Managing usability for people
with disabilities in a large Web

presence

M. King

J. W. Thatcher
P. M. Bronstad
R. Easton

The case for ensuring that Web sites are usable by people with disabilities is strong in
light of the World Wide Web's ubiquity as an essential customer interface for most
organizations, the considerable disposable income of people with disabilities, and a
growing number of accessibility regulations being applied to public Web interfaces. For
small Web sites having a few thousand pages managed by a single centralized IT
(information technology) department, ensuring accessible content is a well-under-
stood process supportable with a variety of off-the-shelf solutions. For organizations
owning multiple large sites containing millions of pages of content authored by
hundreds or thousands of employees and applications, standards compliance
management is significantly more complex in general and is particularly challenging in
the context of accessibility. This paper describes the design and development of
processes and solutions for establishing and maintaining accessibility for a very large
Web presence. This includes site templates employing advances in coding techniques

that offer dramatic usability improvements for users with disabilities and efficient
enterprise-wide compliance-monitoring processes that cover all accessibility
standards, including standards requiring human judgment to evaluate.

INTRODUCTION

It is no longer difficult to find organizations that have
been working several years to create an accessible
Web presence. However, success is not yet common.
Most surveys reveal large gaps between accessibility
standards and what is implemented. For example,
only 22 percent of the Web sites for United States
government agencies, which have been mandated to
be accessible by Section 508" for over three years,
meet Section 508 requirements.2

Even with management team commitment to Web
accessibility standards, when a Web presence is

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

large and has hundreds or even thousands of people
and applications who contribute content to it,
developing and managing standards compliance is
complex. Naturally, it is desirable to start by
building compliance at points of entry into the
system. This can be aided by standardizing the suite
of authoring and content management tools sup-

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

KING ET AL

519

ported in the enterprise and through provision of
templates that provide accessibility features. The
first section of this paper describes innovative use of
template technology that goes beyond providing
compliance; the templates enable even complex
sites to dramatically increase usability for people
with disabilities.

There is no way, however, to control or even be
aware of every point of entry into the Web space in
order to block inaccessible content from entering. A
compliance management system for a large enter-
prise first requires a content discovery mechanism.
Web content discovery systems—known as
“crawlers”—vary widely in scalability, perfor-
mance, and reliability, and managing them is
complex. Once discovered, content must then be
analyzed for standards compliance. Several com-
mercial products offer automated accessibility anal-
yses of Web documents, and some of these products
incorporate Web crawlers. These tools vary greatly
in their performance and scalability.

After these automated tools discover and analyze
Web content, results must be communicated. For
some enterprises there may be reports on exorbitant
numbers of Web documents addressed to different
content owners, and reliably segmenting the report
data into meaningful categories is very challenging.

For example, the automated tools may generate a
report on 80,000 Web pages that is sent to the
marketing department. This report may state that 30
percent of their content is not compliant, but 20,000
of these pages may actually be owned by the
technical support organization. The second section
of this paper describes how IBM has addressed these
challenges in building an automated compliance
monitoring system for its own internal and external
Web spaces.

Fully automated compliance monitoring, though
useful, cannot indicate whether documents comply
with Web accessibility standards. It can only
identify problems if the violations of standards are
machine-detectable. In fact, more than half of the
provisions included in most standards sets, for
example, U.S. Section 508" or the World Wide Web
Consortium (W3C**) Web Content Accessibility
Guidelines (WCAG)s, require human judgment to
evaluate. To accurately measure full compliance,
human review of content is mandatory. For a large

520 KING ET AL

Web space, then, this task may not be feasible, and
thus it seems impossible to determine the complete
accessibility picture. One could randomly select a
few sites for human review, but that would not
provide a pan-enterprise perspective. The final
section of this paper describes a new approach to
this problem that leverages knowledge gained from
an automated compliance system to build a sta-
tistical model of the Web space, allowing for the
creation of an economically feasible sampling
system and prediction algorithm that creates a total
compliance picture even for a Web space that
includes millions of documents.

DEVELOPING USABLE ACCESSIBLE SITES

A large number of processes affect the development
and maintenance of accessible Web sites and
applications. For example, authors and developers
can be educated to create accessible content.
Authoring, development, and host services packages
affect how people with disabilities interact with
sites. These topics are discussed on the IBM
Accessibility Center Web site.” In this section, we
focus on the development of site templates (such as
those recently implemented in IBM) that have
yielded phenomenal gains, not just in standards
compliance, but in usability enhancements for
people with disabilities. These gains came at little
cost and are very popular with their target audience.

Many people have found the Web more useful as it
grows more capable of information consolidation
and personalization. However, the Web has become
more confusing to people with disabilities. Web
portals, which consolidate many information
sources, are an example of one such simultaneous
advance and step back. A portal page, with its
multiple views into many different kinds of in-
formation, can be a boon to those who are able to
visually scan it like a dashboard and almost
instantly detect new information or points of
interest. On the other hand, portals offer incompre-
hensible chaos to the visitor who is blind or visually
impaired.

Satisfying the requirements described in accessibil-
ity standards is helpful; yet compliance with the
standards is not enough to bring order to the chaos.
The accessibility features described in this section
make a complex page, such as a portal, extremely
usable. Moreover, these features can be used to
great benefit on any type of Web page.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Navigation challenges

Today’s Web portal page is a multicolumn collection
of small blocks or windows, each providing a view
into a specific set of information. The computer
applications that produce these windows are com-
monly called portlets. Each portlet collects and
displays its information independent of others that
may share space on the portal Web page.

As an example, we consider the needs of employees
in a large enterprise with an abundance of infor-
mation resources. The enterprise intranet portal
serves a large employee audience and includes
multiple portal pages, each with a collection of
portlets. In its nonmodified form, the topmost portal
page is the company’s main bulletin board, which
includes company news, stock market information,
an enterprise directory, personal link lists, and
search portlets. A second portal page includes
portlets for work tools, such as asset and expense
reporting, selling information, and personalized
industry news. A third portal page concerns
employees, with portlets for various human-
resources and employee-benefit programs.

To add personalization, employees are given the
ability to move portlets around in order to suit
individual preferences. Any portlet can be moved to
any portal page and positioned on that page as
preferred. The result is a large collection of
information sources and tools that employees add,
delete, and rearrange to meet their own needs and
goals. In essence, every employee has his own
customized enterprise portal.

The challenge in adding accessibility to this portal
is: How can a blind person gain a sense of, and
remember, what and where all the pieces compris-
ing the portal are?

Accessibility solutions

An initial accessibility accommodation for naviga-
tion in this portal consisted of a pair of “skip links”
for each portlet, allowing the user to skip to the next
portlet or the previous portlet. These generic aids
might have met accessibility requirements, but they
failed to go beyond compliance and added little to
usability.

