
A mouse adapter for people
with hand tremor

&

J. L. Levine

M. A. Schappert

Hand tremor, which affects millions of individuals worldwide, can make it difficult or

impossible to operate computers that rely on a mouse, or similar pointing device, for

controlling the user interface. We describe an assistive adapter that, when inserted

between the mouse and the computer, provides digital motion-smoothing filtering,

rejection of inadvertent mouse button clicks, and enhanced double clicking. Because

its behavior closely emulates a standard mouse, this setup is operating-system

independent and requires no special software on the computer. Its assistive features

are active for any application with a mouse-driven interface. In a preliminary test

involving people with essential tremor, most subjects reported improvements ranging

from moderate to considerable.

INTRODUCTION

The project we describe here began soon after we

attended Information Technology for Seniors, a

workshop organized by the IBM Academy of

Technology in 2002. The IBM Academy of Tech-

nology is a body of technical experts whose mission

is to advise the company executives on technical

issues and to facilitate communication among the

various technical groups within IBM.

At the workshop we learned that physical problems

related to aging frequently include loss of visual

acuity, reduced hearing, and hand tremor, all of

which can impede computer access. We also learned

that, whereas products are commercially available

for people with vision and hearing problems, little is

available to assist those with hand tremor. We then

began a modest program to investigate whether

digital filtering of the mouse data stream could

provide a solution to this problem. Our intention

was not to do research on the symptoms of hand

tremor, but rather to empirically develop assistive

equipment that enables a substantial fraction of

those with hand tremor to use a computer mouse.

Through a joint study agreement, we joined forces

with the assistive technology group led by Dr. Cathy

Bodine at the University of Colorado Health Science

Center.
1

This group, which works routinely with

people having a variety of mobility and perceptual

problems, helped us conduct a number of prelimi-

nary tests. These tests, in which we used special-

purpose DOS-based test programs with several types

of filters, indicated that filtering could be helpful and

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 LEVINE AND SCHAPPERT 621

encouraged us to find a method that would work for

any application with a mouse-driven interface. The

tests also uncovered several problems that affect the

selection of tremor-smoothing technology and its

& For motion-smoothing
filtering we selected a
low-pass digital filter primarily
because it could be easily
adjusted by the user with a
single control &

implementation. The high degree of temporal

variability exhibited by many people with tremor

and their limited computer literacy were of partic-

ular concern. This combination made it difficult to

provide an optimal solution for all individuals, and

eventually led us to a hardware implementation

with very simple controls that was effective for most

people with hand tremor.

Many people develop some form of tremor, an

involuntary shaking of a body part. When it affects a

person’s hands, tremor can interfere with many of

the activities of daily living that require steady

hands, such as the use of a computer mouse or other

pointing device. Tremor can be caused by an injury,

by an illness such as Parkinson’s disease, by

hereditary factors, and by aging. When caused by

hereditary factors or by aging, it is referred to as

essential tremor (ET), and it affects perhaps 15 to 20

percent of people over the age of 65.
2

Frequencies of

tremor movements typically range between 4 and 12

Hz (cycles per second).
3

When tremor is associated

with an illness or injury, it is often more severe than

ET and may be accompanied by a loss of overall

control of the hand. In this case, the use of a mouse-

driven interface is very problematical. If the level of

hand tremor is moderate, which is the case for at

least a subset of people with illness-related hand

tremor, the problem can be alleviated by applying a

suitable digital filter to the data stream from a

standard mouse. Such a solution would be effective

for the large number of older people who nowadays

use computers routinely for activities such as e-mail,

word processing, and browsing a library catalog.

Some excellent work has been done in the area of

tremor filters, including development of narrow-band

rejection filters
4

and adaptive finite impulse response

filters.
5

In addition, some very interesting work has

been done using haptic (force generating) mice to

implement ‘‘gravity wells’’ around selected regions of

the screen representing buttons.
6
However, the filters

or gravity wells were built into programs designed to

optimize or test the filters, or to use them for a specific

purpose such as micro-surgery. It is extremely

difficult and costly to do this for general-purpose

programs, such as Internet browsers, word proces-

sors, and image processors. Moreover, modifying

these programs to track changes in, say, HTML

(Hypertext Markup Language) or word-processor

formats, would be a major challenge. However, this

can be avoided. For Microsoft Windows**-based

systems, mouse input is handled by the operating

system, which, via a complex set of device drivers,

positions the cursor and passes ‘‘mouse events’’

(changes in location and button state) to the running

programs. Therefore, if a filter is applied to the mouse

data stream in such a way that the operating system

receives only smoothed mouse data, all programs will

work without modification.

