management
system the management interfaces and
capabilities that are available to man-
age the SOA components, such as op-
erational status or configuration

Ability to define policy (such as secu-
rity, quality of service, or privacy) and
associate it with services, components,
and users

Ability to capture version compatibility

Ability to visualize the services topol-
ogy

Ability to generate the proper instru-
mentation (static or dynamic) to make
the solution and solution artifacts man-
ageable (if it was not done during de-
velopment)

Ability to generate test traffic for both
unit testing and performance testing

Ability to generate stubs for existing
services to imitate production services
based on recordings of production data
flows

Ability to specify a service version as a
dependency and manage multiple ver-
sions of a service

Ability to monitor and report availabil-
ity and performance of components of
the solution during testing

Ability to view events or faults gener-
ated by components of the solution or
by the runtime infrastructure

Ability to validate that the events pro-
duced in the preproduction environ-
ment can be correctly correlated to pro-
duce the KPIs (key performance
indicators) and metrics to detect busi-
ness situations as specified by the busi-
ness analyst

Ability to visualize the KPIs and met-
rics in scorecards, reports, and dash-
boards

Ability to visualize the business process
impact based on simulated failures or
problems to test this capability before
the solution is deployed into production

Ability to deploy a services-based solu-
tion into a production environment

Ability to dynamically provision an
SOA architecture solution for automa-
tion and efficient use of capacity

Ability to manage multiple versions of
a service to ensure compatibility and
co-existence

Ability to secure services interactions

Ability to provide a single definition of
users and a single user sign-on for het-
erogeneous service architectures

Ability to visualize the services rela-
tionships (e.g., transaction paths, in-
stallation dependencies, runtime depen-
dencies) to support tasks like
visualization of processes and failure
analysis for cause and impact

Ability to visualize the state of the busi-
ness processes, based on the state of
the underlying services, to provide
quick understanding of current busi-
ness performance

Ability to monitor and report on the
availability, security, and performance
of the solution and solution artifacts

Ability to monitor and report the status
of the business commitments (SLAs
[Service Level Agreements]) for the so-
lution’s availability and performance

Ability to isolate and diagnose a prob-
lem in the SOA environment

Ability to view and take manual or
automatic action on events or faults
generated by the production environ-
ment

Ability to feed production, trace, and
debug data to test models and develop-
ment tools in real time

build new things from existing, reusable interfaces

and components, either independently or in combi-
nation, to satisfy system-specific and user require-

ments.

The following critical aspects of an SOA affect

management. Services are often designed for one or
a small number of closely related functions. They

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

have well-defined interfaces and relationships. SOAs
use standards-based communications and are more
closely aligned with business processes.

In the following discussion, we present an example
that illustrates the differences between a distributed
application architecture and an SOA from a manage-
ment perspective. First, we describe the distributed

COX AND KREGER

711

Financial
Statements

g

Figure 2

o

 Application Application

Example of business process mapped to distributed application architecture

application architecture shown in Figure 2; next, we
describe the SOA shown in Figure 3.

Figure 2 shows a typical business process (involving
an insurance quote) and how it maps to distributed
application artifacts. The distributed solution is
composed of two applications running in the local IT
environment, the policy application and the report-
ing application. The insurance-quote business pro-
cess also requires use of a third-party application,
the rating application, which runs in another
company’s IT environment.

The highlighted area in Figure 2 shows how a
business process step, “rate policy,” maps to the
application artifacts and the IT infrastructure. The
rate-policy step invokes a task in the policy
application, which is a distributed application that
runs on multiple application servers and depends on
certain database tables hosted by a relational data-
base management system (RDBMS). In order to
complete the rate-policy task, the policy application
uses Electronic Data Interchange (EDI)4’5 to invoke a

712 COX AND KREGER

request to an external rating application. The
relationship mapping is very vague and difficult to
quantify. This is because the policy application
supports many business processes, and there is no
way to determine which business processes use the
policy application. The application supports many
tasks related to insurance-policy manipulation, and
there is no way to discover the list of tasks. The
application exposes several capabilities through a
user interface only, and there is no way to describe
or discover (make known) the interfaces to the
capabilities.

Further difficulties are due to the fact that the tasks
provided by the policy application are lumped
together into a single management view of status
and availability, so that there is no management
interface to determine the status or performance of
individual tasks. The policy application is distrib-
uted among several application servers, and there is
no way to determine which of those application
servers are necessary to the processing of a specific

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Financial
Statements

Figure 3
Example of SOA business process

Quotes

task such as rate policy. The policy application has
dependencies on a RDBMS and a set of database
tables, but it is impossible to determine which tasks
or capabilities of the application depend on the
database system or specific database tables.

The instances and locations of the policy application
components are not defined or recorded in a
standard, distributed repository. The EDI interface
to the external application does not have any
management capabilities. The dependency relation-
ship between the policy application and the external
rating application is not defined in a way that a
management tool can discover.

The management of a distributed application is
limited in many ways due to the ambiguous
relationships described previously. The result is that
IT operators tend to learn typical relationships and
failure patterns by trial and error. The process of

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

managing such a system is consequently error-
prone, manually intensive, and very sensitive to
changes in the system.

