
Realizing service-oriented
solutions with the IBM Rational
Software Development Platform

&

A. W. Brown

M. Delbaere

P. Eeles

S. Johnston

R. Weaver

Creating service-oriented architecture (SOA) solutions means rethinking the practices

currently in use to build systems, reconsidering the skills in an organization, and

redefining the ways in which team members collaborate. A service orientation

contributes to the development of solutions that are assembled from disparate

applications, and SOA is an architectural style that emphasizes loose coupling of

independent service providers. This perspective on service orientation is known as

service-oriented development of applications (SODA). SODA encompasses composi-

tion, adaptive process management, service-based interoperability and integration,

discovery and description, and rapid application maintenance. In this paper, we focus

on how IBM supports SODA, the relationship of SODA to the IBM Rational Software

Development Platform (RSDP), and how IBM’s core approach to design and

construction—model-driven development—is an essential element in creating effective

and efficient services and service-oriented solutions. We explore the concepts behind

these approaches and illustrate their realization with illustrative examples from

customer experiences.

INTRODUCTION

Building enterprise-scale software solutions has

never been easy. The difficulties of understanding

highly complex business domains are typically

compounded with all the challenges of managing a

development effort involving large teams of engi-

neers over multiple phases of a project spanning

many months. The time-to-market pressures inher-

ent in many of today’s product development efforts

only serve to exacerbate these problems.

In addition to the scale and complexity of many of

these efforts, there is also great complexity in the

software platforms for which enterprise-scale soft-

ware is targeted. Most large IT (information

technology) organizations rely on a complicated

assortment of infrastructure technologies that have

evolved over many years, consist of a variety of

middleware acquired from many vendors, and have

been assembled through various poorly documented

integration efforts of varied quality.

To develop applications in this context requires an

approach to software architecture that helps archi-

tects evolve their solutions in flexible ways, reusing

existing assets in the context of new capabilities that

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 BROWN ET AL. 727

implement business functionality even as the target

infrastructure itself is evolving. Service-oriented

architecture is an important idea that is central to

addressing these issues.

Service-oriented architecture

An approach gaining support in the industry today is

based on viewing enterprise solutions as federations

of services connected by well-specified contracts

that define their service interfaces. The resulting

system designs are frequently called service-ori-

ented architectures (SOAs). Many organizations

now express their solutions in terms of services and

their interconnections. The ultimate goal of adapting

an SOA is to achieve flexibility for the business and

IT.

For purposes of this paper, we use the following

definition of a service: it is generally implemented as

a course-grained, discoverable software entity that

exists as a single instance and interacts with

applications and other services through a loosely

coupled (often asynchronous), message-based

communication model.

A number of important technologies have been

defined to support an SOA approach, most notably

when the services are distributed across multiple

machines and connected over the Internet or an

intranet. For example, Web Services approaches rely

on intraservice communication protocols, such as

the Simple Object Access Protocol (SOAP); enable

the Web Services interfaces expressed in WSDL

(Web Services Description Language) to be regis-

tered in public directories and searched in UDDI

(Universal Description, Discovery and Integration)

repositories; and share information in documents

defined in XML (Extensible Markup Language) and

described in standard schemas.

Of course, SOA is more than a set of standards and

service descriptions in the same way that object-

orientation is more than a set of class hierarchies.

The essence of SOA is that it emphasizes loose

coupling of independent service providers. In fact, it

may be implemented by using a range of different

technology choices. Indeed, it is possible to create

an SOA that does not use Web Services technology,

and it is possible to use Web Services technology in

a way that would not be considered service-

oriented. More important, a number of fundamental

concepts become primary when implementing a

solution using SOA (e.g., the concept of ‘‘service

leasing’’ to support flexibility between service

provider and consumer).
1

There is a great deal more

that needs to be explored to understand why a

service-oriented viewpoint adds value to a business

and how service-oriented solutions are designed,

implemented, deployed, and managed.

Service-oriented development of applications
Creating solutions for SOA means rethinking the

kinds of systems being built today, reconsidering the

skills in an organization, and redefining the ways in

which members of teams collaborate. Most impor-

tant, adopting a service orientation to the develop-

ment of solutions requires a broader review of the

impact of this orientation on how solutions are

designed, what it means to assemble them from

disparate services, and how deployed service-

oriented applications are managed and evolved.

Gartner refers to this broader context of service

orientation as Service-Oriented Development of

Applications (SODA).
2

Gartner considers the five

key areas (or ‘‘tenets’’) of SODA to be composition,

adaptive process management, service-based inter-

operability and integration, discovery and descrip-

tion, and rapid application maintenance. In

Figure 1, we see the primary elements of SODA as

defined by Gartner. From a tool vendor perspective,

Figure 1
Service-oriented development of applications

Basic Tenets

Assembly
+
Orchestration

Business
Process
Modeling
+
Dynamism

Dynamism
+
Loose
Coupling

Biological
and
Continuous
Evolution

Service-Based
Interoperability
and Integration

Adaptive
Process
Management

Discovery
and
Description

Rapid Application
Maintenance
(Managing Change)

Composition

Web Services Other Services

Reprinted with permission of Gartner, Inc.

BROWN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005728

these areas relate to technology support offered in

three areas:

1. The SOA life cycle—The ‘‘discovery and descrip-

tion’’ and ‘‘rapid application maintenance’’ tenets

refer to the life cycle of services and how they are

found, applied, evolved, and maintained. Tool

vendors increasingly offer ways to store, catalog,

search, and retrieve services. Support for the

ongoing evolution of services is a critical aspect

of this process, leading to multiple versions of

services.

2. SOA platform and programming model—The

‘‘service-based interoperability and integration’’

tenet refers to the way services can be connected,

deployed, and managed within a specific runtime

platform. The major platform vendors are sup-

porting service-oriented capabilities directly as

part of their middleware runtimes and evolving

their runtime programming models to present

service concepts as first-class elements. As a

result, solutions may be conceived, designed,

implemented, and managed from a single service-

based perspective.

3. SOA practices and tools—The ‘‘composition’’ and

‘‘adaptive process management’’ tenets refer to

how services are created and assembled in the

context of changing business needs. Tool vendors

support the mining of existing applications to

discover potential services, wrapping existing

functionality to make those capabilities accessible

as services, creation of new services, and ‘‘wiring

together’’ of services by connecting behavior

exposed through their interfaces. Fundamental to

this is the availability of clear guidance and best

practices for designing service-oriented solutions

in repeatable, predictable ways.

All three of these areas are important for success in

developing service-oriented solutions. They must all

be addressed to meet an organization’s needs in

efficiently creating more flexible solutions that

better align with the goals of the business.

IBM’s role in services and SOA

IBM has a leading role in the definition and

application of SOA and SODA. IBM recognizes the

value that SOA brings to organizations that require

greater flexibility and control of the solutions they

deploy. IBM demonstrates its support for service-

oriented approaches to development by driving

standards activities, delivering tools and technolo-

gies, and documenting best practices.

Driving standard activities

IBM has taken a leading role in defining the key

standards that allow services (in particular Web

services) to be defined, registered, managed, and

discovered. For example, standards such as WSDL,

UDDI, the Business Process Execution Language for

Web Services (BPEL4WS or BPEL for short), and

related standards for security (WS-Security) and

interoperability (WS-I) provide a greater measure of

interoperability among service-oriented applications

and encourage a healthy marketplace of tools and

technologies. In addition, IBM is driving standards

for modeling services and service assemblies, such

as the Unified Modeling Language** (UML**), and

working on numerous Java** standards that sup-

port realization of services and service-oriented

solutions in the context of the J2EE** (Java 2

Enterprise Edition) programming model, such as the

Java ServerFaces (JSF) standard and the emerging

Service Data Object (SDO) standard.

Delivering tools and technologies

As these standards are defined, they are supported

in commercially available IBM products. For exam-

ple, the IBM Rational* Application Developer

includes support for a number of key Web Services

standards, such as WSDL, UDDI, WS-I and WS-

Security. Creating services and service-oriented

solutions is automated through a wide collection of

rapid application-development features based on

wizards, patterns, and reusable assets. These help to

automate efficient delivery of services and service-

oriented applications in conformance with applica-

ble standards.

Documenting best practices

IBM has substantial experience with the application

of service-oriented approaches across many busi-

ness domains. This knowledge is being captured and

exploited through IBM’s service offerings and

engagements, guidebooks, tutorials, and reusable

samples. For example, IBM’s developerWorks*,

Redbooks*, and the Rational Unified Process*

contain a wealth of materials for those using SOA or

practicing SODA.
3

This guidance is continually

being refined and updated as IBM’s experience base

grows.

Although there is much to be discussed in all of

these areas, in this paper we focus on how IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 BROWN ET AL. 729

supports SODA, the relationship of SODA to the IBM

Rational Software Development Platform (RSDP),

and how IBM’s core approach to design and

construction—model-driven development—is an

essential element in creating efficient and effective

services and service-oriented solutions. For more

details, see the general references at the end of this

paper.

TOWARD SERVICE-ORIENTED SOLUTIONS

Adopting an SOA and applying SODA techniques is

important in creating the kinds of solutions that will

drive the next generation of business process

improvements. A growing number of organizations

are looking to adopt a different kind of software

development platform that recognizes a new ap-

proach to the role software plays in their business.

Many of these organizations face the pressure of

quantitatively showing the value that IT provides to

their business.

There are three imperatives influencing the way

organizations are looking at the platforms of their

next-generation solutions: a service view, rapid

assembly and reassembly, and a focus on asset

management and reuse.

