Realizing service-oriented
solutions with the IBM Rational
Software Development Platform

Creating service-oriented architecture (SOA) solutions means rethinking the practices
currently in use to build systems, reconsidering the skills in an organization, and
redefining the ways in which team members collaborate. A service orientation
contributes to the development of solutions that are assembled from disparate
applications, and SOA is an architectural style that emphasizes loose coupling of

A. W. Brown
M. Delbaere

independent service providers. This perspective on service orientation is known as

P. Eeles
S. Johnston
R. Weaver

service-oriented development of applications (SODA). SODA encompasses composi-
tion, adaptive process management, service-based interoperability and integration,
discovery and description, and rapid application maintenance. In this paper, we focus
on how IBM supports SODA, the relationship of SODA to the IBM Rational Software
Development Platform (RSDP), and how IBM'’s core approach to design and
construction—model-driven development—is an essential element in creating effective
and efficient services and service-oriented solutions. We explore the concepts behind

these approaches and illustrate their realization with illustrative examples from

customer experiences.

INTRODUCTION

Building enterprise-scale software solutions has
never been easy. The difficulties of understanding
highly complex business domains are typically
compounded with all the challenges of managing a
development effort involving large teams of engi-
neers over multiple phases of a project spanning
many months. The time-to-market pressures inher-
ent in many of today’s product development efforts
only serve to exacerbate these problems.

In addition to the scale and complexity of many of
these efforts, there is also great complexity in the

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

software platforms for which enterprise-scale soft-
ware is targeted. Most large IT (information
technology) organizations rely on a complicated
assortment of infrastructure technologies that have
evolved over many years, consist of a variety of
middleware acquired from many vendors, and have
been assembled through various poorly documented
integration efforts of varied quality.

To develop applications in this context requires an
approach to software architecture that helps archi-
tects evolve their solutions in flexible ways, reusing
existing assets in the context of new capabilities that

BROWN ET AL.

727

Basic Tenets

\ |
Composition Rapid Application
Maintenance
(Managing Change)
Adaptive Discovery
Process and
Management | Description
Assembly Business Dynamism | Biological
+ Process + and
Orchestration = Modeling Loose Continuous
+ Coupling Evolution
Dynamism
v

Service-Based
Interoperability
and Integration

Web Services <«——— Other Services
~ /

e y

Reprinted with permission of Gartner, Inc.

Figure 1
Service-oriented development of applications

implement business functionality even as the target
infrastructure itself is evolving. Service-oriented
architecture is an important idea that is central to
addressing these issues.

Service-oriented architecture

An approach gaining support in the industry today is
based on viewing enterprise solutions as federations
of services connected by well-specified contracts
that define their service interfaces. The resulting
system designs are frequently called service-ori-
ented architectures (SOAs). Many organizations
now express their solutions in terms of services and
their interconnections. The ultimate goal of adapting
an SOA is to achieve flexibility for the business and
IT.

For purposes of this paper, we use the following
definition of a service: it is generally implemented as
a course-grained, discoverable software entity that
exists as a single instance and interacts with
applications and other services through a loosely
coupled (often asynchronous), message-based
communication model.

A number of important technologies have been
defined to support an SOA approach, most notably
when the services are distributed across multiple

728 BROWN ET AL

machines and connected over the Internet or an
intranet. For example, Web Services approaches rely
on intraservice communication protocols, such as
the Simple Object Access Protocol (SOAP); enable
the Web Services interfaces expressed in WSDL
(Web Services Description Language) to be regis-
tered in public directories and searched in UDDI
(Universal Description, Discovery and Integration)
repositories; and share information in documents
defined in XML (Extensible Markup Language) and
described in standard schemas.

Of course, SOA is more than a set of standards and
service descriptions in the same way that object-
orientation is more than a set of class hierarchies.
The essence of SOA is that it emphasizes loose
coupling of independent service providers. In fact, it
may be implemented by using a range of different
technology choices. Indeed, it is possible to create
an SOA that does not use Web Services technology,
and it is possible to use Web Services technology in
a way that would not be considered service-
oriented. More important, a number of fundamental
concepts become primary when implementing a
solution using SOA (e.g., the concept of “service
leasing” to support flexibility between service
provider and consumer).l There is a great deal more
that needs to be explored to understand why a
service-oriented viewpoint adds value to a business
and how service-oriented solutions are designed,
implemented, deployed, and managed.

Service-oriented development of applications
Creating solutions for SOA means rethinking the
kinds of systems being built today, reconsidering the
skills in an organization, and redefining the ways in
which members of teams collaborate. Most impor-
tant, adopting a service orientation to the develop-
ment of solutions requires a broader review of the
impact of this orientation on how solutions are
designed, what it means to assemble them from
disparate services, and how deployed service-
oriented applications are managed and evolved.

Gartner refers to this broader context of service
orientation as Service-Oriented Development of
Applications (SODA).2 Gartner considers the five
key areas (or “tenets”) of SODA to be composition,
adaptive process management, service-based inter-
operability and integration, discovery and descrip-
tion, and rapid application maintenance. In

Figure 1, we see the primary elements of SODA as
defined by Gartner. From a tool vendor perspective,

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

these areas relate to technology support offered in
three areas:

1. The SOA life cycle—The “discovery and descrip-
tion” and “rapid application maintenance” tenets
refer to the life cycle of services and how they are
found, applied, evolved, and maintained. Tool
vendors increasingly offer ways to store, catalog,
search, and retrieve services. Support for the
ongoing evolution of services is a critical aspect
of this process, leading to multiple versions of
services.

2. SOA platform and programming model—The
“service-based interoperability and integration”
tenet refers to the way services can be connected,
deployed, and managed within a specific runtime
platform. The major platform vendors are sup-
porting service-oriented capabilities directly as
part of their middleware runtimes and evolving
their runtime programming models to present
service concepts as first-class elements. As a
result, solutions may be conceived, designed,
implemented, and managed from a single service-
based perspective.

3. SOA practices and tools—The “composition” and
“adaptive process management” tenets refer to
how services are created and assembled in the
context of changing business needs. Tool vendors
support the mining of existing applications to
discover potential services, wrapping existing
functionality to make those capabilities accessible
as services, creation of new services, and “wiring
together” of services by connecting behavior
exposed through their interfaces. Fundamental to
this is the availability of clear guidance and best
practices for designing service-oriented solutions
in repeatable, predictable ways.

All three of these areas are important for success in
developing service-oriented solutions. They must all
be addressed to meet an organization’s needs in
efficiently creating more flexible solutions that
better align with the goals of the business.

IBM's role in services and SOA

IBM has a leading role in the definition and
application of SOA and SODA. IBM recognizes the
value that SOA brings to organizations that require
greater flexibility and control of the solutions they
deploy. IBM demonstrates its support for service-
oriented approaches to development by driving

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

standards activities, delivering tools and technolo-
gies, and documenting best practices.

Driving standard activities

IBM has taken a leading role in defining the key
standards that allow services (in particular Web
services) to be defined, registered, managed, and
discovered. For example, standards such as WSDL,
UDDI, the Business Process Execution Language for
Web Services (BPEL4AWS or BPEL for short), and
related standards for security (WS-Security) and
interoperability (WS-I) provide a greater measure of
interoperability among service-oriented applications
and encourage a healthy marketplace of tools and
technologies. In addition, IBM is driving standards
for modeling services and service assemblies, such
as the Unified Modeling Language** (UML**), and
working on numerous Java** standards that sup-
port realization of services and service-oriented
solutions in the context of the J2EE** (Java 2
Enterprise Edition) programming model, such as the
Java ServerFaces (JSF) standard and the emerging
Service Data Object (SDO) standard.

Delivering tools and technologies

As these standards are defined, they are supported
in commercially available IBM products. For exam-
ple, the IBM Rational* Application Developer
includes support for a number of key Web Services
standards, such as WSDL, UDDI, WS-I and WS-
Security. Creating services and service-oriented
solutions is automated through a wide collection of
rapid application-development features based on
wizards, patterns, and reusable assets. These help to
automate efficient delivery of services and service-
oriented applications in conformance with applica-
ble standards.

Documenting best practices

IBM has substantial experience with the application
of service-oriented approaches across many busi-
ness domains. This knowledge is being captured and
exploited through IBM’s service offerings and
engagements, guidebooks, tutorials, and reusable
samples. For example, IBM’s developerWorks*,
Redbooks*, and the Rational Unified Process*
contain a wealth of materials for those using SOA or
practicing SODA.” This guidance is continually
being refined and updated as IBM’s experience base
grows.

Although there is much to be discussed in all of
these areas, in this paper we focus on how IBM

BROWN ET AL.

729

supports SODA, the relationship of SODA to the IBM
Rational Software Development Platform (RSDP),
and how IBM’s core approach to design and
construction—model-driven development—is an
essential element in creating efficient and effective
services and service-oriented solutions. For more
details, see the general references at the end of this

paper.

TOWARD SERVICE-ORIENTED SOLUTIONS
Adopting an SOA and applying SODA techniques is
important in creating the kinds of solutions that will
drive the next generation of business process
improvements. A growing number of organizations
are looking to adopt a different kind of software
development platform that recognizes a new ap-
proach to the role software plays in their business.
Many of these organizations face the pressure of
quantitatively showing the value that IT provides to
their business.

There are three imperatives influencing the way
organizations are looking at the platforms of their
next-generation solutions: a service view, rapid
assembly and reassembly, and a focus on asset
management and reuse.

A service view

Additional insight and understanding of how busi-
ness processes can be realized in IT solutions can be
obtained by viewing the collection of capabilities
offered throughout an IT infrastructure as a set of
services that are assembled to meet specific business
needs. System architectures are designed as collec-
tions of services governed by interservice protocols
and explicit SLAs (service level agreements).

Rapid assembly and reassembly of solutions
Greater flexibility can be offered by treating an IT
organization as a “software factory” for creating
solutions to meet evolving business goals. To
achieve this, it must be possible to readily assemble
and reassemble pieces and parts of the solutions as
business and market conditions demand. This
requires close relationships between business ana-
lysts and IT architects, tools to promote collabo-
ration, and a disciplined approach to managing the
elements that are assembled.