As an example of a process that avoids these
difficulties, Figure 3 shows the same business
process mapped to an SOA. The services in this
architecture implement specific and granular tasks
and have well-defined WSDL (Web Services De-
scription Language)6 interfaces. The relationships
between a step in the business process, the services,
and the IT infrastructure as shown in the highlighted
area of Figure 3. Due to the nature of services,7 the
relationships in this figure are specific and easily
discovered. This is because the services have
standards-based WSDL interfaces, which can be
choreographed by a flow engine such as Business
Process Execution Language (BPEL);8 the service
interfaces can be described and advertised in a
distributed standards-based repository (i.e., Univer-

COX AND KREGER

713

Data
Collection

Analysis
and
Persistence

Environment
Optimization

Automatic

Visualization

Figure 4
SOA management system interactions

sal Description, Discovery, and Integration
[UDDI]Q’IO); the services run on specific application
servers (known to the management system, but not
necessarily known to the client application); and
they have specific and well-defined dependencies on
other services.

Management interfaces (Web Services Distributed
Management [WSDM]H) allow discovery of de-
pendencies on other types of resources, such as IT
resources, and management capabilities of the
remote rating service can be exposed through
WSDM. The service instances are easily discovered
through WSDM management interfaces.

MANAGEMENT SYSTEM INTERACTIONS

This section describes the high-level interaction
between different aspects of the management
system. It shows how some of the tasks and
capabilities introduced earlier relate to the four
major components of a management system, as
shown in Figure 4. Although many of these tasks
and capabilities apply equally to non-SOA environ-
ments, this section highlights key points that are
especially important for SOA environments.

Data collection

The first task that a management system performs is
the collection of data about the managed environ-
ment. For traditional IT management, the manage-
ment system would typically collect data about the
performance and availability metrics for servers,

714 COX AND KREGER

operating systems, and applications. For manage-
ment of an SOA, the management system must
recognize services in the SOA first as class objects.
The management system must also collect data at
the proper level of granularity; for example, to
manage an SLA (service-level agreement) for a
specific user, data must be collected to calculate the
average response time by the user. Similarly, the
management system must collect or discover data
about the relationships between a service and the
business processes that use the service, in order to
be able to measure business impact.

The specific management data collected for an SOA
includes the identity of services and related infra-
structure, configuration information, metrics, status,
activity trace entries, and topology diagrams depict-
ing the relationships among services. This informa-
tion is used in many different management scenarios,
including setting runtime performance thresholds,
customer-focused SLA monitoring, and business
impact analysis with prediction of impending failures.

Management systems get data directly from the data
collection service or harvest it from the environment
of the service. Services can provide data through (1)
asynchronous events, (2) “heartbeats” sent to the
management system (i.e., regular messages sent
periodically when the resource is functioning
properly), (3) metric and configuration properties
that can be queried, or (4) audit information and
errors saved in a log accessible by the management
system. Data can be harvested from the services
environment by interacting with similar manage-
ment data providers for service containers, service
runtimes, and service buses. For example, a
management system would poll a Web service that
is part of an SOA for operation invocation counts,
but it would poll the application server hosting the
Web service for total CPU time and memory usage.

Data can be collected by using a number of different
interaction patterns: polling of values for the
resource on a periodic basis, using asynchronous
events when abnormal situations occur, using
heartbeat messages when the resource is healthy,
and batch searching of new log messages. In
addition to these collection patterns, management
systems can use intermediaries, or management
agents, to provide communication to, or a proxy for,
the service instrumentation. Management systems
can interact directly with a Web service that offers a
management interface, or they may interact with a

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

printing service through a Web-service bridge that
communicates with the printer by means of SNMP
(Simple Network Management Protocol).12 The
management agents may also provide additional
services for the management systems to support
scalability and additional management protocols. As
an illustration, a management system might have
metric analysis services run locally on the systems
where application servers are deployed, reducing
networked polling traffic.

In addition to providing instrumentation for the
provision of data to management systems, services
should be instrumented for control operations to
allow automated optimization and control. The
kinds of operations and how they are used is
discussed in more detail later in this section.

As mentioned, management systems may harvest
data from the service environment. The service
environment consists of the network systems, the
service bus, application servers, brokers, and other
middleware components that allow the SOA to
function. Management systems might regularly scan
systems and service environments for new services,
new relationships indicating a change in depen-
dencies or processes, or new log messages. Some
data is only collected when requested by admin-
istrators. For example, collecting, normalizing, and
correlating logged information from services, service
environments, and service buses can provide data
used for sophisticated trend analysis, resource
requirement prediction, and SLA analysis.

Analysis and persistence

After data is collected by the management system, it
is analyzed and made persistent (maintained across
session boundaries in a database system). The
following section describes some basic management
abilities (such as calculating status) that are
achieved by analyzing data. Data analysis enables
the provision of a wide range of management
capabilities, including complex functions such as
problem isolation, business impact analysis, and
management of SLAs.

Typical analysis generates service performance
statistics, including request counters, transaction
performance, processing times, and failure rates,
both for the service as a whole and for each user’s
perspective on his or her experience with the
service. The management system compares the
analyzed data with expected or committed values. If

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

the SOA environment is not performing as expected,
the management system uses a policy to determine
corrective actions, such as alerting an operator or
invoking automatic corrective processes.