A service view

Additional insight and understanding of how busi-

ness processes can be realized in IT solutions can be

obtained by viewing the collection of capabilities

offered throughout an IT infrastructure as a set of

services that are assembled to meet specific business

needs. System architectures are designed as collec-

tions of services governed by interservice protocols

and explicit SLAs (service level agreements).

Rapid assembly and reassembly of solutions

Greater flexibility can be offered by treating an IT

organization as a ‘‘software factory’’ for creating

solutions to meet evolving business goals. To

achieve this, it must be possible to readily assemble

and reassemble pieces and parts of the solutions as

business and market conditions demand. This

requires close relationships between business ana-

lysts and IT architects, tools to promote collabo-

ration, and a disciplined approach to managing the

elements that are assembled.

A focus on asset management and reuse

As organizations seek to obtain greater business

efficiency, there has been increased emphasis on

reuse as a principle that applies throughout the

software development life cycle. In particular, the

limited impact of reuse through shared code

libraries has been broadened to include reuse of

business processes, requirements definitions, archi-

tectural design elements, test scripts, and so on. This

view changes the solution life cycle in substantial

ways, altering the roles of individuals in the

organization and creating different project practices,

as well as creating and managing assets throughout

the life cycle. For practical reasons, this is accom-

panied by strong governance practices for reusable

assets tied to a flexible asset management infra-

structure.

Supporting this new view of software development

requires tools and platforms that take a service

perspective and provide a business focus that ties

the business and IT practitioners together more

effectively. Rather than extending object models,

practitioners must think in terms of ‘‘wiring of

services.’’ They must take advantage of exposed

service-based middleware capabilities and facilitate

greater management and reuse of solution frag-

ments. The result is different kinds of solutions,

different roles, different development processes, and

different expectations from the tooling.

Tool vendors and middleware software vendors

have recognized these requirements and are offering

capabilities to help fulfill them. In this regard, one of

the most important developments from IBM has

been the consolidation of a collection of these

capabilities as the IBM Rational Software Develop-

ment Platform (RSDP), a comprehensive set of

offerings for developing, deploying, and managing

service-oriented solutions.

THE IBM RATIONAL SOFTWARE DEVELOPMENT

PLATFORM

IBM offers many valuable technologies to help

organizations design, build, deploy, and manage

service-oriented solutions. Although individual

product capabilities are important, the real value to

customers is the combination of these capabilities in

a robust software development platform for creating

a new generation of applications. Many organiza-

tions are seeking a set of capabilities for executing IT

projects with a level of coordination, accuracy, and

clarity that is currently unavailable. In fact, the role

of IT in an organization is seen as a core ‘‘utility’’;

investment in IT resources is seen to provide a

BROWN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005730

predictable, risk-managed impact on the goals and

mission of the business.
4

Consequently, organizations are beginning to view

software development as a ‘‘business process’’ that

itself must be measurable, predictable, and man-

ageable. This is a compelling vision, and one that

can be delivered only through the deep integration

of tool and runtime capabilities throughout all

aspects of the business in support of a service-

oriented view of their solutions. In this regard, the

RSDP is a critical step. It offers the tooling and

technology infrastructure to realize that vision. With

respect to SODA, the RSDP addresses five critical

needs: bridging the business-to-IT gap, support of

the changing roles in the IT organization, a focus on

assets and reuse, increasing levels of collaboration

within and across practitioner roles, and simplifi-

cation of product offerings.

Bridging the business-to-IT gap
The service concept is essential in aligning the

business view of activities and processes with the

technology that is used to realize them. This

alignment includes the ability for business models to

drive development and to evolve business models

and IT solutions in tandem. Services and service-

based thinking form the common ground that ties

business analysts, IT architects, integrators, and

developers together. Common design practices are

essential to ensure that concepts, artifacts, and

activities are synchronized across these different

perspectives. Having tools that can efficiently

transform models which represent business intent

into efficient implementations is critical in bridging

this gap.

Support of changing roles in the IT organization

The move to a service viewpoint changes the skills

and composition of teams in an organization. The

focus of development is on finding, defining,

managing, and assembling services, with architec-

tural descriptions highlighting SLAs and interservice

protocols. The traditional breakdown of tool func-

tions into today’s line-up of products is not

appropriate to this approach; a different blend of

capabilities is required by the various members of IT

organizations. For example, the skills required for

existing roles, such as ‘‘software architect,’’ are

changing to include greater emphasis on assembly

and management of services across a diverse set of

service providers. Similarly, new roles, such as

‘‘integration specialists,’’ are emerging, whose focus

is on assembling a service-based value chain in

support of an organization’s key business goals.

A focus on assets and reuse
Considering services as key assets in the design of

systems changes an organization’s view of the value

of reusing these services. A service assembly view-

point leads to the ‘‘software factory’’ paradigm. As a

result, technologies and techniques for management

and governance of assets and repeatable ways to

capture patterns for combining assets become much

more important. In an asset-based development

approach, these assets hold critical value for the

organization and must be carefully managed and

administered. The team infrastructure for managing

assets takes on a key role in this approach.

Increasing levels of collaboration within and
across practitioner roles

Enterprise application developers have always

recognized that software development is a ‘‘team

sport’’ and have focused attention throughout the

life cycle on shared assets management, artifact

traceability, and shared practices and processes. The

collaborative nature of software development is

increasing with greater geographic distribution of

organizations, enhanced real-time communication

among individuals in teams, and software being

embedded as one part of broader systems develop-

ment initiatives. Increasingly, software development

infrastructures are seen as collaborative development

environments for software practitioners that en-

courage sharing and reuse of services among teams.

Simplification of product offerings

An essential element of success in SODA involves

reorganizing tool offerings to support the dynamic

view of customer needs and to align product

offerings with emerging roles in the IT organization.

Repackaging tool capabilities greatly improves the

delivery of those offerings to customers, supported

by promotion of how the tools address today’s

customer concerns for greater flexibility and value

in delivering service-oriented enterprise solutions.

As illustrated in Figure 2, the RSDP supports a

business-driven development life cycle aimed at

bringing together the tasks and roles that collaborate

in any enterprise-scale project. They work together

to understand, define, build, and deploy collections

of services that support the business. The services

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 BROWN ET AL. 731

are also monitored as they are executed, in order to

provide feedback that can optimize business oper-

ations.

For practical reasons, the creation and delivery of

IBM’s rich and integrated RSDP has been built upon

a common tooling infrastructure, based on a set of

shared components. The Eclipse infrastructure (its

plug-in architecture, metamodel framework, shared

metamodels, and libraries of capabilities) makes this

possible.
5

This shared infrastructure enables the use

of common components among IBM development

teams, so that IBM products can be used together

more easily, are open to extension by third parties,

have greater consistency and quality, and can be

evolved more efficiently.

A service-oriented programming model

A key aspect of the RSDP is the use of a

programming model that is influenced strongly by

the service-oriented nature of the emerging IBM

runtime platforms.
6

The RSDP presents this pro-

gramming model to practitioners as the means by

which to perceive, design, implement, and evolve

solutions for the IBM runtime platforms. This

programming model is quickly evolving to place

services and service-oriented concepts at the heart

of how practitioners think about solutions.

A key element of the programming model being

driven by the RSDP is a simplified data-access

programming model for various resources known as

the Service Data Object (SDO), which is in the

process of being standardized through the Java

Community Process. Practitioners think about per-

sistent information requirements for their solutions

in terms of SDOs and how these resources are

manipulated by services, not in terms of specific

technologies for describing and storing data.

Another key element is the emerging component

model for WebSphere* that supports Web-service

invocation, wiring, and composition regardless of

the type of implementation technology (EJBs**

[Enterprise JavaBeans**], stored procedures,

RDBMS [relational database management systems],

CICS* [Customer Information Control System]

transactions, and so on). Based on the J2EE stan-

Figure 2
Business-driven life cycle

Test and Deploy

• Manage testing, requirements,
 configuration, and project management

Discover and Design

• Harvest existing assets
• Identify/prepare existing
 assets or reuse
• Design system architecture

 Transform, Integrate and Build

• Rapid integration and/or
 application development
• Visual construction and programmatic
 code generation
• Functional and load testing
• Generate XML code and manage UML
 blueprints and automated workflow
• Apply patterns to accelerate development

Model Business Process

• Document and specify the “as-is”
 process with metrics
• Specify and construct goals, objectives
 and requirements
• Apply technology to improve
 the process
• Model the “to-be” process

Understand Business and Elicit Requirements

• Model and simulate business processes
• Model applications and data
• Analyze financial data and prioritize the
 areas that bring maximum business value

Monitor and Manage

• Audit processes and
 improvements
• Make iterative improvements
• Model the next as-is and
 to-be process

Business

Develop Iteratively

Focus on Architecture

Continuously Ensure Quality

Manage Change and Assets

Dev

elo
pm

en
tO

pe
ra

tio
ns

BROWN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005732

dard, this work supports modeling, assembly, and

runtime interaction among service implementations.

The RSDP uses a service orchestration and compo-

nent scripting standard that supports workflow and

business process integration. BPEL is a maturing

industry standard, already widely supported in

vendor tools. It also uses a Java framework, Java

ServerFaces, that speeds Web application develop-

ment for developers who are not expert J2EE

developers. Applications can be customized by

using external policies and rules through a series of

emerging standards that are in development for

policy definition and enforcement, including WS-

Policy.

DESIGN OF SERVICE-ORIENTED SOLUTIONS
In light of the preceding discussion, we can now

begin to understand more about what a service is

and how services are defined and assembled in an

SOA. In essence, a service-oriented approach is a

way of designing a software system to provide

services either to end-user applications or to other

services through published and discoverable inter-

faces. In many cases, services provide a better way

to expose discrete business functions and therefore

an excellent way to develop applications that

support business processes.