A focus on asset management and reuse

As organizations seek to obtain greater business
efficiency, there has been increased emphasis on
reuse as a principle that applies throughout the

730 BROWN ET AL

software development life cycle. In particular, the
limited impact of reuse through shared code
libraries has been broadened to include reuse of
business processes, requirements definitions, archi-
tectural design elements, test scripts, and so on. This
view changes the solution life cycle in substantial
ways, altering the roles of individuals in the
organization and creating different project practices,
as well as creating and managing assets throughout
the life cycle. For practical reasons, this is accom-
panied by strong governance practices for reusable
assets tied to a flexible asset management infra-
structure.

Supporting this new view of software development
requires tools and platforms that take a service
perspective and provide a business focus that ties
the business and IT practitioners together more
effectively. Rather than extending object models,
practitioners must think in terms of “wiring of
services.” They must take advantage of exposed
service-based middleware capabilities and facilitate
greater management and reuse of solution frag-
ments. The result is different kinds of solutions,
different roles, different development processes, and
different expectations from the tooling.

Tool vendors and middleware software vendors
have recognized these requirements and are offering
capabilities to help fulfill them. In this regard, one of
the most important developments from IBM has
been the consolidation of a collection of these
capabilities as the IBM Rational Software Develop-
ment Platform (RSDP), a comprehensive set of
offerings for developing, deploying, and managing
service-oriented solutions.

THE IBM RATIONAL SOFTWARE DEVELOPMENT
PLATFORM

IBM offers many valuable technologies to help
organizations design, build, deploy, and manage
service-oriented solutions. Although individual
product capabilities are important, the real value to
customers is the combination of these capabilities in
a robust software development platform for creating
a new generation of applications. Many organiza-
tions are seeking a set of capabilities for executing IT
projects with a level of coordination, accuracy, and
clarity that is currently unavailable. In fact, the role
of IT in an organization is seen as a core “utility”;
investment in IT resources is seen to provide a

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

predictable, risk-managed impact on the goals and
mission of the business.”

Consequently, organizations are beginning to view
software development as a “business process” that
itself must be measurable, predictable, and man-
ageable. This is a compelling vision, and one that
can be delivered only through the deep integration
of tool and runtime capabilities throughout all
aspects of the business in support of a service-
oriented view of their solutions. In this regard, the
RSDP is a critical step. It offers the tooling and
technology infrastructure to realize that vision. With
respect to SODA, the RSDP addresses five critical
needs: bridging the business-to-IT gap, support of
the changing roles in the IT organization, a focus on
assets and reuse, increasing levels of collaboration
within and across practitioner roles, and simplifi-
cation of product offerings.

Bridging the business-to-IT gap

The service concept is essential in aligning the
business view of activities and processes with the
technology that is used to realize them. This
alignment includes the ability for business models to
drive development and to evolve business models
and IT solutions in tandem. Services and service-
based thinking form the common ground that ties
business analysts, IT architects, integrators, and
developers together. Common design practices are
essential to ensure that concepts, artifacts, and
activities are synchronized across these different
perspectives. Having tools that can efficiently
transform models which represent business intent
into efficient implementations is critical in bridging
this gap.

Support of changing roles in the IT organization
The move to a service viewpoint changes the skills
and composition of teams in an organization. The
focus of development is on finding, defining,
managing, and assembling services, with architec-
tural descriptions highlighting SLAs and interservice
protocols. The traditional breakdown of tool func-
tions into today’s line-up of products is not
appropriate to this approach; a different blend of
capabilities is required by the various members of IT
organizations. For example, the skills required for
existing roles, such as “software architect,” are
changing to include greater emphasis on assembly
and management of services across a diverse set of
service providers. Similarly, new roles, such as

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

“integration specialists,” are emerging, whose focus
is on assembling a service-based value chain in
support of an organization’s key business goals.

A focus on assets and reuse

Considering services as key assets in the design of
systems changes an organization’s view of the value
of reusing these services. A service assembly view-
point leads to the “software factory” paradigm. As a
result, technologies and techniques for management
and governance of assets and repeatable ways to
capture patterns for combining assets become much
more important. In an asset-based development
approach, these assets hold critical value for the
organization and must be carefully managed and
administered. The team infrastructure for managing
assets takes on a key role in this approach.

Increasing levels of collaboration within and
across practitioner roles

Enterprise application developers have always
recognized that software development is a “team
sport” and have focused attention throughout the
life cycle on shared assets management, artifact
traceability, and shared practices and processes. The
collaborative nature of software development is
increasing with greater geographic distribution of
organizations, enhanced real-time communication
among individuals in teams, and software being
embedded as one part of broader systems develop-
ment initiatives. Increasingly, software development
infrastructures are seen as collaborative development
environments for software practitioners that en-
courage sharing and reuse of services among teams.

Simplification of product offerings

An essential element of success in SODA involves
reorganizing tool offerings to support the dynamic
view of customer needs and to align product
offerings with emerging roles in the IT organization.
Repackaging tool capabilities greatly improves the
delivery of those offerings to customers, supported
by promotion of how the tools address today’s
customer concerns for greater flexibility and value
in delivering service-oriented enterprise solutions.

As illustrated in Figure 2, the RSDP supports a
business-driven development life cycle aimed at
bringing together the tasks and roles that collaborate
in any enterprise-scale project. They work together
to understand, define, build, and deploy collections
of services that support the business. The services

BROWN ET AL.

731

Model Business Process

 Document and specify the “as-is"
process with metrics

« Specify and construct goals, objectives
and requirements

« Apply technology to improve
the process

« Model the “to-be” process

Monitor and Manage

« Audit processes and
improvements

Business

Develop lteratively

Focus on Architecture

Understand Business and Elicit Requirements

 Model and simulate business processes

* Model applications and data

+ Analyze financial data and prioritize the
areas that bring maximum business value

Discover and Design

* Harvest existing assets
- Identify/prepare existing

1%}
* Make iterative improvements ch Continuously Ensure Quality assets or reuse '
* Model the next as-is and B « Design system architecture
to-be process % Manage Change and Assets
*~
&
S
K
RS
0@

Test and Deploy

+ Manage testing, requirements,
configuration, and project management

Figure 2
Business-driven life cycle

Transform, Integrate and Build

- Rapid integration and/or
application development

» Visual construction and programmatic
code generation

» Functional and load testing

« Generate XML code and manage UML
blueprints and automated workflow

« Apply patterns to accelerate development

are also monitored as they are executed, in order to
provide feedback that can optimize business oper-
ations.

For practical reasons, the creation and delivery of
IBM’s rich and integrated RSDP has been built upon
a common tooling infrastructure, based on a set of
shared components. The Eclipse infrastructure (its
plug-in architecture, metamodel framework, shared
metamodels, and libraries of capabilities) makes this
possible.S This shared infrastructure enables the use
of common components among IBM development
teams, so that IBM products can be used together
more easily, are open to extension by third parties,
have greater consistency and quality, and can be
evolved more efficiently.

A service-oriented programming model

A key aspect of the RSDP is the use of a
programming model that is influenced strongly by
the service-oriented nature of the emerging IBM
runtime platforms.6 The RSDP presents this pro-
gramming model to practitioners as the means by
which to perceive, design, implement, and evolve

732 BROWN ET AL

solutions for the IBM runtime platforms. This
programming model is quickly evolving to place
services and service-oriented concepts at the heart
of how practitioners think about solutions.

A key element of the programming model being
driven by the RSDP is a simplified data-access
programming model for various resources known as
the Service Data Object (SDO), which is in the
process of being standardized through the Java
Community Process. Practitioners think about per-
sistent information requirements for their solutions
in terms of SDOs and how these resources are
manipulated by services, not in terms of specific
technologies for describing and storing data.

Another key element is the emerging component
model for WebSphere* that supports Web-service
invocation, wiring, and composition regardless of
the type of implementation technology (EJBs**
[Enterprise JavaBeans**], stored procedures,
RDBMS [relational database management systems],
CICS* [Customer Information Control System]
transactions, and so on). Based on the J2EE stan-

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

dard, this work supports modeling, assembly, and
runtime interaction among service implementations.

The RSDP uses a service orchestration and compo-
nent scripting standard that supports workflow and
business process integration. BPEL is a maturing
industry standard, already widely supported in
vendor tools. It also uses a Java framework, Java
ServerFaces, that speeds Web application develop-
ment for developers who are not expert J2EE
developers. Applications can be customized by
using external policies and rules through a series of
emerging standards that are in development for
policy definition and enforcement, including WS-
Policy.

DESIGN OF SERVICE-ORIENTED SOLUTIONS

In light of the preceding discussion, we can now
begin to understand more about what a service is
and how services are defined and assembled in an
SOA. In essence, a service-oriented approach is a
way of designing a software system to provide
services either to end-user applications or to other
services through published and discoverable inter-
faces. In many cases, services provide a better way
to expose discrete business functions and therefore
an excellent way to develop applications that
support business processes.

In the following subsections, we explore the idea of
services and the design of service-oriented solutions
in more detail. In particular, where appropriate, we
contrast the design of service-oriented solutions
with more widely established approaches for the
design of component-based solutions.”®

Service Types

A service is generally implemented as a coarse-
grained, discoverable software entity that exists as a
single instance and interacts with applications and
other services through a loosely coupled (often
asynchronous), message-based communication
model.

Services can take different forms, which are related
to the technology used in their implementation. For
example, we might be interested in the definition of
a specific kind of service, a Web service, as defined
by the XML Web Services group in the World Wide
Web (W3C**) Consortium:

A Web service is a software application identified
by a universal resource identifier (URI), whose

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

interfaces and binding are capable of being
defined, described, and discovered by XML
artifacts, and supports direct interactions with
other software applications using XML-based
messages via Internet-based protocols.9

These two descriptions of services, one focusing on
the SOA architectural style and the other on its
realization as Web Services, offer a set of charac-
teristics for services related to their nature and
applicability. These include:

1. Granularity—Operations on services are fre-
quently implemented to encompass more func-
tionality and operate on larger data sets,
compared with component-interface design.