Relationship discovery is a key goal in the analysis
because SOA environment models are aptly repre-
sented as a set of relationships on the same plane (or
layer) and between planes. The planes analyzed for
relationships include the service plane, the service
environment plane, the IT infrastructure plane, the
enterprise application plane, and the cross-business
application plane. Three of these planes are
described in Figure 5, and their interactions are
shown in Figure 6. Understanding relationships
between services is as crucial as understanding
relationships between planes. Spanning service-to-
business planes is a requirement unique to SOA
management as compared with typical resource and
application management. Services in these cases can
include a combination of programmatic or human
services. Relationships are discovered through
analysis of relationship registries, relationship in-
formation provided by resources, or deployment
relationships. Relationships are used to augment
other management data to facilitate problem deter-
mination and business impact analysis.

Service status is determined by analyzing metrics,
state models, and failure messages. In addition, the
status of other services and resources that are in
dependency relationships should be considered. The
same is done for the service environment and
service bus. Service status must also be understood
from each service user’s experience. Detecting an
inappropriate status for a service may depend on
determining and predicting its ability to continue to
function and satisfy important SLAs. For example, if
an application server running a service fails, the
management system must know if a backup service
exists and if the failover mechanism is automatic or
not. If there is a backup service, the management
system may change the configuration or policy to
insert the backup service into the SOA environment;
if no backup service is defined, the management
system may alert an operator that no automatic
corrective action is available and that the failed
service will impact certain users or business
processes.

Problem detection and determination are two steps
in one of the oldest management processes. Man-

COX AND KREGER

715

Figure 5
SOA planes

agement systems must be able to detect a service
failure or degradation in a timely manner. Detection
is supported by receiving analysis of failure events
from or about services, polling metric information
and detecting threshold exceptions, monitoring for
operational status changes, or discovering invalid
configurations or relationships. For SOAs, this
detection and analysis must, at times, be done
across service, application, and business planes.
Once the problem is detected, management systems
use analysis of data and dependency relationships to
determine what the root cause of the failure is.
Sometimes management systems can only narrow
the root cause down to a few likely options for the
operations staff to investigate further, but this
programmatic analysis is much faster and more
accurate for most common failures, relieving oper-

716 COX AND KREGER

ations staff of tedious and error-prone work and
leaving them more time to resolve more complex
problems.

Business impact detection and determination are two
final steps in the management process. Like problem
detection and determination, they rely on receiving
or retrieving indicators of business system prob-
lems. In contrast with typical resources, relationship
information is crucial for SOAs for traversing busi-
ness, service, and IT resource planes to find the
source of the business system problem. Business
impact understanding is used to prioritize the
resolution of multiple problems, either with auto-
mation or by operators. This understanding may
also enable a management system to detect that a
business commitment or SLA is about to be violated,

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

allowing corrective action to be taken before it is too
late.

Service-level monitoring and enforcement is slightly
different from resource performance and problem
determination analysis in that instead of focusing on
the resource, service, or system as a whole, the
focus is on a particular client’s experience with a
service. Raw metrics and events must be sorted and
decomposed, based on which clients were interact-
ing with the service. Thus, instead of the number of
transactions processed by a service, the number of
transactions per client per service is tracked. Using
the client-specific data and events along with SLAs,
management systems detect exceptions to the
agreements. This can be done in real time by the
service environment, in which case imminent
agreement exceptions should be detected so that
real-time corrections can be made to ensure that
actual exceptions do not occur. Service-level ex-
ception detection can also be done on a more coarse
time basis, such as daily, weekly or monthly, using
persistent data.

Raw and analyzed data is made persistent in a
normalized format by using the management
system’s common data model. The process of
converting raw information into the common data
model requires mapping semantic information from
many different management models into a common
set of fields. Performing this process once rather
than each time analysis is performed reduces
inconsistent data mapping and skewed results.
Maintaining the information in a normalized data
model enables the efficient processing of high
volumes of data and provides analysis results of
higher fidelity. The normalized data model also
allows easier correlation of data collected from
different sources. This normalized historical infor-
mation is used in future management tasks, such as
historical trend analysis of service performance,
resource usage, usage analysis for billing, and
building and maintaining accurate relationships.
The normalized historical data may also be used for
data-mining techniques, such as identifying com-
mon conditions leading up to a failure, so that
processes can be created to detect the condition and
prevent the failure.

Visualization
The visualization capabilities of the SOA manage-
ment system allow users to view and interact with

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

BUSINESS PROCESS LAYER

Compare

actual/

observed
Implement topology to
model model

SERVICE LAYER Pass Validate
business model
metrics

Pass log/
trace/
IT INFRASTRUCTURE Pass policy context
LAYER points information
Pass
instrtumented
code
Figure 6

Interaction between SOA planes

the services, SOA topology, and SOA environment.
The visualization capabilities span the SOA man-
agement life cycle from architecture and develop-
ment, through deployment and configuration, to
monitoring and optimization, and finally to main-
tenance and end of life. Visualization as a tool for
SOA management is especially important because of
the infrastructure, service, and business planes it
must span and relate. Visualization tools can thus be
complicated to maintain.

Visualization in the preproduction life-cycle phases
should be integrated in an IDE tooling environment
such as Eclipse.1 The management system should
provide data for preproduction visualization that
describes the observed behavior of services in the
SOA. The observed views can be compared to the
expected or intended topology to detect problems.
The observed data from the management system
can also be used as context to help resolve
problems. For example, log files or actual message
content can be passed from the management system
to the visualization tool in the IDE environment to

COX AND KREGER

717

give the support person more information to
diagnose a problem. See the paper on Web Services
Navigator by De Pauw, "’ elsewhere in this issue, for
details on SOA management capabilities that can be
provided in the preproduction environment.

