
Management of the service-
oriented-architecture life cycle

&

D. E. Cox

H. Kreger

Service-oriented architecture (SOA) development and deployment generally builds on

a service view of the world in which a set of services are assembled and reused to

quickly adapt to new business needs. This flexibility is seen by many IT organizations

as the core value of SOA and has been driving some deep transformations in the way

software is being built. Although SOA technology addresses many of the traditional

problems of integrating disparate business processes and applications, deploying

service-based applications introduces new aspects of the information technology (IT)

environment that must be managed. These new aspects include developing and

testing applications composed of operational services, deploying and provisioning

distributed service-based applications across organizational boundaries in a secure,

reliable, and repeatable manner, and tracking the business impact of services on the

business processes that those services support. This paper describes the management

capabilities needed to ensure that an SOA fulfills its promise of increasing integration

and improving business adaptability.

INTRODUCTION
The traditional solution life cycle, including require-

ments analysis, modeling, and architectural design,

followed by detailed design and construction in an

IDE (integrated development environment) for de-

ployment to a runtime environment, is evolving

toward a more integrated process. As management

technology expands in scope, management tasks and

capabilities (and thus the enablement of a manage-

ment solution) are introduced earlier in the solution

life cycle, into the phases of modeling, development,

and testing, not just in the runtime environment.

The solution life cycle can be broadly divided into

the preproduction phase and the production phase,

as shown in Figure 1. The steps of the preproduc-

tion phase are typically performed by architecture,

design, and development organizations. The prod-

uct of the preproduction phase is a packaged, tested

set of solution artifacts (software components,

installation programs, database and interface sche-

ma definitions, documentation, etc.). The steps of

the production phase are typically performed by

deployment and IT organizations. The product of

the production phase is a running solution that is

optimized for availability, IT resource usage and

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 COX AND KREGER 709

cost, and meeting business commitments. The

production phase also includes steps to introduce

maintenance and upgrades, as well as steps to phase

out solution components (solution-life-cycle man-

agement).

The preproduction environment includes tools and

processes for planning, modeling, development,

function testing, and load testing. Management

requirements in the preproduction environment

center around developing, testing and debugging the

solution by using tools and techniques traditionally

used in the production environment, and preparing

the solution for management in the production

environment.

The production environment includes deployment

and patches, upgrades and rollbacks, control oper-

ations, monitoring and optimization, security, and

life-cycle management. Management in the produc-

tion environment centers around the new manage-

ment issues introduced by the nature of Web

Services and service-oriented architecture (SOA).

The requirements for the development, testing and

debugging, and production environments are listed

in Table 1.

Some requirements are similar between the different

SOA life-cycle phases but may be implemented by

using different technology or targeted toward

different roles. For example, development require-

ments might be best implemented in a development

environment such as Eclipse,
1
whereas the produc-

tion requirements might be best implemented by

using a standard management server/agent infra-

structure. This paper describes the management

systems and capabilities needed to manage the full

life cycle of an SOA.

SOA CHARACTERISTICS

One of the key distinctions between an SOA and

other distributed application architectures is the

granularity and formality of the application compo-

nents. There are many documented best practices

about the recommended granularity of services in an

SOA. Some are focused on performance, and others

are focused on achieving the proper level of reuse

and composability.
2,3

Composability is the ability to

Figure 1
SOA solution life cycle

Production • Solution packaging
• Solution change management
• Solution configuration
• Provisioning and orchestration
• Identity and security management
• Data integration

• Event generation and correlation
• Root cause analysis and problem determination
• Business impact and business process management
• Workload and policy management

• Process modeling
• SOA definition

• Pattern identification
• Policy and control-point identification
• Services and workflow implementation
• User interface implementation

Acquire and map to
infrastructure

Monitor and react

Preproduction

Implement model

Define model

Business Goal
or Objective

COX AND KREGER IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005710

build new things from existing, reusable interfaces

and components, either independently or in combi-

nation, to satisfy system-specific and user require-

ments.

The following critical aspects of an SOA affect

management. Services are often designed for one or

a small number of closely related functions. They

have well-defined interfaces and relationships. SOAs

use standards-based communications and are more

closely aligned with business processes.

In the following discussion, we present an example

that illustrates the differences between a distributed

application architecture and an SOA from a manage-

ment perspective. First, we describe the distributed

Table 1 Requirements for an SOA solution

Development Requirements Testing and Debugging Requirements Production Requirements

Ability to visualize SOA components

Ability to visualize the architecture by
means of models that can also feed de-
velopment, testing tools, and manage-
ment

Ability to generate the proper instru-
mentation (static or dynamic) to make
the solution and solution artifacts man-
ageable

Ability to capture relationship informa-
tion

Ability to advertise to a management
system the management interfaces and
capabilities that are available to man-
age the SOA components, such as op-
erational status or configuration

Ability to define policy (such as secu-
rity, quality of service, or privacy) and
associate it with services, components,
and users

Ability to capture version compatibility

Ability to visualize the services topol-
ogy

Ability to generate the proper instru-
mentation (static or dynamic) to make
the solution and solution artifacts man-
ageable (if it was not done during de-
velopment)

Ability to generate test traffic for both
unit testing and performance testing

Ability to generate stubs for existing
services to imitate production services
based on recordings of production data
flows

Ability to specify a service version as a
dependency and manage multiple ver-
sions of a service

Ability to monitor and report availabil-
ity and performance of components of
the solution during testing

Ability to view events or faults gener-
ated by components of the solution or
by the runtime infrastructure

Ability to validate that the events pro-
duced in the preproduction environ-
ment can be correctly correlated to pro-
duce the KPIs (key performance
indicators) and metrics to detect busi-
ness situations as specified by the busi-
ness analyst

Ability to visualize the KPIs and met-
rics in scorecards, reports, and dash-
boards

Ability to visualize the business process
impact based on simulated failures or
problems to test this capability before
the solution is deployed into production

Ability to deploy a services-based solu-
tion into a production environment

Ability to dynamically provision an
SOA architecture solution for automa-
tion and efficient use of capacity