Gaining a sense of even a single portal page

containing only a few portlets requires strong
concentration; understanding it is difficult to

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Table 1 Example showing replacement of non-
standard HTML with semantically correct heading;
A. non-semantic technique; B. semantically correct
technique

A Text for heading

Text for sub-heading

B <h1>Text for page heading<</h1>

<h2>Text for sub-heading</h2>

achieve. For one blind employee, understanding the
home page took many visits and, finally, some
explanation from a sighted colleague. In order to
improve understanding, the templates used to create
portal pages were enhanced with the following
methods: structured HTML, landmarks, a page
index that accurately described the page, access
keys, and provisions for personalized page styling.
Each of these techniques (described in the following
sections) is embedded directly into the templates,
making it easier for portlet developers and content
producers to keep new pages accessible. An addi-
tional benefit of this approach is that developers no
longer need to remember to include obscure or
infrequently used features.

Structured HTML

HTML coding techniques were changed to use a
semantically correct structure: that is, headings,
paragraphs, and lists. The previous technique used
HTML spans to apply a Cascading Style Sheet (CSS)
appearance to a line of text, making the text appear
like a heading. Spans were eliminated in favor of
true heading markup. These techniques are illus-
trated in Table 1. This change alone had immediate
beneficial impact because assistive tools known as
screen readers have facilities that take advantage of
good structure. For example, a simple screen reader
command can quickly invoke the reading of all
headings on a Web page, giving a blind visitor an
outline of the important information on the page.

Hiding accessibility information

Part of the portal design update consisted of moving
from a layout technique that depended on tables and
“spacer” images to one that used CSS technology for

KING ET AL

521

Table 2 Examples of code that hides accessibility
information: (A) CSS code causes text of class
“access” to be hidden from visual display by placing
it 3000 pixels to the left of the browser window; (B)
the class “access” code wraps around a link, hiding
if from view; and (C) the class “access” code wraps
around a paragraph, hiding it from view.

A .access {
position: absolute;
left: -3000px;
width: 500px; }

B
Jump to portlet page index

C <p class= “access”>Additional accessibility
information for this site can be found <a href=*
http://thissite/access-stmt.html”> on the Accessibility
Statement page.</p>

positioning. Because this new approach used no
spacer images, the traditional method of attaching a
skip link to a spacer image needed reconsideration.
A CSS technique was developed that replaced the
spacer image technique. The technique “parks”
accessibility information in an imaginary space far
to the left of what a visual Web browser is capable
of displaying. While screen readers can find this
information, Web browsers do not. This new
method (called “access”) was tested with a wide
range of screen readers and is now used for more
than just skip links.” See Table 2 for examples of
making accessibility information invisible to the
user.

Landmarks: What part of the page am I listening to
now?

Imagine a shopper not knowing whether he or she is
standing in a shoe store or a bookstore. This is
similar to the experience of trying to understand a

Table 3 Example of landmarks and corresponding
HTML code

Start of masthead <h2 class = “access”>Start of
masthead<</h2>
Start portal tabs <h2 class = “access”>Start portal
tabs</h2>
A list of all portlets on this page <h2 class=
“access”>A list of all portlets on this page.</h2>

522 KING ET AL

Table 4 Example of a portal page index.

<div>

<h2 class = “access”>A list of all portlets on this page.

</h2>

<ul id = “page-index” class = “access”>
Search<
What’s new
Mail and calendar
0n Demand<

Market report
Essential links

News

</div>

portal page with portlets when using a screen
reader. Knowing which section of the page currently
contains the focus is crucial to understanding the
content presented at that time; that is, the context in
which the information is interpreted is analogous to
the facility in which a shopper finds himself or
herself. Therefore, to provide context, major sec-
tions of the page are marked with landmarks that
are read by screen readers but not displayed in Web
browsers. The portal page includes three landmarks,
shown in bold text in Table 3, followed by the
HTML code for each. Interior “article” pages with
left-hand navigation links and sidebars contain
additional landmarks for those elements.

The portal page index: What portlets are on this
page?

Completely new to this version of the portal is a
portal page index: a table of contents of what
appears on the page. Because the portal can be
highly personalized with a large variety of possible
content, the portal page index is a dynamically
constructed index that matches the precise contents
of the page. It is formulated as a list of links and is
therefore easily handled by at least two of each
screen reader’s built-in functions: the facility for
reading links and the facility for reading lists. A skip
link at the top of the page and a skip link at the start
of each portlet offer quick ways of finding or
returning to the page index. The block of text shown
in Table 4 has the class of “access,” which hides it
off to the left of the browser window. It also has the
identifier “page-index,” which is the target of many
of the skip links within the page.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Table 5 Example of the use of a semantically correct
HTML level-2 heading.

<div class = “portlet-head-blue-med”>

<h2 class = “portlet-head-blue-med”>Essential links
</h2>

...multiple image
declarations skipped for simplicity...

</div>

Portlet headings: Coding as an HTML heading
makes them easier to find

Each portlet has a heading (an HTML heading level
element) containing the portlet’s title, a skip link to
the page index, and several properly annotated
images providing edit, maximize, minimize, and
help functions. Simply coding the portlet’s title as a
legitimate HTML heading makes each of the portlet
headings easier to discover with a screen reader. See
Table 5 for sample HTML showing the use of H2, a
semantically correct heading element that can be
found and read by screen readers.

Access keys: Fast access to common Web page
facilities

Access keys are helpful to those who cannot use a
mouse, and are gaining popularity for providing fast
access to common Web page facilities. A de facto
standard is slowly emerging6 but is not yet accepted
by any standards organization (e.g., W3C). We used
the following subset of the emerging standard:

Alt + 0 links to this site’s accessibility statement.
Alt + 1 links to the portal home page.

Alt + 2 skips to the index of portlets on this page.
Alt + 9 links to the feedback page.

The Alt + 0 key is well known as a pathway to
finding accessibility information. Both blind people
and people with mobility impairments often try Alt+
0 to learn of features that a site offers.

Some controversy surrounds the use of Alt keys for
accessibility information,” but there are no better
alternatives currently available. The use of Alt keys
has become quasi-standard, and people aware of
access keys will expect to use the Alt key combina-
tions. Lastly, experienced screen reader users are
accustomed to the keystroke combinations used by
their screen reader. For example, Shift 4 Alt is the
access key combination in IBM Home Page Reader,

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Table 6 Example of a personal style sheet.

userContent.css (personal style sheet file)

#w3-ibm-com {font-size:140% !important;}

whereas the Alt + Plus key works with the JAWS**
(Job Access with Speech) screen reader.

Personal style sheets: Overriding page styles
What if one needed to override page styles? Every
page on the site carries an identifier in the body tag
that can be used to declare styles specifically for the
site. For example, a visitor with low vision might
prefer a font-scaling factor for this site but does not
want to change the browser setting that affects all
sites. A user style sheet, currently supported by all
modern browsers, is the place to add a declaration
based on the special identifier included on all pages
(for example, every page on the IBM intranet site
includes a BODY element stating <body id=
"w3-ibm-com">). The example shown in Table 6
increases font size to 140 percent of normal size. It
could just as easily be crafted to change font and
background colors for higher contrast.