2. Interface-based definition—Services implement
separately defined interfaces. The benefit of this
is that multiple services can implement a
common interface and a service can implement
multiple interfaces.

3. Discoverability—Services need to be found at
both design time and runtime, not only by unique
identity but also by interface identity and by kind
of service.

4. Single-instance nature—Unlike component-based
development, which instantiates components as
needed, each service is a single, always-running
instance that a number of clients communicate
with.

5. Loosely coupled nature—The SOA is a loosely
coupled architecture because it strictly separates
the interface from the implementation. In addi-
tion, runtime discovery further reduces the
dependency between service consumers and
providers and makes an SOA even more loosely
coupled. Services are connected to other services
and clients using standard, dependency-reducing,
decoupled message-based methods, such as XML
document exchanges.

6. Asynchronous nature—In general, services use an
asynchronous message-passing approach; how-
ever, this is not required. In fact, many services
use synchronous message-passing at times.

7. Reusability—Services are assets that can be
reused in several contexts, regardless of the
component architecture.

Some of these criteria, such as interface-based
definition and discoverability, are also used in
component-based development. However, the major
difference between SOA and component-based

BROWN ET AL.

733

development is the fact that SOA focuses only on the
interfaces and their discoverability and emphasizes
loose coupling, particularly over network infra-
structures. In contrast, component-based develop-
ment focuses on the component execution
environment and the acquisition and deployment of
software components in that environment. Collec-
tively, these characteristics differentiate a service-
based solution from a component-based solution.

Service design considerations

In any new development in software engineering, it
is very easy to assume that one can apply the same
techniques and tools that have worked in previous
projects. Components and services, although sim-
ilar, are not the same; they have differing design
criteria and design patterns.

Interface-based design

In both component and service development, the
design of interfaces is performed such that a
software entity implements and exposes a key part
of its definition. As a result, the concept of “inter-
face” is essential to successful design in both
component-based and service-oriented systems.

An interface definition in languages such as Java or
C++, or in languages such as IDL (interface
definition language), only provides a set of method
signatures. The definition provides the “what,”
without any guidance on the “how.” However,
businesses are moving more and more to service-
oriented systems in the hope that they can be more
easily integrated and choreographed to realize
business processes through collaborations of ser-
vices. As a result, the concept of defining the
behavior of an interface and, more important, the
behavior of sets of related interfaces, is receiving
increasing industry attention. Unfortunately, there
are currently few standard approaches governing
these definitions.

One approach might be to use design models, such
as those introduced in this paper, defined in a
standardized language such as UML, to document
the interdependencies between service interfaces.
Such models can be shared, jointly developed, and
used to drive specific standards when they emerge.
Additionally, IBM has supported the Reusable Asset
Specification (RAS) through its standardization
within the OMG (Object Management Group, Inc.).
RAS provides a mechanism for packaging and

734 BROWN ET AL

sharing assets, and this mechanism could be applied
to defining the behavior of sets of interfaces. For
example, when using the RAS mechanism to
distribute the details for a service, one could
package the model describing its behavior as well.
Within such a model, a sequence diagram may then
be used to show the required interaction between
the calls on the interface.

Layering application design

The tendency to solve new problems with outdated
solutions was encountered as developers began to
create component-based systems. They tried to
bring their experience with object-oriented devel-
opment to bear and encountered problems similar to
those endemic to that paradigm. With more expe-
rience, it was understood that object-oriented
technology and languages are excellent ways to
implement components, though one has to under-
stand the trade-offs that are inevitable in this design
approach. These trade-offs include using inheritance
versus aggregation for implementing polymorphic
behavior, and the redesign of class libraries to
enable the use of components as the basis of a
monolithic C4++ application.

In a similar way, we believe that components are the
best way to implement services, with the caveat that
an exemplary component-based application does
not necessarily make an exemplary service-oriented
application. There is a great opportunity to leverage
a company’s component developers and existing
components, once the role played by services in an
application architecture is understood. The key to
making this transition is to realize that a service-
oriented approach implies an additional application
architecture layer. In particular, technology layers
can be applied to application architecture to provide
more coarse-grained implementations as one gets
closer to the consumers of the application. The term
coined to refer to this advantage is “the application
edge,” reflecting the fact that a service orientation
provides an excellent way to expose an external
view of a system with internal reuse and composi-
tion using traditional component design.

In our experience, the move from object-oriented to
component-based thinking took between 6 and 18
months as developers learned about this new
technology and the requirements it placed on them.
It is to be hoped that the move to service-oriented
systems can happen more quickly. To this end,

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

developers have to understand the challenges,
trade-offs, and design decisions that allow for the
development and reuse of components in support of
service-oriented applications.

Service-oriented design

Because there is a single instance that manages a set
of resources for a service, they are for the most part
stateless. We need to view a service as a manager
object that can create and manage instances of a
type or set of types. This yields a design pattern that
makes use of value objects (a common pattern in
distributed systems, where state persists for transfer
between components) that represent the instance
state. Objects are, in fact, simply serialized states.
Thus, if we can define the rules for taking a
component definition and transforming it into a
service, we can implement this serialization as a
pattern. The creation and reuse of such patterns is
possible with IBM Rational Software Architect.

This passing of state from provider to requestor
implies that rather than using a large number of
small operations to retrieve the component state, a
single large operation is used. Most services are
remote, and this approach has certain implications
for network usage for remote services, as well as for
the behavior of requestors when dealing with large
value objects. It also has another implication; the
requestor is being provided with a copy of the state
of some entity, but is this copy stale? We know that
when we retrieve a stock quote or weather forecast,
there is the possibility that it is out of date, but we
are conditioned to accept this. We are also condi-
tioned by the type of data; stock quote data becomes
stale faster than weather data. In the architecture
described here, the requestors must be conditioned
to accept variations in copies of state.

Service design and implementation patterns
Our experience with modeling of services and
service-oriented solutions using UML 2.0 have led to
a number of observations on effective approaches
for designing services and service-oriented solu-
tions. Much of our work has been done in the
context of creating Web Services solutions. How-
ever, many of these lessons support broad design
principles that were first highlighted in earlier
techniques supporting object-oriented and compo-
nent-based design. These approaches reinforce ideas
such as separation of interface specification from
implementation, coupling and cohesion of inter-

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

faces, and so on. However, we believe that a
number of practices specific to modeling of service-
oriented solutions are also readily identifiable.

To make these lessons more concrete, we focus on
Web Services. This focus does not change the
analysis of the functional requirements for an
application; an insurance claim-processing applica-
tion, for example, must process insurance claims
regardless of the technology used in its implemen-
tation. Adopting Web Services introduces a set of
constraints and potential issues in the area of
nonfunctional requirements. In the following, we
highlight some of the more interesting Web Services
design practices that we have observed in recent
modeling projects.

Performance and reliability

The question is often asked whether the capabilities
required for Web service performance, reliability,
and scalability can be provided by an architecture
based on HTTP (Hypertext Transport Protocol) and
SOAP, which are inherently slow and unreliable. To
respond to this criticism, “slow and unreliable” must
be defined, and it must be realized that even reliable
transports rely on unreliable means. When design-
ing enterprise-scale solutions, one must always bear
in mind functional and nonfunctional requirements
and ensure that the correct trade-offs and decisions
are made to support business goals.

For example, when using SOAP over HTTP, it is
always possible to build application-level protocols
and interactions that provide additional capabilities
for message acknowledgements and security.
Nevertheless, an alternative to HTTP might provide
a better solution in light of the fact that certain
services communicate within the same security or
application context.

Consider an example consisting of three services:
customer management, customer services, and
order management. We may design this system such
that all external clients interact with the customer
management service; however, it interacts with two
internal services, customer services and order
management. The decision here is, “Why would we
require the flexibility of HTTP and SOAP for these
internal service communications?” Let us assume
that performance is our key requirement for the
interaction between customer management and
customer services. If so, we might decide to use a

BROWN ET AL.

735

with later response as
separate message ‘

:IRequestor :IResponder
1 f
alt | |

I 1: RequestForFoo |

T »
Synchronous request |
with direct response I

A I «return»

| 2: RequestForFoo

- == |
Asynchronous request : 1: AsynchRequestForFoo }

[

|

|

|

|

|

|

2: RequestedFoo

Figure 3
Synchronous and asynchronous behavior

component RPC communication (such as Microsoft
.NET** Remoting or Java’s RMI over IIOP [Remote
Method Invocation over Internet Inter-Orb Proto-
col]) that provides binary encoding formats and
higher performance characteristics. On the other
hand, because the key requirement to place an order
from customer management to order management is
guaranteed delivery, we might use a queuing
technology (such as IBM WebSphere MQ or MSMQ
[Microsoft Message Queue Server]) to deliver the
message, trading performance for a higher level of
reliability.

Even though Web Services present a simple model
and a set of simple, flexible protocols, one is not
restricted to these choices. WSDL has bindings for
both SOAP and HTTP get and put requests, but it is
important to provide requestors with additional
choices. For example, a single service may expose a
message by using a message queue binding and a
SOAP binding, so that the requestor can then choose
which is the more appropriate binding to use. In this
case, the provider may also provide incentives, such
as a guaranteed service level if the message queue is
used but no service guarantees for an HTTP
conversation.

Asynchronous behavior and queuing

As mentioned in the introduction to SOA, it is
beneficial to make Web Services asynchronous in
nature. Because of the additional transport overhead

736 BROWN ET AL

associated with Web Services and the expectation
that services will, by their nature, be remote, it is
important to reduce the time a requestor spends
waiting for responses. By making a service call
asynchronous, with a separate return message, we
allow the requestor to continue execution without
waiting for the provider to respond. This is not to say
that synchronous service behavior is never appro-
priate; rather, experience has demonstrated that
asynchronous service behavior is often preferable,
especially where communication costs are high or
network latency is unpredictable.