In the following subsections, we explore the idea of

services and the design of service-oriented solutions

in more detail. In particular, where appropriate, we

contrast the design of service-oriented solutions

with more widely established approaches for the

design of component-based solutions.
7,8

Service Types
A service is generally implemented as a coarse-

grained, discoverable software entity that exists as a

single instance and interacts with applications and

other services through a loosely coupled (often

asynchronous), message-based communication

model.

Services can take different forms, which are related

to the technology used in their implementation. For

example, we might be interested in the definition of

a specific kind of service, a Web service, as defined

by the XML Web Services group in the World Wide

Web (W3C**) Consortium:

A Web service is a software application identified

by a universal resource identifier (URI), whose

interfaces and binding are capable of being

defined, described, and discovered by XML

artifacts, and supports direct interactions with

other software applications using XML-based

messages via Internet-based protocols.
9

These two descriptions of services, one focusing on

the SOA architectural style and the other on its

realization as Web Services, offer a set of charac-

teristics for services related to their nature and

applicability. These include:

1. Granularity—Operations on services are fre-

quently implemented to encompass more func-

tionality and operate on larger data sets,

compared with component-interface design.

2. Interface-based definition—Services implement

separately defined interfaces. The benefit of this

is that multiple services can implement a

common interface and a service can implement

multiple interfaces.

3. Discoverability—Services need to be found at

both design time and runtime, not only by unique

identity but also by interface identity and by kind

of service.

4. Single-instance nature—Unlike component-based

development, which instantiates components as

needed, each service is a single, always-running

instance that a number of clients communicate

with.

5. Loosely coupled nature—The SOA is a loosely

coupled architecture because it strictly separates

the interface from the implementation. In addi-

tion, runtime discovery further reduces the

dependency between service consumers and

providers and makes an SOA even more loosely

coupled. Services are connected to other services

and clients using standard, dependency-reducing,

decoupled message-based methods, such as XML

document exchanges.

6. Asynchronous nature—In general, services use an

asynchronous message-passing approach; how-

ever, this is not required. In fact, many services

use synchronous message-passing at times.

7. Reusability—Services are assets that can be

reused in several contexts, regardless of the

component architecture.

Some of these criteria, such as interface-based

definition and discoverability, are also used in

component-based development. However, the major

difference between SOA and component-based

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 BROWN ET AL. 733

development is the fact that SOA focuses only on the

interfaces and their discoverability and emphasizes

loose coupling, particularly over network infra-

structures. In contrast, component-based develop-

ment focuses on the component execution

environment and the acquisition and deployment of

software components in that environment. Collec-

tively, these characteristics differentiate a service-

based solution from a component-based solution.

Service design considerations

In any new development in software engineering, it

is very easy to assume that one can apply the same

techniques and tools that have worked in previous

projects. Components and services, although sim-

ilar, are not the same; they have differing design

criteria and design patterns.

Interface-based design
In both component and service development, the

design of interfaces is performed such that a

software entity implements and exposes a key part

of its definition. As a result, the concept of ‘‘inter-

face’’ is essential to successful design in both

component-based and service-oriented systems.

An interface definition in languages such as Java or

Cþþ, or in languages such as IDL (interface

definition language), only provides a set of method

signatures. The definition provides the ‘‘what,’’

without any guidance on the ‘‘how.’’ However,

businesses are moving more and more to service-

oriented systems in the hope that they can be more

easily integrated and choreographed to realize

business processes through collaborations of ser-

vices. As a result, the concept of defining the

behavior of an interface and, more important, the

behavior of sets of related interfaces, is receiving

increasing industry attention. Unfortunately, there

are currently few standard approaches governing

these definitions.

One approach might be to use design models, such

as those introduced in this paper, defined in a

standardized language such as UML, to document

the interdependencies between service interfaces.

Such models can be shared, jointly developed, and

used to drive specific standards when they emerge.

Additionally, IBM has supported the Reusable Asset

Specification (RAS) through its standardization

within the OMG (Object Management Group, Inc.).

RAS provides a mechanism for packaging and

sharing assets, and this mechanism could be applied

to defining the behavior of sets of interfaces. For

example, when using the RAS mechanism to

distribute the details for a service, one could

package the model describing its behavior as well.

Within such a model, a sequence diagram may then

be used to show the required interaction between

the calls on the interface.

Layering application design

The tendency to solve new problems with outdated

solutions was encountered as developers began to

create component-based systems. They tried to

bring their experience with object-oriented devel-

opment to bear and encountered problems similar to

those endemic to that paradigm. With more expe-

rience, it was understood that object-oriented

technology and languages are excellent ways to

implement components, though one has to under-

stand the trade-offs that are inevitable in this design

approach. These trade-offs include using inheritance

versus aggregation for implementing polymorphic

behavior, and the redesign of class libraries to

enable the use of components as the basis of a

monolithic Cþþ application.

In a similar way, we believe that components are the

best way to implement services, with the caveat that

an exemplary component-based application does

not necessarily make an exemplary service-oriented

application. There is a great opportunity to leverage

a company’s component developers and existing

components, once the role played by services in an

application architecture is understood. The key to

making this transition is to realize that a service-

oriented approach implies an additional application

architecture layer. In particular, technology layers

can be applied to application architecture to provide

more coarse-grained implementations as one gets

closer to the consumers of the application. The term

coined to refer to this advantage is ‘‘the application

edge,’’ reflecting the fact that a service orientation

provides an excellent way to expose an external

view of a system with internal reuse and composi-

tion using traditional component design.

In our experience, the move from object-oriented to

component-based thinking took between 6 and 18

months as developers learned about this new

technology and the requirements it placed on them.

It is to be hoped that the move to service-oriented

systems can happen more quickly. To this end,

BROWN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005734

developers have to understand the challenges,

trade-offs, and design decisions that allow for the

development and reuse of components in support of

service-oriented applications.

Service-oriented design
Because there is a single instance that manages a set

of resources for a service, they are for the most part

stateless. We need to view a service as a manager

object that can create and manage instances of a

type or set of types. This yields a design pattern that

makes use of value objects (a common pattern in

distributed systems, where state persists for transfer

between components) that represent the instance

state. Objects are, in fact, simply serialized states.

Thus, if we can define the rules for taking a

component definition and transforming it into a

service, we can implement this serialization as a

pattern. The creation and reuse of such patterns is

possible with IBM Rational Software Architect.

This passing of state from provider to requestor

implies that rather than using a large number of

small operations to retrieve the component state, a

single large operation is used. Most services are

remote, and this approach has certain implications

for network usage for remote services, as well as for

the behavior of requestors when dealing with large

value objects. It also has another implication; the

requestor is being provided with a copy of the state

of some entity, but is this copy stale? We know that

when we retrieve a stock quote or weather forecast,

there is the possibility that it is out of date, but we

are conditioned to accept this. We are also condi-

tioned by the type of data; stock quote data becomes

stale faster than weather data. In the architecture

described here, the requestors must be conditioned

to accept variations in copies of state.

Service design and implementation patterns

Our experience with modeling of services and

service-oriented solutions using UML 2.0 have led to

a number of observations on effective approaches

for designing services and service-oriented solu-

tions. Much of our work has been done in the

context of creating Web Services solutions. How-

ever, many of these lessons support broad design

principles that were first highlighted in earlier

techniques supporting object-oriented and compo-

nent-based design. These approaches reinforce ideas

such as separation of interface specification from

implementation, coupling and cohesion of inter-

faces, and so on. However, we believe that a

number of practices specific to modeling of service-

oriented solutions are also readily identifiable.

To make these lessons more concrete, we focus on

Web Services. This focus does not change the

analysis of the functional requirements for an

application; an insurance claim-processing applica-

tion, for example, must process insurance claims

regardless of the technology used in its implemen-

tation. Adopting Web Services introduces a set of

constraints and potential issues in the area of

nonfunctional requirements. In the following, we

highlight some of the more interesting Web Services

design practices that we have observed in recent

modeling projects.

Performance and reliability

The question is often asked whether the capabilities

required for Web service performance, reliability,

and scalability can be provided by an architecture

based on HTTP (Hypertext Transport Protocol) and

SOAP, which are inherently slow and unreliable. To

respond to this criticism, ‘‘slow and unreliable’’ must

be defined, and it must be realized that even reliable

transports rely on unreliable means. When design-

ing enterprise-scale solutions, one must always bear

in mind functional and nonfunctional requirements

and ensure that the correct trade-offs and decisions

are made to support business goals.

For example, when using SOAP over HTTP, it is

always possible to build application-level protocols

and interactions that provide additional capabilities

for message acknowledgements and security.

Nevertheless, an alternative to HTTP might provide

a better solution in light of the fact that certain

services communicate within the same security or

application context.

Consider an example consisting of three services:

customer management, customer services, and

order management. We may design this system such

that all external clients interact with the customer

management service; however, it interacts with two

internal services, customer services and order

management. The decision here is, ‘‘Why would we

require the flexibility of HTTP and SOAP for these

internal service communications?’’ Let us assume

that performance is our key requirement for the

interaction between customer management and

customer services. If so, we might decide to use a

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 BROWN ET AL. 735

component RPC communication (such as Microsoft

.NET** Remoting or Java’s RMI over IIOP [Remote

Method Invocation over Internet Inter-Orb Proto-

col]) that provides binary encoding formats and

higher performance characteristics. On the other

hand, because the key requirement to place an order

from customer management to order management is

guaranteed delivery, we might use a queuing

technology (such as IBM WebSphere MQ or MSMQ

[Microsoft Message Queue Server]) to deliver the

message, trading performance for a higher level of

reliability.