Help for people with other disabilities

Though many of the methods described in this paper
seem intended to help only users who are blind,
some help people with other disabilities. Personal
style sheets, as just described, help those with low
vision. Scalable fonts, not described in detail, but
easy to implement, also help those with low vision.
Access keys help not only users who are blind, but
those with mobility impairments who have difficulty
using a mouse. For these people, access keys offer
rapid access to the search field and feedback links.
On pages inside the portal, pages formatted as
normal articles, an additional feature helps people
with mobility impairments. A “Skip to main
content” link is made visible the first time they
touch the “Tab” key after loading the page. This
link saves many additional “Tab” keystrokes in
moving through the usual plethora of navigation
links.

Benefit examples

A person able to see and use a mouse can survey a
portal page in a matter of seconds and see what is
available. Without the assistance of the special
accessible usability features described in this article,
a blind person would find it almost impossible to

KING ET AL

523

accomplish the same task. The blind visitor would
make a first attempt by sequentially reading every
word on the page and attempting to discern the
structure from semantics. The result for an experi-
enced screen reader user, after 7 to 12 minutes of
careful inspection, would be a confused picture of
the content.

Instead, with these accessibility features a screen
reader user can press the screen reader’s hot key to
list all headings on a page in outline form. It takes
less than 15 seconds to press the hot key and listen
to the screen reader read the entire list. The blind
user’s understanding of what is available is now
very similar to that of a sighted user. This is a
productivity improvement of as much as 4,800
percent! This may seem like a staggering number,
especially given the simplicity of the solution.
However, it is typical of the magnitude of benefit
that can be obtained with attention to the usability
of accessible design.

Summary

Using the techniques described in this paper, people
who are blind or visually impaired do not need, as
they have in the past, to memorize the position or
sequence of every item on complex Web pages. The
system now provides lists of headings, lists of links,
page indexes, landmarks, and access keys to help
improve their ability to move more quickly to the
information they want and to add information
context.

The portal implementation of the features we have
described has resulted in one of the first portal sites
to offer a set of accessibility features this rich in
capability and choice. Embedding these ease-of-
access features directly into templates greatly
improves the probability that new pages are both
accessible and usable.

AUTOMATED PROGRESS MEASUREMENT

As action plans (such as the widespread adoption of
templates) to improve the accessibility of content
are executed, we expect to see improvement in the
level of compliance to standards. To manage this
progress, metrics are essential in maintaining levels
of quality of the system. Obviously, metrics con-
stitute overhead, so managing cost through effi-
ciency is also important. In this section, we will
survey the approach IBM has taken to developing
the automated compliance reporting component of

524 KNG ET AL

its Web Accessibility Standards Reporting Process
(WASRP).

Business requirements

The WASRP has two primary objectives: to inform
the chief information officer of progress by division
or business unit, and to give application owners and
portfolio managers the information they need to
plan and prioritize remediation efforts. Thus, it is
important that the process be capable of delivering
data that can be categorized by business unit and
owning manager.

Each business unit executive has a representative on
the team responsible for enforcing Web accessibility
improvement. These business unit representatives
and their executives need new data often enough to
manage progress toward their annual targets, but it
takes several weeks to receive a report, review it,
and lead a specific application through the change
process. New data indicating the same trends as
previous data is not of much use. To allow sufficient
time to ensure the opportunity for significant and
useful change in the measurements, a 30-day
minimum interval between one report’s delivery
date and the beginning of the next reporting cycle
was set. Because business unit representatives
needed data at least every 90 days, preferring it in 60
days if possible, the report generation cycle time
was set from 30 to 60 days.

Because IBM’s corporate mandate requiring that all
the information technology used or produced by IBM
be accessible does not designate any exceptions, the
scope of the WASRP measurements is any content on
IBM’s Internet or intranet sites. This is a wider scope
than that of any other IBM Web content standard.
The WASRP, when it began in 2000, broke new
ground in IBM. The only application in IBM that had
any measure of how much content existed was the
Web search application. The WASRP even included
sites that the search application filtered out. This all-
inclusive scope would test our concept of scalability.

Technology requirements

The preceding business requirements led to four
primary components for the accessibility standards
reporting process:

1. Web crawler: Crawls each Web space (Internet

and intranet) to locate and capture the content for
analysis.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

2. Analysis engine: Analyzes the Web content for
standards violations.

3. Ownership identification: Identifies the owner of
each page of content.

4. Report generation: Combines the analysis data
with the ownership data to generate reports.

Scalability

In March of 2000, when WASRP development
began, the accessibility standards for U.S. Section
508 were still being written. Because we could not
locate any existing work in the area of Web
accessibility that approached the magnitude of what
we were about to attempt, for practical reasons we
started WASRP development by working only on
public Internet sites. This kept our mission in line
with the business priority of focusing first on the
customer while giving the development team an
opportunity to begin its activity in a relatively small
Web space (roughly 3.5 million pages). It took 18
months to move from there to the intranet. That step
proved to be surprisingly more difficult than
anticipated. We thought we had a scalable solution,
but in 2002, when we attempted to go from a 3.5-
million page capacity to a 30-million page capacity,
we learned what scalability really meant. This jump
in scale affected every component of the process,
but crawling was the process most negatively
affected.

Performance

The primary factor affecting WASRP cycle time is
the speed at which data can be moved across
networks. Thirty million pages of Web content is a
great deal of data, and it takes time to find it and
read it. In 2002, we set our absolute minimum
throughput requirement at 30 million pages in 60
days, or 500,000 pages a day. Our projected target
was one million pages a day. The process has been
performing very close to that level since January of
2003, and with a production hardware upgrade, the
one-million-page target will easily be surpassed.

Experimentation with the architecture has been
done and continues (see Figure 1), to assess the
effects of component rearrangement, changing the
amount of parallelism in the process. One funda-
mental principle seems to apply: the less we move
the data, the better. This tends to result in an
architecture which is more serial than parallel.
Intuitively, this does not seem optimal, and we

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Cluster for
Intranet Crawler

Reporting Report
et [

Cluster for
Internet Crawler

Portfolio
Database

Figure 1
WASRP architecture

believe this is an area where there is still plenty of
room for further study.

The crawling component: Content discovery and
retrieval

Because the scope of our implementation included
all content available on IBM’s Internet and intranet
sites, it was necessary to determine what that
entailed. When the project began, we had an
estimate of the number of Web pages from the
database that was used to manage the enterprise
application portfolio, which had been greatly im-
proved as part of IBM’s Y2K effort. We knew there
were some classes of sites that were not included in
that database, but we did not know how much
content was on those sites.