The behavior described in Figure 3 represents a
major advance toward implementing highly scalable
Web services. By making a service call asynchro-
nous, the provider is enabled to use multiple worker
threads to handle multiple client requests. Much
more must be done to support an asynchronous
mode of operation, aside from returning a response
to the client quickly. It is necessary to specify dual
interfaces; the requestor will need to pass a return
address to a service that implements an interface
that can accept the returned message. This implies a
need to manage state in the conversation between
the parties. One may learn about various methods
for doing this by looking at the design of Web
sessions that are not based on Web Services.

Nevertheless, this solution is scalable only to a
certain degree. For services that expect a very high
load, we would need to decouple the part that listens
to the requestor and the part that services the
request itself. This is already a well-known pattern,
in which a message queue (using Java Message
Queue Service [JMS] or message-driven beans for
J2EE) is used to decouple a service facade from the
service implementation.

Caching in service-oriented design

In the previous section, we introduced the concept of
passing “stale” copies of information from a provider
to a requestor. For example, if I am developing a
stock portfolio-management application, I do not
want to ask a Web service for the current price of a
security over and over for each security, passing
three to five characters of data for the security and
five to seven characters for the price. This may result
in an unacceptable load on the network and service
provider. Instead, the contents of the entire portfolio
should be requested, either by passing the list of
symbols or by passing the portfolio identifier to the

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

«Message»
< Account

© Name : string

© Address : string

© AccountState : string
© Phone : string

© Fax : string

«Message»
><|LeasedDocument

© IssuedBy : string
o Issued : dateTime
o Expires : dateTime
© Ticket : string

«Message»
< GetAccountDataResponse

«Message»
D4l LeasedAccount

Figure 4
Two implementations of information leasing

1

«Message»
><Leaselnformation

O IssuedBy : string
©lssued : dateTime
© Expires : dateTime
© Ticket : string

1

«Message»
»< Account

© Name : string

o Address : string

© AccountState : string
© Phone : string

O Fax : string

service and retrieving all information for each
security. If the user simply asks for an update to a
single symbol this seems like overkill; however, the
requestor can now cache the results and, if the user
then asks for an update to another symbol, the
request can be satisfied from the cache. The task for
the requestor becomes the identification of the
“lease” duration of the data. For a portfolio, if it is
known that the stock quote service has a 20-minute
delay, it may be best to work on a 25 percent margin
and cache the results for five minutes.

This pattern is seen frequently in information
systems. Whenever a user retrieves an order from
an order management system, that user is effectively
given a copy of the order because another user may
be updating it at the same time (unless the system
locks out additional access to the order). It would be
desirable for a Web service provider to identify the
cache or lease duration as part of its interaction with
the requestor. Such issues are well understood in
messaging systems such as MSMQ and WebSphere
MQ, where message timeouts and expiry times are
routinely managed.

Leasing information is viewed in terms of borrowing
a book from a library rather than the leasing of
property, such as a house or car. Implicitly,
whenever a requestor makes a request of a service,
it is asking for a copy of some information; it is
always provided with a snapshot of state at a given
time. This can cause problems, unless it is explicitly

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

understood and accounted for. One strategy is to
have the provider give the expiration time together
with the information. Alternatively, the requestor
may get a “ticket” with the lease (like a library
book) that would allow it to potentially extend the
lease by asking if the information is still valid, and
then have the server reset the lease without having
to retrieve the data again.

This is such a fundamental issue that one might
expect HTTP, SOAP, or one of the transport
protocols would handle it. We could reuse the HTTP
caching semantics that allow browsers and firewalls
to cache pages, but this is not under the provider’s
control, and the requestor may not be using HTTP as
a transport. One option is to build such support into
the document exchange, such that the messages
between requestor and provider encode the leasing
information for the client, as shown in Figure 4.

Figure 4 illustrates two alternative implementations
for the information-leasing paradigm. The first
demonstrates the use of inheritance to transform the
account XML document into a special form that is
not only an account but also a leased document and,
therefore, includes the additional information. The
second alternative has the leasing information
returned alongside the account as a separate part of
the response message. Whereas both of these
approaches are equally valid, they result in differ-
ently structured data, and the choice is very much
one of style, that is, inheritance versus aggregation.

BROWN ET AL.

737

GENERATING SERVICES AND SERVICE-ORIENTED
SOLUTIONS FROM MODELS

Modeling services and service designs is important
for the purpose of understanding an architectural
solution to a given business problem. However, the
value of capturing designs in well-defined models
and the use of rigorous modeling notation is that
they can become the basis for a model-driven
approach to implementing an SOA. Generating more
concrete models (and code) from abstract models is
at the heart of a model-driven approach.

As a fundamental aspect of software engineering,
modeling is critical to the success of every enter-
prise-scale solution; however, there is great variety
in what models represent and how models are used.
Model-driven development refers to a set of ap-
proaches in which code is semiautomatically gen-
erated from more abstract models, and which
employs standard specification languages for de-
scribing those models and the transformations
between them. It also supports model-to-model
transformations.

Models are the stepping stones on the path between
a description of business needs and deployable
runtime components. As the system under devel-
opment evolves, the models themselves become
more complete, accurate, and consistent with each
other. The focus of effort also shifts from the models
at the higher level of abstraction to those at lower
levels. Ultimately, these models are used to directly
create the deployable components.

This approach is equally applicable when the goal is
to create services and service-oriented solutions.
High-level models representing business concepts
can be transformed into logical models of a service-
oriented solution, which in turn is transformed into
implementations of services and service assemblies
that realize the solution. The process of model-
driven development can be explored from three
perspectives: how models evolve and are related,
how transformations are defined and applied, and
how automation of these transformations can lead
to efficiencies in a software project.10

How models evolve

Two main activities occur with models: refinement
and transformation. Model refinement is the gradual
change of a model to better match the desired
system. The model is refined as more is known and

738 BROWN ET AL

understood about the system. A model may also be
refined for purely internal reasons (i.e., refactoring).
As the various models evolve, dependent models
need to change in response. By the end of each
iteration of the development cycle, however, all the
models should be consistent with each other.

Models are refined either manually or through some
form of automation or assisted automation. Auto-
mation can be in the form of rules for model
refinement implemented as executable patterns or
assets. When a pattern is applied to a model, it
modifies or rearranges the model elements to
resemble the pattern. The application of a pattern
adds new elements or properties to the model.
When a pattern is applied, it may involve some user
assistance; for example, prompting the developer for
an existing model element with which to bind a
pattern parameter, or for other decisions that need
to be resolved for the pattern to be executed.

Model transformation, on the other hand, involves
two or more models. The most typical example is
the transformation of a high-level abstraction model
(a platform-independent model [PIM]) into a low-
level abstraction model that is technology-depen-
dent (a platform-specific model [PSM]). For exam-
ple, a UML PIM could represent a logical data model
and consist of a number of entity classes, each with
a number of persistent attributes. This model could
be transformed through automation into a UML data
model that captures the same underlying entities,
but from the viewpoint of database tables. The data
model could in turn be used to directly generate SQL
(Structured Query Language) scripts that define the
database and could be directly executed on a specific
database management system (DBMS).

Model transformations are not necessarily unidirec-
tional; some model transformations can be bidirec-
tional. For example, a platform-specific UML model
of several Enterprise JavaBean (EJB) classes could
be “synchronized” with the source code imple-
menting these EJBs. New elements (i.e., methods,
attributes, and associations) defined in the model
would generate appropriate elements in the source,
and any new elements created (or removed) in the
source would cause appropriate elements in the
model to be generated or removed.

Understanding model transformations

Defining and applying model transformations are
critical techniques within any model-driven style of

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

development. Model transformations involve using
a model as one of the inputs in the automation
process. Possible outputs include another model or
varying levels of executable code. In practice, there
are three common model transformations, as de-
scribed in the following:

1. Refactoring transformations reorganize a model
based on some well-defined criteria. In this case,
the output is a revision of the original model and is
called the refactored model. An example could be
as simple as renaming all the instances where a
UML entity name is used, or something more
complex, such as replacing a class with a set of
classes and relationships in both the metamodel
and all diagrams displaying those model elements.

2. Model-to-model transformations convert infor-
mation from one or more models to another
model or set of models, typically where the flow
of information is across abstraction boundaries.
An example would be the conversion of one type
of model into another, such as the transformation
of a set of entity classes into a matched set of
database schema, “plain old Java objects” (PO-
JOs), and XML-formatted mapping descriptor
files.

3. Model-to-code transformations are familiar to
anyone who has used the code generation
capability of a UML modeling tool. These trans-
formations convert a model element into a code
fragment. This is not limited to object-oriented
languages such as Java and C++, nor is it limited
to programming languages. Configuration, de-
ployment, data definitions, message schemas,
and other kinds of files can also be generated
from models expressed in notations such as UML.
Model-to-code transformations can be developed
for nearly any form of programming language or
declarative specification. An example is generat-
ing Data Definition Language (DDL) code from a
logical data model expressed as a UML class
diagram.

Applying model transformations

In practice, there are several ways in which model
transformations can be applied. In model-driven
approaches, there are four categories of techniques
for applying model transformations. In the manual
approach, the developer examines the input model
and manually creates or edits the elements in the
transformed model. The developer interprets the
information in the model and makes modifications

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

accordingly. Apart from raw speed, the significant
difference between manual and automated trans-
formations is that automation is ensured to be
consistent and a manual approach is not.

A prepared profile is an extension of the UML
semantics in which a model type is derived.
Applying a profile defines rules by which a model is
transformed.

A pattern is a particular arrangement of model
elements. Patterns can be applied to a model, and
this results in the creation of new model elements in
the transformed model.

Automatic transformations apply a set of changes to
one or more models, based on predefined trans-
formation rules. These rules may be implicit to the
tools being used or may have been explicitly
defined, based on domain-specific knowledge. This
type of transformation requires that the input model
be sufficiently complete, both syntactically and
semantically, and may require models to be marked
with information specific to the transformations
being applied.