There are several design alternatives for a filtering

mechanism. Filtering can be done in the mouse, in

an adapter inserted between the mouse and the

computer, or in the computer. The last choice

involves attaching a special device driver to the

system device driver that handles the raw data from

the mouse. As we will show, there are several

considerations that favor the use of an adapter. Our

approach is to place a digital smoothing filter in the

data path between the mouse-motion sensors and

the operating-system software component that

calculates the cursor coordinates. If this is done

properly, all application programs that use mouse

input will work without modification.

The rest of the paper is organized as follows. In the

next section we describe the considerations that

affected our design, including the nature of tremor,

customizing the behavior of the adapter, alternatives

for the placement of controls, and filtering require-

ments. In the section that follows, we describe the

implementation of the adapter, which involves

hardware and firmware components. In the closing

section we discuss results and plans for the future.

DESIGN CONSIDERATIONS

In this section we discuss the major factors that

impacted the design of the adapter.

LEVINE AND SCHAPPERT IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005622

The nature of tremor

As noted earlier, tremor is characterized by a high

degree of variability. Frequently, a person is free of

symptoms until a task has to be performed,

especially one requiring fine motor control (this type

of tremor is sometimes referred to as ‘‘intention

tremor’’). Tremor may also start or stop during a

task, sometimes for no apparent reason. This

variability explains in part the lack of accurate

statistics for the number of people afflicted by it

(estimates for the U.S. range from 1 to 20 million).

The variability of tremor also makes it difficult to

customize the filtering mechanism as a one-time

setup task. An ideal solution for the variability

problem would consist of an adaptive filter that is

continuously adjusted so as to minimize the

discrepancy between the desired and the actual

mouse-driven cursor motion. This could be done

when the desired cursor path is known, as when a

specialized application is run. For example, the user

can be asked to trace a curve displayed on the screen

or pursue a moving target.
5

However, if the user is

doing normal productive work while the customiz-

ing program runs in the background, there is no

obvious way to calculate the intended mouse path,

especially in a multitasking operating system where

the mouse events may be passed to different

programs in response to cursor position and mouse

button or keyboard activity. We note further that

there are many activities, such as sketching with a

mouse, in which the intended cursor path only

exists in the user’s mind, and may be indistin-

guishable from noise. One interesting possibility,

which we have not explored, is the fuzzy logic filter

used in a joystick controller for piloting wheel

chairs.
7

Customizing the adapter behavior
We considered the possible use of a program that

customizes the filtering mechanism to match the

user’s needs. We found this solution impractical for

several reasons. As noted above, tremor behaves

unpredictably and may not be present when the user

is trying to run the setup program. Even if the setup

program runs successfully, the tremor intensity

changes over time, thus requiring frequent read-

justment. Many casual computer users lack the

necessary computer skills and the self confidence

necessary to run a setup program by themselves,

especially if there are options to select or parameters

to adjust. Although many casual computer users are

able to use specific applications, such as e-mail, with

great competence, they are unaware of the many

Windows features, such as the control panel, that

can be used to change mouse and keyboard

properties. The user may find it difficult to interact

with such a program if tremor is present. Finally,

use of such a program would be impractical for

users of public terminals.

Unintended button clicks

We found during our initial trials that tremor some-

times caused unintended mouse button clicks, and

made double clicking extremely difficult. Most mice

are designed so that the user’s fingers rest on the

mouse buttons. A button can be clicked accidentally

by a slight finger tremor. These false clicks are

suppressed by applying a simple timing algorithm, in

which the change to button state is only passed

through to the computer if it persists for a preset time

interval. The algorithm is described in Reference 8.

Figure 1 shows the controlling 3-position toggle

switch (labeled Button Delay) that selects between

‘‘Off’’ and two hold-time values, 100 milliseconds

(low) and 125 milliseconds (high), respectively.

