A mouse adapter for people
with hand tremor

Hand tremor, which affects millions of individuals worldwide, can make it difficult or
impossible to operate computers that rely on a mouse, or similar pointing device, for
controlling the user interface. We describe an assistive adapter that, when inserted
between the mouse and the computer, provides digital motion-smoothing filtering,

J. L. Levine
M. A. Schappert

rejection of inadvertent mouse button clicks, and enhanced double clicking. Because
its behavior closely emulates a standard mouse, this setup is operating-system

independent and requires no special software on the computer. Its assistive features
are active for any application with a mouse-driven interface. In a preliminary test
involving people with essential tremor, most subjects reported improvements ranging
from moderate to considerable.

INTRODUCTION

The project we describe here began soon after we
attended Information Technology for Seniors, a
workshop organized by the IBM Academy of
Technology in 2002. The IBM Academy of Tech-
nology is a body of technical experts whose mission
is to advise the company executives on technical
issues and to facilitate communication among the
various technical groups within IBM.

At the workshop we learned that physical problems
related to aging frequently include loss of visual
acuity, reduced hearing, and hand tremor, all of
which can impede computer access. We also learned
that, whereas products are commercially available
for people with vision and hearing problems, little is
available to assist those with hand tremor. We then
began a modest program to investigate whether
digital filtering of the mouse data stream could
provide a solution to this problem. Our intention

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

was not to do research on the symptoms of hand
tremor, but rather to empirically develop assistive
equipment that enables a substantial fraction of

those with hand tremor to use a computer mouse.

Through a joint study agreement, we joined forces
with the assistive technology group led by Dr. Cathy
Bodine at the University of Colorado Health Science
Center.' This group, which works routinely with
people having a variety of mobility and perceptual
problems, helped us conduct a number of prelimi-
nary tests. These tests, in which we used special-
purpose DOS-based test programs with several types
of filters, indicated that filtering could be helpful and

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

LEVINE AND SCHAPPERT 621

622

encouraged us to find a method that would work for
any application with a mouse-driven interface. The
tests also uncovered several problems that affect the
selection of tremor-smoothing technology and its

m For motion-smoothing
filtering we selected a
low-pass digital filter primarily
because it could be easily
adjusted by the user with a
single control m

implementation. The high degree of temporal
variability exhibited by many people with tremor
and their limited computer literacy were of partic-
ular concern. This combination made it difficult to
provide an optimal solution for all individuals, and
eventually led us to a hardware implementation
with very simple controls that was effective for most
people with hand tremor.

Many people develop some form of tremor, an
involuntary shaking of a body part. When it affects a
person’s hands, tremor can interfere with many of
the activities of daily living that require steady
hands, such as the use of a computer mouse or other
pointing device. Tremor can be caused by an injury,
by an illness such as Parkinson’s disease, by
hereditary factors, and by aging. When caused by
hereditary factors or by aging, it is referred to as
essential tremor (ET), and it affects perhaps 15 to 20
percent of people over the age of 65.° Frequencies of
tremor movements typically range between 4 and 12
Hz (cycles per second).3 When tremor is associated
with an illness or injury, it is often more severe than
ET and may be accompanied by a loss of overall
control of the hand. In this case, the use of a mouse-
driven interface is very problematical. If the level of
hand tremor is moderate, which is the case for at
least a subset of people with illness-related hand
tremor, the problem can be alleviated by applying a
suitable digital filter to the data stream from a
standard mouse. Such a solution would be effective
for the large number of older people who nowadays
use computers routinely for activities such as e-mail,
word processing, and browsing a library catalog.

Some excellent work has been done in the area of
tremor filters, including development of narrow-band

LEVINE AND SCHAPPERT

rejection filters* and adaptive finite impulse response
filters.” In addition, some very interesting work has
been done using haptic (force generating) mice to
implement “gravity wells” around selected regions of
the screen representing buttons.’ However, the filters
or gravity wells were built into programs designed to
optimize or test the filters, or to use them for a specific
purpose such as micro-surgery. It is extremely
difficult and costly to do this for general-purpose
programs, such as Internet browsers, word proces-
sors, and image processors. Moreover, modifying
these programs to track changes in, say, HTML
(Hypertext Markup Language) or word-processor
formats, would be a major challenge. However, this
can be avoided. For Microsoft Windows**-based
systems, mouse input is handled by the operating
system, which, via a complex set of device drivers,
positions the cursor and passes “mouse events”
(changes in location and button state) to the running
programs. Therefore, if a filter is applied to the mouse
data stream in such a way that the operating system
receives only smoothed mouse data, all programs will
work without modification.