The use of profiles and patterns usually involves
developer input at the time of transformation, or
requires the input model to be “marked.” A marked
model contains extra information not necessarily
relevant to the model’s viewpoint or level of
abstraction. This information is only relevant to the
tools or processes that transform the model. For
example, a UML analysis model containing entities
of type String may be marked variable or fixed
length, or it may be marked to specify its maximum
length. From an analysis viewpoint, the identifica-
tion of the String data type is usually sufficient.
However, when transforming an attribute of this
type into, for example, a database column type, the
additional information is required to complete the
definition.

Models and transformations

Transformations such as these can be used to enable
efficient development, deployment, and integration
of services and service-oriented solutions. Practi-
tioners create models specific to their viewpoint and
needs, and these are used as the basis of analysis,
consistency checking, integration, and automation
of routine tasks. Model-driven approaches allow
developers to create services and service-oriented

BROWN ET AL.

739

solutions by focusing on logical design of services
and to apply transformations to the underlying SOA
technologies. Furthermore, as illustrated in the
examples later in this paper, substantial improve-
ments in the quality and productivity of delivered
solutions is possible by automating substantial
aspects of these transformations to service imple-
mentations.

SERVICES, SOA, AND THE RATIONAL UNIFIED
PROCESS

As experience in developing services and service-
oriented solutions increases, a growing consensus
concerning best practices for designing an SOA is
emerging. It is essential that these emerging
practices augment and support existing software
engineering methods, rather than serve as a separate
thread of development experience. In this way, an
SOA can be seen as a natural evolution of
established approaches, and a channel for intro-
ducing service-oriented techniques is made avail-
able. In this section we discuss how SOA design fits
into the broader context of software-engineering
processes.

The Rational Unified Process (RUP*) is the de facto
standard software engineering process in use to-
day.11 It provides a disciplined approach to assign-
ing tasks and responsibilities within a development
organization and has been applied to projects of
varying size and complexity, with small teams and
large, on small efforts lasting a few weeks to large-
scale programs lasting years. The goal of the RUP is
to ensure the production of high-quality software
that predictably meets the needs of its end users on
schedule and within budget.

Not surprisingly, the RUP has most recently been
applied to projects aimed at creating services and
SOA solutions. In these projects, we have found that
many of the core principles of the RUP remain
essential to the success of such projects. However,
we also have encountered areas where updates and
additions to the RUP are valuable in support of
service-oriented approaches.

The Rational Unified Process

The RUP is a software development process that
has, as its foundation, a set of best practices that
represent commercially proven approaches to soft-
ware development. When used in combination,
these practices ensure the success of a software

740 BROWN ET AL

development project by striking at the root causes of
typical software development problems. The RUP
was explicitly designed to support the implementa-
tion of six best practices:

1. Develop iteratively—The functionality of the

system should be delivered in a successive series
of releases of increasing completeness. Each
release is termed an iteration. The selection of
which requirements are developed within each
iteration is driven by the desire to mitigate project
risks, with the most critical risks being addressed
first.

. Manage requirements—A systematic approach

should be used to elicit and document the system
requirements and then manage changes to those
requirements, including assessing the impact of
those changes on the rest of the system. Effective
management of requirements involves maintain-
ing a clear statement of the requirements, as well
as maintaining traceability from these require-
ments to the other project work products.

. Use component architectures—The software ar-

chitecture should be designed using components.
A component-based development approach to
architecture tends to reduce the complexity of the
solution and results in an architecture that is
more robust and resilient and enables more
effective reuse.

. Model visually—A set of visual models of the

system should be produced, each of which
emphasizes specific details and ignores others.
These models promote a better understanding of
the system that is being developed and provide a
mechanism for unambiguous communication
among team members. “A picture is worth a
thousand words.”

. Continuously verify quality—The quality of the

system should be continuously assessed with
respect to its functional and nonfunctional
requirements. Testing should be performed as
part of every iteration. It is much less expensive
to correct defects found early in the software
development life cycle than to fix defects found
later.

. Manage change—A disciplined and controlled

approach for managing change should be estab-
lished (such as changing requirements, technol-
ogy, resources, products, platforms). The way in
which changes are introduced into the project
work products should be controlled: who intro-
duces the changes and when those changes are

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

introduced. A means should be provided to
efficiently synchronize those changes across the
different development teams, releases, products,
platforms, and so forth.

These best practices are the result of IBM Rational’s
experience in developing its software products,
together with the experience of IBM Rational’s many
customers. Implementing these best practices puts a
software development organization in a much better
position to deliver quality software in a repeatable
and predictable fashion.

The RUP can be described in terms of two
dimensions: time and content. Figure 5 provides a
graphical representation of these dimensions. The
horizontal axis represents time and shows the life-
cycle aspects of the process. This dimension is
described in terms of phases and iterations. The
vertical axis represents content and shows the
disciplines that logically group the process content.

As the maxima in Figure 5 illustrate, the relative
importance of the disciplines changes over the life of
the project. For example, in early iterations more
time is spent on requirements; in later iterations
more time is spent on implementation. Configura-
tion and change management, environment, and
project management activities are performed
throughout the project. It is important to note that
all disciplines are considered within every iteration.

The RUP as a process framework

Although the RUP is often viewed as a process that
is used “as is,” it is best thought of as a process
framework that is intended to be customized.
Organizations that adopt the RUP typically remove
process elements that are not relevant to them and
add their own best practices, extend existing
practices, and introduce the organization’s specific
nomenclature, standards, and concepts, as appro-
priate. The result is known as an “RUP configu-
ration.”

In particular, IBM Rational provides a number of
process plug-ins that allow an organization to
import process content not provided with the RUP.
For example, plug-ins are available for extreme
programming, IBM WebSphere Application Server,
J2EE, .NET, and Web design. As a result, the initial
phases of a project using the RUP would typically
involve the creation of a particular customization of
the RUP as the basis for the project. This would
involve customizing the RUP content, extending the

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

content with organization-specific information, and
selecting the appropriate RUP plug-ins.

The RUP and enterprise-wide initiatives

The RUP has also been applied beyond the
execution of a single project. For example, the RUP
has been applied to systems engineering (develop-
ing systems that comprise hardware and people, as
well as software), enterprise architecture (using
frameworks such as the Department of Defense
Architecture Framework [DoDAF]), and asset-based
development (focused on strategic reuse programs).

One of the themes of such enterprise-wide initiatives
is the application of an architectural pattern known
as the “system of interconnected systerns.”lz’ls’14
This pattern helps control the complexity inherent in
a system of systems. One of these systems repre-
sents overall capability and is referred to in the
pattern as the superordinate system. The other
systems represent a part of this overall capability,
and each is referred to as a subordinate system.
These systems are shown in Figure 6. The RUP is
then used as a process framework that supports the
development of the superordinate system and each
subordinate system. An important characteristic of
the “system of interconnected systems” pattern is
that it is recursive, meaning that a subordinate
system may also have subsystems of its own and be
superordinate in relation to them.

The RUP and SOA

The nature of the RUP makes it well suited to
building projects and assembling services. The RUP
is founded upon software-engineering best practic-
es, offers a configurable process framework, and is
scalable to support enterprise initiatives. Hence, it is
a viable choice when considering the development
of an SOA because all of these aspects of the RUP
apply. This subsection gives some specific examples
of where the RUP provides support for an SOA
initiative.

First and foremost, the RUP can be applied to
support the development of an SOA (a superordinate
system) and each individual service (subordinate
systems in the context of the SOA). However, there
are differences (and many similarities) between the
development of an SOA and the development of a
service. For example, in developing an SOA, a
particular concern is the identification of services
and an understanding of how business processes are
realized through the execution of these services. The
RUP provides a systematic approach for bridging

BROWN ET AL.

741

PHASES

Inception | Elaboration
I
I

Disciplines

Business Modeling

Requirements

Analysis and Design

_

Construction ' Transition I
"

Implementation

Deployment

Configuration and
Change Management

|
|
|
I
]
|
|
|
|
T
|
Test : —
|
|
T
|
|
|
|
|
|
T

Project Management
I
I

I | . | | - -

Environment !
ITERATIONS ! | |
Initial Elab #1 Elab #2 Const Const Const Tran Tran
r l r #1 | #2 #N #1 | #2
Figure 5

Time versus content in the Rational Unified Process

this gap between business and IT. It contains
activities for identifying architectural elements (such
as services) known as “architectural analysis” and

Superordinate System

Subordinate
System A

Subordinate
System C

Subordinate
System B

Figure 6
System-of-interconnected-systems pattern

742 BROWN ET AL

design-element identification, as well as activities
for understanding how these architectural elements
collaborate in order to satisfy business requirements
(business processes) known as “use case analysis”
and “use case design.” The RUP also acknowledges
any existing design elements that might exist
(including legacy systems and packaged applica-
tions), and therefore takes both a “top down” and
“bottom up” approach to developing an SOA.

This approach to developing an SOA not only
identifies the services and their provided and
required interfaces (and associated qualities), but
also their relationships and responsibilities. An
example of a subset of an SOA that shows structural
elements in terms of services, interfaces, and their
relationships, is given in Figure 7. This example of a
UML component diagram, created by using Rational
Software Architect with the UML profile for software
services,15 is from an order-processing system and

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Order Entry

rg’ﬁustomer Management Provider

~

rg’iAccount Management Provider

| |
| ~ |
~
~. | - |

Fulfillment Provider

A I~

o create order () DN i
o get customer details () e Shipping
o place order () o create invoice ()
o add order item () o process payment () o ship products ()
f T T
| |
| | |
! ! !
rmmmm - rgprder Entry Provider rgﬁccounting Provider rgﬁshipping Provider
| — ; ;
} «wse» } T~ _«user» } «wse» : «use»
\ o
| } S~ v %
! NED 2 JEgr
\
: J Account Management IFulfillment
} Customer Management | o create order () o get stock level ()
} o add order item () o ship products ()
| o get customer details () o place order () o register products ()
} o register customer () o create invoice () o deregister products ()
| o update customer details () k _ © process payment () > © update product details ()
\ - ~~ -
! T R T g T
} «use» «use» ~o 7 wise»
\
\
\
\
\
\
\
\

Figure 7
UML representation of an SOA

uses a UML 2.0 component to represent a service. Of
course, the behavior associated with the SOA, which,
for example, may involve the use of UML sequence
diagrams, would also be created as required.