Ability to manage multiple versions of
a service to ensure compatibility and
co-existence

Ability to secure services interactions

Ability to provide a single definition of
users and a single user sign-on for het-
erogeneous service architectures

Ability to visualize the services rela-
tionships (e.g., transaction paths, in-
stallation dependencies, runtime depen-
dencies) to support tasks like
visualization of processes and failure
analysis for cause and impact

Ability to visualize the state of the busi-
ness processes, based on the state of
the underlying services, to provide
quick understanding of current busi-
ness performance

Ability to monitor and report on the
availability, security, and performance
of the solution and solution artifacts

Ability to monitor and report the status
of the business commitments (SLAs
[Service Level Agreements]) for the so-
lution’s availability and performance

Ability to isolate and diagnose a prob-
lem in the SOA environment

Ability to view and take manual or
automatic action on events or faults
generated by the production environ-
ment

Ability to feed production, trace, and
debug data to test models and develop-
ment tools in real time

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 COX AND KREGER 711

application architecture shown in Figure 2; next, we

describe the SOA shown in Figure 3.

Figure 2 shows a typical business process (involving

an insurance quote) and how it maps to distributed

application artifacts. The distributed solution is

composed of two applications running in the local IT

environment, the policy application and the report-

ing application. The insurance-quote business pro-

cess also requires use of a third-party application,

the rating application, which runs in another

company’s IT environment.

The highlighted area in Figure 2 shows how a

business process step, ‘‘rate policy,’’ maps to the

application artifacts and the IT infrastructure. The

rate-policy step invokes a task in the policy

application, which is a distributed application that

runs on multiple application servers and depends on

certain database tables hosted by a relational data-

base management system (RDBMS). In order to

complete the rate-policy task, the policy application

uses Electronic Data Interchange (EDI)
4,5

to invoke a

request to an external rating application. The

relationship mapping is very vague and difficult to

quantify. This is because the policy application

supports many business processes, and there is no

way to determine which business processes use the

policy application. The application supports many

tasks related to insurance-policy manipulation, and

there is no way to discover the list of tasks. The

application exposes several capabilities through a

user interface only, and there is no way to describe

or discover (make known) the interfaces to the

capabilities.

Further difficulties are due to the fact that the tasks

provided by the policy application are lumped

together into a single management view of status

and availability, so that there is no management

interface to determine the status or performance of

individual tasks. The policy application is distrib-

uted among several application servers, and there is

no way to determine which of those application

servers are necessary to the processing of a specific

Figure 2
Example of business process mapped to distributed application architecture

In Audit

Rating
Application

Proprietary
EDI

Policy
Application

Review
quote
request

Review
additional
infomation

Review
additional
infomation

Quotes

Reporting
Application

Print and
send quote
to agent

?
Financial
Statements

Client

Agent

Business Process

Infrastructure

Agent

Internet

Application
Servers

DB Servers

Messaging
Middleware

Rate
Policy

COX AND KREGER IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005712

task such as rate policy. The policy application has

dependencies on a RDBMS and a set of database

tables, but it is impossible to determine which tasks

or capabilities of the application depend on the

database system or specific database tables.

The instances and locations of the policy application

components are not defined or recorded in a

standard, distributed repository. The EDI interface

to the external application does not have any

management capabilities. The dependency relation-

ship between the policy application and the external

rating application is not defined in a way that a

management tool can discover.

The management of a distributed application is

limited in many ways due to the ambiguous

relationships described previously. The result is that

IT operators tend to learn typical relationships and

failure patterns by trial and error. The process of

managing such a system is consequently error-

prone, manually intensive, and very sensitive to

changes in the system.

As an example of a process that avoids these

difficulties, Figure 3 shows the same business

process mapped to an SOA. The services in this

architecture implement specific and granular tasks

and have well-defined WSDL (Web Services De-

scription Language)
6
interfaces. The relationships

between a step in the business process, the services,

and the IT infrastructure as shown in the highlighted

area of Figure 3. Due to the nature of services,
7
the

relationships in this figure are specific and easily

discovered. This is because the services have

standards-based WSDL interfaces, which can be

choreographed by a flow engine such as Business

Process Execution Language (BPEL);
8
the service

interfaces can be described and advertised in a

distributed standards-based repository (i.e., Univer-

Figure 3
Example of SOA business process

Agent

In Audit

Application
Servers

DB Servers

Messaging
Middleware

Review
quote
request

Review
additional
infomation

Review
additional
infomation

Rate
Policy

QuotesPrint and
send quote
to agent

Financial
Statements

Rating
Service

External
Rating
Service

Quote
Review
Service

Policy
Rating
Service

Client

Agent

Business Process

Infrastructure

Financial
Review
Service

Quote
Audit
Service

?

Internet

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 COX AND KREGER 713

sal Description, Discovery, and Integration

[UDDI]
9,10

); the services run on specific application

servers (known to the management system, but not

necessarily known to the client application); and

they have specific and well-defined dependencies on

other services.

Management interfaces (Web Services Distributed

Management [WSDM]
11
) allow discovery of de-

pendencies on other types of resources, such as IT

resources, and management capabilities of the

remote rating service can be exposed through

WSDM. The service instances are easily discovered

through WSDM management interfaces.

MANAGEMENT SYSTEM INTERACTIONS

This section describes the high-level interaction

between different aspects of the management

system. It shows how some of the tasks and

capabilities introduced earlier relate to the four

major components of a management system, as

shown in Figure 4. Although many of these tasks

and capabilities apply equally to non-SOA environ-

ments, this section highlights key points that are

especially important for SOA environments.

Data collection

The first task that a management system performs is

the collection of data about the managed environ-

ment. For traditional IT management, the manage-

ment system would typically collect data about the

performance and availability metrics for servers,

operating systems, and applications. For manage-

ment of an SOA, the management system must

recognize services in the SOA first as class objects.