Even though Web Services present a simple model

and a set of simple, flexible protocols, one is not

restricted to these choices. WSDL has bindings for

both SOAP and HTTP get and put requests, but it is

important to provide requestors with additional

choices. For example, a single service may expose a

message by using a message queue binding and a

SOAP binding, so that the requestor can then choose

which is the more appropriate binding to use. In this

case, the provider may also provide incentives, such

as a guaranteed service level if the message queue is

used but no service guarantees for an HTTP

conversation.

Asynchronous behavior and queuing

As mentioned in the introduction to SOA, it is

beneficial to make Web Services asynchronous in

nature. Because of the additional transport overhead

associated with Web Services and the expectation

that services will, by their nature, be remote, it is

important to reduce the time a requestor spends

waiting for responses. By making a service call

asynchronous, with a separate return message, we

allow the requestor to continue execution without

waiting for the provider to respond. This is not to say

that synchronous service behavior is never appro-

priate; rather, experience has demonstrated that

asynchronous service behavior is often preferable,

especially where communication costs are high or

network latency is unpredictable.

The behavior described in Figure 3 represents a

major advance toward implementing highly scalable

Web services. By making a service call asynchro-

nous, the provider is enabled to use multiple worker

threads to handle multiple client requests. Much

more must be done to support an asynchronous

mode of operation, aside from returning a response

to the client quickly. It is necessary to specify dual

interfaces; the requestor will need to pass a return

address to a service that implements an interface

that can accept the returned message. This implies a

need to manage state in the conversation between

the parties. One may learn about various methods

for doing this by looking at the design of Web

sessions that are not based on Web Services.

Nevertheless, this solution is scalable only to a

certain degree. For services that expect a very high

load, we would need to decouple the part that listens

to the requestor and the part that services the

request itself. This is already a well-known pattern,

in which a message queue (using Java Message

Queue Service [JMS] or message-driven beans for

J2EE) is used to decouple a service façade from the

service implementation.

Caching in service-oriented design

In the previous section, we introduced the concept of

passing ‘‘stale’’ copies of information from a provider

to a requestor. For example, if I am developing a

stock portfolio-management application, I do not

want to ask a Web service for the current price of a

security over and over for each security, passing

three to five characters of data for the security and

five to seven characters for the price. This may result

in an unacceptable load on the network and service

provider. Instead, the contents of the entire portfolio

should be requested, either by passing the list of

symbols or by passing the portfolio identifier to the

alt

Figure 3
Synchronous and asynchronous behavior

1: AsynchRequestForFoo

 «return»
2: RequestForFoo

2: RequestedFoo

Synchronous request
with direct response

Asynchronous request
with later response as
separate message

1: RequestForFoo

:IResponder:IRequestorI I

BROWN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005736

service and retrieving all information for each

security. If the user simply asks for an update to a

single symbol this seems like overkill; however, the

requestor can now cache the results and, if the user

then asks for an update to another symbol, the

request can be satisfied from the cache. The task for

the requestor becomes the identification of the

‘‘lease’’ duration of the data. For a portfolio, if it is

known that the stock quote service has a 20-minute

delay, it may be best to work on a 25 percent margin

and cache the results for five minutes.

This pattern is seen frequently in information

systems. Whenever a user retrieves an order from

an order management system, that user is effectively

given a copy of the order because another user may

be updating it at the same time (unless the system

locks out additional access to the order). It would be

desirable for a Web service provider to identify the

cache or lease duration as part of its interaction with

the requestor. Such issues are well understood in

messaging systems such as MSMQ and WebSphere

MQ, where message timeouts and expiry times are

routinely managed.

Leasing information is viewed in terms of borrowing

a book from a library rather than the leasing of

property, such as a house or car. Implicitly,

whenever a requestor makes a request of a service,

it is asking for a copy of some information; it is

always provided with a snapshot of state at a given

time. This can cause problems, unless it is explicitly

understood and accounted for. One strategy is to

have the provider give the expiration time together

with the information. Alternatively, the requestor

may get a ‘‘ticket’’ with the lease (like a library

book) that would allow it to potentially extend the

lease by asking if the information is still valid, and

then have the server reset the lease without having

to retrieve the data again.

This is such a fundamental issue that one might

expect HTTP, SOAP, or one of the transport

protocols would handle it. We could reuse the HTTP

caching semantics that allow browsers and firewalls

to cache pages, but this is not under the provider’s

control, and the requestor may not be using HTTP as

a transport. One option is to build such support into

the document exchange, such that the messages

between requestor and provider encode the leasing

information for the client, as shown in Figure 4.

Figure 4 illustrates two alternative implementations

for the information-leasing paradigm. The first

demonstrates the use of inheritance to transform the

account XML document into a special form that is

not only an account but also a leased document and,

therefore, includes the additional information. The

second alternative has the leasing information

returned alongside the account as a separate part of

the response message. Whereas both of these

approaches are equally valid, they result in differ-

ently structured data, and the choice is very much

one of style, that is, inheritance versus aggregation.

Figure 4
Two implementations of information leasing

«Message»
�Account

«Message»
�Account

«Message»
�LeasedDocument

«Message»
�LeasedAccount

«Message»
�GetAccountDataResponse

Name : string
Address : string
AccountState : string
Phone : string
Fax : string

Name : string
Address : string
AccountState : string
Phone : string
Fax : string

IssuedBy : string
Issued : dateTime
Expires : dateTime
Ticket : string

IssuedBy : string
Issued : dateTime
Expires : dateTime
Ticket : string

«Message»
�LeaseInformation

1

1

1

1

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 BROWN ET AL. 737

GENERATING SERVICES AND SERVICE-ORIENTED
SOLUTIONS FROM MODELS

Modeling services and service designs is important

for the purpose of understanding an architectural

solution to a given business problem. However, the

value of capturing designs in well-defined models

and the use of rigorous modeling notation is that

they can become the basis for a model-driven

approach to implementing an SOA. Generating more

concrete models (and code) from abstract models is

at the heart of a model-driven approach.

As a fundamental aspect of software engineering,

modeling is critical to the success of every enter-

prise-scale solution; however, there is great variety

in what models represent and how models are used.

Model-driven development refers to a set of ap-

proaches in which code is semiautomatically gen-

erated from more abstract models, and which

employs standard specification languages for de-

scribing those models and the transformations

between them. It also supports model-to-model

transformations.

Models are the stepping stones on the path between

a description of business needs and deployable

runtime components. As the system under devel-

opment evolves, the models themselves become

more complete, accurate, and consistent with each

other. The focus of effort also shifts from the models

at the higher level of abstraction to those at lower

levels. Ultimately, these models are used to directly

create the deployable components.

This approach is equally applicable when the goal is

to create services and service-oriented solutions.

High-level models representing business concepts

can be transformed into logical models of a service-

oriented solution, which in turn is transformed into

implementations of services and service assemblies

that realize the solution. The process of model-

driven development can be explored from three

perspectives: how models evolve and are related,

how transformations are defined and applied, and

how automation of these transformations can lead

to efficiencies in a software project.
10

How models evolve
Two main activities occur with models: refinement

and transformation. Model refinement is the gradual

change of a model to better match the desired

system. The model is refined as more is known and

understood about the system. A model may also be

refined for purely internal reasons (i.e., refactoring).

As the various models evolve, dependent models

need to change in response. By the end of each

iteration of the development cycle, however, all the

models should be consistent with each other.

Models are refined either manually or through some

form of automation or assisted automation. Auto-

mation can be in the form of rules for model

refinement implemented as executable patterns or

assets. When a pattern is applied to a model, it

modifies or rearranges the model elements to

resemble the pattern. The application of a pattern

adds new elements or properties to the model.

When a pattern is applied, it may involve some user

assistance; for example, prompting the developer for

an existing model element with which to bind a

pattern parameter, or for other decisions that need

to be resolved for the pattern to be executed.

Model transformation, on the other hand, involves

two or more models. The most typical example is

the transformation of a high-level abstraction model

(a platform-independent model [PIM]) into a low-

level abstraction model that is technology-depen-

dent (a platform-specific model [PSM]). For exam-

ple, a UML PIM could represent a logical data model

and consist of a number of entity classes, each with

a number of persistent attributes. This model could

be transformed through automation into a UML data

model that captures the same underlying entities,

but from the viewpoint of database tables. The data

model could in turn be used to directly generate SQL

(Structured Query Language) scripts that define the

database and could be directly executed on a specific

database management system (DBMS).

Model transformations are not necessarily unidirec-

tional; some model transformations can be bidirec-

tional. For example, a platform-specific UML model

of several Enterprise JavaBean (EJB) classes could

be ‘‘synchronized’’ with the source code imple-

menting these EJBs. New elements (i.e., methods,

attributes, and associations) defined in the model

would generate appropriate elements in the source,

and any new elements created (or removed) in the

source would cause appropriate elements in the

model to be generated or removed.

Understanding model transformations
Defining and applying model transformations are

critical techniques within any model-driven style of

BROWN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005738

development. Model transformations involve using

a model as one of the inputs in the automation

process. Possible outputs include another model or

varying levels of executable code. In practice, there

are three common model transformations, as de-

scribed in the following:

1. Refactoring transformations reorganize a model

based on some well-defined criteria. In this case,

the output is a revision of the original model and is

called the refactored model. An example could be

as simple as renaming all the instances where a

UML entity name is used, or something more

complex, such as replacing a class with a set of

classes and relationships in both the metamodel

and all diagrams displaying those model elements.