There are several design alternatives for a filtering
mechanism. Filtering can be done in the mouse, in
an adapter inserted between the mouse and the
computer, or in the computer. The last choice
involves attaching a special device driver to the
system device driver that handles the raw data from
the mouse. As we will show, there are several
considerations that favor the use of an adapter. Our
approach is to place a digital smoothing filter in the
data path between the mouse-motion sensors and
the operating-system software component that
calculates the cursor coordinates. If this is done
properly, all application programs that use mouse
input will work without modification.

The rest of the paper is organized as follows. In the
next section we describe the considerations that
affected our design, including the nature of tremor,
customizing the behavior of the adapter, alternatives
for the placement of controls, and filtering require-
ments. In the section that follows, we describe the
implementation of the adapter, which involves
hardware and firmware components. In the closing
section we discuss results and plans for the future.

DESIGN CONSIDERATIONS
In this section we discuss the major factors that
impacted the design of the adapter.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

The nature of tremor

As noted earlier, tremor is characterized by a high
degree of variability. Frequently, a person is free of
symptoms until a task has to be performed,
especially one requiring fine motor control (this type
of tremor is sometimes referred to as “intention
tremor”). Tremor may also start or stop during a
task, sometimes for no apparent reason. This
variability explains in part the lack of accurate
statistics for the number of people afflicted by it
(estimates for the U.S. range from 1 to 20 million).

The variability of tremor also makes it difficult to
customize the filtering mechanism as a one-time
setup task. An ideal solution for the variability
problem would consist of an adaptive filter that is
continuously adjusted so as to minimize the
discrepancy between the desired and the actual
mouse-driven cursor motion. This could be done
when the desired cursor path is known, as when a
specialized application is run. For example, the user
can be asked to trace a curve displayed on the screen
or pursue a moving target.” However, if the user is
doing normal productive work while the customiz-
ing program runs in the background, there is no
obvious way to calculate the intended mouse path,
especially in a multitasking operating system where
the mouse events may be passed to different
programs in response to cursor position and mouse
button or keyboard activity. We note further that
there are many activities, such as sketching with a
mouse, in which the intended cursor path only
exists in the user’s mind, and may be indistin-
guishable from noise. One interesting possibility,
which we have not explored, is the fuzzy logic filter
used in a joystick controller for piloting wheel
chairs.”

Customizing the adapter behavior

We considered the possible use of a program that
customizes the filtering mechanism to match the
user’s needs. We found this solution impractical for
several reasons. As noted above, tremor behaves
unpredictably and may not be present when the user
is trying to run the setup program. Even if the setup
program runs successfully, the tremor intensity
changes over time, thus requiring frequent read-
justment. Many casual computer users lack the
necessary computer skills and the self confidence
necessary to run a setup program by themselves,
especially if there are options to select or parameters
to adjust. Although many casual computer users are

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

|

Assistive Mouse Adapter

!Ion FlllerSelImg ble
Delay \
Ass

Figure 1

A mouse adapter for people with hand tremor

able to use specific applications, such as e-mail, with
great competence, they are unaware of the many
Windows features, such as the control panel, that
can be used to change mouse and keyboard
properties. The user may find it difficult to interact
with such a program if tremor is present. Finally,
use of such a program would be impractical for
users of public terminals.

Unintended button clicks

We found during our initial trials that tremor some-
times caused unintended mouse button clicks, and
made double clicking extremely difficult. Most mice
are designed so that the user’s fingers rest on the
mouse buttons. A button can be clicked accidentally
by a slight finger tremor. These false clicks are
suppressed by applying a simple timing algorithm, in
which the change to button state is only passed
through to the computer if it persists for a preset time
interval. The algorithm is described in Reference 8.
Figure 1 shows the controlling 3-position toggle
switch (labeled Button Delay) that selects between
“Off” and two hold-time values, 100 milliseconds
(low) and 125 milliseconds (high), respectively.