In any large enterprise, the only way to really know
how much Web content is online is to employ a Web
crawler. This is a software package that, given a set
of starting Web pages, looks for and follows every
active element (link, button, etc.) and catalogs its
findings. As the crawler is analyzing a Web page to
find all the other pages to which it points, a process
known as discovery, it can also store the page
content in its repository. We evaluated several
crawlers based on the criteria of the quality of
their discovery abilities, their speed, and their
scalability.

Some of the accessibility checking tools that were
available when we started the project included a
crawling component. We quickly found, however,
that the tools were not capable of meeting any of our
minimum criteria. We learned that enterprise-scale
Web crawlers are a very advanced technology

KING ET AL

525

requiring enormous resources to develop and
maintain. The field continues to evolve rapidly
along with the Web. During the last four years, we
have investigated approximately six crawlers, and

m It is desirable to start by
building compliance at points
of entry into the system m

we have completely changed the crawling package
twice. In our present implementation, crawling is
built on an IBM research technology known as
WebFountain*.®

With our present WebFountain configuration, we
store, on average, 1.5 million documents a day in
the data repository. Storing the documents in a local
data repository provides a tremendous throughput
advantage because the checker described in the next
section does not have to go back to the Web to read
the content; the checker can access the content in a
local database, which is faster by nearly three orders
of magnitude.

Compliance analysis

Once we have crawled the Web space and stored all
the content we wish to analyze in the crawler’s data
repository, we have to analyze it for accessibility
errors. In March of 2000, most of the tools for Web
accessibility checking were still in a very rudimen-
tary state, except for Bobby** Version 3.2 Initially,
we built Perl** scripts that ran the command line
version of the Bobby tool to analyze the data in local
files and write reports in XML. This proved to be
unreliable and slow as well as clumsy to manage,
especially when we were trying to run multiple
instances of Bobby at one time to increase
throughput.

We needed a better way to control the Bobby tool.
Only the checking function was needed, and all the
other functions built around it were interfering. We
approached the Bobby tool developers, who were at
that time at the Center for Applied Special Tech-
nologies, to see if we could access Bobby’s checking
function through an application programming in-
terface (API). They had not intended their Java**
class definitions to work as an external API, but the
definitions were designed well enough that using the
definitions as an API became a superb solution. We

526 KING ET AL

developed a middleware package, IBM Web Stan-
dards Checker (IWSC), that reads data from the
crawler repository, feeds it to a configurable number
of instances of Bobby that are running in parallel,
and then writes the results to a reporting database.
This gave us the control we needed to get
throughputs in excess of 80,000 pages per hour on a
single CPU system with 1 gigabyte of RAM running
at 1.5 MHz. By running five such machines in
parallel, we could process 250,000 to 400,000 pages
per hour. Because the architecture design includes
hardware scalability, by adding more hardware, we
could increase that throughput simply by adding
more systems to the cluster.

Since then, we have abstracted the IWSC Java
interface with Bobby in an IWSC checker interface
class. This allowed us to write Java classes to serve
as wrappers around the APIs of other checking
programs and plug them into IWSC. We have
written such an interface class for WebKing**, and
we can now plug WebKing’s checking capabilities
into WASRP. The extensibility of this architecture
has proven to be an extremely valuable feature as
we work to improve and expand our checking
capabilities.

Content ownership identification

In order to generate reports that categorize data by
line of management, we need means for identifying
a management owner of the pages discovered by the
crawler. One option we have considered is to use the
meta-data from the page content. Some IBM content
has meta-data tags that name the page author. We
could extract that information, look up the author in
our enterprise directory of employees, and associate
the page with the employee’s business unit. That
meta-data, however, is frequently not present.
Another option is to compare the URL (uniform
resource locator) string to a list of URLs for which
the owner is known. This, for now, has proven to be
the better option.

The IBM enterprise portfolio management database
contains data about IBM’s Web applications. Typi-
cally, an application can be thought of as a Web site,
or a collection of Web sites, differing only in
localization features, that has been developed to
serve a specific set of business objectives. The
portfolio database record for each application
includes the URLs for each deployment of that
application. We refer to the URL for the home page
as the top-level URL.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

The Java program we developed to assign each of
the 30 million URLs discovered by the crawler to an
application is called Internet Resource Ownership
Identifier (IROI). To assign a URL found by the
crawler to an application, IROI compares the URL to
top-level URLs in the portfolio database to determine
if the URL that the crawler found is a child of any of
the top-level URLs. For example, if the crawler
found http://www.ibm.com/employment/uk/
faq.html, IROI would recognize it as belonging to the
application listed in the portfolio with the top-level
URL http://www.ibm.com/employment/uk/. Un-
fortunately, the process is not always that simple.
Sometimes the form of the URL in the portfolio
database is not the same as what the crawler finds.
For instance, the portfolio database could accurately
list the same application with a home page as http://
www.uk.ibm.com/employment. Note the different
location of the country code. Nonetheless, it refers
to the same home page. If we load that page and
click on the link labeled “FAQ” (frequently asked
questions), the address that is displayed in the
browser address bar is http://www-5.ibm.com/
employment/uk/faq.html. Given these last two
forms of the URL string, it is now less obvious that
the FAQ page is a child of the home page. Never-
theless, it is, and IROI can determine that. There is a
wide variety of such “tweaking” of URL strings that
must be accounted for in IROI’s algorithms. The
tweaking is configurable in several ways, primarily
through a set of Java classes that implement an
abstract class that represents an allowed tweaking.

There are some pages, such as portals, that can
contain content from multiple sources. The content
thus may have multiple owners that may even be
from different business units. At this time, our
measurement system makes the portal owner
responsible for overseeing compliance of portlet
content.

This has debatable merit, but is presently a
technological limitation. To resolve this issue, we
first need a means for the content-checking engine
to provide a portlet context for any errors that it
may find. Then, we would need a means other
than URL string analysis to identify the owner of
the portlet (this would likely be analysis of meta-
data).

As IWSC can run a configurable number of checker
instances in parallel, IROI can run a configurable

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

number of URL comparison threads in parallel. It
presently runs on a server with four 700 MHz
processors and has an average throughput of over
300,000 URLs per hour.

Reporting

The accessibility error data from IWSC and the
ownership data from IROI are stored in a DB2*
database where they can be combined, by URL, to
generate reports. We run a Java application that
generates standard reports in comma-separated-
value format for delivery to the business unit
representatives, but, with all the data in a relational
database, it is also easy to generate any kind of
custom report that is desired.

Summary

The automatic compliance reporting component of
WASRP is an assembly of component technologies
that all have other uses beyond automated Web
accessibility-standards-compliance reporting. We
built the ability to use best-of-breed component
technologies in the system by designing an archi-
tecture that allows the component technologies

to be individually upgraded or changed. This has
also allowed the system’s functions to be more
easily expanded, for example, to include

reporting on other types of standards. This type

of flexibility has allowed us to economically meet
all our business requirements, especially the

most difficult challenges of performance and scal-
ability.