2. Model-to-model transformations convert infor-

mation from one or more models to another

model or set of models, typically where the flow

of information is across abstraction boundaries.

An example would be the conversion of one type

of model into another, such as the transformation

of a set of entity classes into a matched set of

database schema, ‘‘plain old Java objects’’ (PO-

JOs), and XML-formatted mapping descriptor

files.

3. Model-to-code transformations are familiar to

anyone who has used the code generation

capability of a UML modeling tool. These trans-

formations convert a model element into a code

fragment. This is not limited to object-oriented

languages such as Java and Cþþ, nor is it limited

to programming languages. Configuration, de-

ployment, data definitions, message schemas,

and other kinds of files can also be generated

from models expressed in notations such as UML.

Model-to-code transformations can be developed

for nearly any form of programming language or

declarative specification. An example is generat-

ing Data Definition Language (DDL) code from a

logical data model expressed as a UML class

diagram.

Applying model transformations

In practice, there are several ways in which model

transformations can be applied. In model-driven

approaches, there are four categories of techniques

for applying model transformations. In the manual

approach, the developer examines the input model

and manually creates or edits the elements in the

transformed model. The developer interprets the

information in the model and makes modifications

accordingly. Apart from raw speed, the significant

difference between manual and automated trans-

formations is that automation is ensured to be

consistent and a manual approach is not.

A prepared profile is an extension of the UML

semantics in which a model type is derived.

Applying a profile defines rules by which a model is

transformed.

A pattern is a particular arrangement of model

elements. Patterns can be applied to a model, and

this results in the creation of new model elements in

the transformed model.

Automatic transformations apply a set of changes to

one or more models, based on predefined trans-

formation rules. These rules may be implicit to the

tools being used or may have been explicitly

defined, based on domain-specific knowledge. This

type of transformation requires that the input model

be sufficiently complete, both syntactically and

semantically, and may require models to be marked

with information specific to the transformations

being applied.

The use of profiles and patterns usually involves

developer input at the time of transformation, or

requires the input model to be ‘‘marked.’’ A marked

model contains extra information not necessarily

relevant to the model’s viewpoint or level of

abstraction. This information is only relevant to the

tools or processes that transform the model. For

example, a UML analysis model containing entities

of type String may be marked variable or fixed

length, or it may be marked to specify its maximum

length. From an analysis viewpoint, the identifica-

tion of the String data type is usually sufficient.

However, when transforming an attribute of this

type into, for example, a database column type, the

additional information is required to complete the

definition.

Models and transformations

Transformations such as these can be used to enable

efficient development, deployment, and integration

of services and service-oriented solutions. Practi-

tioners create models specific to their viewpoint and

needs, and these are used as the basis of analysis,

consistency checking, integration, and automation

of routine tasks. Model-driven approaches allow

developers to create services and service-oriented

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 BROWN ET AL. 739

solutions by focusing on logical design of services

and to apply transformations to the underlying SOA

technologies. Furthermore, as illustrated in the

examples later in this paper, substantial improve-

ments in the quality and productivity of delivered

solutions is possible by automating substantial

aspects of these transformations to service imple-

mentations.

SERVICES, SOA, AND THE RATIONAL UNIFIED
PROCESS

As experience in developing services and service-

oriented solutions increases, a growing consensus

concerning best practices for designing an SOA is

emerging. It is essential that these emerging

practices augment and support existing software

engineering methods, rather than serve as a separate

thread of development experience. In this way, an

SOA can be seen as a natural evolution of

established approaches, and a channel for intro-

ducing service-oriented techniques is made avail-

able. In this section we discuss how SOA design fits

into the broader context of software-engineering

processes.

The Rational Unified Process (RUP*) is the de facto

standard software engineering process in use to-

day.
11

It provides a disciplined approach to assign-

ing tasks and responsibilities within a development

organization and has been applied to projects of

varying size and complexity, with small teams and

large, on small efforts lasting a few weeks to large-

scale programs lasting years. The goal of the RUP is

to ensure the production of high-quality software

that predictably meets the needs of its end users on

schedule and within budget.

Not surprisingly, the RUP has most recently been

applied to projects aimed at creating services and

SOA solutions. In these projects, we have found that

many of the core principles of the RUP remain

essential to the success of such projects. However,

we also have encountered areas where updates and

additions to the RUP are valuable in support of

service-oriented approaches.

The Rational Unified Process
The RUP is a software development process that

has, as its foundation, a set of best practices that

represent commercially proven approaches to soft-

ware development. When used in combination,

these practices ensure the success of a software

development project by striking at the root causes of

typical software development problems. The RUP

was explicitly designed to support the implementa-

tion of six best practices:

1. Develop iteratively—The functionality of the

system should be delivered in a successive series

of releases of increasing completeness. Each

release is termed an iteration. The selection of

which requirements are developed within each

iteration is driven by the desire to mitigate project

risks, with the most critical risks being addressed

first.

2. Manage requirements—A systematic approach

should be used to elicit and document the system

requirements and then manage changes to those

requirements, including assessing the impact of

those changes on the rest of the system. Effective

management of requirements involves maintain-

ing a clear statement of the requirements, as well

as maintaining traceability from these require-

ments to the other project work products.

3. Use component architectures—The software ar-

chitecture should be designed using components.

A component-based development approach to

architecture tends to reduce the complexity of the

solution and results in an architecture that is

more robust and resilient and enables more

effective reuse.

4. Model visually—A set of visual models of the

system should be produced, each of which

emphasizes specific details and ignores others.

These models promote a better understanding of

the system that is being developed and provide a

mechanism for unambiguous communication

among team members. ‘‘A picture is worth a

thousand words.’’

5. Continuously verify quality—The quality of the

system should be continuously assessed with

respect to its functional and nonfunctional

requirements. Testing should be performed as

part of every iteration. It is much less expensive

to correct defects found early in the software

development life cycle than to fix defects found

later.

6. Manage change—A disciplined and controlled

approach for managing change should be estab-

lished (such as changing requirements, technol-

ogy, resources, products, platforms). The way in

which changes are introduced into the project

work products should be controlled: who intro-

duces the changes and when those changes are

BROWN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005740

introduced. A means should be provided to

efficiently synchronize those changes across the

different development teams, releases, products,

platforms, and so forth.

These best practices are the result of IBM Rational’s

experience in developing its software products,

together with the experience of IBM Rational’s many

customers. Implementing these best practices puts a

software development organization in a much better

position to deliver quality software in a repeatable

and predictable fashion.

The RUP can be described in terms of two

dimensions: time and content. Figure 5 provides a

graphical representation of these dimensions. The

horizontal axis represents time and shows the life-

cycle aspects of the process. This dimension is

described in terms of phases and iterations. The

vertical axis represents content and shows the

disciplines that logically group the process content.

As the maxima in Figure 5 illustrate, the relative

importance of the disciplines changes over the life of

the project. For example, in early iterations more

time is spent on requirements; in later iterations

more time is spent on implementation. Configura-

tion and change management, environment, and

project management activities are performed

throughout the project. It is important to note that

all disciplines are considered within every iteration.

The RUP as a process framework

Although the RUP is often viewed as a process that

is used ‘‘as is,’’ it is best thought of as a process

framework that is intended to be customized.

Organizations that adopt the RUP typically remove

process elements that are not relevant to them and

add their own best practices, extend existing

practices, and introduce the organization’s specific

nomenclature, standards, and concepts, as appro-

priate. The result is known as an ‘‘RUP configu-

ration.’’

In particular, IBM Rational provides a number of

process plug-ins that allow an organization to

import process content not provided with the RUP.

For example, plug-ins are available for extreme

programming, IBM WebSphere Application Server,

J2EE, .NET, and Web design. As a result, the initial

phases of a project using the RUP would typically

involve the creation of a particular customization of

the RUP as the basis for the project. This would

involve customizing the RUP content, extending the

content with organization-specific information, and

selecting the appropriate RUP plug-ins.

The RUP and enterprise-wide initiatives
The RUP has also been applied beyond the

execution of a single project. For example, the RUP

has been applied to systems engineering (develop-

ing systems that comprise hardware and people, as

well as software), enterprise architecture (using

frameworks such as the Department of Defense

Architecture Framework [DoDAF]), and asset-based

development (focused on strategic reuse programs).

One of the themes of such enterprise-wide initiatives

is the application of an architectural pattern known

as the ‘‘system of interconnected systems.’’
12,13,14

This pattern helps control the complexity inherent in

a system of systems. One of these systems repre-

sents overall capability and is referred to in the

pattern as the superordinate system. The other

systems represent a part of this overall capability,

and each is referred to as a subordinate system.

These systems are shown in Figure 6. The RUP is

then used as a process framework that supports the

development of the superordinate system and each

subordinate system. An important characteristic of

the ‘‘system of interconnected systems’’ pattern is

that it is recursive, meaning that a subordinate

system may also have subsystems of its own and be

superordinate in relation to them.

The RUP and SOA

The nature of the RUP makes it well suited to

building projects and assembling services. The RUP

is founded upon software-engineering best practic-

es, offers a configurable process framework, and is

scalable to support enterprise initiatives. Hence, it is

a viable choice when considering the development

of an SOA because all of these aspects of the RUP

apply. This subsection gives some specific examples

of where the RUP provides support for an SOA

initiative.