Double click support

The interpretation of a double click, pressing the

mouse button twice in quick succession, is typically

different from that of a single click. Whereas a single

click might, for example, select a file, a double click

would open that file. A valid double click consists of

two separate button-down events, with a maximum

allowed time and mouse motion between the two

events. These are set by two operating-system

parameters. Depending on the parameter values,

activating a double click may be difficult for some

Figure 1
A mouse adapter for people with hand tremor

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 LEVINE AND SCHAPPERT 623

people, even for those without hand tremor. It is

possible to relax both conditions using the operat-

ing-system interface, but few people are aware of

this. Also, any such adjustment may apply to all

people who use the computer. One can configure

Windows so that double clicking is not required, but

the other users of the computer may find this

annoying. Therefore, an algorithm was devised that

recognizes a double click under ‘‘relaxed’’ condi-

tions, that is, for suitably long intervals between the

pair of clicks. It then moves the cursor back to its

position at the first button-down event, and finally

sends a perfect double click signal to the computer.

The algorithm is described in Reference 8. Figure 1

shows the controlling 3-position toggle switch

(labeled Double Click) that selects between ‘‘Off’’

and two relaxed choices of the allowed motion and

time between clicks.

Filter design
We make use of a filter with a single, easily adjusted

parameter. After some experimentation, we settled

on a simple low pass filter whose amplitude versus

frequency response A(f) is given in equation 1:

AðfÞ ¼ 1=

ffi
1þ ðf=fcÞ2

q
ð1Þ

Here, the adjustable parameter f
c

is the frequency at

which the filter response has fallen to 0.707 of the

zero-frequency response. Such a filter passes slow

intentional motions, while progressively attenuating

the high frequency tremor components above f
c
. The

parameter f
c

can be adjusted with a simple control,

as desired. The user does not require any knowledge

as to what is actually being adjusted. As shown in

Figure 1, we use a physical knob labeled ‘‘Filter

Setting.’’

An important requirement is a means to easily

disable the filter when it is not needed, because

filters introduce time delays which may be annoying

and may affect eye-hand feedback. Providing a

simple and clearly marked on/off switch is partic-

ularly important if the computer is shared with other

people, and essential if the computer is located in a

public facility. In Figure 1, the switch is labeled

‘‘Assistance.’’

As noted above, a simple, low-pass digital filter was

selected primarily because it could be quickly

adjusted by the user with a single control. Such a

filter would normally accept as input integer values

representing incremental mouse motion, and pro-

vide as output a sequence of exponentially de-

creasing real values, not necessarily integers.

Because the mouse protocol requires that integers be

sent to the computer, a special algorithm was

developed to deal with this problem by keeping

careful track of the fractional remainders. The

algorithm is described in Reference 8.

A PS/2* mouse interrupts the computer’s CPU each

time it transmits a byte. In order not to generate

unnecessary interrupts, it only transmits when the

mouse moves or a button changes state. As a result,

calls to the filter subroutine cease abruptly when

mouse motion ends. This has two undesirable

consequences. First, because the normal response of

this type of filter after mouse motion ceases is an

exponentially decreasing cursor motion, the abrupt

termination of the motion is annoying to the user.

Second, when mouse motion resumes, the expo-

nential decay from the previous cycle is now added

to the new motion, a behavior that is distracting to

the user, especially if the new motion is in a

different direction from the previous one. The

solution involves a hardware timer that is part of the

adapter’s P2 microprocessor (Figure 2). The timer is

used to generate a predefined number of pseudo

mouse events at the correct transmission rate. The

number is calculated to be sufficient to produce the

normal exponential decay.

Another complication is caused by the nonlinear

transformation applied to the motion increments by

the operating system’s internal software, which

emphasizes large increments over small ones. This

is done to allow the cursor to be positioned to single-

pixel precision, while also allowing full-screen

motion with moderate mouse motion. However,

when a large motion increment occurs, the filter

reduces it to a series of smaller, exponentially

decreasing increments. The nonlinear transforma-

tion applied to these small increments has the effect

of reducing the gain of the filter by an amount that

depends on the degree of filtering. This is corrected

by including a multiplication factor that depends on

the degree of filtering.

Finally, the slow exponential decay of cursor motion

after the mouse stops can be annoying when filter

cutoff frequency is very low. Therefore, the filter

algorithm was modified to reset the filter a

predetermined time after mouse motion ceases.

LEVINE AND SCHAPPERT IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005624

Placement of controls

The filter controls that can be provided depend on

where the filter is located. If the filtering takes place

in the internal microprocessor of the mouse, the

required switches and knobs can be placed in the

mouse housing, perhaps behind a flip-up door.