The management system must also collect data at

the proper level of granularity; for example, to

manage an SLA (service-level agreement) for a

specific user, data must be collected to calculate the

average response time by the user. Similarly, the

management system must collect or discover data

about the relationships between a service and the

business processes that use the service, in order to

be able to measure business impact.

The specific management data collected for an SOA

includes the identity of services and related infra-

structure, configuration information, metrics, status,

activity trace entries, and topology diagrams depict-

ing the relationships among services. This informa-

tion is used inmany differentmanagement scenarios,

including setting runtime performance thresholds,

customer-focused SLA monitoring, and business

impact analysiswithpredictionof impending failures.

Management systems get data directly from the data

collection service or harvest it from the environment

of the service. Services can provide data through (1)

asynchronous events, (2) ‘‘heartbeats’’ sent to the

management system (i.e., regular messages sent

periodically when the resource is functioning

properly), (3) metric and configuration properties

that can be queried, or (4) audit information and

errors saved in a log accessible by the management

system. Data can be harvested from the services

environment by interacting with similar manage-

ment data providers for service containers, service

runtimes, and service buses. For example, a

management system would poll a Web service that

is part of an SOA for operation invocation counts,

but it would poll the application server hosting the

Web service for total CPU time and memory usage.

Data can be collected by using a number of different

interaction patterns: polling of values for the

resource on a periodic basis, using asynchronous

events when abnormal situations occur, using

heartbeat messages when the resource is healthy,

and batch searching of new log messages. In

addition to these collection patterns, management

systems can use intermediaries, or management

agents, to provide communication to, or a proxy for,

the service instrumentation. Management systems

can interact directly with a Web service that offers a

management interface, or they may interact with a

Figure 4
SOA management system interactions

Manual
Automatic

Analysis
and

Persistence

Environment
Optimization

Visualization

Data
Collection

COX AND KREGER IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005714

printing service through a Web-service bridge that

communicates with the printer by means of SNMP

(Simple Network Management Protocol).
12

The

management agents may also provide additional

services for the management systems to support

scalability and additional management protocols. As

an illustration, a management system might have

metric analysis services run locally on the systems

where application servers are deployed, reducing

networked polling traffic.

In addition to providing instrumentation for the

provision of data to management systems, services

should be instrumented for control operations to

allow automated optimization and control. The

kinds of operations and how they are used is

discussed in more detail later in this section.

As mentioned, management systems may harvest

data from the service environment. The service

environment consists of the network systems, the

service bus, application servers, brokers, and other

middleware components that allow the SOA to

function. Management systems might regularly scan

systems and service environments for new services,

new relationships indicating a change in depen-

dencies or processes, or new log messages. Some

data is only collected when requested by admin-

istrators. For example, collecting, normalizing, and

correlating logged information from services, service

environments, and service buses can provide data

used for sophisticated trend analysis, resource

requirement prediction, and SLA analysis.

Analysis and persistence
After data is collected by the management system, it

is analyzed and made persistent (maintained across

session boundaries in a database system). The

following section describes some basic management

abilities (such as calculating status) that are

achieved by analyzing data. Data analysis enables

the provision of a wide range of management

capabilities, including complex functions such as

problem isolation, business impact analysis, and

management of SLAs.

Typical analysis generates service performance

statistics, including request counters, transaction

performance, processing times, and failure rates,

both for the service as a whole and for each user’s

perspective on his or her experience with the

service. The management system compares the

analyzed data with expected or committed values. If

the SOA environment is not performing as expected,

the management system uses a policy to determine

corrective actions, such as alerting an operator or

invoking automatic corrective processes.

Relationship discovery is a key goal in the analysis

because SOA environment models are aptly repre-

sented as a set of relationships on the same plane (or

layer) and between planes. The planes analyzed for

relationships include the service plane, the service

environment plane, the IT infrastructure plane, the

enterprise application plane, and the cross-business

application plane. Three of these planes are

described in Figure 5, and their interactions are

shown in Figure 6. Understanding relationships

between services is as crucial as understanding

relationships between planes. Spanning service-to-

business planes is a requirement unique to SOA

management as compared with typical resource and

application management. Services in these cases can

include a combination of programmatic or human

services. Relationships are discovered through

analysis of relationship registries, relationship in-

formation provided by resources, or deployment

relationships. Relationships are used to augment

other management data to facilitate problem deter-

mination and business impact analysis.

Service status is determined by analyzing metrics,

state models, and failure messages. In addition, the

status of other services and resources that are in

dependency relationships should be considered. The

same is done for the service environment and

service bus. Service status must also be understood

from each service user’s experience. Detecting an

inappropriate status for a service may depend on

determining and predicting its ability to continue to

function and satisfy important SLAs. For example, if

an application server running a service fails, the

management system must know if a backup service

exists and if the failover mechanism is automatic or

not. If there is a backup service, the management

system may change the configuration or policy to

insert the backup service into the SOA environment;

if no backup service is defined, the management

system may alert an operator that no automatic

corrective action is available and that the failed

service will impact certain users or business

processes.

Problem detection and determination are two steps

in one of the oldest management processes. Man-

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 COX AND KREGER 715

agement systems must be able to detect a service

failure or degradation in a timely manner. Detection

is supported by receiving analysis of failure events

from or about services, polling metric information

and detecting threshold exceptions, monitoring for

operational status changes, or discovering invalid

configurations or relationships. For SOAs, this

detection and analysis must, at times, be done

across service, application, and business planes.

Once the problem is detected, management systems

use analysis of data and dependency relationships to

determine what the root cause of the failure is.

Sometimes management systems can only narrow

the root cause down to a few likely options for the

operations staff to investigate further, but this

programmatic analysis is much faster and more

accurate for most common failures, relieving oper-

ations staff of tedious and error-prone work and

leaving them more time to resolve more complex

problems.