First and foremost, the RUP can be applied to

support the development of an SOA (a superordinate

system) and each individual service (subordinate

systems in the context of the SOA). However, there

are differences (and many similarities) between the

development of an SOA and the development of a

service. For example, in developing an SOA, a

particular concern is the identification of services

and an understanding of how business processes are

realized through the execution of these services. The

RUP provides a systematic approach for bridging

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 BROWN ET AL. 741

this gap between business and IT. It contains

activities for identifying architectural elements (such

as services) known as ‘‘architectural analysis’’ and

design-element identification, as well as activities

for understanding how these architectural elements

collaborate in order to satisfy business requirements

(business processes) known as ‘‘use case analysis’’

and ‘‘use case design.’’ The RUP also acknowledges

any existing design elements that might exist

(including legacy systems and packaged applica-

tions), and therefore takes both a ‘‘top down’’ and

‘‘bottom up’’ approach to developing an SOA.

This approach to developing an SOA not only

identifies the services and their provided and

required interfaces (and associated qualities), but

also their relationships and responsibilities. An

example of a subset of an SOA that shows structural

elements in terms of services, interfaces, and their

relationships, is given in Figure 7. This example of a

UML component diagram, created by using Rational

Software Architect with the UML profile for software

services,
15

is from an order-processing system and

Figure 5
Time versus content in the Rational Unified Process

Disciplines

PHASES

ITERATIONS

Business Modeling

Requirements

Analysis and Design

Implementation

Test

Deployment

Environment

Configuration and
Change Management

Project Management

Inception

Init ial Elab #1 Elab #2 Const
#1

Const
#2

Const
#N

Tran
#1

Tran
#2

TransitionElaboration Construction

Figure 6
System-of-interconnected-systems pattern

Superordinate System

Subordinate
System A

Subordinate
System C

Subordinate
System B

BROWN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005742

uses a UML 2.0 component to represent a service. Of

course, the behavior associated with the SOA, which,

for example, may involve the use of UML sequence

diagrams, would also be created as required.

The RUP can also be used in the development of an

individual service. In this case, the interfaces that a

service provides, the interfaces that it requires, and

the qualities that it provides represent the require-

ments of the service. In this respect, the RUP can be

used to provide guidance on how such requirements

can be fulfilled by a solution.

There is much more to the RUP than discussed here,

including many books on the subject, which provide

detailed discussions of the concepts within the RUP

that can be applied to the development of an SOA

and the services that comprise an SOA.
11,16

Enhancements to the RUP for SOA

Although the RUP as defined today can be success-

fully applied to the development of an SOA, there is

general agreement that more is needed. The RUP

provides a process framework that is, for the most

part, technology independent. The base RUP prod-

uct does not, for example, include any mention of

J2EE, .NET, SOA, Web services, and so on. An

example of the kind of SOA-specific practices that

are useful can be seen in the RUP plug-in for SOA

that was recently delivered as an update to the RUP

on IBM developerWorks.
15

It contains specific

design guidance, heuristics, and tool usage tips for

SOA design, based on recent industry experiences

developing service-based solutions.

In practice, therefore, an organization applying the

RUP to an SOA project would create a specific RUP

configuration specialized for the task. The IBM RUP

plug-in for SOA defines or refines various process

concepts, such as roles, artifacts, and activities, and

makes use of relevant standards. In particular, the

plug-in defines SOA-related artifacts, SOA-related

activities, and SOA-related standards.

Examples of SOA-related artifacts include the

‘‘service model,’’ defining a set of services managed

as a set of logical service partitions. SOA-related

activities might include ‘‘harvest services’’ and

‘‘locate service.’’ In defining SOA-related standards,

the plugin offers detailed guidance to validate that

Figure 7
UML representation of an SOA

«use»

«use»

«use» «use»

«use»«use»

«use»

get stock level ()
ship products ()
register products ()
deregister products ()
update product details ()

IFulfillment

Shipping ProviderAccounting Provider

Account Management

create order ()
add order item ()
place order ()
create invoice ()
process payment ()

Order Entry Provider

Customer Management

get customer details ()
register customer ()
update customer details ()

Customer Management Provider Fulfillment Provider

Order Entry

Accounting
Shipping

create order ()
get customer details ()
place order ()
add order item ()

create invoice ()
process payment () ship products ()

Account Management Provider

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 BROWN ET AL. 743

defined services comply with the various WS-*

standards. In addition, specific tool mentors are

provided for IBM Rational Software Architect to

illustrate how service models can be developed that

comply with the UML profile for software services.

EXAMPLES OF SERVICE-ORIENTED SOLUTIONS

A number of practical lessons in building service-

oriented solutions have been gained from using the

ideas presented in this paper in specific customer

situations. We next outline two example scenarios

drawn from real IBM commercial products.

The first example focuses on business-driven de-

velopment of solutions and the automation of the

transformation between the logical design of a

service and its realization in a specific set of Web

Services technologies.

The second example looks at how a service

approach can be applied to an industry domain

model to bring together the business and IT views

and lead to a high-quality service-oriented imple-

mentation. We highlight the role that industry

domain models play in guiding the definition and

realization of services and service-oriented solu-

tions.

Using a service approach to connect business

and IT

One of the primary challenges to be addressed in

developing enterprise-scale solutions is to connect

the domain-specific requirements expressed by

business analysts with the technology-specific solu-

tions designed by the IT organization. Typically, the

connection between these two communities is

difficult to make because they have very different

skills, use different modeling concepts and notations

(if at all), and rarely understand the mapping

between those concepts. The use of a service-

oriented approach is intended to help bridge this gap

between the business analysts and line-of-business

(LOB) specialists, and the IT specialists (such as

system architects, analysts, integrators, designers,

and developers). In particular, the integration of

process, assets, and deliverables around a core set of

services is aimed at connecting these two different

aspects of the system in a precise, unambiguous

way.

In this example, we consider the vehicle reservation

process that is in use in a car rental agency. A

project is underway to look at improvements to the

vehicle reservation process and the systems that

support it. In this example, there are four key steps:

(1) modeling the vehicle reservation process, (2)

designing the solution to the assign-vehicle task, (3)

implementing the assign-vehicle service, and (4)

integrating the assign-vehicle service in a choreo-

graphed business process.

Modeling the vehicle reservation process

In Step 1, the vehicle reservation process is

examined in detail. Each of the key business tasks is

described; workflow (manual and automated)

among these tasks is defined; and the people, roles,

and organizational hierarchies are described.

As shown in Figure 8, the process begins by

modeling the business process in an intuitive, easy-

to-use notation that is accessible to business

analysts. A business process model captures the key

business services by using the IBM WebSphere

Business Integration (WBI) Modeler. This allows the

current system of automated and manual steps to be

understood and potential changes to the system to

be designed and simulated and their costs assessed

before the organization commits to any changes to

the business process. Various configurations of

resources and costs can be examined to optimize

revenue from the redesigned process.

Designing the solution to the assign-vehicle task

In Step 2, parts of the vehicle reservation process are

identified as candidates for automation and handed

off to the IT organization for further elaboration.

Decisions can be made about which new business

services should be automated in software, and

specific services designed and implemented to

realize them. This may involve reconfiguring exist-

ing implemented services, wrapping existing data

and business logic to expose their functionality as

services, creating service interfaces to third-party

commercial software packages, or designing new

services from scratch.

These business service descriptions can be auto-

matically transformed into an initial set of use cases

for the proposed system that defines the require-

ments of the system. In this example, there is a

direct correspondence between the assign-vehicle

task and the creation of a new service to support the

execution of this task. This service is provided by a

rental software component. It automates the task of

finding the particular vehicle from those available

BROWN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005744

and assigning that vehicle to a specific customer,

such that the vehicle reservation has already been

made when the customer arrives at the rental desk

with his or her reservation. Using IBM Rational

Software Architect, an architect in the IT organiza-

tion can import the WBI Modeler project and,

applying a model-driven development approach,

automatically transform the vehicle reservation

process model into a UML model, as seen in the tree

browser shown on the lefthand side of Figure 9.

This transformation ensures that a familiar repre-

sentation in UML is made available to the IT

organization. In the transformed model we find a

rental software-component interface with one as-

signed operation, assign vehicle. This is the interface

that will be implemented and made available as a

Web service.

Now that we have analyzed the business model, we

create a new design model to contain the design for

the assign-vehicle service. We add the rental

software component to our design model to provide

traceability from the design model back to the

original business model, and create the new inter-

face we will design and implement. In this example,

we model an IVehicleAssignment interface with an

AssignVehicle operation that takes a reservation as

input and returns the updated reservation as output.

At this point, we have the design for our assign-

vehicle service. We can now implement this inter-

face. We start by transforming this design model

into the interface definition in Java. The design

model and the action to transform the interface into

Java are shown in Figure 9.

Implementing the assign-vehicle service

In Step 3, the IVehicleAssignment Java interface

has been generated. This interface represents a

contract between the architect who designed the

interface and a developer who will implement the

interface. The developer implements this interface

as a service and registers the availability of the

service in a UDDI registry. Again, by using an

automated transformation, the Java implementation

class can be generated and all the appropriate

business logic implemented as part of this service,

employing many of the Web-service patterns and

guidance points discussed earlier. From this Java

class, a Web service is generated. A series of dialogs

is used to capture the data about the Web service,

including deployment details. The Web-service

generation creates the WSDL description of the

service that can now be stored in the UDDI registry

to make it available for use by other service

consumers.

Integrating the assign-vehicle service in a

choreographed business practice

In Step 4, the services are choreographed as part of a

business process workflow. This is the role of the

integration specialist, bringing together the overall

workflow based on the business process model

defined earlier with the service implementations

that automate key business process tasks. This

Figure 8
Segment of process model for vehicle reservation system

Based on some analysis, the “Assign Vehicle” task
currently requires a lot of human involvement. We
will use this task as a basis for optimizing our
business process by automating this task.