Preproduction tooling should also provide user
interface capabilities to define control points for the
management system across the infrastructure, ser-
vice, and business planes. The visualization tool
should allow the architect or designer to define
points in the service flow where authorization,
prioritization, data integrity checking, business
metric analysis, and other tasks can be performed.
The runtime management system can then use the
control points to monitor the SOA and can modify
policy at the control points to control the SOA. The
management control points may be a formal,
designed part of the solution'* (most likely as
intermediary services) or may be implemented in
the infrastructure and thus be transparent to the
services.

The production management system should have
visualization capabilities that allow monitoring and
control of the SOA. The management system
continuously monitors the system for indications of
problems, such as events being generated or
thresholds being exceeded. When problems in the
SOA are detected, the management system shows
visually that a new alert needs attention and also
shows the affected systems and business processes
in a table or topology view.

The SOA management aspects of the management
system are used to diagnose and correct the
problem. The SOA visualization tool includes
specialized topology and message information that
helps identify problems in service-to-service inter-
action. The SOA visualization tool also helps the
operator understand where the control points are in
the service topology and what policy and config-
uration parameters are available to control the
environment.

The management system also provides user inter-
faces to take action on the SOA and the SOA
environment. The user interfaces allow the user to
control the services and the runtime infrastructure
by providing commands such as “configure,”
“start,” “stop,” and “restart.” The user interfaces
also allow the user to control the environment by

718 COX AND KREGER

changing policy, which may result in configuration
changes or commands being issued.

Environment optimization

When business-, resource-, or service-level prob-
lems are detected through events or monitoring,
automated corrections can be made to the SOA
environment, services, or Web services. Again, the
cross-plane impact of the policies and optimization
that is so important for keeping resource, service,
and business goals optimized is unique to SOA
management. Automated reactions occur based on
policies defined in the management system. These
policies can be pushed down into the resource level
and complied with locally by the services. Auto-
mated corrections can manifest themselves in
several ways, such as policy changes, automated
recovery, load balancing, and dynamic
provisioning.

Policy or configuration changes can be made by
management systems to influence the ongoing
behavior of the resource. For example, thread pools
can be made larger, or a policy to allocate new
resources, an expensive operation, can be changed
to occur less frequently. In addition, policies can be
used to control the availability of the management
information itself; that is, metrics collection, log
monitoring, and message monitoring, where the
status of transactions is determined and the amount
of information logged from a message is tuned
according to the contents of the message, its
business impact, and policies.

Automated recovery occurs when a management
system automatically restores a resource that is
down, has failed, or is degraded to fully operational
status, functioning within the expectations of
policies and SLAs.

Load balancing allocates service requests across a
set, or cluster, of services. This usually maximizes
system resource usage, provides better performance
for services, and provides better availability, be-
cause it prevents the failure of one service from
causing new service requests to fail. Load balancing
can also support virtualization of resources, where
one resource or service can appear to belong to
many clients, without the clients being aware that
they are sharing the service.

Dynamic provisioning corrects situations where
there are insufficient resources available to maintain

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

SLAs. New resources can be brought online to
support the services. In addition, services are
provisioned and instantiated in times of high
demand and then destroyed, freeing resources when
they are no longer needed. Dynamic provisioning of
a new instance of a service can vary widely, from
adding an existing but idle instance of the service to
a pool to requesting a new machine from a pool and
installing the operating system, middleware, and
service software. For Web Services SOAs, routing
service invocations to a convenient service instance
is transparent to the client or business process
because Web Services support transparent address
redirection.

Automated recovery and dynamic provisioning are
usually sophisticated multistep conditional tasks
with compensation for failure and the capability of
rolling back activities. BPEL documents can effec-
tively describe these conditions as business pro-
cesses, also called management processes.
Management processes, like those defined by the
ITIL (Information Technology Infrastructure Li-
brary)15 standards, can be built by using the same
high-quality tools and workflow engines that drive
production. Applying SOA concepts like BPEL to the
management processes themselves is the primary
enabler behind IT process automation. This not only
makes building and customizing management sys-
tems cheaper and easier for management system
vendors; it also makes it easier for businesses
because they are reusing existing skills in business
process development and execution. This builds an
unprecedented synergy between business and man-
agement processes.

OVERVIEW OF THE MANAGEMENT SYSTEM
ARCHITECTURE

This section describes the architectural layers of the
management system that is used to manage an SOA.
It provides a more detailed architectural, layered
view of the four major capabilities described in the
previous section (data collection, analysis and
persistence, visualization, and environment optimi-
zation). The management-system architecture is
shown in Figure 7.

The layers of the management-system architecture
work together to provide the four major capabilities.
The data collection capability of the management
system is manifested in the management instru-
mentation provided by the managed resource layer,

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

and in the management-system agent layer, which
interacts with the instrumentation. The analysis and
persistence capability is provided on a local, single-
machine basis by the management agent and on a
system-wide basis by the management server layer.
The visualization capability is provided by the user
interface layer of the management system architec-
ture, which works with the raw and analyzed data
stored by the management server. The environment
optimization capability is provided by the user
interface layer (for manual manipulation of the
environment) and by automation capabilities in the
management server layer. Both manual and auto-
matic environment optimization can be put into
effect directly by issuing commands to the manage-
ment system or the managed resources in the SOA
environment, or indirectly by changing policy in the
management system or the managed SOA environ-
ment.