Double click support

The interpretation of a double click, pressing the
mouse button twice in quick succession, is typically
different from that of a single click. Whereas a single
click might, for example, select a file, a double click
would open that file. A valid double click consists of
two separate button-down events, with a maximum
allowed time and mouse motion between the two
events. These are set by two operating-system
parameters. Depending on the parameter values,
activating a double click may be difficult for some

LEVINE AND SCHAPPERT 623

624

people, even for those without hand tremor. It is
possible to relax both conditions using the operat-
ing-system interface, but few people are aware of
this. Also, any such adjustment may apply to all
people who use the computer. One can configure
Windows so that double clicking is not required, but
the other users of the computer may find this
annoying. Therefore, an algorithm was devised that
recognizes a double click under “relaxed” condi-
tions, that is, for suitably long intervals between the
pair of clicks. It then moves the cursor back to its
position at the first button-down event, and finally
sends a perfect double click signal to the computer.
The algorithm is described in Reference 8. Figure 1
shows the controlling 3-position toggle switch
(labeled Double Click) that selects between “Off”
and two relaxed choices of the allowed motion and
time between clicks.

Filter design

We make use of a filter with a single, easily adjusted
parameter. After some experimentation, we settled
on a simple low pass filter whose amplitude versus
frequency response A(f) is given in equation 1:

Alf) =1/\1+ (f/f)? (1)

Here, the adjustable parameter f_ is the frequency at
which the filter response has fallen to 0.707 of the
zero-frequency response. Such a filter passes slow
intentional motions, while progressively attenuating
the high frequency tremor components above f. The
parameter f, can be adjusted with a simple control,
as desired. The user does not require any knowledge
as to what is actually being adjusted. As shown in
Figure 1, we use a physical knob labeled “Filter
Setting.”

An important requirement is a means to easily
disable the filter when it is not needed, because
filters introduce time delays which may be annoying
and may affect eye-hand feedback. Providing a
simple and clearly marked on/off switch is partic-
ularly important if the computer is shared with other
people, and essential if the computer is located in a
public facility. In Figure 1, the switch is labeled
“Assistance.”

As noted above, a simple, low-pass digital filter was
selected primarily because it could be quickly
adjusted by the user with a single control. Such a
filter would normally accept as input integer values

LEVINE AND SCHAPPERT

representing incremental mouse motion, and pro-
vide as output a sequence of exponentially de-
creasing real values, not necessarily integers.
Because the mouse protocol requires that integers be
sent to the computer, a special algorithm was
developed to deal with this problem by keeping
careful track of the fractional remainders. The
algorithm is described in Reference 8.

A PS/2* mouse interrupts the computer’s CPU each
time it transmits a byte. In order not to generate
unnecessary interrupts, it only transmits when the
mouse moves or a button changes state. As a result,
calls to the filter subroutine cease abruptly when
mouse motion ends. This has two undesirable
consequences. First, because the normal response of
this type of filter after mouse motion ceases is an
exponentially decreasing cursor motion, the abrupt
termination of the motion is annoying to the user.
Second, when mouse motion resumes, the expo-
nential decay from the previous cycle is now added
to the new motion, a behavior that is distracting to
the user, especially if the new motion is in a
different direction from the previous one. The
solution involves a hardware timer that is part of the
adapter’s P2 microprocessor (Figure 2). The timer is
used to generate a predefined number of pseudo
mouse events at the correct transmission rate. The
number is calculated to be sufficient to produce the
normal exponential decay.

Another complication is caused by the nonlinear
transformation applied to the motion increments by
the operating system’s internal software, which
emphasizes large increments over small ones. This
is done to allow the cursor to be positioned to single-
pixel precision, while also allowing full-screen
motion with moderate mouse motion. However,
when a large motion increment occurs, the filter
reduces it to a series of smaller, exponentially
decreasing increments. The nonlinear transforma-
tion applied to these small increments has the effect
of reducing the gain of the filter by an amount that
depends on the degree of filtering. This is corrected
by including a multiplication factor that depends on
the degree of filtering.

Finally, the slow exponential decay of cursor motion
after the mouse stops can be annoying when filter
cutoff frequency is very low. Therefore, the filter
algorithm was modified to reset the filter a
predetermined time after mouse motion ceases.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Placement of controls

The filter controls that can be provided depend on
where the filter is located. If the filtering takes place
in the internal microprocessor of the mouse, the
required switches and knobs can be placed in the
mouse housing, perhaps behind a flip-up door.
Unfortunately, the small physical size of a standard
mouse would make these controls small and hard to
use, especially for people with tremor. Further, it
would be uneconomical to rely on specialized
mouse devices of different shapes, sizes, and
features (e.g., scroll wheels, scroll sticks, extra
buttons) to suit different preferences. For these
reasons, the idea of a specialized mouse was
dropped from consideration.