Business impact detection and determination are two

final steps in the management process. Like problem

detection and determination, they rely on receiving

or retrieving indicators of business system prob-

lems. In contrast with typical resources, relationship

information is crucial for SOAs for traversing busi-

ness, service, and IT resource planes to find the

source of the business system problem. Business

impact understanding is used to prioritize the

resolution of multiple problems, either with auto-

mation or by operators. This understanding may

also enable a management system to detect that a

business commitment or SLA is about to be violated,

Figure 5
SOA planes

Model
• Define topology
• Define business metrics

Implement
• Choreographed flow or ad hoc composition
• Define policy and control points
• Logical view of services
• Deploy/configure for test

Application
Server

Deploy and run
• Deploy/configure for production
• Enforce policy points
• Resource/instance view of services
 and transitions into/out of services
• Maintain business and IT objectives

Workload
Manager

RDBMSWeb Services
Gateway

Client
Application

Client
Application

Messaging

Transaction
Processing

Application
Server

Application
Server

BUSINESS PROCESS LAYER

Step 2
Step 3 Step 4

SERVICE LAYER

IT INFRASTRUCTURE LAYER

Service
A

Service
B

Service
Instance
B1

Service
Instance
B2

Step 1

Service
Instance
A1

COX AND KREGER IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005716

allowing corrective action to be taken before it is too

late.

Service-level monitoring and enforcement is slightly

different from resource performance and problem

determination analysis in that instead of focusing on

the resource, service, or system as a whole, the

focus is on a particular client’s experience with a

service. Raw metrics and events must be sorted and

decomposed, based on which clients were interact-

ing with the service. Thus, instead of the number of

transactions processed by a service, the number of

transactions per client per service is tracked. Using

the client-specific data and events along with SLAs,

management systems detect exceptions to the

agreements. This can be done in real time by the

service environment, in which case imminent

agreement exceptions should be detected so that

real-time corrections can be made to ensure that

actual exceptions do not occur. Service-level ex-

ception detection can also be done on a more coarse

time basis, such as daily, weekly or monthly, using

persistent data.

Raw and analyzed data is made persistent in a

normalized format by using the management

system’s common data model. The process of

converting raw information into the common data

model requires mapping semantic information from

many different management models into a common

set of fields. Performing this process once rather

than each time analysis is performed reduces

inconsistent data mapping and skewed results.

Maintaining the information in a normalized data

model enables the efficient processing of high

volumes of data and provides analysis results of

higher fidelity. The normalized data model also

allows easier correlation of data collected from

different sources. This normalized historical infor-

mation is used in future management tasks, such as

historical trend analysis of service performance,

resource usage, usage analysis for billing, and

building and maintaining accurate relationships.

The normalized historical data may also be used for

data-mining techniques, such as identifying com-

mon conditions leading up to a failure, so that

processes can be created to detect the condition and

prevent the failure.

Visualization

The visualization capabilities of the SOA manage-

ment system allow users to view and interact with

the services, SOA topology, and SOA environment.

The visualization capabilities span the SOA man-

agement life cycle from architecture and develop-

ment, through deployment and configuration, to

monitoring and optimization, and finally to main-

tenance and end of life. Visualization as a tool for

SOA management is especially important because of

the infrastructure, service, and business planes it

must span and relate. Visualization tools can thus be

complicated to maintain.

Visualization in the preproduction life-cycle phases

should be integrated in an IDE tooling environment

such as Eclipse.
1
The management system should

provide data for preproduction visualization that

describes the observed behavior of services in the

SOA. The observed views can be compared to the

expected or intended topology to detect problems.

The observed data from the management system

can also be used as context to help resolve

problems. For example, log files or actual message

content can be passed from the management system

to the visualization tool in the IDE environment to

Figure 6
Interaction between SOA planes

BUSINESS PROCESS LAYER

SERVICE LAYER

IT INFRASTRUCTURE
LAYER

Implement
model

Pass
business
metrics

Compare
actual/
observed
topology to
model

Validate
model

Deploy

Pass policy
points

Pass
instrumented
code

Pass log/
trace/
context
information

Debug

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 COX AND KREGER 717

give the support person more information to

diagnose a problem. See the paper on Web Services

Navigator by De Pauw,
13

elsewhere in this issue, for

details on SOA management capabilities that can be

provided in the preproduction environment.

Preproduction tooling should also provide user

interface capabilities to define control points for the

management system across the infrastructure, ser-

vice, and business planes. The visualization tool

should allow the architect or designer to define

points in the service flow where authorization,

prioritization, data integrity checking, business

metric analysis, and other tasks can be performed.

The runtime management system can then use the

control points to monitor the SOA and can modify

policy at the control points to control the SOA. The

management control points may be a formal,

designed part of the solution
14

(most likely as

intermediary services) or may be implemented in

the infrastructure and thus be transparent to the

services.

The production management system should have

visualization capabilities that allow monitoring and

control of the SOA. The management system

continuously monitors the system for indications of

problems, such as events being generated or

thresholds being exceeded. When problems in the

SOA are detected, the management system shows

visually that a new alert needs attention and also

shows the affected systems and business processes

in a table or topology view.

The SOA management aspects of the management

system are used to diagnose and correct the

problem. The SOA visualization tool includes

specialized topology and message information that

helps identify problems in service-to-service inter-

action. The SOA visualization tool also helps the

operator understand where the control points are in

the service topology and what policy and config-

uration parameters are available to control the

environment.

The management system also provides user inter-

faces to take action on the SOA and the SOA

environment. The user interfaces allow the user to

control the services and the runtime infrastructure

by providing commands such as ‘‘configure,’’

‘‘start,’’ ‘‘stop,’’ and ‘‘restart.’’ The user interfaces

also allow the user to control the environment by

changing policy, which may result in configuration

changes or commands being issued.

Environment optimization

When business-, resource-, or service-level prob-

lems are detected through events or monitoring,

automated corrections can be made to the SOA

environment, services, or Web services. Again, the

cross-plane impact of the policies and optimization

that is so important for keeping resource, service,

and business goals optimized is unique to SOA

management. Automated reactions occur based on

policies defined in the management system. These

policies can be pushed down into the resource level

and complied with locally by the services. Auto-

mated corrections can manifest themselves in

several ways, such as policy changes, automated

recovery, load balancing, and dynamic

provisioning.