Would be nice to automate this
task, it’s fairly mechanical and
should not require the level of
human involvement it takes today.

Find
Reservation

Reservation Reservation Agreement
Assign
Vehicle

Assign Vehicle

Create
Agreement

Sign
Agreement

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 BROWN ET AL. 745

business process is exported from the IBM WBI

Modeler model in the form of a BPEL script. The

IBM WebSphere Studio Application Developer In-

tegration Edition can import, create, enact, and

manage business processes described in BPEL. The

BPEL implementation of the vehicle-rental-pickup

process is shown in Figure 10.

One way to implement these business processes is to

link to an implementation provided by a Web

service. Hence, the vehicle assignment service is

found in the UDDI registry and is included as a

service provider to the overall car-rental business

workflow. At this point, the business process can be

deployed to a process execution engine, in this case

the IBM WBI Server Foundation runtime.

This example covers only a subset of the RSDP. For

instance, although not discussed here, it is possible

to expose CICS transactions as Web services by

using IBM’s WebSphere Enterprise Developer, and

these, too, can then participate within an SOA. As

one would expect, it is possible, in the vast majority

of cases, for all IBM-supported technology to

participate in some way in an SOA initiative.

In summary, this example has illustrated how

services can be defined and constructed by con-

necting domain-specific business services into a

technology-specific solution for deployment to an

SOA infrastructure, following a repeatable, predict-

able process.

Deploying business-driven SOA solutions with

industry models

Industry models, such as IBM’s Insurance Applica-

tion Architecture (IAA) or IBM’s Information

Framework (IFW) for the banking industry, are a set

of business and IT-level technology-independent

models, rich in business content, that can be

Figure 9
Design model for the assign vehicle interface

BROWN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005746

customized to reflect specific companies’ needs.

They capture industry best practices and offer

business content for use in developing complex

business applications on top of the RSDP. They

apply all the principles of separation of concerns,

and as such, are particularly well-geared to deploy-

ing business-driven SOA solutions.

These industry models contain a variety of artifacts.

From an SOA context, the following artifacts are

particularly relevant and can be customized instead

of having to be created from scratch: business

process models (analysis and design level), service

definitions, and service choreography. Both of the

latter are defined within a UML model called the

interface design model. This model is a PIM, which

focuses on the separation of the interface from the

implementation and can be transformed easily into

PSMs (XML for messaging, J2EE for component-

based development, or WSDL for SOA, for exam-

ple).

In order to illustrate these principles, we consider an

example in the area of claim notification in a typical

insurance organization. The steps followed in using

the IAA model in this context to develop an SOA

solution are illustrated in Figure 11.

Analyzing the business process
Analyzing the business process is typically an

activity performed by business analysts in conjunc-

tion with subject matter experts. The goal is to

obtain a representation of how the business is (or

should be) run. At this stage, the formalism is

typically not rigorous enough to make it possible to

deploy a business process through service choreog-

raphy in the runtime.

This task is the first step in any business-driven SOA

project. The advantage here is that it is possible to

customize predefined industry processes rather than

create them. This accelerates the analysis, and more

importantly, ensures that the processes are defined

consistently throughout the enterprise. This latter

point is particularly relevant in the context of SOA,

as it drives the analysis from the very beginning in

the direction of reusable enterprise services, a key

goal of any SOA solution.

Figure 10
BPEL representation of the process for vehicle rental pickup

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 BROWN ET AL. 747

To illustrate the kinds of business processes that are

defined in the IAA, Figure 12 shows a small subset

from the IAA of a business process in the IBM WBI

Modeler describing a small number of steps in the

claims process.

Designing business processes

The primary path to create an executable business

workflow is to use BPEL generation, which is

available in the WBI Modeler. However, before

doing so, it is essential to properly design the

processes for that purpose. In particular, three tasks

must be carried out to refactor the business process

model in order to facilitate transformation from the

WBI Modeler business process models into execut-

able BPEL. The data containers must be formalized

(transforming multiple data inputs and outputs into

structured data containers), loops must be resolved,

Figure 11
Using the IAA interface to create a service-oriented solution

Input: Critical Business
Processes (analysis)

Input: IAA Interface
Design Model: Collaborations

Input: Critical Business
Processes (design)

Define Choreography of Business
Transaction Services in Business
Function Services

Analyze Business
Processes

Design Business
Processes

Define Business
Function Services

Input: IAA Interface
Design Model: Services

Figure 12
A sample business process in IAA

Record
Claim
Details

Validate
Claim
Recording

Information
Complete

Yes

No

Provide
Additional
Data

Claim state is “notified,”
“open,” or “under evaluation,”
and policy state is “in force”

Analysis
Scoped Record Claim - Analysis

BROWN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005748

and decisions must be made on the combination of

tasks.

The definition of proper repeating groups is typically

very hard to grasp for business analysts who tend to

define backward connectors in the process flows. In

order to generate valid BPEL, these loops need to be

resolved and properly designed. Technology is

currently being developed by the IBM Zurich

Research laboratory to automate the resolution of

most of the loops.

Because of the different realities of business and IT,

it is very common to have different groupings of

functionality in business and IT terms. The func-

tionality grouping of the design-level business

processes must reflect the IT view. Figure 13

represents a subset of the design-level process after

performing the refactoring of the business process.

Following refactoring, the BPEL-generation capabil-

ities of the WBI Modeler can be used to create the

implementation of the business process services. A

standardized mapping is applied in which the

automated activities (tasks) in the process flow

correspond to business transaction services. The

nonautomated activities are represented as staff

activities in the WBI Modeler and typically are

documented as manual procedures. Consequently,

as part of this step, three elements are defined: the

business process services, the business transaction

services, and the choreography between the busi-

ness process services and the business transaction

services. Figure 14 shows the BPEL representation

generated from the design level process representa-

tion in the WBI Modeler.

Defining business function services

The definition of business function services is the

intersection where the top-down and bottom-up

approaches meet. In essence, this level provides

means to automate the business transaction ser-

vices. In the IAA approach, the business function

services are defined within the interface design

model as interfaces with operations. The interface

design model has been built over time by combining

two different methods: top-down use-case-driven

modeling and bottom-up legacy functionality wrap-

ping. The result is a set of enterprise-wide services

that satisfy the industry business requirements.

Defining the choreography of business

transaction services into business function

services

From a platform-independent viewpoint, the col-

laboration between higher- and lower-level services

is key to addressing how lower-level services

collaborate to implement higher-level services. This

can be expressed by using UML collaboration

diagrams (or sequence diagrams).

A variety of technological choices are possible for

implementing the business transaction services. For

example, BPEL can be used, and the function

services can be defined as collaborating services.

Alternatively, the collaboration can be implemented

as Java code. As often experienced, the trade-off is

between performance and maintainability.

In the current state of technology, it seems more

reasonable to implement lower-level service collab-

orations using component technology, although it

Figure 13
A refactored business process

Establish
Claim
Details

Information
Complete

Yes

No

Design Scoped Record Claim Loop - Design

Provide
Additional
Data

ClaimContainer ClaimContainer

ClaimContainer

ClaimContainer

ClaimContainer

Validate
Claim
Recording

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 BROWN ET AL. 749

seems reasonable to assume that in the near future it

will be possible to ‘‘externalize’’ the lower-level

services as collaborations as well. From a platform-

independent point of view, the approaches have a

similar outcome: a UML collaboration diagram that

is readily converted into a BPEL flow or that can be

considered as Java pseudo-code. As long as the PIM

focuses on interface design and collaboration,

insulation from the technology is possible, and the

business logic of SOA solutions can be efficiently

maintained.

SUMMARY

Flexibility is essential as today’s organizations seek

to react more quickly to the changing demands of

their customers, announcements by competitors,

and the evolving business environment. The role of

software in many businesses is now seen as central

to their ability to compete effectively and efficiently.

Having a service orientation to the systems being

developed helps to focus businesses on what is

essential to them—the services they offer to

customers. It also helps IT professionals to look at

the systems that support the business in a different

way—as composable solution fragments that must

be assembled to meet evolving business needs. This

view is an important cornerstone of today’s highly

reactive business environment.

IBM’s experience in helping organizations move

toward adoption of services and an SOA approach

reinforce the lesson that a change in culture and

practices goes hand-in-hand with supporting

changes in technologies and techniques. There is a

Figure 14
BPEL generated from the business process model

Variables

InputVariable

MergeOutputCriteriaVariable

ClaimContainerRepositoryVariable

ForkOutputCriteriaVariable

RecordClaimLoopRecordClaimInputCriteriaVariable

RecordClaimLoopRecordClaimOutputCriteriaVariable

ValidateCoverageInputCriteriaVariable

ValidateCoverageOutputCriteriaVariable

CoverageConfirmedInputCriteriaVariable

ContinueClaimVerificationOutputCriteriaVariable

NotifyNoCoverageOutputCriteriaVariable

Correlation Sets

Partner Links

AdministerClaimPartner

RecordClaimPartner

ValidateCoveragePartner

Read from ClaimContainerRepository

Write to ClaimContainerRepository

Write to ClaimContainerRepository

Record Claim

Fork

Administer Claim Receive

Administer Claim

Read from ClaimContainerRepository

Validate Coverage

Record Claim Loop

J

J

J

J

BROWN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005750

great deal to be said about how service-oriented

approaches change an organization’s culture. Four

aspects of particular relevance to SOA are (1) an

enterprise-wide approach and governance, (2) the

model-driven approach and architecture, (3) a

business-led approach and transformations, and (4)

an interface orientation to design.