The RUP can also be used in the development of an
individual service. In this case, the interfaces that a
service provides, the interfaces that it requires, and
the qualities that it provides represent the require-
ments of the service. In this respect, the RUP can be
used to provide guidance on how such requirements
can be fulfilled by a solution.

There is much more to the RUP than discussed here,
including many books on the subject, which provide
detailed discussions of the concepts within the RUP
that can be applied to the development of an SOA
and the services that comprise an soa.'"e

Enhancements to the RUP for SOA

Although the RUP as defined today can be success-
fully applied to the development of an SOA, there is
general agreement that more is needed. The RUP
provides a process framework that is, for the most
part, technology independent. The base RUP prod-

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

uct does not, for example, include any mention of
J2EE, .NET, SOA, Web services, and so on. An
example of the kind of SOA-specific practices that
are useful can be seen in the RUP plug-in for SOA
that was recently delivered as an update to the RUP
on IBM developerWorks.15 It contains specific
design guidance, heuristics, and tool usage tips for
SOA design, based on recent industry experiences
developing service-based solutions.

In practice, therefore, an organization applying the
RUP to an SOA project would create a specific RUP
configuration specialized for the task. The IBM RUP
plug-in for SOA defines or refines various process
concepts, such as roles, artifacts, and activities, and
makes use of relevant standards. In particular, the
plug-in defines SOA-related artifacts, SOA-related
activities, and SOA-related standards.

Examples of SOA-related artifacts include the
“service model,” defining a set of services managed
as a set of logical service partitions. SOA-related
activities might include “harvest services” and
“locate service.” In defining SOA-related standards,
the plugin offers detailed guidance to validate that

BROWN ET AL.

743

defined services comply with the various WS-*
standards. In addition, specific tool mentors are
provided for IBM Rational Software Architect to
illustrate how service models can be developed that
comply with the UML profile for software services.

EXAMPLES OF SERVICE-ORIENTED SOLUTIONS
A number of practical lessons in building service-
oriented solutions have been gained from using the
ideas presented in this paper in specific customer
situations. We next outline two example scenarios
drawn from real IBM commercial products.

The first example focuses on business-driven de-
velopment of solutions and the automation of the
transformation between the logical design of a
service and its realization in a specific set of Web
Services technologies.

The second example looks at how a service
approach can be applied to an industry domain
model to bring together the business and IT views
and lead to a high-quality service-oriented imple-
mentation. We highlight the role that industry
domain models play in guiding the definition and
realization of services and service-oriented solu-
tions.

Using a service approach to connect business
and IT

One of the primary challenges to be addressed in
developing enterprise-scale solutions is to connect
the domain-specific requirements expressed by
business analysts with the technology-specific solu-
tions designed by the IT organization. Typically, the
connection between these two communities is
difficult to make because they have very different
skills, use different modeling concepts and notations
(if at all), and rarely understand the mapping
between those concepts. The use of a service-
oriented approach is intended to help bridge this gap
between the business analysts and line-of-business
(LOB) specialists, and the IT specialists (such as
system architects, analysts, integrators, designers,
and developers). In particular, the integration of
process, assets, and deliverables around a core set of
services is aimed at connecting these two different
aspects of the system in a precise, unambiguous
way.

In this example, we consider the vehicle reservation
process that is in use in a car rental agency. A
project is underway to look at improvements to the

744 BROWN ET AL

vehicle reservation process and the systems that
support it. In this example, there are four key steps:
(1) modeling the vehicle reservation process, (2)
designing the solution to the assign-vehicle task, (3)
implementing the assign-vehicle service, and (4)
integrating the assign-vehicle service in a choreo-
graphed business process.

Modeling the vehicle reservation process

In Step 1, the vehicle reservation process is
examined in detail. Each of the key business tasks is
described; workflow (manual and automated)
among these tasks is defined; and the people, roles,
and organizational hierarchies are described.

As shown in Figure 8, the process begins by
modeling the business process in an intuitive, easy-
to-use notation that is accessible to business
analysts. A business process model captures the key
business services by using the IBM WebSphere
Business Integration (WBI) Modeler. This allows the
current system of automated and manual steps to be
understood and potential changes to the system to
be designed and simulated and their costs assessed
before the organization commits to any changes to
the business process. Various configurations of
resources and costs can be examined to optimize
revenue from the redesigned process.

Designing the solution to the assign-vehicle task
In Step 2, parts of the vehicle reservation process are
identified as candidates for automation and handed
off to the IT organization for further elaboration.
Decisions can be made about which new business
services should be automated in software, and
specific services designed and implemented to
realize them. This may involve reconfiguring exist-
ing implemented services, wrapping existing data
and business logic to expose their functionality as
services, creating service interfaces to third-party
commercial software packages, or designing new
services from scratch.

These business service descriptions can be auto-
matically transformed into an initial set of use cases
for the proposed system that defines the require-
ments of the system. In this example, there is a
direct correspondence between the assign-vehicle
task and the creation of a new service to support the
execution of this task. This service is provided by a
rental software component. It automates the task of
finding the particular vehicle from those available

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Based on some analysis, the “Assign Vehicle” task
currently requires a lot of human involvement. We
will use this task as a basis for optimizing our
business process by automating this task.

— g
Find ‘ Reservation el
Reservation V(ihlcle

|
Assign Vehicle

Reservation Agreement . 1% |
Create '—» Sign
Agreement Agreement

Would be nice to automate this
task, it's fairly mechanical and
should not require the level of
human involvement it takes today.

Figure 8

Segment of process model for vehicle reservation system

and assigning that vehicle to a specific customer,
such that the vehicle reservation has already been
made when the customer arrives at the rental desk
with his or her reservation. Using IBM Rational
Software Architect, an architect in the IT organiza-
tion can import the WBI Modeler project and,
applying a model-driven development approach,
automatically transform the vehicle reservation
process model into a UML model, as seen in the tree
browser shown on the lefthand side of Figure 9.
This transformation ensures that a familiar repre-
sentation in UML is made available to the IT
organization. In the transformed model we find a
rental software-component interface with one as-
signed operation, assign vehicle. This is the interface
that will be implemented and made available as a
Web service.

Now that we have analyzed the business model, we
create a new design model to contain the design for
the assign-vehicle service. We add the rental
software component to our design model to provide
traceability from the design model back to the
original business model, and create the new inter-
face we will design and implement. In this example,
we model an IVehicleAssignment interface with an
AssignVehicle operation that takes a reservation as
input and returns the updated reservation as output.
At this point, we have the design for our assign-
vehicle service. We can now implement this inter-
face. We start by transforming this design model
into the interface definition in Java. The design

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

model and the action to transform the interface into
Java are shown in Figure 9.

Implementing the assign-vehicle service

In Step 3, the IVehicleAssignment Java interface
has been generated. This interface represents a
contract between the architect who designed the
interface and a developer who will implement the
interface. The developer implements this interface
as a service and registers the availability of the
service in a UDDI registry. Again, by using an
automated transformation, the Java implementation
class can be generated and all the appropriate
business logic implemented as part of this service,
employing many of the Web-service patterns and
guidance points discussed earlier. From this Java
class, a Web service is generated. A series of dialogs
is used to capture the data about the Web service,
including deployment details. The Web-service
generation creates the WSDL description of the
service that can now be stored in the UDDI registry
to make it available for use by other service
consumers.

Integrating the assign-vehicle service in a
choreographed business practice

In Step 4, the services are choreographed as part of a
business process workflow. This is the role of the
integration specialist, bringing together the overall
workflow based on the business process model
defined earlier with the service implementations
that automate key business process tasks. This

BROWN ET AL.

745

@ Modeling - Rentals Design MOdel: :org.rentals.services::Main - Eclipse Platform

Fle Edt MNavigate Project Diagram Run Modeing Window Help
s 1. I O BT AR A N YO Sl Bl AR AR
|| Tahoma o 2B I|AvH Y. sv— v Bvol vie | < B v @ v | 3] 100% -
| GslModel Explorer P Diagram Nawgamr =8| % *Rentals Design MOdel.emx esign MOdel: org rentals. services: Man X
(= RootQueryMode] A
| ® & RootReportviodel
| & RootServicesModel - 1= ey | ;
% & RootSimulatiorModel | @ Rental Software Component | Pt
& tsResource | @ Assign Vehicle () o Tdentifier : String
= T4 resources. XMI i © Customer : Cient
= £3 Rentals Business Model © Contract : Contract
RootlnformationModel . axes © State : String
e @ IvehicleImpl o Requested Class : Date
* # RootOrganizationModel E— o Pickup Date : Date
RootProcessModel 7 assignVehicle () © Pickun Location : String
= RootResourcelModel Add UML 4 :mzﬂe
T ::dﬁ = Add Diagram » Bhicle : Vehide
T " bunt : Double
% @ Customer =" Add Note
@ Customer Service Visuslize ’
@ Rental Software Componen
+ @ Vehide Inspector Navigate :
| = @ Vehice Inventory R .
B gdocumentation:
| = @ Commurication Service Edit 4
@ Equpment % Delete from Diagram
@ Facky % Delte from Model
@ General Service
- # @ Machine - v Find/Replace...
. — T — ; Format K
[8=0utine = Inheritance Explorer| & 7 = 0| e :
| - — —— | . TI'._"I'I'E.T‘:::I'I'I'I 7
e I — -
" | EProperties ¢ - Tasks Consdle Bookmarks || 14 Run Vaidation Run Transformation * | |
[T ev— -] 1
I - ||| General © <Class>Renkals Design | 1) iy Properties View po!
| e [
Figure 9

Design model for the assign vehicle interface

business process is exported from the IBM WBI
Modeler model in the form of a BPEL script. The
IBM WebSphere Studio Application Developer In-
tegration Edition can import, create, enact, and
manage business processes described in BPEL. The
BPEL implementation of the vehicle-rental-pickup
process is shown in Figure 10.