Policy or configuration changes can be made by

management systems to influence the ongoing

behavior of the resource. For example, thread pools

can be made larger, or a policy to allocate new

resources, an expensive operation, can be changed

to occur less frequently. In addition, policies can be

used to control the availability of the management

information itself; that is, metrics collection, log

monitoring, and message monitoring, where the

status of transactions is determined and the amount

of information logged from a message is tuned

according to the contents of the message, its

business impact, and policies.

Automated recovery occurs when a management

system automatically restores a resource that is

down, has failed, or is degraded to fully operational

status, functioning within the expectations of

policies and SLAs.

Load balancing allocates service requests across a

set, or cluster, of services. This usually maximizes

system resource usage, provides better performance

for services, and provides better availability, be-

cause it prevents the failure of one service from

causing new service requests to fail. Load balancing

can also support virtualization of resources, where

one resource or service can appear to belong to

many clients, without the clients being aware that

they are sharing the service.

Dynamic provisioning corrects situations where

there are insufficient resources available to maintain

COX AND KREGER IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005718

SLAs. New resources can be brought online to

support the services. In addition, services are

provisioned and instantiated in times of high

demand and then destroyed, freeing resources when

they are no longer needed. Dynamic provisioning of

a new instance of a service can vary widely, from

adding an existing but idle instance of the service to

a pool to requesting a new machine from a pool and

installing the operating system, middleware, and

service software. For Web Services SOAs, routing

service invocations to a convenient service instance

is transparent to the client or business process

because Web Services support transparent address

redirection.

Automated recovery and dynamic provisioning are

usually sophisticated multistep conditional tasks

with compensation for failure and the capability of

rolling back activities. BPEL documents can effec-

tively describe these conditions as business pro-

cesses, also called management processes.

Management processes, like those defined by the

ITIL (Information Technology Infrastructure Li-

brary)
15

standards, can be built by using the same

high-quality tools and workflow engines that drive

production. Applying SOA concepts like BPEL to the

management processes themselves is the primary

enabler behind IT process automation. This not only

makes building and customizing management sys-

tems cheaper and easier for management system

vendors; it also makes it easier for businesses

because they are reusing existing skills in business

process development and execution. This builds an

unprecedented synergy between business and man-

agement processes.

OVERVIEW OF THE MANAGEMENT SYSTEM
ARCHITECTURE

This section describes the architectural layers of the

management system that is used to manage an SOA.

It provides a more detailed architectural, layered

view of the four major capabilities described in the

previous section (data collection, analysis and

persistence, visualization, and environment optimi-

zation). The management-system architecture is

shown in Figure 7.

The layers of the management-system architecture

work together to provide the four major capabilities.

The data collection capability of the management

system is manifested in the management instru-

mentation provided by the managed resource layer,

and in the management-system agent layer, which

interacts with the instrumentation. The analysis and

persistence capability is provided on a local, single-

machine basis by the management agent and on a

system-wide basis by the management server layer.

The visualization capability is provided by the user

interface layer of the management system architec-

ture, which works with the raw and analyzed data

stored by the management server. The environment

optimization capability is provided by the user

interface layer (for manual manipulation of the

environment) and by automation capabilities in the

management server layer. Both manual and auto-

matic environment optimization can be put into

effect directly by issuing commands to the manage-

ment system or the managed resources in the SOA

environment, or indirectly by changing policy in the

management system or the managed SOA environ-

ment.

MANAGEMENT SYSTEM COMPONENT
DESCRIPTIONS

In general, management architectures are very

similar in that they have managed resources that

interact through an agent with a management

server, which has a user interface for operators.

The management system topology usually consists

of a management agent on each machine that

contains managed resources or systems. The

management server is a distributed application that

runs on one or more systems in a small number of

central locations. The management user interface

controller is also a distributed application that runs

in a central location. The users of the management

system may access the user interface locally

through a browser or installed client, or remotely

over the Internet with a browser. Secure access to

management operations and secure communica-

tions among the components of the management

system are clearly important parts of the manage-

ment system.

This section describes in more detail the compo-

nents of the management architecture, layer by

layer. In this architecture, the service in an SOA is a

managed resource, as are the middleware and

hardware components that provide the SOA runtime

environment.

Managed resources

The managed resource layer provides instrumenta-

tion that allows a management system to interact

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 COX AND KREGER 719

with its environment. The instrumentation must

provide sufficient information to enable some of the

management capabilities described in the section

‘‘Overview of the management system architecture.’’

Typically, this includes creating events to signal

health or failure situations and providing properties

and metrics that indicate the current health,

performance, and configuration of the system. The

instrumentation must also allow for polling, con-

figuration, and control of the environment, often by

direct operations as well as by using a set of

management policies.

When a managed resource becomes available, a

management server should perform discovery on

several levels and integrate the resource into the

managed environment. The management server

discovers the existence of the resource and its

manageability capabilities. To support the discovery

of its existence, the resource should register or

broadcast its presence to the data collection com-

ponent so that the management system can begin to

bring this new resource into the managed environ-

ment. To support the discovery of its capabilities,

the resource should advertise a description of the

management capabilities it supports. If the data

collector processes that description and understands

this type of resource, it will add the resource to its

managed-resources configuration. If this resource is

not one that the data collector has been configured

to collect from, the data collector notifies operators

and administrators who use tools in the user

interface to configure data collection, monitoring,

and policy for the resource. After the data collector

is aware of and able to interact with the managed

resource, the system should use policy to control

which system messages should be monitored,

filtered, correlated, and sent to the data collector.

Figure 7
Management system architecture

Monitoring and
message
correlation

Message
control

Discovery

Managed Resources

Control/
policy

Secure server
communications/
sub-agent
administration

Agent

Data collection
and
storage

Control and
policy
distribution

Agent
management

Server

Analysis

User interface

Data
collection
and
forwarding

Policy

Central
policy store

Processed and
normalized data

UI controller

Management
user
interface

Registry/
catalog

“Raw”data

COX AND KREGER IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005720

Instrumentation should be provided by using a

combination of standards including CIM (Common

Information Model)
16

models, JMX** (Java Man-

agement Extensions),
17

and WSDM. Instrumenta-

tion should be provided for the services themselves

in an SOA, as well as for the infrastructure

components that host the services and handle the

messages.