In this paper, we have focused on the importance of

designing for and with services to create quality

service-oriented solutions that meet the needs of

organizations for flexible and agile enterprise IT

systems. Many of the design principles, practices,

and tools for service-oriented design are only now

beginning to emerge. We have provided a view of

these best practices together with practical insights

into how service-oriented thinking is having an

impact on enterprise software development today.

Creating these service-oriented solutions is far from

straightforward. The RSDP plays an important role

in helping organizations create a set of services

capable of realizing their goals. It combines market-

leading products to create a rich, integrated envi-

ronment for solution development. Through support

for model-driven development techniques, the RSDP

helps to ensure that customers can efficiently deliver

service-oriented solutions that meet their business

needs.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc., Sun Microsystems, Inc., Massa-
chusettes Institute of Technology, or Microsoft Corporation.

CITED REFERENCES AND NOTES
1. M. E. Stevens and H. J. C. Ellis, ‘‘Using a Lease to Manage

Service Contracts in Service Oriented Architectures,’’
Proceedings of the Tenth Americas Conference on In-
formation Systems (AMCIS), New York (August 2004),
http://aisel.isworld.org/proceedings/amcis/2004/track.
asp?track_id¼243.

2. D. Plummer, SODA Helps Developers Do Application
Integration, Gartner Research Report (November 2002),
http://www.g2r.com/DisplayDocument?doc_cd¼111182.

3. For further details and examples, see IBM’s developer-
Works (http://www.ibm.com/developerworks), IBM
Redbooks (http://www.ibm.com/redbooks) and the Ra-
tional Unified Process page of IBM developerWorks
(http://www-130.ibm.com/developerworks/rational/
products/rup/).

4. N. Carr, Does IT Matter? Harvard Business School Press,
Cambridge, MA (2004).

5. S. Holzner, Eclipse, O’Reilly & Associates, Sebastopol, CA
(2004).

6. D. Ferguson and M. Stockton, SOA Programming Model
for Implementing Web Services, Part 1: Introduction to the
IBM SOA Programming Model, IBM developerWorks
(June 2005), http://www.ibm.com/developerworks/
webservices/library/ws-soa-progmodel/index.html.

7. J. Cheesman and J. Daniels, UML Components: A Simple
Process for Specifying Component-Based Software, Addi-
son-Wesley, Reading, MA (2000).

8. P. Herzum and O. Sims, Business Component Factory: A
Comprehensive Overview of Component-Based Develop-
ment for the Enterprise, Wiley Press, Hoboken, NJ (2000).

9. As defined by the W3C Web Services Architecture Group.
See Web Services Architecture Requirements, http://www.
w3.org/TR/2002/WD-wsa-reqs-20020429.

10. A. W. Brown, J. Conallen, and D. Tropeano, ‘‘Practical
Lessons in MDA,’’ Chapter 5 in Model-Driven Software
Development, S. Beydeda, M. Book, and V. Gruhn,
Editors, Springer-Verlag, 2005.

11. P. Kruchten, The Rational Unified Process: An Introduc-
tion, Addison-Wesley, Reading, MA (1998).

12. I. Jacobsen, M. Griss, and P. Jonsson, Software Reuse:
Architecture, Process, and Organization for Business
Success, Addison Wesley, Reading, MA (1997).

13. M. Ericsson, Developing Large-Scale Systems with the
Rational Unified Process, Rational Software White Paper
(2003), ftp://ftp.software.ibm.com/software/rational/
web/whitepapers/2003/sis.pdf.

14. P. Eeles and M. Ericsson, ‘‘Modeling for Enterprise
Initiatives with the Rational Unified Process,’’ The
Rational Edge (January 20, 2004).

15. S. K. Johnston, UML 2.0 Profile for Software Services, IBM
developerWorks (2005), http://www.ibm.com/
developerworks/rational/library/05/419_soa/.

16. P. Kroll and P. Kruchten, The Rational Unified Process
Made Easy: A Practitioner’s Guide to the RUP, Addison-
Wesley, Reading, MA (2004).

GENERAL REFERENCES
K. Ahmed, Developing Enterprise Java Applications with J2EE
and UML, Addison Wesley, Reading, MA (2001).

D. K. Barry, Web Services and Service Oriented Architectures,
Morgan Kaufman, San Francisco, CA (2003).

G. Booch, I. Jacobsen, and J. Rumbaugh, The Unified
Modeling Language Users Guide, Addison-Wesley Profession-
al, Reading, MA (1998).

A. W. Brown, ‘‘Model Driven Architecture: Concepts and
Practice,’’ Journal of System and Software Modeling 3, No. 4
pp. 314–327, Springer Verlag (December 2004).

A. W. Brown, IBM Rational Software Development Platform,
IBM Corporation (2004), http://www.ibm.com/
developerworks/platform/.

K. Brown, G. Craig, G. Hester, R. Stinehour, W. D. Pitt, M.
Weitzel, J. Amsden, P. M. Jakab, and D. Berg, Enterprise Java
Programming with IBM WebSphere, Addison-Wesley Profes-
sional, Reading MA (2003).

P. Clements and L. Northrop, Software Product Lines: Practices
and Patterns, Addison-Wesley Professional, Reading, MA
(2001).

D. S. Frankel, Model Driven Architecture: Applying MDA to
Enterprise Computing, Wiley Press, Hoboken, NJ (2003).

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005 BROWN ET AL. 751

IBM Patterns for e-business (2004), http://www.ibm.com/
developerworks/patterns.

A. T. Manes, Web Services: A Manager’s Guide, Addison-
Wesley Information Technology Series, Reading, MA (2003).

B. Selic, ‘‘The Pragmatics of Model-Driven Development,’’
IEEE Software, 20, No. 5, 19–25 (September 2003).

MDA Guide v1.0.1, J. Miller and J. Mukerji, Editors, Object
Management Group (June 2003), http://www.omg.org/docs/
omg/03–06–01.pdf.

U. Wahli, M. Tomlinson, O. Zimmerman, W. Deruyck, and D.
Hendriks, Web Services Wizardry with IBM WebSphere Studio
Application Developer, IBM Redbook, SG24-6292-00 (April
2002).

O. Zimmermann, P. Krogdahl and C. Gee, Elements of Service-
Oriented Analysis and Design, IBM developerWorks (June
2004), http://www-106.ibm.com/developerworks/
webservices/library/ws-soad1/.

Accepted for publication June 19, 2005.

Alan W. Brown
IBM Rational Software, 4205 S. Miami Blvd., Durham, NC
27709 (awbrown@us.ibm.com). Dr. Brown is an IBM
Distinguished Engineer with the IBM Rational software group.
He is responsible for aspects of future product strategy in IBM
Rational’s design and construction products. He defines
technical strategy and evangelizes product direction with
customers looking to improve software development
efficiency through visual modeling, service-oriented design,
generating code from abstract models, and systematic reuse.
His current focus is on how service-oriented solutions are
created and evolved, with particular interest in software
process improvement, model-driven architecture, software
design and development, and component-based reuse. He
received his Ph.D. degree from the University of Newcastle in
the United Kingdom.

Marc Delbaere
IBM Software Group, Industry Solutions, Avenue du Bourget
42, Brussels, Belgium 1130 (delbaere@be.ibm.com). Mr.
Delbaere is the development manager for IBM’s insurance
industry models: IAA (Insurance Application Architecture)
and IIW (Insurance Information Warehouse). He has worked
for eight years on enterprise-wide model-driven development
for the financial services industry. In particular, he engineered
the IAA Specification Framework, a generic product and
agreement design, the IAA Business Object Model, and the
IAA-XML approach to enterprise-wide integration. He has also
worked with many insurance companies to help them deploy
model-driven solutions in their enterprises. His current work
deals with model-driven architectures, model transformations,
and service-oriented architectures, and how all these topics
can help address concrete business issues.

Peter Eeles
IBM Rational Software, 1 New Square, Bedfont Lakes, Feltham
TW14 8HB, Hursley, UK (peter.eeles@uk.ibm.com). Mr. Eeles
is an IBM Senior IT Architect, and has spent much of his
career designing and implementing large-scale distributed
systems. He is based in the United Kingdom and assists
organizations in their adoption of the Rational Unified Process
and the IBM Rational toolset in architecture-centric initiatives.
He is co-author of Building J2EE Applications with the Rational
Unified Process (Addison-Wesley, 2002) and Building Business
Objects (John Wiley & Sons, 1998).

Simon Johnston

IBM Rational Software, 4205 S. Miami Blvd., Durham, NC
27709 (skjohn@us.ibm.com). Mr. Johnston is a member of the
IBM Rational strategy team and is responsible for the
business-level tooling strategy. He has undertaken a number
of standards-related activities for both Rational Software and
now IBM in the area of XML (W3Ce Schema working group),
Web Services (RosettaNet architecture team), and modeling
(OMG UML and OCL teams). He was the author of the UML
Profile for Software Services and primary author of the RUP
Update for SOA.

Rick Weaver
IBM Software Group, 2 Campus Circle, Roanoke, TX 76262
(weaverrw@us.ibm.com). Mr. Weaver is a Senior Consulting
Certified Software IT Specialist and has focused on Business
Integration and SOA development. He has worked with
customers around the world helping them successfully use
IBM development tools to solve their business integration
challenges. Mr. Weaver is currently a portfolio manager for
WebSphere Development tools, helping drive IBM tool
strategy in the IBM Software Group. &

BROWN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005752

Published online October 20, 2005.