The filtering mechanism could be located in the
mouse device driver, in which case an on-screen
interface would be used. Many people find such an
interface non-intuitive, even intimidating. Further-
more, people with tremor may find controlling an
on-screen interface challenging. Although adjust-
ments could be made by using the keyboard, this is
for many an even less intuitive interface. We
experimented with such a device driver-based filter
(such a filtering mechanism could be packaged and
distributed as a free or low-cost utility) and found
that of the people who used both the device-driver
solution and the separate adapter, most preferred
the separate adapter. In addition, device drivers
require long-term software support because they are
sensitive to changes in the operating system and the
hardware. Some mouse device drivers, installed
when a new mouse device is acquired, may disable
the filter. The current version of the device driver
works well for many standard mice, provided the
device drivers are the ones supplied with the
operating system. Although an installation and
removal utility has been developed, it does not yet
handle certain hardware configurations, for example
keyboards that include built-in pointing devices.
Some problems may occur if the driver is installed
and removed multiple times. We have no current
plans to develop this into a software product, but a
pre-beta-level version for Windows 2000 and
Windows XP** is available for an at-risk trial.”

Final configuration

Our solution involves an external adapter to be
inserted between the mouse and the computer. The
adapter interface to the computer is the standard
mouse interface. Adjustments are enabled through

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Serial Interface 8-Bit Serial
to Personal Parallel Interface
Computer Interface to PS2
PS2 Port Mouse

b . (7] P2 P3
Handshake g4 & S S Handshake

Lines S1 §2 S3 Lines

Figure 2
Block diagram of the adapter circuit

familiar switches and knobs located on the adapter
box. These can be large and conveniently spaced, at
least for desktop use. Further, one can easily adjust
the filter with one hand while moving the mouse
with the other, with instant visual feedback.

IMPLEMENTATION

A prototype of our microprocessor-based adapter is
shown in Figure 1. The adapter, which is connected
between a PS/2 mouse and a PS/2 computer port,
closely emulates a PS/2 mouse (but see the com-
ments on laptop computers in the section “Results
and conclusions™). The latest version of this adapter
has a knob to adjust the degree of filtering, a toggle
switch to suppress unintended button clicks, an-
other toggle switch to control the enhanced double-
clicking feature, and a third toggle switch that
disables all the accessibility features when they are
not needed.

Adapter hardware

The hardware configuration shown in Figure 2
consists of three low-cost RISC (reduced instruction
set computer) processors, labeled P1, P2, and P3,
and four switches, S1 through S4. Power is provided
through the computer PS/2 port.

Alternative configurations, firmware flowcharts,
and details of the algorithms can be found in a
patent held by the authors; however, the hardware
and the key algorithms are essentially the same as
described in the patent.8

An industry-standard PS/2 mouse communicates
with a PC using a slow, 10 KHz two-wire serial

LEVINE AND SCHAPPERT

625

626

command-and-response protocol10 developed by
IBM in the late 1980s. Referring to Figure 2,
processor P1 mediates data transfers in either

m The filtering mechanism and
its controls are located in a
separate adapter that is
inserted between the mouse
and the computer m

direction between the PC and processor P2. It uses
the two-wire serial protocol to transfer data to and
from the PC, and a fast, interrupt-driven-transfer
8-bit parallel protocol with processor P2. Similarly,
processor P3 mediates data transfers between
processor P2 and the mouse. Processor P2 imple-
ments the assistive features. Considerable effort was
expended to make the interaction with the computer
follow the IBM protocol, so that the adapter plus
mouse would appear to the operating system as a
standard mouse.