Unfortunately, the small physical size of a standard

mouse would make these controls small and hard to

use, especially for people with tremor. Further, it

would be uneconomical to rely on specialized

mouse devices of different shapes, sizes, and

features (e.g., scroll wheels, scroll sticks, extra

buttons) to suit different preferences. For these

reasons, the idea of a specialized mouse was

dropped from consideration.

The filtering mechanism could be located in the

mouse device driver, in which case an on-screen

interface would be used. Many people find such an

interface non-intuitive, even intimidating. Further-

more, people with tremor may find controlling an

on-screen interface challenging. Although adjust-

ments could be made by using the keyboard, this is

for many an even less intuitive interface. We

experimented with such a device driver-based filter

(such a filtering mechanism could be packaged and

distributed as a free or low-cost utility) and found

that of the people who used both the device-driver

solution and the separate adapter, most preferred

the separate adapter. In addition, device drivers

require long-term software support because they are

sensitive to changes in the operating system and the

hardware. Some mouse device drivers, installed

when a new mouse device is acquired, may disable

the filter. The current version of the device driver

works well for many standard mice, provided the

device drivers are the ones supplied with the

operating system. Although an installation and

removal utility has been developed, it does not yet

handle certain hardware configurations, for example

keyboards that include built-in pointing devices.

Some problems may occur if the driver is installed

and removed multiple times. We have no current

plans to develop this into a software product, but a

pre-beta-level version for Windows 2000 and

Windows XP** is available for an at-risk trial.
9

Final configuration

Our solution involves an external adapter to be

inserted between the mouse and the computer. The

adapter interface to the computer is the standard

mouse interface. Adjustments are enabled through

familiar switches and knobs located on the adapter

box. These can be large and conveniently spaced, at

least for desktop use. Further, one can easily adjust

the filter with one hand while moving the mouse

with the other, with instant visual feedback.

IMPLEMENTATION

A prototype of our microprocessor-based adapter is

shown in Figure 1. The adapter, which is connected

between a PS/2 mouse and a PS/2 computer port,

closely emulates a PS/2 mouse (but see the com-

ments on laptop computers in the section ‘‘Results

and conclusions’’). The latest version of this adapter

has a knob to adjust the degree of filtering, a toggle

switch to suppress unintended button clicks, an-

other toggle switch to control the enhanced double-

clicking feature, and a third toggle switch that

disables all the accessibility features when they are

not needed.

Adapter hardware

The hardware configuration shown in Figure 2

consists of three low-cost RISC (reduced instruction

set computer) processors, labeled P1, P2, and P3,

and four switches, S1 through S4. Power is provided

through the computer PS/2 port.

Alternative configurations, firmware flowcharts,

and details of the algorithms can be found in a

patent held by the authors; however, the hardware

and the key algorithms are essentially the same as

described in the patent.
8

An industry-standard PS/2 mouse communicates

with a PC using a slow, 10 KHz two-wire serial

Figure 2
Block diagram of the adapter circuit

P1

Serial Interface
to Personal
Computer
PS2 Port

P2 P3

Serial
Interface

to PS2
Mouse

8-Bit
Parallel
Interface

Handshake
Lines

Handshake
Lines

S4
S1 S2 S3

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 LEVINE AND SCHAPPERT 625

command-and-response protocol
10

developed by

IBM in the late 1980s. Referring to Figure 2,

processor P1 mediates data transfers in either

& The filtering mechanism and
its controls are located in a
separate adapter that is
inserted between the mouse
and the computer &

direction between the PC and processor P2. It uses

the two-wire serial protocol to transfer data to and

from the PC, and a fast, interrupt-driven-transfer

8-bit parallel protocol with processor P2. Similarly,

processor P3 mediates data transfers between

processor P2 and the mouse. Processor P2 imple-

ments the assistive features. Considerable effort was

expended to make the interaction with the computer

follow the IBM protocol, so that the adapter plus

mouse would appear to the operating system as a

standard mouse.