One way to implement these business processes is to
link to an implementation provided by a Web
service. Hence, the vehicle assignment service is
found in the UDDI registry and is included as a
service provider to the overall car-rental business
workflow. At this point, the business process can be
deployed to a process execution engine, in this case
the IBM WBI Server Foundation runtime.

This example covers only a subset of the RSDP. For
instance, although not discussed here, it is possible
to expose CICS transactions as Web services by

746 BROWN ET AL

using IBM’s WebSphere Enterprise Developer, and
these, too, can then participate within an SOA. As
one would expect, it is possible, in the vast majority
of cases, for all IBM-supported technology to
participate in some way in an SOA initiative.

In summary, this example has illustrated how
services can be defined and constructed by con-
necting domain-specific business services into a
technology-specific solution for deployment to an
SOA infrastructure, following a repeatable, predict-
able process.

Deploying business-driven SOA solutions with
industry models

Industry models, such as IBM’s Insurance Applica-
tion Architecture (IAA) or IBM’s Information
Framework (IFW) for the banking industry, are a set
of business and IT-level technology-independent
models, rich in business content, that can be

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

4p Business Integration - RentalPickup.bpel - WebSphere Studio Application Developer Integration Edition

Fle Edit Navigate Search Project Run Window Help
IS ERE (AR PTHAR SN | BRIV SB[0||BsvX~&~ |[[daddSF~| ¢
| w v ~
B9 [5 web Browser | 2 *RentalPickup bpel X |
B & d Partner Links = # |4
By Rental Pickup RentalPickupPartrer d
L4 P AssignVehiclePartner I |
2 |> Rental Pickup Receive ReleaseVehiclePartmer
> J
FE A& | Varigbles =
] Find Resrrvation CutputCriteriaVariable
¥l _ ;S FindReservationOutputCriteriaVariable
Assign Vehicle AssignVehicleOutputCriteriaVariable
I \L CreatefgreementOutputCriteriaVariable
&) SignagreementOutputCriteriaVariable
i A?'eeme"t- ConfirmVehideMieageGasOutputCriteriaVariable
\.; ArchiveAgreementOutputCriteriaVariable
Sign Agreement
\i: Correlation Sets = 4
Confirm Vehiéle Mileage /Gas b
T ;
i
@ Archive Agreement
MINS) S
Figure 10
BPEL representation of the process for vehicle rental pickup

customized to reflect specific companies’ needs.
They capture industry best practices and offer
business content for use in developing complex
business applications on top of the RSDP. They
apply all the principles of separation of concerns,
and as such, are particularly well-geared to deploy-
ing business-driven SOA solutions.

These industry models contain a variety of artifacts.
From an SOA context, the following artifacts are
particularly relevant and can be customized instead
of having to be created from scratch: business
process models (analysis and design level), service
definitions, and service choreography. Both of the
latter are defined within a UML model called the
interface design model. This model is a PIM, which
focuses on the separation of the interface from the
implementation and can be transformed easily into
PSMs (XML for messaging, J2EE for component-
based development, or WSDL for SOA, for exam-
ple).

In order to illustrate these principles, we consider an
example in the area of claim notification in a typical

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

insurance organization. The steps followed in using
the IAA model in this context to develop an SOA
solution are illustrated in Figure 11.

Analyzing the business process

Analyzing the business process is typically an
activity performed by business analysts in conjunc-
tion with subject matter experts. The goal is to
obtain a representation of how the business is (or
should be) run. At this stage, the formalism is
typically not rigorous enough to make it possible to
deploy a business process through service choreog-
raphy in the runtime.

This task is the first step in any business-driven SOA
project. The advantage here is that it is possible to
customize predefined industry processes rather than
create them. This accelerates the analysis, and more
importantly, ensures that the processes are defined
consistently throughout the enterprise. This latter
point is particularly relevant in the context of SOA,
as it drives the analysis from the very beginning in
the direction of reusable enterprise services, a key
goal of any SOA solution.

BROWN ET AL.

747

Input: Critical Business
Processes (analysis)

Analyze Business

Processes Processes

Define Business

Input: Critical Business
Processes (design)

Design Business

Input: IAA Interface
Design Model: Collaborations

Define Choreography of Business
Transaction Services in Business
Function Services

Function Services

Input: IAA Interface
Design Model: Services

Figure 11

Using the IAA interface to create a service-oriented solution

To illustrate the kinds of business processes that are
defined in the IAA, Figure 12 shows a small subset
from the IAA of a business process in the IBM WBI
Modeler describing a small number of steps in the
claims process.

Designing business processes
The primary path to create an executable business
workflow is to use BPEL generation, which is

i

(&3]

Record
Claim
Details

available in the WBI Modeler. However, before
doing so, it is essential to properly design the
processes for that purpose. In particular, three tasks
must be carried out to refactor the business process
model in order to facilitate transformation from the
WBI Modeler business process models into execut-
able BPEL. The data containers must be formalized
(transforming multiple data inputs and outputs into
structured data containers), loops must be resolved,

Claim state is “notified,”
_~ "open,” or "under evaluation,”
and policy state is “in force”

1o

Validate
Claim
Recording

Information

o iz Provide

Additional

D
No ata

Figure 12
A sample business process in I1AA

748 BROWN ET AL

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Design Scoped Record Claim Loop - Design
Yes
@ [=] ClaimContainer
Establish | =] o
Claim ClaimContainer _ Validate ClaimContainer Information -
) Details Claim 1 Complete /‘
Recording / 33 ClaimContainer
/ Provide
—\ " Additional i
No Data
V.
ClaimContainer
Figure 13
A refactored business process
1

and decisions must be made on the combination of
tasks.

The definition of proper repeating groups is typically
very hard to grasp for business analysts who tend to
define backward connectors in the process flows. In
order to generate valid BPEL, these loops need to be
resolved and properly designed. Technology is
currently being developed by the IBM Zurich
Research laboratory to automate the resolution of
most of the loops.

Because of the different realities of business and IT,
it is very common to have different groupings of
functionality in business and IT terms. The func-
tionality grouping of the design-level business
processes must reflect the IT view. Figure 13
represents a subset of the design-level process after
performing the refactoring of the business process.

Following refactoring, the BPEL-generation capabil-
ities of the WBI Modeler can be used to create the
implementation of the business process services. A
standardized mapping is applied in which the
automated activities (tasks) in the process flow
correspond to business transaction services. The
nonautomated activities are represented as staff
activities in the WBI Modeler and typically are
documented as manual procedures. Consequently,
as part of this step, three elements are defined: the
business process services, the business transaction
services, and the choreography between the busi-
ness process services and the business transaction
services. Figure 14 shows the BPEL representation
generated from the design level process representa-
tion in the WBI Modeler.

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

Defining business function services

The definition of business function services is the
intersection where the top-down and bottom-up
approaches meet. In essence, this level provides
means to automate the business transaction ser-
vices. In the IAA approach, the business function
services are defined within the interface design
model as interfaces with operations. The interface
design model has been built over time by combining
two different methods: top-down use-case-driven
modeling and bottom-up legacy functionality wrap-
ping. The result is a set of enterprise-wide services
that satisfy the industry business requirements.

Defining the choreography of business
transaction services into business function
services

From a platform-independent viewpoint, the col-
laboration between higher- and lower-level services
is key to addressing how lower-level services
collaborate to implement higher-level services. This
can be expressed by using UML collaboration
diagrams (or sequence diagrams).

A variety of technological choices are possible for
implementing the business transaction services. For
example, BPEL can be used, and the function
services can be defined as collaborating services.
Alternatively, the collaboration can be implemented
as Java code. As often experienced, the trade-off is
between performance and maintainability.

In the current state of technology, it seems more

reasonable to implement lower-level service collab-
orations using component technology, although it

BROWN ET AL.

749

Administer Claim

il

(@)

[Administer laim Receive }

ﬂ

[V\lrite to ClaimContainerRepository }

&)
Record Claim Loop

= Partner Links == = ‘
‘ AdministerClaimPartner =

‘ RecordClaimPartner =

‘ ValidateCoveragePartner =

Variables = ==

InputVariable

MergeOutputCriteriaVariable

ClaimContainerRepositoryVariable

ForkOutputCriteriaVariable

RecordClaimLoopRecordClaiminputCriteriaVariable

RecordClaimLoopRecordClaimOutputCriteriaVariable

J
[Write to ClaimContainerRepository J

N\

&
[Read from ClaimContainerRepository }

VA
»
Validate Coverage

Figure 14
BPEL generated from the business process model
1

U} ValidateCoveragelnputCriteriaVariable
[Read from CIaimContainerRepositoryJ ValidateCoverageOutputCriteriaVariable
v CoverageConfirmedinputCriteriaVariable
»
. ContinueClaimVerificationOutputCriteriaVariable
Record Claim g M-

NotifyNoCoverageOutputCriteriaVariable

J

.\Correlation Sets = 4 \

seems reasonable to assume that in the near future it
will be possible to “externalize” the lower-level
services as collaborations as well. From a platform-
independent point of view, the approaches have a
similar outcome: a UML collaboration diagram that
is readily converted into a BPEL flow or that can be
considered as Java pseudo-code. As long as the PIM
focuses on interface design and collaboration,
insulation from the technology is possible, and the
business logic of SOA solutions can be efficiently
maintained.

SUMMARY

Flexibility is essential as today’s organizations seek
to react more quickly to the changing demands of
their customers, announcements by competitors,
and the evolving business environment. The role of

750 BROWN ET AL

software in many businesses is now seen as central
to their ability to compete effectively and efficiently.
Having a service orientation to the systems being
developed helps to focus businesses on what is
essential to them—the services they offer to
customers. It also helps IT professionals to look at
the systems that support the business in a different
way—as composable solution fragments that must
be assembled to meet evolving business needs. This
view is an important cornerstone of today’s highly
reactive business environment.