MANAGEMENT SYSTEM COMPONENT
DESCRIPTIONS

In general, management architectures are very
similar in that they have managed resources that
interact through an agent with a management
server, which has a user interface for operators.
The management system topology usually consists
of a management agent on each machine that
contains managed resources or systems. The
management server is a distributed application that
runs on one or more systems in a small number of
central locations. The management user interface
controller is also a distributed application that runs
in a central location. The users of the management
system may access the user interface locally
through a browser or installed client, or remotely
over the Internet with a browser. Secure access to
management operations and secure communica-
tions among the components of the management
system are clearly important parts of the manage-
ment system.

This section describes in more detail the compo-
nents of the management architecture, layer by
layer. In this architecture, the service in an SOA is a
managed resource, as are the middleware and
hardware components that provide the SOA runtime
environment.

Managed resources

The managed resource layer provides instrumenta-
tion that allows a management system to interact

COX AND KREGER

719

Figure 7
Management system architecture

with its environment. The instrumentation must
provide sufficient information to enable some of the
management capabilities described in the section
“Overview of the management system architecture.”
Typically, this includes creating events to signal
health or failure situations and providing properties
and metrics that indicate the current health,
performance, and configuration of the system. The
instrumentation must also allow for polling, con-
figuration, and control of the environment, often by
direct operations as well as by using a set of
management policies.

When a managed resource becomes available, a
management server should perform discovery on
several levels and integrate the resource into the
managed environment. The management server
discovers the existence of the resource and its
manageability capabilities. To support the discovery

720 COX AND KREGER

of its existence, the resource should register or
broadcast its presence to the data collection com-
ponent so that the management system can begin to
bring this new resource into the managed environ-
ment. To support the discovery of its capabilities,
the resource should advertise a description of the
management capabilities it supports. If the data
collector processes that description and understands
this type of resource, it will add the resource to its
managed-resources configuration. If this resource is
not one that the data collector has been configured
to collect from, the data collector notifies operators
and administrators who use tools in the user
interface to configure data collection, monitoring,
and policy for the resource. After the data collector
is aware of and able to interact with the managed
resource, the system should use policy to control
which system messages should be monitored,
filtered, correlated, and sent to the data collector.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Instrumentation should be provided by using a
combination of standards including CIM (Common
Information Model)16 models, JMX** (Java Man-
agement Extensions),17 and WSDM. Instrumenta-
tion should be provided for the services themselves
in an SOA, as well as for the infrastructure
components that host the services and handle the
messages.

CIM provides the basic, standard, extensible models
for the management of resources that are used to
create the service environment and services. The
creators of instrumentation for services should
extend these models with management information
necessary to manage a particular service or
resource. For Web Services, WSDM provides the
basic management model, and service developers
should extend the basic management capabilities
with any capabilities specific to the service being
developed. For example, CIM provides the basic
model for a service that includes the fields Name and
Started Boolean and operations for the methods
startService and stopService. It can be extended
to provide additional information for management
of a rating service that might include the methods
updateRatingPolicy and updateRatingTables.

WSDM defines how to represent management
interfaces by using Web Services. This standard
management-interface definition creates an integra-
tion layer between the different management pro-
tocols used to instrument service-environment
resources and management systems. WSDM defines
a basic set of manageability capabilities that can be
composed, like selecting from a “buffet,” to express
the capability of the management instrumentation.
WSDM defines how to express resource identity,
metrics, configuration, and relationships by using
Web Services. WSDM depends on the following
standards; WS-I (Web Services — Interoperability)18
for the basic profile, WS-Resource Framework "~ for
property collections, and WS-Notification®® for
management-event transport. WSDM also defines a
standard management-event format to improve
interoperability and correlation.

The customized models, like the CIM example
described earlier, provide the actual properties and
operations for a WSDM-manageable Web service
interface for the service. Building on the CIM
example described earlier, the properties of the
rating-service-manageability Web service would

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

include Name, Started, CurrentRatingPolicy, and
CurrentRatingTable. WSDL operations would in-
clude StartService, StopService, UpdateRating-
Policy, and UpdateRatingTables.

Tools supporting the development and testing
phases of the SOA and service life cycle can facilitate
management instrumentation during development.
Development tools provide “wizards” that are
triggered during development of manageable com-
ponents, services, and business processes. These
wizards should display log and error messages as
candidates for management events, allowing devel-
opers to tag properties in components such as
identity, metrics, and configuration-management
data. These wizards can generate the instrumenta-
tion by using JMX MBeans (management beans) and
Web Services to reflect this management informa-
tion as a WSDM-manageable resource.

Agent

The use of agents increases the scalability of the
management system by reducing the volume of data
communications and offloading some management
work from the machine running the management
server to the machine running the managed re-
sources. This is accomplished by reducing the
number of communications paths from the man-
agement server to the individual managed resources
on a target system, running some management
server tasks (i.e., discovery, monitoring, and setting
thresholds) locally, and by filtering and aggregating
data before forwarding it to a management server.
Agents can also be used as nodes in a distributed or
federated data-storage topology. The advantages of
an agent architecture layer are more apparent when
there are a large number of remote managed
resources in the environment, such as in a bank
branch topology.