CIM provides the basic, standard, extensible models

for the management of resources that are used to

create the service environment and services. The

creators of instrumentation for services should

extend these models with management information

necessary to manage a particular service or

resource. For Web Services, WSDM provides the

basic management model, and service developers

should extend the basic management capabilities

with any capabilities specific to the service being

developed. For example, CIM provides the basic

model for a service that includes the fields Name and

Started Boolean and operations for the methods

startService and stopService. It can be extended

to provide additional information for management

of a rating service that might include the methods

updateRatingPolicy and updateRatingTables.

WSDM defines how to represent management

interfaces by using Web Services. This standard

management-interface definition creates an integra-

tion layer between the different management pro-

tocols used to instrument service-environment

resources and management systems. WSDM defines

a basic set of manageability capabilities that can be

composed, like selecting from a ‘‘buffet,’’ to express

the capability of the management instrumentation.

WSDM defines how to express resource identity,

metrics, configuration, and relationships by using

Web Services. WSDM depends on the following

standards; WS-I (Web Services – Interoperability)
18

for the basic profile, WS-Resource Framework
19

for

property collections, and WS-Notification
20

for

management-event transport. WSDM also defines a

standard management-event format to improve

interoperability and correlation.

The customized models, like the CIM example

described earlier, provide the actual properties and

operations for a WSDM-manageable Web service

interface for the service. Building on the CIM

example described earlier, the properties of the

rating-service-manageability Web service would

include Name, Started, CurrentRatingPolicy, and

CurrentRatingTable. WSDL operations would in-

clude StartService, StopService, UpdateRating-

Policy, and UpdateRatingTables.

Tools supporting the development and testing

phases of the SOA and service life cycle can facilitate

management instrumentation during development.

Development tools provide ‘‘wizards’’ that are

triggered during development of manageable com-

ponents, services, and business processes. These

wizards should display log and error messages as

candidates for management events, allowing devel-

opers to tag properties in components such as

identity, metrics, and configuration-management

data. These wizards can generate the instrumenta-

tion by using JMX MBeans (management beans) and

Web Services to reflect this management informa-

tion as a WSDM-manageable resource.

Agent

The use of agents increases the scalability of the

management system by reducing the volume of data

communications and offloading some management

work from the machine running the management

server to the machine running the managed re-

sources. This is accomplished by reducing the

number of communications paths from the man-

agement server to the individual managed resources

on a target system, running some management

server tasks (i.e., discovery, monitoring, and setting

thresholds) locally, and by filtering and aggregating

data before forwarding it to a management server.

Agents can also be used as nodes in a distributed or

federated data-storage topology. The advantages of

an agent architecture layer are more apparent when

there are a large number of remote managed

resources in the environment, such as in a bank

branch topology.

The agent works in conjunction with the manage-

ment system to provide the data collection capability

for the managed resource. The agent performs the

task of invoking the instrumentation in the managed

resource and then forwards relevant information to

the management server. The agent may perform

some filtering and correlation of data as well. Not

only do policies from the management server dictate

what data is collected from which resources and

how often; they also specify filters for discarding

duplicate or irrelevant data and rules for performing

correlation.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 COX AND KREGER 721

The agent provides operational control of the

managed resource, for example, sending startSer-

vice operations from management servers to a

rating service. The agent also acts as a policy

distribution point, sending validated policies from

the management server to the policy-capable man-

aged resources. When the managed resources are

not aware of policy, the agent acts as a policy

enforcement point for the resource, translating

management and business policies into operations

or configuration changes in the managed resource.

In addition to enabling scalable management, agents

themselves must be manageable, allowing fixes,

upgrades, and policy changes just like other

software. The subagent admin function provides for

agent management as well as a secure communica-

tions pipe to the management server.

Server

The server has three distinct tasks. The first task

supports traditional management of resources,

collecting raw information from numerous types of

resources and environments by using instrumenta-

tion, logs, and other sensors. The server filters,

correlates, and saves management data in a stan-

dard format as dictated by a set of policies. This

information is fed into the analysis step discussed

previously. This analysis is used to maintain a

federated model representing the overall managed

environment that is the basis for visualization of the

system by the user interface.

The second task of a management server is to send

command and control information to managed

resources through the management agent. Com-

mand and control messages may be initiated by an

operator or by automation through policies, script-

ing, or management processes. The management

system must ensure that all command and control

messages, as well as access to collected data, are

controlled through secure authorization mecha-

nisms. Finally the policies themselves must be

maintained, either by operations, higher-level poli-

cies, or automatic reactions of the management

system to service and resource changes in the

system. One of the operations includes distributing

the policies to agents and resources that perform

policy enforcement. Additionally, resources and

agents may request a policy relevant to some

condition in the system that needs to be automati-

cally addressed. The command and control features

of the management server manage operations as

well as changes in policies and configuration of

resources to support optimizing the system in

honoring SLAs and high-level business policies.

The third, and often overlooked, task is the

management of the agents themselves as discussed

in the section ‘‘Agent.’’ The agent management task

includes keeping a list of the agents and the

managed resources that they have access to,

managing the agent software, ensuring that the

agent is available, and managing the policy that

controls the agent’s behavior.

User interface

The user interface gives operators a window into the

system and tools for failure analysis and recovery.

The interface allows an operator to efficiently

visualize the topology and operational status of the

business systems and SOA, including individual

services and underlying resources.

This visualization is a cached reflection of the

system model created by the analysis step, which is

fed from discovery, status, and performance events.

Resource existence and relationships and their

status, which may have to be aggregated from the

status of other related or dependent resources, must

be synchronized with the environment model.