P2 is more powerful than P1 and P3, having an

instruction set suitable for implementing a digital

filter and running the algorithms needed to provide

the button-assist features mentioned earlier. Control

of the button features is provided by three-position

toggle switches S1 and S2. Two-position toggle

switch S3 is used to disable all the features when not

needed. The degree of filtering is controlled by the

16-position binary-encoded rotary switch S4. The

adapter firmware converts the rotary-switch setting

to a filter-time constant in the range of 50 to 950

milliseconds, using a nonlinear lookup table. This

corresponds to cutoff frequencies f
c
in the range 0.17

Hz to 3 Hz. The range was chosen to preferentially

remove tremor frequencies which, as noted earlier,

are typically in the range 4–12 Hz.
3

The compo-

nents, including the switches, are soldered to a

small printed circuit board that is housed in a plastic

box of dimensions 3 3 4 3 1 inches. The dimensions

were chosen to allow switches of reasonable size

and spacing. Cables connect the adapter to the

computer and to the mouse.

Adapter firmware

The original firmware supported the basic, two-

button mice. In the latest version of the adapter, the

firmware was extended to accommodate mice with

scrolling mechanisms and up to five buttons. The

firmware for the P2 processor, which implements

the assistive features, turned out to be surprisingly

complex, in part because of the ad hoc way in which

the PS/2 protocol was used to handle scroll wheels

and other mouse features that were not available

when the protocol was defined. We provide here

only a brief description.

When a basic two- or three-button mouse is moved,

it transmits 3-byte data packets containing X and Y

increments and button states. Packets are trans-

mitted at a given rate (the rate is set by the computer

through commands sent to the mouse), a typical rate

being 100 per second. Mice with scrolling mecha-

nisms or five buttons encode the additional in-

formation in a fourth byte. The computer and mouse

establish the packet size and the presence of special

features in a special power-up initialization proce-

dure that is not part of the original PS/2 architec-

ture. In this procedure, the computer sends special

sequences of standard commands that are recog-

nized by mice equipped with a scroll wheel or extra

buttons. The mouse then responds to a ‘‘Read

Device Type’’ command with a unique byte, in place

of the usual zero.
11

Processor P2 monitors this

exchange to determine the packet size. Thereafter,

P2 collects the entire 3-byte or 4-byte packets,

extracts the X and Y increments, and applies a filter

to each increment. The button algorithms are also

applied if enabled by the switches. New data packets

are then constructed from the modified motion

values and button states and sent to the computer in

place of the original packets via P1.

RESULTS AND CONCLUSIONS
A usability test for the adapter was performed with a

group of 10 people selected from a support group for

people with essential tremor. The group ranged in

age from 36 to 79 and included subjects of both

sexes. The test included video and audio recordings

of the session, a movie-like capture of the screen in

which the cursor motion was recorded, and a post-

test participant evaluation form. The participants

reported moderate to considerable improvement,

and all expressed an interest in acquiring the

adapter.

The adapter was tested with a variety of mice sold

by eight manufacturers. These include native PS/2

mice, as well as Universal Serial Bus (USB) mice

equipped with a manufacturer-supplied USB-to-PS/2

LEVINE AND SCHAPPERT IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005626

adapter. Some were equipped with a scrolling

mechanism and had either three or five buttons; the

others had either two or three buttons. For these

tests we used desktop computers made by three

different manufacturers under four versions of

Windows (98, ME, 2000, and XP). The adapter

performed satisfactorily in all configurations.

It is likely that the PS/2-type ports will be omitted

from some or all future desktop models in favor of

USB ports. This is already the case with some laptop

models. We plan to develop a version of the adapter

in which processors P1 and P3 will be replaced by

USB-compatible chips.

The built-in pointing devices on laptop computers

are not always equipped for connecting with our

adapter. The TrackPoint* device used in many IBM

ThinkPad* notebook computers is supported by the

same microprocessor that handles the PS/2 mouse.

In order to provide plug-and-play capability, the

communication protocol between the processor and

the mouse involves periodic commands from the

processor and corresponding responses from the

mouse. Unfortunately, these commands interfere

with the complex and time-critical data flow through

the adapter, leaving it in a nonfunctioning state.

This problem can be sidestepped by configuring the

TrackPoint to run in a mode in which it is itself

disabled when a mouse is connected. Other laptops

have not been tested and may not support a similar

solution.

About two dozen adapters were built using the

original version of the firmware, which supported

only two-button mice. The adapters have since been

installed on 12 computers located at the State of

Colorado Workforce Centers.
12

We recently nego-

tiated a licensing agreement with a small electronics

company for manufacturing and marketing the

adapters.