The agent works in conjunction with the manage-
ment system to provide the data collection capability
for the managed resource. The agent performs the
task of invoking the instrumentation in the managed
resource and then forwards relevant information to
the management server. The agent may perform
some filtering and correlation of data as well. Not
only do policies from the management server dictate
what data is collected from which resources and
how often; they also specify filters for discarding
duplicate or irrelevant data and rules for performing
correlation.

COX AND KREGER 721

The agent provides operational control of the
managed resource, for example, sending startSer-
vice operations from management servers to a
rating service. The agent also acts as a policy
distribution point, sending validated policies from
the management server to the policy-capable man-
aged resources. When the managed resources are
not aware of policy, the agent acts as a policy
enforcement point for the resource, translating
management and business policies into operations
or configuration changes in the managed resource.

In addition to enabling scalable management, agents
themselves must be manageable, allowing fixes,
upgrades, and policy changes just like other
software. The subagent admin function provides for
agent management as well as a secure communica-
tions pipe to the management server.

Server

The server has three distinct tasks. The first task
supports traditional management of resources,
collecting raw information from numerous types of
resources and environments by using instrumenta-
tion, logs, and other sensors. The server filters,
correlates, and saves management data in a stan-
dard format as dictated by a set of policies. This
information is fed into the analysis step discussed
previously. This analysis is used to maintain a
federated model representing the overall managed
environment that is the basis for visualization of the
system by the user interface.

The second task of a management server is to send
command and control information to managed
resources through the management agent. Com-
mand and control messages may be initiated by an
operator or by automation through policies, script-
ing, or management processes. The management
system must ensure that all command and control
messages, as well as access to collected data, are
controlled through secure authorization mecha-
nisms. Finally the policies themselves must be
maintained, either by operations, higher-level poli-
cies, or automatic reactions of the management
system to service and resource changes in the
system. One of the operations includes distributing
the policies to agents and resources that perform
policy enforcement. Additionally, resources and
agents may request a policy relevant to some
condition in the system that needs to be automati-
cally addressed. The command and control features

722 COX AND KREGER

of the management server manage operations as
well as changes in policies and configuration of
resources to support optimizing the system in

honoring SLAs and high-level business policies.

The third, and often overlooked, task is the
management of the agents themselves as discussed
in the section “Agent.” The agent management task
includes keeping a list of the agents and the
managed resources that they have access to,
managing the agent software, ensuring that the
agent is available, and managing the policy that
controls the agent’s behavior.

User interface

The user interface gives operators a window into the
system and tools for failure analysis and recovery.
The interface allows an operator to efficiently
visualize the topology and operational status of the
business systems and SOA, including individual
services and underlying resources.

This visualization is a cached reflection of the
system model created by the analysis step, which is
fed from discovery, status, and performance events.
Resource existence and relationships and their
status, which may have to be aggregated from the
status of other related or dependent resources, must
be synchronized with the environment model.

The user interface must also support policy config-
uration to guide the overall management of the
environment in a consistent way. The policy
management interface should make it easy to
develop high-level rules that create resource-level
policies. The business and management policy can
also be expressed as a set of BPEL processes, for
example, scripts identifying a series of conditions,
tasks, and compensations for performing sophisti-
cated, tailored management scenarios and recov-
eries. These BPEL processes drive operations onto
agents and resources. These policies and processes
are stored in a central repository. The new policies
may be pushed immediately to agents and resources
or kept locally until conditions are met to activate
them in the management server.

In addition, the user interface should provide
operators a tool to assist with problem determina-
tion for the business system or SOA as well as tools
or connections to tools for correcting problems. The
problem determination tools use resource models

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

and historical analysis data. Using a common
management-event format, like that in WSDM, is
key to enabling consistent correlation of events from
resources and their environments.

USAGE SCENARIO

This section provides examples at a high level of
how a preproduction task and a production task
would be accomplished using the SOA management
capabilities described earlier in this paper. This
section shows the interaction between the admin-
istrator or user of the management system, the
major management system components, and the
managed SOA environment.

Problem determination scenario

A solution based on an SOA was developed and
deployed as a proof of concept running in the
operational environment but has not yet been used
in production. The appropriate management instru-
mentation and control points were designed into the
system using the preproduction techniques de-
scribed earlier in this paper. During the solution
testing, several configuration parameters of the
application were adjusted to improve performance.
Suddenly, the solution began to experience failures.
All of the transactions sent to the Web Services
interface of the solution were failing.

The IT operator was the first to notice the problem.
Alerts appeared on the event console indicating that
the “number of failed requests” threshold had been
crossed. The IT operator began to diagnose the
problem by launching the service topology display;
the services were available, and the systems running
the services were all operational and performing
according to expectations. The IT operator deduced
that a logical or business-level problem existed and
passed control of the problem to the level-3 support
team in Development.

The level-3 support person brought up the service
topology display and viewed the recent transactions.
All transactions since 1:02 p.m. on that day had
failed. Selecting one of the transactions, the level-3
support person viewed the message content. The
transaction failure was due to a security negotiation
failure. The support person brought up the code for
the service and saw that it generated a fault message
if the incoming security request had a different
policy from the policy for the service being invoked.
The support person brought up the policy config-
uration tool and looked at the configuration of the

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

client and the service. The client was configured to
use a nonsecure connection; the service was
configured to require a secure connection. The
support person brought up the audit log for the
policy and saw that at 1:01 p.m. an operator
changed the security policy on the client to “no
security,” presumably to improve performance.