P2 is more powerful than P1 and P3, having an
instruction set suitable for implementing a digital
filter and running the algorithms needed to provide
the button-assist features mentioned earlier. Control
of the button features is provided by three-position
toggle switches S1 and S2. Two-position toggle
switch S3 is used to disable all the features when not
needed. The degree of filtering is controlled by the
16-position binary-encoded rotary switch S4. The
adapter firmware converts the rotary-switch setting
to a filter-time constant in the range of 50 to 950
milliseconds, using a nonlinear lookup table. This
corresponds to cutoff frequencies f, in the range 0.17
Hz to 3 Hz. The range was chosen to preferentially
remove tremor frequencies which, as noted earlier,
are typically in the range 4-12 Hz.> The compo-
nents, including the switches, are soldered to a
small printed circuit board that is housed in a plastic
box of dimensions 3 X 4 X 1 inches. The dimensions
were chosen to allow switches of reasonable size
and spacing. Cables connect the adapter to the
computer and to the mouse.

Adapter firmware

The original firmware supported the basic, two-
button mice. In the latest version of the adapter, the
firmware was extended to accommodate mice with

LEVINE AND SCHAPPERT

scrolling mechanisms and up to five buttons. The
firmware for the P2 processor, which implements
the assistive features, turned out to be surprisingly
complex, in part because of the ad hoc way in which
the PS/2 protocol was used to handle scroll wheels
and other mouse features that were not available
when the protocol was defined. We provide here
only a brief description.

When a basic two- or three-button mouse is moved,
it transmits 3-byte data packets containing X and Y
increments and button states. Packets are trans-
mitted at a given rate (the rate is set by the computer
through commands sent to the mouse), a typical rate
being 100 per second. Mice with scrolling mecha-
nisms or five buttons encode the additional in-
formation in a fourth byte. The computer and mouse
establish the packet size and the presence of special
features in a special power-up initialization proce-
dure that is not part of the original PS/2 architec-
ture. In this procedure, the computer sends special
sequences of standard commands that are recog-
nized by mice equipped with a scroll wheel or extra
buttons. The mouse then responds to a “Read
Device Type” command with a unique byte, in place
of the usual zero."" Processor P2 monitors this
exchange to determine the packet size. Thereafter,
P2 collects the entire 3-byte or 4-byte packets,
extracts the X and Y increments, and applies a filter
to each increment. The button algorithms are also
applied if enabled by the switches. New data packets
are then constructed from the modified motion
values and button states and sent to the computer in
place of the original packets via P1.

RESULTS AND CONCLUSIONS

A usability test for the adapter was performed with a
group of 10 people selected from a support group for
people with essential tremor. The group ranged in
age from 36 to 79 and included subjects of both
sexes. The test included video and audio recordings
of the session, a movie-like capture of the screen in
which the cursor motion was recorded, and a post-
test participant evaluation form. The participants
reported moderate to considerable improvement,
and all expressed an interest in acquiring the
adapter.

The adapter was tested with a variety of mice sold
by eight manufacturers. These include native PS/2
mice, as well as Universal Serial Bus (USB) mice

equipped with a manufacturer-supplied USB-to-PS/2

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

adapter. Some were equipped with a scrolling
mechanism and had either three or five buttons; the
others had either two or three buttons. For these
tests we used desktop computers made by three
different manufacturers under four versions of
Windows (98, ME, 2000, and XP). The adapter
performed satisfactorily in all configurations.

It is likely that the PS/2-type ports will be omitted

from some or all future desktop models in favor of
USB ports. This is already the case with some laptop
models. We plan to develop a version of the adapter
in which processors P1 and P3 will be replaced by

USB-compatible chips.

The built-in pointing devices on laptop computers
are not always equipped for connecting with our
adapter. The TrackPoint* device used in many IBM
ThinkPad* notebook computers is supported by the
same microprocessor that handles the PS/2 mouse.
In order to provide plug-and-play capability, the
communication protocol between the processor and
the mouse involves periodic commands from the
processor and corresponding responses from the
mouse. Unfortunately, these commands interfere
with the complex and time-critical data flow through
the adapter, leaving it in a nonfunctioning state.
This problem can be sidestepped by configuring the
TrackPoint to run in a mode in which it is itself
disabled when a mouse is connected. Other laptops
have not been tested and may not support a similar
solution.

About two dozen adapters were built using the
original version of the firmware, which supported
only two-button mice. The adapters have since been
installed on 12 computers located at the State of
Colorado Workforce Centers.'> We recently nego-
tiated a licensing agreement with a small electronics
company for manufacturing and marketing the
adapters.