The user interface must also support policy config-

uration to guide the overall management of the

environment in a consistent way. The policy

management interface should make it easy to

develop high-level rules that create resource-level

policies. The business and management policy can

also be expressed as a set of BPEL processes, for

example, scripts identifying a series of conditions,

tasks, and compensations for performing sophisti-

cated, tailored management scenarios and recov-

eries. These BPEL processes drive operations onto

agents and resources. These policies and processes

are stored in a central repository. The new policies

may be pushed immediately to agents and resources

or kept locally until conditions are met to activate

them in the management server.

In addition, the user interface should provide

operators a tool to assist with problem determina-

tion for the business system or SOA as well as tools

or connections to tools for correcting problems. The

problem determination tools use resource models

COX AND KREGER IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005722

and historical analysis data. Using a common

management-event format, like that in WSDM, is

key to enabling consistent correlation of events from

resources and their environments.

USAGE SCENARIO

This section provides examples at a high level of

how a preproduction task and a production task

would be accomplished using the SOA management

capabilities described earlier in this paper. This

section shows the interaction between the admin-

istrator or user of the management system, the

major management system components, and the

managed SOA environment.

Problem determination scenario
A solution based on an SOA was developed and

deployed as a proof of concept running in the

operational environment but has not yet been used

in production. The appropriate management instru-

mentation and control points were designed into the

system using the preproduction techniques de-

scribed earlier in this paper. During the solution

testing, several configuration parameters of the

application were adjusted to improve performance.

Suddenly, the solution began to experience failures.

All of the transactions sent to the Web Services

interface of the solution were failing.

The IT operator was the first to notice the problem.

Alerts appeared on the event console indicating that

the ‘‘number of failed requests’’ threshold had been

crossed. The IT operator began to diagnose the

problem by launching the service topology display;

the services were available, and the systems running

the services were all operational and performing

according to expectations. The IT operator deduced

that a logical or business-level problem existed and

passed control of the problem to the level-3 support

team in Development.

The level-3 support person brought up the service

topology display and viewed the recent transactions.

All transactions since 1:02 p.m. on that day had

failed. Selecting one of the transactions, the level-3

support person viewed the message content. The

transaction failure was due to a security negotiation

failure. The support person brought up the code for

the service and saw that it generated a fault message

if the incoming security request had a different

policy from the policy for the service being invoked.

The support person brought up the policy config-

uration tool and looked at the configuration of the

client and the service. The client was configured to

use a nonsecure connection; the service was

configured to require a secure connection. The

support person brought up the audit log for the

policy and saw that at 1:01 p.m. an operator

changed the security policy on the client to ‘‘no

security,’’ presumably to improve performance.

The level-3 support person initiated a conference

call between the IT team and the services architect.

The attendees agreed that an SSL (Secure Sockets

Layer) session with 56-bit encryption was the

appropriate balance between security and perfor-

mance. The level-3 support person routed the

problem back to the IT operator, who changed the

security policy to the recommended configuration.

The management system detected the policy change

and changed the specific configuration parameters

in the SOA environment to implement the new

security policy. The SOA became operational again,

and the management system cleared the alerts.

To prevent this type of problem, the management

system can provide a hierarchical policy system. A

high-level policy can be defined to ensure that

lower-level policies are consistent.
21

For example,

the scenario just described would include a high-

level policy that all Web service traffic should have

at least 56-bit SSL encryption. Any attempts to

configure a specific service for a different encryption

would be rejected before the system could be

configured correctly.

Business impact scenario
In this scenario, a company had developed an SOA-

based solution to integrate internal applications

within its enterprise. The SOA solution was

deployed in the data center and was being used for

production work. The data center experienced a

problem with power distribution, and five machines

running application servers went down. Many of the

services in the SOA implementation were running

on the failed application servers. The IT team had

configured the application servers to fail over to a

backup machine, and all five application servers did

so. The management system configured the traffic to

route all failed services to the backup instances

running on the backup machine.

The IT operations team notified the business analyst

of the failure and recovery actions. The business

analyst looked at the recent trends for the most

important business processes. Because the solution

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 COX AND KREGER 723

architecture team defined business performance

metrics in the application, the management system

was able to calculate the status of the business

processes in real time based on the status of the

underlying managed resources and by monitoring

the transaction flows. The business analyst discov-

ered that nine of the top ten business processes were

performing adequately, but one of the business

processes was running more slowly than normal.

The management system reported that at the current

performance level, the IT SLA would be violated.

Based on the business analyst’s recommendation,

the IT team was instructed to solve the performance

problem with the slow business process first. The IT

team used the relationship information provided by

the management system to identify which services

supported the slow business process. The IT team

then used the relationship information to determine

where the instances of the dependent services were

running. The IT team brought up a performance

monitoring tool (e.g., IBM Tivoli Monitor for

Transaction Performance
22
) to locate the service

instance that was performing poorly and affecting

the business process, as shown in Figure 8. The IT

team also use the management system’s monitoring

tools (not shown in Figure 8) to discover that the

machine hosting the slow service was running at

100% of processing capacity.

The IT team had now identified that too many

services had failed over to the same machine, and

one service in particular was running slowly enough

to affect a committed SLA. After one of the failed

five machines was restored, the IT team provisioned

an instance of the critical service on the restored

machine and configured the service bus to route

traffic to both services. The business process

performance was restored to normal, and the IT

team restored the remaining services to their proper

machines over the next few hours as the other

machines were repaired.

Figure 8
Diagnosis using IBM Tivoli Monitor for Transaction Performance

TivoliIBM Monitoring for Transaction Performance

Navigator

Inspector Transaction Stack

Web Services Requestor

WorkOrderManager

Web Services Provider

WorkOrderManager

createNewWorkOrder()
0.0030.237

createNewWorkOrder()

Property

createNewWorkOrder()

Value

COX AND KREGER IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005724

CONCLUSION

SOA introduces new requirements for management

as well as new opportunities to provide better

systems management. The services in an SOA and

the infrastructure supporting it need appropriate

instrumentation and control interfaces to allow

management of the entire IT environment. The

modeling and development phases of an SOA can be

used to ensure that the deployed SOA is manage-

able. Management systems must treat the services

and other components of an SOA as first-class

participants in the managed system and must

recognize that services contribute to business

processes and SLAs.