The level-3 support person initiated a conference
call between the IT team and the services architect.
The attendees agreed that an SSL (Secure Sockets
Layer) session with 56-bit encryption was the
appropriate balance between security and perfor-
mance. The level-3 support person routed the
problem back to the IT operator, who changed the
security policy to the recommended configuration.
The management system detected the policy change
and changed the specific configuration parameters
in the SOA environment to implement the new
security policy. The SOA became operational again,
and the management system cleared the alerts.

To prevent this type of problem, the management
system can provide a hierarchical policy system. A
high-level policy can be defined to ensure that
lower-level policies are consistent.”' For example,
the scenario just described would include a high-
level policy that all Web service traffic should have
at least 56-bit SSL encryption. Any attempts to
configure a specific service for a different encryption
would be rejected before the system could be
configured correctly.

Business impact scenario

In this scenario, a company had developed an SOA-
based solution to integrate internal applications
within its enterprise. The SOA solution was
deployed in the data center and was being used for
production work. The data center experienced a
problem with power distribution, and five machines
running application servers went down. Many of the
services in the SOA implementation were running
on the failed application servers. The IT team had
configured the application servers to fail over to a
backup machine, and all five application servers did
so. The management system configured the traffic to
route all failed services to the backup instances
running on the backup machine.

The IT operations team notified the business analyst
of the failure and recovery actions. The business
analyst looked at the recent trends for the most
important business processes. Because the solution

COX AND KREGER

723

ction Performal

5]
= Web Services Requestor
yabeau fiviab austinibm.com [0.247] | —
U2EE/ 10.247) |Work0rderManager
U2EE phere/5.0.2.7/barbab v |
JSP (0.244)

Web Senices Requestor [0.237]

¢ B) WorkOrdermanager 0.237] i
createNew\WorkOrder(0.237) |

Web Services Provider (0.003) i
(@ workorderanager 10.003]

createNewWorkOrder()| |
0.237 [

Kl =

WorkOrderManager @

createNewWorkOrder()
0.003

t-:V:Veb Services Provider

[=) reateNewWorkOrder) [0.003) | .

createNewWorkOrder() |

| Value

Iroot

WWOIK(Jrdar

b comé. KOrd

erRequest)
2004-08-25 16:28:35

<soapenvBody
WS hitp:ischema

prnings d="hittp M w3.0ra2001XMLS chama”
srninsxsi="hitp: w3.01g2001 HMLSch
wANorkOrderResponse
prins="hitp.finstallco.com™ AVork lurn=28<icreale

Body>

0.003
ntte

0.003

perEAR sanWorkOrderManagerifc warfVEB-INFiwsdWorkOrderMana
lger wadl

DL O Name

hilp ifinstallco.com
orkOrderianager

ler porder

s
=
i
A|WEDL Port Name
.
/
:

Figure 8

Diagnosis using IBM Tivoli Monitor for Transaction Performance

architecture team defined business performance
metrics in the application, the management system
was able to calculate the status of the business
processes in real time based on the status of the
underlying managed resources and by monitoring
the transaction flows. The business analyst discov-
ered that nine of the top ten business processes were
performing adequately, but one of the business
processes was running more slowly than normal.
The management system reported that at the current
performance level, the IT SLA would be violated.

Based on the business analyst’s recommendation,
the IT team was instructed to solve the performance
problem with the slow business process first. The IT
team used the relationship information provided by
the management system to identify which services
supported the slow business process. The IT team
then used the relationship information to determine
where the instances of the dependent services were
running. The IT team brought up a performance

724 COX AND KREGER

monitoring tool (e.g., IBM Tivoli Monitor for
Transaction Performancezz) to locate the service
instance that was performing poorly and affecting
the business process, as shown in Figure 8. The IT
team also use the management system’s monitoring
tools (not shown in Figure 8) to discover that the
machine hosting the slow service was running at
100% of processing capacity.

The IT team had now identified that too many
services had failed over to the same machine, and
one service in particular was running slowly enough
to affect a committed SLA. After one of the failed
five machines was restored, the IT team provisioned
an instance of the critical service on the restored
machine and configured the service bus to route
traffic to both services. The business process
performance was restored to normal, and the IT
team restored the remaining services to their proper
machines over the next few hours as the other
machines were repaired.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

CONCLUSION

SOA introduces new requirements for management
as well as new opportunities to provide better
systems management. The services in an SOA and
the infrastructure supporting it need appropriate
instrumentation and control interfaces to allow
management of the entire IT environment. The
modeling and development phases of an SOA can be
used to ensure that the deployed SOA is manage-
able. Management systems must treat the services
and other components of an SOA as first-class
participants in the managed system and must
recognize that services contribute to business
processes and SLAS.

This paper has shown that the nature of SOA allows
many management tasks to be implemented in a
more reliable and integrated fashion. The concepts
of SOA can also be applied to the management
system itself to automate the management pro-
cesses, to standardize the interfaces among different
management system components, and to stan-
dardize the instrumentation exposed by the man-
aged environment.