INTRODUCING THE HUMAN REVIEW
COMPONENT

Automated compliance reporting provides a very
limited view of accessibility compliance status. It
cannot report the actual level of compliance. For
instance, with strictly automated checking, it is not
possible to make a claim like “90 percent of our Web
pages are fully compliant with accessibility stan-
dards.” As explained earlier, it is an extremely
useful tool, especially when it comes to monitoring
progress in the first phases of compliance efforts
because it can identify sources of problems, but it is
not capable of identifying pages where there are no
problems at all.

More than half of the provisions included in most
standards sets, for example, the U.S. Section 508
standard1 or the W3C WCAG guidelines, require
human judgment to evaluate. In addition, among

KING ET AL

527

the violations that are machine-detectable, the
absence of a violation does not equate to compli-
ance. For example, the lack of an alt text error does

m Access keys help not only
users who are blind but
also those with mobility
impairments who have
difficulty using a mouse =

not mean that alt text standards are met. This is
because the alt text standards require that alt text be
appropriate, a matter of human judgment that is
beyond the capability of any existing or potential
software.

The total IBM Web space includes nearly 30
million pages. If one person reviewed one page
every 5 minutes, the evaluation would be finished
in 1200 years. Alternatively, we could pick the top
100,000 pages and try to get it done in a month;
for that we would need 53 people working full
time.

The human review component (HRC) of WASRP
addresses this challenge with nonrandom

sampling and statistical inference. The statistical
approach included in the solution to this problem is
the core of what makes it both feasible and
revolutionary.

Fundamentals of the method

If one were to conduct human accessibility reviews
of a few hundred randomly selected pages out of
several million pages on IBM’s Internet presence,
the results would not give much useful information
about how accessible the remaining millions are.
There are simply too many factors, such as different
authors or departments, amount of training, or static
versus dynamic pages, affecting the accessibility of
the pages to expect the random sampling to predict
how accessible all the pages are with any useful
degree of certainty.

In light of this, how can a few hundred human
reviews be made more representative of the
remainder of the pages? Is it possible that a method
for choosing pages to review exists which would
enable the human review results for those pages to

528 KING ET AL

predict the accessibility of all the pages? This can be
done by leveraging the available knowledge of the
entire population of millions of pages that we have
from two primary sources: our map of Web pages to
the IBM application portfolio and automated
checking and mining of information from every Web
page in the total population.

First, our mapping of the millions of pages to IBM
Web applications (as described in the section
“Content ownership identification”) derived from
our portfolio management system provides a basis
from which we can make further meaningful
subdivisions of the pages, to generate representative
samples. By analogy, demographers divide the U.S.
population into smaller groups based on an attribute
such as income and then independently sample
those groups based on already well-established
knowledge of the groups’ characteristic behaviors.
In the IBM Web space, we must work from available
information about each application and sample the
application economically in order to leverage our
predictions of the overall state of the application’s
accessibility. We have three categories of available
and useful knowledge for each application: the tree
structure of the applications, the distribution of
machine-detectable accessibility errors within each
application, and a partial understanding of the
HTML structure of machine-scanned pages.

The division of the millions of pages into individual
Web applications is immensely valuable because it
provides a starting point for analyzing the tree
structure of the Web space. This first division
provides a list of top-level pages for each Web site
that represents starting points for subdivision into
samples of pages that have similar characteristics.
Knowledge of the tree structure (top-level pages
and subsequent server directory structure) of a set
of Web pages is valuable because accessibility
errors tend to cluster on pages within the tree
structure.

Our second primary source of information about the
entire population of millions of Web pages comes
from machine-automated checking and mining of
structural information from the Web pages. From
this we know what machine-detectable accessibility
errors are present, and we can also collect some
measures of the HTML structure of those pages, for
example, counts of graphics, headings, or form
elements. Because Web developers who do not build

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

accessible Web pages tend to make both mistakes
that are machine-detectable and mistakes that are
not machine-detectable, it is reasonable to assume
that pages which are similar in their distributions of
machine-detectable errors and structure will also be
similar in their distribution of errors that cannot be
detected automatically. This assumption is the key
to reaching a worthwhile level of certainty with a
practical level of investment in manpower in
conducting human reviews.

By traversing the application tree structure and
measuring the similarities of pages with respect to
machine-detectable traits, we can mathematically
determine sets of related pages for which we expect
the distribution of errors that are not machine-
detectable to be similar. We can then sample a very
small number of pages in each set and have a high
degree of certainty that the distribution of errors in
the sample is statistically equivalent to the distri-
bution of errors in the set.

Scope of outcomes

The scope of measurements produced by the HRC is
defined in terms of the Web space and the
granularity of supportable subdivisions of the Web
space. There are two Web spaces: Internet and
intranet. There are three possible levels of gran-
ularity in each Web space: enterprise, business unit,
and application. Reporting costs increase with the
level of granularity; for example, making claims
about each application would require that every
application be sampled.

Until we have a working prototype of the HRC
process, it is not possible to know what level of
granularity can be supported within the financial
and cycle-time constraints under which the pro-
duction version of the process will operate. We
believe it will be practical to create reports that
support statements such as “X percent of Internet
content and Y percent of intranet content owned by
business unit U is compliant.” In addition, the HRC
measurements will also provide data describing the
degree of noncompliance, for example, “Typical
pages owned by business unit U have N severe
problems.”

We can estimate the cost for the most detailed and
most expensive reports as follows. The process is
designed to yield an average review time of five
minutes per page. The 3.5 million pages of Internet

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Web space are divided into approximately 200
applications. With experimental modeling, we

m When we attempted to go
from a 3.5-million page
capacity to a 30-million page
capacity, we learned what
scalability really meant m

estimate the average number of pages (p) that will
be required from each sample, and the average
number of samples (s) required from each applica-
tion, in order to support an acceptable degree of
certainty. This results in a period of time equal to
(p-s-200 reviews)-(5/60) hours to review the Internet
Web space. The intranet Web space is divided into a
similar number of applications. The values for p and
s, however, may be different for the latter Web
space.

Process description

The HRC process has three basic parts. First, URLs
for sample page sets are extracted from the
automated-compliance-reporting data repository.
Second, the sample of URLs undergoes human
review for accessibility errors. Finally, the resulting
data is merged with the data from the automated-
compliance-reporting process to yield a complete
report. The sample set, extraction, and merge
algorithms depend on the statistical model of the
Web space, which we now describe.