ACKNOWLEDGMENTS

We thank Cathy Bodine and Jim Sandstrum of the
University of Colorado for helping test the adapters,
Catherine Rice of the International Essential Tremor
Foundation for helping identify a manufacturer for
the adapters, and Steve Mastrianni for helping
implement the device driver-based version of the
adapter. Their contributions have been invaluable to
the success of the project.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Microsoft Corporation.

CITED REFERENCES AND NOTES
1. Assistive Technology Partners, University of Colorado
Health Science Center, http://www.uchsc.edu/atp/
aboutatp.htm.

2. A useful Web site is http://www.essentialtremor.org.

3. R.J. Elble, “Physiologic and Essential Tremor,” Neurol-
ogy 36, No. 2, 225-231 (1980).

4. C. N. Riviere, R. S. Rader, and N. V. Thakor, “Adaptive
Canceling of Physiological Tremor for Improved Preci-
sion in Microsurgery,” IEEE Transactions on Biomedical
Engineering 45, No. 7, 839-846 (1998).

5. J. G. Gonzalez, et al., “A Customized Optimal Filter for
Eliminating Operator’s Tremor,” Proceedings of SPIE
Volume 2590: Telemanipulator and Telepresence Tech-
nologies II, M. Salganicoff, Editor, International Society
for Optical Engineering (December 1995), pp. 131-142.

6. S. Keates, P. Langdon, J. Clarkson, and P. Robinson,
“Investigating the Use of Force Feedback for Motion
Impaired Users,” Proceedings of the 6th ERCIM Workshop,
European Research Consortium for Informatics and
Mathematics, Sophia Antipolis, France (2000), pp. 207-
212.

7. B.vander Zwaag, D. Corbett, and L. C. Jain, “Minimizing
Tremor in a Joystick Controller Using Fuzzy Logic,”
Proceedings of the Third International Conference on
Knowledge-Based Intelligent Information Engineering
Systems, 31 Aug-1 Sept 1999, Adelaide, Australia, IEEE,
New York (1999), pp. 5-8.

8. J. L. Levine and M. A Schappert, Method and Adapter for
Performing Assistive Motion Data Processing and/or
Button Data Processing External to a Computer, U.S.
Patent 6,650,313 (11/18/2003).

9. Mouse Smoothing Software, alphaWorks, IBM Corpora-
tion, http://www.alphaworks.ibm.com/tech/
mousesmoothing.

10. PS/2 Mouse Technical Reference, Publication S68X-
2229-00, Second Edition, IBM Corporation (June, 1989).

11. Windows and the 5-Button Wheel Mouse, Microsoft
Corporation (December 4, 2001), http://www.microsoft.
com/whdc/device/input/5b_wheel.mspx.

12. Colorado Workforce Center, State of Colorado, http://
www.yourworkforcecenter.com/.

Accepted for publication January 7, 2005.
Published online July 22, 2005.

James L. Levine

IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, NY 10598
(levine2@us.ibm.com). Dr. Levine is a research staff member
in the Physical Sciences Department at the Thomas J. Watson
Research Center. He received a B.S. degree in physics at the
Massachusetts Institute of Technology in 1958 and M.S. and
Ph.D. degrees in physics at the University of Minnesota in
1960 and 1962, respectively. He joined IBM in 1962 at the

LEVINE AND SCHAPPERT

627

628

Watson Laboratory in New York City. Dr. Levine is the author
of 19 papers on low-temperature and ultra-low-temperature
physics, superconductivity, gravity wave detection, and
computer technology. He holds 31 U.S. patents on touch
screens, eye-controlled computers, presence sensors, and
other aspects of interactive computer technology. He is
currently working on ways to improve computer accessibility
for people with hand tremor.

Michael A. Schappert

IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598

(schapl @us.ibm.com). Mr. Schappert received his B.S. degree
in computer science from Union College in 1987 and his M.S.
degree in computer engineering from Syracuse University in
2001. He started his career at IBM in 1978, when he joined the
Research Division to work on an eye-tracker system. At IBM,
Mr. Schappert worked on various projects related to human-
computer interfaces, such as eye tracking, touch screens,
infrared presence sensors, remote infrared pointing devices,
and mouse filters. He holds 11 U.S. patents, with several
additional patents pending. Mr. Schappert is a Senior Member
of the Institute of Electrical and Electronic Engineers and a
member of the Association for Computing Machinery. M

LEVINE AND SCHAPPERT

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