ACKNOWLEDGMENTS

The authors would like to acknowledge the
contributions of Mark Anderson, Rosalind Radcliffe,
John Whitfield, John Harter, Sudhakar Chellam, and
Phil Fritz. We also thank the WSDM technical
committee for “catching the vision” and laying the
foundation for the building bricks of the future. We
also acknowledge the reviewers of this paper.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc.

CITED REFERENCES AND NOTES
1. Eclipse is an open, extensible tool platform. See http://
www.eclipse.org.

2. K. Brown and R. Reinitz, Web Services Architectures and
Best Practices, IBM WebSphere Developer Technical
Journal (2003), http://www-128.ibm.com/
developerworks/websphere/techjournal/0310_brown/
brown.html.

3. Using Web Services Effectively, Sun Microsystems (2002),
http://java.sun.com/blueprints/webservices/
using/webservbp.html.

4. For the implementation of EDI, see The Accredited
Standards Committee (ASC) X12, http://www.x12.org/.

S. For EDI Internet integration, see http://www.ietf.org/
proceedings/96dec/charters/ediint-charter.html.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

6. W3C Web Services Description Working Group, http://
www.w3c.org/2002/ws/desc/.

7. D. Cox, “How to Simplify IT Infrastructure Management:
Using SOAs is Key,” WebSphere Journal (November
2004), http://www.sys-con.com/story/
2storyid=47216&DE=I.

8. Business Process Execution Language for Web Services
Version 1.1, http://www-128.ibm.com/developerworks/
library/specification/ws-bpel/.

9. Universal Description, Discovery, and Integration,
UDDI.org Consortium, http://www.uddi.org.

10. Understanding UDDI, IBM developerWorks (2002),
http://www.ibm.com/developerworks/webservices/
library/ws-featuddi/?n-ws-7252.

11. OASIS Web Services Distributed Management Technical
Committee, http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsdm.

12. Introduction and Applicability Statements for Internet
Standard Management Framework (2002), http://
www.ietf.org/rfc/rfc3410.txt?number=3410.

13. W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and
J. F. Morar, “Web Services Navigator: Visualizing the
Execution of Web Services,” IBM Systems Journal 44, No.
4, 821-846 (2005, this issue).

14. M.-T. Schmidt, B. Hutchison, P. Lambros, and R.
Phippen, “The Enterprise Service Bus: Making Service-
Oriented Architecture Real,” IBM Systems Journal 44, No.
4, 781-798 (2005, this issue).

15. Information Technology Infrastructure Library, Office of
Government Commerce, http://www.itil.co.uk/.

16. Common Information Model Standards, Distributed
Management Task Force (1999-2005), http://
www.dmtf.org/standards/cim.

17. Java Management Extensions Specification (1998-2002),
http://www.jcp.org/en/jsr/detail?id=3.

18. Web Services Interoperability Organization, http://
WWW.WS-i.018.

19. Web Services Resource Framework Technical Commit-
tee, http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsrf.

20. Web Services Notification Technical Committee, http://
WWW.0asis-open.org/committees/tc_home.
php?wg_abbrev=wsn.

21. N. Nagaratnam, A. Nadalin, M. Hondo, M. McIntosh, and
P. Austel, “Business-Driven Application Security: From
Modeling to Managing Secure Applications,” IBM Systems
Journal 44, No. 4, 847-868 (2005, this issue).

22. IBM Tivoli Monitoring for Transaction Performance,
http://www.ibm.com/software/tivoli/products/
monitor-transaction/.

Accepted for publication June 3, 2005.
Published online October 18, 200S5.

David E. Cox

IBM Software Group, 4205 South Miami Blvd, Research
Triangle Park, North Carolina 27709 (decox@us.ibm.com).
Mr. Cox is a Senior Technical Staff Member in the Tivoli
Technical Strategy and Architecture group in IBM. He is
currently the lead architect for Web Services and service-
oriented architecture management at Tivoli. He is a member of
the Tivoli Architecture Board and a core member of the IBM
Software Group Architecture Board. He is also a voting

COX AND KREGER

725

member of the OASIS Web Services Distributed Management
Technical Committee. Mr. Cox has 20 years of technical
experience in systems and network management,
communications software, and operating systems. He has
written numerous technical papers and holds five United
States patents. He received a B.S. degree from North Carolina
State University and an M.S. degree from the University of
North Carolina at Chapel Hill.

Heather Kreger

IBM Software Group, PO Box 12195, 3039 Cornwallis Road,
Research Triangle Park, North Carolina 27709
(kreger@us.ibm.com). Ms. Kreger is a lead architect for Web
Services and Management in the Standards and Emerging
Technologies area. She is currently co-leader of the OASIS
Web Services Distributed Management Technical Committee
and member of several related DMTF (Distributed
Management Task Force) work groups. Ms. Kreger was IBM’s
representative to the W3C® Web Services Architecture work
group as well as co-lead of JSR 109, which specifies Web
Services deployment in J2EE environments, and a contributor
to the Java Management Extensions (JMX™) specification. She
is also the author of numerous articles on Web Services and
management in the IBM Systems Journal, Communications of
ACM, Web Services Journal, and other public technical work,
including the “Web Services Conceptual Architecture” and
“WS-Manageability Standards.” She is also the author of Java
and JMX, Building Manageable Systems. B

726 COX AND KREGER IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