ACKNOWLEDGMENTS
We thank Cathy Bodine and Jim Sandstrum of the

University of Colorado for helping test the adapters,

Catherine Rice of the International Essential Tremor

Foundation for helping identify a manufacturer for

the adapters, and Steve Mastrianni for helping

implement the device driver-based version of the

adapter. Their contributions have been invaluable to

the success of the project.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Microsoft Corporation.

CITED REFERENCES AND NOTES
1. Assistive Technology Partners, University of Colorado

Health Science Center, http://www.uchsc.edu/atp/
aboutatp.htm.

2. A useful Web site is http://www.essentialtremor.org.

3. R. J. Elble, ‘‘Physiologic and Essential Tremor,’’ Neurol-
ogy 36, No. 2, 225–231 (1986).

4. C. N. Riviere, R. S. Rader, and N. V. Thakor, ‘‘Adaptive
Canceling of Physiological Tremor for Improved Preci-
sion in Microsurgery,’’ IEEE Transactions on Biomedical
Engineering 45, No. 7, 839–846 (1998).

5. J. G. Gonzalez, et al., ‘‘A Customized Optimal Filter for
Eliminating Operator’s Tremor,’’ Proceedings of SPIE
Volume 2590: Telemanipulator and Telepresence Tech-
nologies II, M. Salganicoff, Editor, International Society
for Optical Engineering (December 1995), pp. 131–142.

6. S. Keates, P. Langdon, J. Clarkson, and P. Robinson,
‘‘Investigating the Use of Force Feedback for Motion
Impaired Users,’’ Proceedings of the 6th ERCIM Workshop,
European Research Consortium for Informatics and
Mathematics, Sophia Antipolis, France (2000), pp. 207–
212.

7. B. van der Zwaag, D. Corbett, and L. C. Jain, ‘‘Minimizing
Tremor in a Joystick Controller Using Fuzzy Logic,’’
Proceedings of the Third International Conference on
Knowledge-Based Intelligent Information Engineering
Systems, 31 Aug–1 Sept 1999, Adelaide, Australia, IEEE,
New York (1999), pp. 5–8.

8. J. L. Levine and M. A Schappert, Method and Adapter for
Performing Assistive Motion Data Processing and/or
Button Data Processing External to a Computer, U.S.
Patent 6,650,313 (11/18/2003).

9. Mouse Smoothing Software, alphaWorks, IBM Corpora-
tion, http://www.alphaworks.ibm.com/tech/
mousesmoothing.

10. PS/2 Mouse Technical Reference, Publication S68X-
2229-00, Second Edition, IBM Corporation (June, 1989).

11. Windows and the 5-Button Wheel Mouse, Microsoft
Corporation (December 4, 2001), http://www.microsoft.
com/whdc/device/input/5b_wheel.mspx.

12. Colorado Workforce Center, State of Colorado, http://
www.yourworkforcecenter.com/.

Accepted for publication January 7, 2005.

James L. Levine
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, NY 10598
(levine2@us.ibm.com). Dr. Levine is a research staff member
in the Physical Sciences Department at the Thomas J. Watson
Research Center. He received a B.S. degree in physics at the
Massachusetts Institute of Technology in 1958 and M.S. and
Ph.D. degrees in physics at the University of Minnesota in
1960 and 1962, respectively. He joined IBM in 1962 at the

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 LEVINE AND SCHAPPERT 627

Published online July 22, 2005.

Watson Laboratory in New York City. Dr. Levine is the author
of 19 papers on low-temperature and ultra-low-temperature
physics, superconductivity, gravity wave detection, and
computer technology. He holds 31 U.S. patents on touch
screens, eye-controlled computers, presence sensors, and
other aspects of interactive computer technology. He is
currently working on ways to improve computer accessibility
for people with hand tremor.

Michael A. Schappert
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598
(schap1@us.ibm.com). Mr. Schappert received his B.S. degree
in computer science from Union College in 1987 and his M.S.
degree in computer engineering from Syracuse University in
2001. He started his career at IBM in 1978, when he joined the
Research Division to work on an eye-tracker system. At IBM,
Mr. Schappert worked on various projects related to human-
computer interfaces, such as eye tracking, touch screens,
infrared presence sensors, remote infrared pointing devices,
and mouse filters. He holds 11 U.S. patents, with several
additional patents pending. Mr. Schappert is a Senior Member
of the Institute of Electrical and Electronic Engineers and a
member of the Association for Computing Machinery. &

LEVINE AND SCHAPPERT IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005628