The error profile of a Web page is a numeric
representation of all the accessibility errors on that
page. Two common methods for defining an error
profile are a pair (number of priority-one errors,
number of priority-two errors) and a set {number of
type-one errors, number of type-two errors, ...,
number of type-n errors}, where priority is a
categorization by severity of error and type one, type
two, ... type n are tests for a specific type of error.
(The concept of an error profile can be extended to
include structural similarity by adding components
that are counts of structural elements.) A group of
pages has an average error profile. The Web-space
model makes it possible to predict the average
profile of non-machine-detectable errors for a
population based on errors found during human
review of a sample of the population.

KING ET AL

529

The application that extracts the sample URLs from
the data repository for the automated-compliance-
reporting process is called the Web-space modeler
(WSM). The first task of the WSM is to divide the
total population of URLs in the Web space into
subpopulations to be sampled (see Figure 2). It does
this by the use of two principles. First, similar
problems are likely to be found in similar locations
within an application. Second, differences between
error profiles suggest the boundaries of page clusters
(subpopulations) within the application. The WSM
uses the errors found by automated compliance
checking to create error profiles for every page in the
total population.

Assuming we can afford the finest level of
granularity, each application will contain at least
one subpopulation. In this case, the WSM will
examine all the pages in each application to
determine if the pages in that application should be
divided into multiple subpopulations. The WSM
starts with the top-level page of an application that
was identified during the ownership identification
process (see the section “Content ownership
identification™) of the WASRP. It first compares the
error profiles of pages in the same directory as the
top-level page, grouping pages with sufficiently
similar error profiles together in a subpopulation.
As the attention of the WSM passes from the
“roots” to the “leaves” of the directory tree, pages
are assigned to existing or new subpopulations
sequentially, starting with pages in directories that
are closest to the directory of the top-level page. If
the unassigned URLs have error profiles similar to
those of their nearest neighbor, they are assigned
to the subpopulation to which the neighbor
belongs. Otherwise, a new subpopulation is created
to contain the dissimilar pages.

After the WSM assigns the pages of an application to
subpopulations, it selects a sample set of pages
within each subpopulation for human review. When
human reviewers find errors on pages, those errors
are assumed to be characteristic of pages within the
subpopulation they represent. The number of pages
selected for human review depends on the number
of subpopulations. Because labor is expensive
compared to automatic review, there is a motivation
to keep the number of subpopulations low. The
number of subpopulations depends largely on how
similar we wish error profiles for clustered URLs to
be. There is also the possibility, if the number of

530 KING ET AL

Input Web-Space Modeler Output
1. All URLs URLs in
and their Population 1
accessibility Y
errors URLs in
Population 2
2. Top-level _ropuiation ~ |
—] URLs in
Similar~"" Dissimilar ~ Population 3
Error Error —
Profiles™ Profiles 0
URLs in
Population n
Figure 2

The Web-space modeler

subpopulations is low compared to the amount of
time available for human review, that we will be
able to oversample from subpopulations that hap-
pen to contain URLs with relatively diverse error
profiles.

Human page review procedure
This section describes the steps necessary for the
human review procedure.

Choosing an error profiling method

The type of error profile we choose to generate with
the human review procedure determines the accu-

racy and efficiency of the procedure, which is very
important for containing expense.

An example of an inexpensive profile is an
“excellent-good-fair-poor” scale in which “excel-
lent” means the page has no errors of any kind,
“good” indicates one error, “fair” indicates two to
four errors, and “poor” indicates five or more errors.
Using this profile, it is likely that many pages would
be rated as “poor” after evaluation of only one or
two criteria, and all evaluation of remaining criteria
could be skipped. If knowledge of which types of
errors are most common is used to order the criteria,
this could result in a very efficient procedure.

A downside to such a simple profile is that it does

not include any means for weighting the importance
of a criterion and that it does not allow a great deal
of distinction among applications; for example, two
applications could be rated as fair, but one might be
much worse than the other. This reduces the value

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

of the data to managers who may be prioritizing
remediation expenses.

Some accessibility errors are more serious than
others. For example, missing or misleading alt text
errors on an image link or an image button are
serious errors and roughly of equal importance.
Those errors on active images are more serious than
missing alt text on an informational image. Finally,
missing alt text on formatting images is of the least
importance.

One way to score the results of the human review is
a list of error counts: the number of severe errors,
moderate errors, and minor errors. This is related to,
but not the same as, the priority distribution of
errors employed in the automatic review. In
particular, missing alt text on a formatting image is a
priority-one error in the automatic review but it is
viewed here as a minor error. We call this a
“severity error profile.”

The relationship between human-review error re-
porting and automatic-review error reporting is
important. We are projecting the findings about
errors in a small subset of the whole population. The
more homogeneous the population is, the better that
prediction will be. In a population where half the
pages have 10 priority-one errors and half have 10
priority-two errors, if error reporting takes account
only of error count, the whole population is seen as
homogeneous. On the other hand, if the error profile
is taken to be a pair of numbers, priority-one errors
and priority-two errors, then the populations are
almost as different as possible, as measured by the
error similarity calculations presented in the section
“Error similarity and average error profile calcula-
tions.”

There is an interesting Web accessibility competi-
tion called the Accessibility Internet Rally,11 which
is staged in cities around the United States. For the
rally, Web design and development teams are
trained in accessibility issues and then paired with
nonprofit organizations for whom they build Web
sites in a one-day rally. Volunteer judges then judge
the sites, and the winning teams are announced at a
gala event. It is important there too to limit the
amount of time required for judging. That process12
is similar to the severity error profile described
earlier except that at most three errors are counted
in each category. With no errors in a given category

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

(e.g., severe errors), the team gets zero points; one
error yields five points; two errors yield nine points,
and three errors results in the maximum score
which is 10 points. Of course, high scores are bad.
This “capped” severity error profile has the benefit
that the judge or human reviewer can just stop
counting or analyzing once three errors in a given
category are found.

Our human review procedure collects data that
can be formulated in several ways; obviously the
error count could always be used, but we can also
obtain a count of errors by error type or by error
severity.

Procedure outline

In designing the human review process, we were
confronted with two major requirements that
seemed to be at odds with each other. On the one
hand, we wanted to minimize the time required to
complete the human review on each page; on the
other hand, we wanted to maximize the likelihood
of finding errors if errors were present.

The tools we use for human review are crucial in
order to meet time requirements. We use “favelets”
that modify the visible page by highlighting con-
structs (borders around images) and adding text to
the page (the alt text on the images). Figure 3 shows
a sample of part of the IBM Home Page with a
favelet having highlighted active images and dis-
playing their alt text.

Favelets (also called “bookmarklets”) have been
around for a long time,13 but only recently has the
idea been applied to accessibility in the work of the
Accessible Information Services of the National
Information Library Service of Australia.'* Favelets
consist of JavaScript** code that is associated with a
favorite link in a browser. When the favelet is
activated, the current page can be modified.