IBM’s experience in helping organizations move
toward adoption of services and an SOA approach
reinforce the lesson that a change in culture and
practices goes hand-in-hand with supporting
changes in technologies and techniques. There is a

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

great deal to be said about how service-oriented
approaches change an organization’s culture. Four
aspects of particular relevance to SOA are (1) an
enterprise-wide approach and governance, (2) the
model-driven approach and architecture, (3) a
business-led approach and transformations, and (4)
an interface orientation to design.

In this paper, we have focused on the importance of
designing for and with services to create quality
service-oriented solutions that meet the needs of
organizations for flexible and agile enterprise IT
systems. Many of the design principles, practices,
and tools for service-oriented design are only now
beginning to emerge. We have provided a view of
these best practices together with practical insights
into how service-oriented thinking is having an
impact on enterprise software development today.

Creating these service-oriented solutions is far from
straightforward. The RSDP plays an important role
in helping organizations create a set of services
capable of realizing their goals. It combines market-
leading products to create a rich, integrated envi-
ronment for solution development. Through support
for model-driven development techniques, the RSDP
helps to ensure that customers can efficiently deliver
service-oriented solutions that meet their business
needs.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc., Sun Microsystems, Inc., Massa-
chusettes Institute of Technology, or Microsoft Corporation.

CITED REFERENCES AND NOTES
1. M.E. Stevens and H. J. C. Ellis, “Using a Lease to Manage
Service Contracts in Service Oriented Architectures,”
Proceedings of the Tenth Americas Conference on In-
formation Systems (AMCIS), New York (August 2004),
http://aisel.isworld.org/proceedings/amcis/2004/track.
asp?track_id=243.

2. D. Plummer, SODA Helps Developers Do Application
Integration, Gartner Research Report (November 2002),
http://www.g2r.com/DisplayDocument?doc_cd=111182.

3. For further details and examples, see IBM’s developer-
Works (http://www.ibm.com/developerworks), IBM
Redbooks (http://www.ibm.com/redbooks) and the Ra-
tional Unified Process page of IBM developerWorks
(http://www-130.ibm.com/developerworks/rational/
products/rup/).

4. N. Carr, Does IT Matter? Harvard Business School Press,
Cambridge, MA (2004).

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

5. S. Holzner, Eclipse, O’Reilly & Associates, Sebastopol, CA
(2004).

6. D. Ferguson and M. Stockton, SOA Programming Model
for Implementing Web Services, Part 1: Introduction to the
IBM SOA Programming Model, IBM developerWorks
(June 2005), http://www.ibm.com/developerworks/
webservices/library/ws-soa-progmodel/index.html.

7. J. Cheesman and J. Daniels, UML Components: A Simple
Process for Specifying Component-Based Software, Addi-
son-Wesley, Reading, MA (2000).

8. P. Herzum and O. Sims, Business Component Factory: A
Comprehensive Overview of Component-Based Develop-
ment for the Enterprise, Wiley Press, Hoboken, NJ (2000).

9. As defined by the W3C Web Services Architecture Group.
See Web Services Architecture Requirements, http://www.
w3.org/TR/2002/WD-wsa-reqs-20020429.

10. A. W. Brown, J. Conallen, and D. Tropeano, “Practical
Lessons in MDA,” Chapter 5 in Model-Driven Software
Development, S. Beydeda, M. Book, and V. Gruhn,
Editors, Springer-Verlag, 2005.

11. P. Kruchten, The Rational Unified Process: An Introduc-
tion, Addison-Wesley, Reading, MA (1998).

12. 1. Jacobsen, M. Griss, and P. Jonsson, Software Reuse:
Architecture, Process, and Organization for Business
Success, Addison Wesley, Reading, MA (1997).

13. M. Ericsson, Developing Large-Scale Systems with the
Rational Unified Process, Rational Software White Paper
(2003), ftp://ftp.software.ibm.com/software/rational/
web/whitepapers/2003/sis.pdf.

14. P. Eeles and M. Ericsson, “Modeling for Enterprise
Initiatives with the Rational Unified Process,” The
Rational Edge (January 20, 2004).

15. S. K. Johnston, UML 2.0 Profile for Software Services, IBM
developerWorks (2005), http://www.ibm.com/
developerworks/rational/library/05/419_soa/.

16. P. Kroll and P. Kruchten, The Rational Unified Process
Made Easy: A Practitioner’s Guide to the RUP, Addison-
Wesley, Reading, MA (2004).

GENERAL REFERENCES

K. Ahmed, Developing Enterprise Java Applications with J2EE
and UML, Addison Wesley, Reading, MA (2001).

D. K. Barry, Web Services and Service Oriented Architectures,
Morgan Kaufman, San Francisco, CA (2003).

G. Booch, 1. Jacobsen, and J. Rumbaugh, The Unified
Modeling Language Users Guide, Addison-Wesley Profession-
al, Reading, MA (1998).

A. W. Brown, “Model Driven Architecture: Concepts and
Practice,” Journal of System and Software Modeling 3, No. 4
pp. 314-327, Springer Verlag (December 2004).

A. W. Brown, IBM Rational Software Development Platform,
IBM Corporation (2004), http://www.ibm.com/
developerworks/platform/.

K. Brown, G. Craig, G. Hester, R. Stinehour, W. D. Pitt, M.
Weitzel, J. Amsden, P. M. Jakab, and D. Berg, Enterprise Java
Programming with IBM WebSphere, Addison-Wesley Profes-
sional, Reading MA (2003).

P. Clements and L. Northrop, Software Product Lines: Practices
and Patterns, Addison-Wesley Professional, Reading, MA
(2001).

D. S. Frankel, Model Driven Architecture: Applying MDA to
Enterprise Computing, Wiley Press, Hoboken, NJ (2003).

BROWN ET AL.

751

IBM Patterns for e-business (2004), http://www.ibm.com/
developerworks/patterns.

A. T. Manes, Web Services: A Manager’s Guide, Addison-
Wesley Information Technology Series, Reading, MA (2003).

B. Selic, “The Pragmatics of Model-Driven Development,”
IEEE Software, 20, No. 5, 19-25 (September 2003).

MDA Guide v1.0.1, J. Miller and J. Mukerji, Editors, Object
Management Group (June 2003), http://www.omg.org/docs/
omg/03-06-01.pdf.

U. Wahli, M. Tomlinson, O. Zimmerman, W. Deruyck, and D.
Hendriks, Web Services Wizardry with IBM WebSphere Studio
Application Developer, IBM Redbook, SG24-6292-00 (April
2002).

O. Zimmermann, P. Krogdahl and C. Gee, Elements of Service-
Oriented Analysis and Design, IBM developerWorks (June
2004), http://www-106.ibm.com/developerworks/
webservices/library/ws-soadl/.

Accepted for publication June 19, 2005.
Published online October 20, 2005.

Alan W. Brown

IBM Rational Software, 4205 S. Miami Blvd., Durham, NC
27709 (awbrown@us.ibm.com). Dr. Brown is an IBM
Distinguished Engineer with the IBM Rational software group.
He is responsible for aspects of future product strategy in IBM
Rational’s design and construction products. He defines
technical strategy and evangelizes product direction with
customers looking to improve software development
efficiency through visual modeling, service-oriented design,
generating code from abstract models, and systematic reuse.
His current focus is on how service-oriented solutions are
created and evolved, with particular interest in software
process improvement, model-driven architecture, software
design and development, and component-based reuse. He
received his Ph.D. degree from the University of Newcastle in
the United Kingdom.

Marc Delbaere

IBM Software Group, Industry Solutions, Avenue du Bourget
42, Brussels, Belgium 1130 (delbaere@be.ibm.com). Mr.
Delbaere is the development manager for IBM’s insurance
industry models: IAA (Insurance Application Architecture)
and IIW (Insurance Information Warehouse). He has worked
for eight years on enterprise-wide model-driven development
for the financial services industry. In particular, he engineered
the TAA Specification Framework, a generic product and
agreement design, the IAA Business Object Model, and the
IAA-XML approach to enterprise-wide integration. He has also
worked with many insurance companies to help them deploy
model-driven solutions in their enterprises. His current work
deals with model-driven architectures, model transformations,
and service-oriented architectures, and how all these topics
can help address concrete business issues.

Peter Eeles

IBM Rational Software, 1 New Square, Bedfont Lakes, Feltham
TW14 8HB, Hursley, UK (peter.eeles@uk.ibm.com). Mr. Eeles
is an IBM Senior IT Architect, and has spent much of his
career designing and implementing large-scale distributed
systems. He is based in the United Kingdom and assists
organizations in their adoption of the Rational Unified Process
and the IBM Rational toolset in architecture-centric initiatives.
He is co-author of Building J2EE Applications with the Rational
Unified Process (Addison-Wesley, 2002) and Building Business
Objects (John Wiley & Sons, 1998).

Simon Johnston

752 BROWN ET AL

IBM Rational Software, 4205 S. Miami Blvd., Durham, NC
27709 (skjohn@us.ibm.com). Mr. Johnston is a member of the
IBM Rational strategy team and is responsible for the
business-level tooling strategy. He has undertaken a number
of standards-related activities for both Rational Software and
now IBM in the area of XML (W3C™ Schema working group),
Web Services (RosettaNet architecture team), and modeling
(OMG UML and OCL teams). He was the author of the UML
Profile for Software Services and primary author of the RUP
Update for SOA.

Rick Weaver

IBM Software Group, 2 Campus Circle, Roanoke, TX 76262
(weaverrw@us.ibm.com). Mr. Weaver is a Senior Consulting
Certified Software IT Specialist and has focused on Business
Integration and SOA development. He has worked with
customers around the world helping them successfully use
IBM development tools to solve their business integration
challenges. Mr. Weaver is currently a portfolio manager for
WebSphere Development tools, helping drive IBM tool
strategy in the IBM Software Group. M

IBM SYSTEMS JOURNAL, VOL 44, NO 4, 2005