This paper has shown that the nature of SOA allows

many management tasks to be implemented in a

more reliable and integrated fashion. The concepts

of SOA can also be applied to the management

system itself to automate the management pro-

cesses, to standardize the interfaces among different

management system components, and to stan-

dardize the instrumentation exposed by the man-

aged environment.

ACKNOWLEDGMENTS
The authors would like to acknowledge the

contributions of Mark Anderson, Rosalind Radcliffe,

John Whitfield, John Harter, Sudhakar Chellam, and

Phil Fritz. We also thank the WSDM technical

committee for ‘‘catching the vision’’ and laying the

foundation for the building bricks of the future. We

also acknowledge the reviewers of this paper.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc.

CITED REFERENCES AND NOTES
1. Eclipse is an open, extensible tool platform. See http://

www.eclipse.org.

2. K. Brown and R. Reinitz, Web Services Architectures and
Best Practices, IBM WebSphere Developer Technical
Journal (2003), http://www-128.ibm.com/
developerworks/websphere/techjournal/0310_brown/
brown.html.

3. Using Web Services Effectively, Sun Microsystems (2002),
http://java.sun.com/blueprints/webservices/
using/webservbp.html.

4. For the implementation of EDI, see The Accredited
Standards Committee (ASC) X12, http://www.x12.org/.

5. For EDI Internet integration, see http://www.ietf.org/
proceedings/96dec/charters/ediint-charter.html.

6. W3C Web Services Description Working Group, http://
www.w3c.org/2002/ws/desc/.

7. D. Cox, ‘‘How to Simplify IT Infrastructure Management:
Using SOAs is Key,’’ WebSphere Journal (November
2004), http://www.sys-con.com/story/
?storyid¼47216&DE¼1.

8. Business Process Execution Language for Web Services
Version 1.1, http://www-128.ibm.com/developerworks/
library/specification/ws-bpel/.

9. Universal Description, Discovery, and Integration,
UDDI.org Consortium, http://www.uddi.org.

10. Understanding UDDI, IBM developerWorks (2002),
http://www.ibm.com/developerworks/webservices/
library/ws-featuddi/?n-ws-7252.

11. OASIS Web Services Distributed Management Technical
Committee, http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev¼wsdm.

12. Introduction and Applicability Statements for Internet
Standard Management Framework (2002), http://
www.ietf.org/rfc/rfc3410.txt?number¼3410.

13. W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and
J. F. Morar, ‘‘Web Services Navigator: Visualizing the
Execution of Web Services,’’ IBM Systems Journal 44, No.
4, 821–846 (2005, this issue).

14. M.-T. Schmidt, B. Hutchison, P. Lambros, and R.
Phippen, ‘‘The Enterprise Service Bus: Making Service-
Oriented Architecture Real,’’ IBM Systems Journal 44, No.
4, 781–798 (2005, this issue).

15. Information Technology Infrastructure Library, Office of
Government Commerce, http://www.itil.co.uk/.

16. Common Information Model Standards, Distributed
Management Task Force (1999–2005), http://
www.dmtf.org/standards/cim.

17. Java Management Extensions Specification (1998–2002),
http://www.jcp.org/en/jsr/detail?id¼3.

18. Web Services Interoperability Organization, http://
www.ws-i.org.

19. Web Services Resource Framework Technical Commit-
tee, http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev¼wsrf.

20. Web Services Notification Technical Committee, http://
www.oasis-open.org/committees/tc_home.
php?wg_abbrev¼wsn.

21. N. Nagaratnam, A. Nadalin, M. Hondo, M. McIntosh, and
P. Austel, ‘‘Business-Driven Application Security: From
Modeling to Managing Secure Applications,’’ IBM Systems
Journal 44, No. 4, 847–868 (2005, this issue).

22. IBM Tivoli Monitoring for Transaction Performance,
http://www.ibm.com/software/tivoli/products/
monitor-transaction/.

Accepted for publication June 3, 2005.

David E. Cox
IBM Software Group, 4205 South Miami Blvd, Research
Triangle Park, North Carolina 27709 (decox@us.ibm.com).
Mr. Cox is a Senior Technical Staff Member in the Tivoli
Technical Strategy and Architecture group in IBM. He is
currently the lead architect for Web Services and service-
oriented architecture management at Tivoli. He is a member of
the Tivoli Architecture Board and a core member of the IBM
Software Group Architecture Board. He is also a voting

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 COX AND KREGER 725

Published online October 18, 2005.8

member of the OASIS Web Services Distributed Management
Technical Committee. Mr. Cox has 20 years of technical
experience in systems and network management,
communications software, and operating systems. He has
written numerous technical papers and holds five United
States patents. He received a B.S. degree from North Carolina
State University and an M.S. degree from the University of
North Carolina at Chapel Hill.

Heather Kreger
IBM Software Group, PO Box 12195, 3039 Cornwallis Road,
Research Triangle Park, North Carolina 27709
(kreger@us.ibm.com). Ms. Kreger is a lead architect for Web
Services and Management in the Standards and Emerging
Technologies area. She is currently co-leader of the OASIS
Web Services Distributed Management Technical Committee
and member of several related DMTF (Distributed
Management Task Force) work groups. Ms. Kreger was IBM’s
representative to the W3Ct Web Services Architecture work
group as well as co-lead of JSR 109, which specifies Web
Services deployment in J2EE environments, and a contributor
to the Java Management Extensions (JMXe) specification. She
is also the author of numerous articles on Web Services and
management in the IBM Systems Journal, Communications of
ACM, Web Services Journal, and other public technical work,
including the ‘‘Web Services Conceptual Architecture’’ and
‘‘WS-Manageability Standards.’’ She is also the author of Java
and JMX, Building Manageable Systems. &

COX AND KREGER IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005726