As seen in the figure, each image has alt text
corresponding to the text on the image, with two
exceptions. The “skip to main content” link is an
invisible image, and there is another image just
below the IBM logo that is suspicious. Active images
should never have empty alt text (i.e., alt=""),
which this one does, unless there is text in the
containing anchor that specifies the target of the
link. In this case, the tester can move the mouse
from the rectangle that has alt="" to the link text

KING ET AL

531

img alt="IBM"=

Home

Products & services

select country / r~eginn ma alt="I1BM =t Gartner Symposium. Learn howto get the
: most from your IT. Meet with IBM in Orlando 10/17-22, or

United States

Support & downloads M

follow the news online. Learn more."=

’ Select one

v @

Resources for:

» Home / home office

» Small & medium business
* Large enterprise

= Government

* Education

* Developers

* |BM Business Partners

* Investors

IBM at Gartner Symposium

Learn how to get the most from your IT.
Meet with IBM in Orlando 10/17-22, or
follow the news online. Learn more.

» Journalists

Figure 3
Example of a favelet showing alt text for images

“select country/region” and determine that the
image is in fact inside the anchor and the alt=""
text is acceptable.

With favelets designed specifically for our human
review process—Ileaving to automatic review what
can be done automatically—the human review
process can be streamlined significantly. The fol-
lowing is a brief overview of the steps of the IBM
human review process.

1. Begin with a favelet that alerts the reviewer to
multimedia and audio-file types that require
captions or text transcripts and that must be
examined.

2. Use a favelet to highlight active images (image
links, image map areas, inputs of type image) and
their alt text to be checked for adequacy. Here
and in the other steps of the human review
process, the actual errors, like having no alt text
at all, are not reviewed because they will have
been picked up in the automatic review
process. The favelet alerts the reviewer to, for

532 KING ET AL

example, “1 alt text error and 5 active images to
review.”

3. Use a favelet to highlight formatting images for
which the alt text needs to be checked.

4. Run a favelet on the page to highlight larger
images and their alt text to be reviewed. The
reviewer needs to check those large images for
charts, graphs, or screen shots that may require a
long description; then a favelet is applied to the
page to examine the long descriptions and
determine adequacy.

5. Apply a favelet to determine the number of form
controls for which the labeling needs to be
reviewed and highlight labels and titles.

6. Examine the page to see if data tables are present,
and if so, use a favelet to highlight the table
markup; check that the markup meets accessi-
bility requirements.

7. Test the skip link and record an error if it is
not present or if it does not work with the
keyboard.

There are additional tests that can be applied and
used only if certain data items are present on the

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

sampled page. For example, the automatic test could
look for plug-ins or applets, and if found, trigger a
human review of those objects for accessibility. We
are not including these tests in the first version of
the human review component.

Error similarity and average error profile
calculations

In the preceding section, we discussed how the
WSM uses the difference between two error profiles
to determine whether the Web pages they represent
belong to the same subpopulation. The measure-
ment of the differences between two error profiles is
called the error similarity. There are a variety of
ways to calculate error similarity. The options we
are employing in our prototype models are de-
scribed in the following subsections.

N-space error similarities

Similarity between the accessibility errors of a pair
of pages is represented by a single number. As errors
are often qualitatively different (e.g., alt text errors
and labeling errors), in n-space error similarity, the
different types are considered as n independent
dimensions that describe a multidimensional space.
The numbers of errors of a particular type are
represented as values along the dimension repre-
senting that error type. Thus, vectors within the
error space represent each URL’s error report, and
similarity between pairs of error reports is described
as differences between vector pairs. Two metrics of
error similarity are used, and their usefulness to
represent variance in error similarity is discussed in
the next subsection.

Euclidean error similarity

The similarity of the error reports of two pages is set
as the distance between the endpoints of their error
vectors. The more similar the error profiles of two
pages are, the smaller this distance is. If two pages
have the same kinds and numbers of each error
type, their corresponding vectors are the same, and
the similarity is zero.

Cosine error similarity

Cosine similarity deemphasizes the importance of
the number of errors on similarity and focuses more
on error type. The cosine similarity of vectors is the
cosine of the angle between the two vectors. If the
error vector of one page is a multiple of the error
report of another page, then the similarity is
maximal.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Average error profile

This profile is calculated as the average number of
errors of each type for each URL within a sub-
population or directory.

m \We store, on average, 1.5
million documents a day in the
data repository m

Sampling methods

In the interest of finding an efficient and accurate
sampling method, we compare three different
methods of selecting URLs for human review.

In the first method, random sampling, the pop-
ulation set is the unit of interest, that is, the
application or business unit. Random sampling is
easily accomplished but may be inaccurate. In the
second method, subpopulations are defined as the
top-level URL and the URLs behind it. Only the top-
level URLs undergo human review. This method
has the clear advantage of being easily accom-
plished, and its drawback is that it is not clear that
the top-level URLs will be representative of other
URLs within an application. The third sampling
method defines populations based on folder struc-
ture and error similarity, as described in the
section, “Process description.” The accuracy of
these three sampling schemes can be evaluated
through simulation.

Calculating sample size for a population set
The number of individual URLs selected for human
review is determined according to the mean error
similarity within each subpopulation. We assume
that populations with a greater mean error sim-
ilarity (i.e., URLs that are very divergent in error
profiles), as indicated through WASRP, are also
very divergent in types of errors as assessed by
HRC (see the section “Web-space model assump-
tions”). Thus, HRC sampling is more extensive for
subpopulations with high mean error similarity.
We assume that proportioning sampling in this
way allows more accurate prediction of the fraction
of pages that fail to meet Web accessibility
standards.

In the overview of the process of forming subpop-

ulations in the section “Process description,” we
described how error similarity determines the way

KING ET AL

533

to cluster nearby subpopulations of URLs. We use a
threshold for determining the degree of similarity
sufficient to split or combine folders. This threshold,
named theta, needs to be “tuned” in order to satisfy
prediction accuracy and the amount of time devoted
to conducting reviews.

Making assertions about application
accessibility

We wish to make assertions about the population
based upon both human and automated reviews.
WASRP gives us reports of errors for every URL, but
for errors that can be found only through human
review, we must generalize from our HRC sample to
the entire population. By combining our automated
data with the inferences we generate from human
review, we are able to say, with a good degree of
confidence, that x percent of the pages in a
population are 100 percent compliant with accessi-
bility requirements.

Web-space model assumptions

IWSC and HRC error similarity must co-vary so that
subpopulation formation, based on IWSC, is rele-
vant for HRC. Data from the IWSC automated
review is used to split applications into discrete
populations for HRC sampling; thus the errors that
are found by automated and human accessibility
review must be congruent. The congruence only
need be in the similarity of accessibility errors that
are found in neighboring pages. It is assumed that if
errors found among pages in a population by
automated review are diverse, then the errors found
by manual review will also be diverse. This
assumption can be tested by conducting human
reviews on 100 percent of the pages for a repre-
sentative set of subpopulations and comparing those
results to results made following the proposed
sampling methods.

Measurement of error similarity should be valid,
accurately representing similarity of errors in a way
that could reveal real-world relations among pages,
such as use of similar templates or creation by the
same author. Because the forming of populations
also accounts for tree structure, this assumption is
not as vital as the first; that is, if two pages that
belong to different business units and that were
created by different authors have a high error
similarity by chance, they will not be assumed to be
in the same population.

534 KNG ET AL

CONCLUDING REMARKS

The process of ensuring accessibility of a large Web
presence is bounded by many constraints. Varia-
bility of implementation stems from differing pro-
duction techniques over time and among the many
business units within the firm. Automated analysis
is effective for only a subset of the required features,
leaving the remaining features to undergo human
inspection. Time and cost realities lead us to a
multifaceted approach.

Templates are very beneficial for providing a high
level of compliance for new documents, especially
in the area of navigation features. A robust
education program helps developers and content
producers understand how to ensure standards
compliance for the content they add to the tem-
plates.

Automated techniques crawl and analyze machine-
testable features of the entire inventory, reporting
on areas needing remediation. The most daunting
part of compliance assurance, human review, can be
efficiently guided by statistical sampling processes
that optimally segment the Web space for compli-
ance-level assertions.

The combination of these techniques, repeated at a
regular frequency, identifies problems for remedia-
tion. No single approach can achieve the effective-
ness and cost efficiency of the combination of these
techniques. The use of these techniques results in a
Web presence that is more accessible and more
easily used by a significant population of people
with various disabilities.

ACKNOWLEDGMENTS

Human review, typically including analysis of source
code, has long been a staple of Web accessibility
evaluation. We are grateful to the people of
Accessible Information Services of the National
Information and Library Services of Australia. Their
ideas concerning using favelets for human review of
Web pages are key to the success of this project. We
are grateful to John Slatin and Kay Lewis for their
input.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Massachusetts Institute of Technology, Watchfire Corpora-
tion, The Perl Foundation, Parasoft, or Sun Microsystems, Inc.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

CITED REFERENCES AND NOTES
1. Section 508 of the Rehabilitation Act: Electronic and
Information Technology Accessibility Standard, U.S.
Access Board (2000), http://www.access-board.gov/
508.htm.

2. D. M. West, State and Federal E-Government in the United
States (2003), http://www.insidepolitics.org/
egovtO3us.html.

3. Web Content Accessibility Guidelines, Version 1.0, World
Wide Web Consortium, W3C Recommendation (May 5,
1999), http://www.w3.org/TR/WCAG10/.

4. IBM Accessibility Center Web site, http://www.ibm.
com/able.

5. Screen Reader Visibility Web site, http://css-discuss.
incutio.com/?page = screenreadervisibility.

6. Building In Universal Accessibility + Checklist,
CabinetOffice (May 2002), http://www.cabinetoffice.
gov.uk/e-government/resources/handbook/html/
2-4.asp.

7. D. Featherstone, “More Reasons Why We Don’t Use
Accesskeys,” Web posting (December 6, 2003), http://
WWW.wats.ca/articles/accesskeyconflicts/37.

8. D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak,
A. Tomkins, and J. Zien, “How to Build a WebFountain:
An Architecture for Very Large-Scale Text Analytics,”
IBM Systems Journal 43, No. 1, 64-77 (2004).

9. Bobby was originally developed by the Center for Applied
Special Technologies (http://www.cast.org) and later
purchased by Watchfire Corporation.

10. P. Bronstad and J. Slatin, “Using Web Site Interconnec-
tivity to Find Clusters of Accessibility Problems,”
Proceedings of the Conference on Technology and Persons
with Disabilities (2004), http://www.csun.edu/cod/conf/
2004/proceedings/147.htm.

11. AIR-Austin Web site, http://www.knowbility.org/
air-austin/.

12. J. M. Slatin and S. Rush, Maximum Accessibility, Making
Your Web Sites More Usable for Everyone, Addison-
Wesley, Boston, MA (2003).

13. G. R. Notess, “Bookmarklets, Favelets, and Keymarks:
Shortcuts Galore,” Online 27, No. 4 (July 2003), http://
www.infotoday.com/online/jul03/0nTheNet.shtml.

14. Web Accessibility Tool Bar, National Information and
Library Services (NILS), Accessible Information Solutions
(2004), http://www.nils.org.au/ais/web/resources/
toolbar/index.html.

Accepted for publication February 15, 2005.
Published online August 11, 200S.

Matthew King

IBM Corporate Headquarters, 90 South Cascade Ave., Suite
800, Colorado Springs, CO 80903, (mattking@us.ibm.com).
Mr. King is a staff engineer in IBM’s corporate IT organization.
Since 1998, he has been directing efforts to ensure the
accessibility of all IT infrastructure and tools used in IBM
worldwide. His interest in accessibility extends beyond his 15-
year IBM career as he is blind and has been using and working
on assistive technologies since the 1980s while attending the
University of Notre Dame. In 1989 he received a B.S. degree
with majors in electrical engineering and music and started at
IBM as a manufacturing engineer.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

James W. Thatcher

Accessibility Consulting, 800 Double Bend Back Road, Austin,
TX 78746, (jim@jimthatcher.com). Dr. Thatcher retired in
2000 after 37 years in IBM Research. He received his Ph.D.
degree in computer science from the University of Michigan in
1963. In the early 1980s, after 20 years of research in
theoretical computer science, he developed one of the first
screen access systems which, in 1986, became IBM Screen
Reader for DOS. He then led the development of the first screen
reader for a graphical user interface, IBM Screen Reader/2. In
1996 he joined the IBM Accessibility Center and led the
development of the IBM Accessibility Guidelines. He was vice-
chair of the Advisory Committee impanelled by the Access
Board to propose accessibility standards for Section 508.

Philip Matthew Bronstad

Brandeis University, Department of Psychology, MS 062 PO Box
549110, Waltham, MA 02454, (bronstad@brandeis.edu). Dr.
Bronstad is a postdoctoral fellow at Brandeis University. He
received his Ph.D. degree in quantitative psychology at the
University of Texas at Austin in 2004, where he worked in the
psychology department and at the Institute for Technology
and Learning. Dr. Bronstad studies face perception and
human-computer interaction.

Robert Easton

IBM Thomas J. Watson Research Center, PO Box 218, Yorktown
Heights, New York 10598 (bob_easton@us.ibm.com). Mr.
Easton is a senior Internet analyst in the Information
Technology department at the Watson Research Center. He
manages the Collaborative Computing group that focuses on the
integration of collaborative technology into IBM’s computing
infrastructure. His current research interests include improving
accessibility techniques for Internet-based applications. Mr.
Easton received an M.S. degree in management of technology
from Polytechnic University in Brooklyn, NY. Bl

KING ET AL

535

