
Managing usability for people
with disabilities in a large Web
presence

&

M. King

J. W. Thatcher

P. M. Bronstad

R. Easton

The case for ensuring that Web sites are usable by people with disabilities is strong in

light of the World Wide Web’s ubiquity as an essential customer interface for most

organizations, the considerable disposable income of people with disabilities, and a

growing number of accessibility regulations being applied to public Web interfaces. For

small Web sites having a few thousand pages managed by a single centralized IT

(information technology) department, ensuring accessible content is a well-under-

stood process supportable with a variety of off-the-shelf solutions. For organizations

owning multiple large sites containing millions of pages of content authored by

hundreds or thousands of employees and applications, standards compliance

management is significantly more complex in general and is particularly challenging in

the context of accessibility. This paper describes the design and development of

processes and solutions for establishing and maintaining accessibility for a very large

Web presence. This includes site templates employing advances in coding techniques

that offer dramatic usability improvements for users with disabilities and efficient

enterprise-wide compliance-monitoring processes that cover all accessibility

standards, including standards requiring human judgment to evaluate.

INTRODUCTION

It is no longer difficult to find organizations that have

been working several years to create an accessible

Web presence. However, success is not yet common.

Most surveys reveal large gaps between accessibility

standards and what is implemented. For example,

only 22 percent of the Web sites for United States

government agencies, which have been mandated to

be accessible by Section 508
1

for over three years,

meet Section 508 requirements.
2

Even with management team commitment to Web

accessibility standards, when a Web presence is

large and has hundreds or even thousands of people

and applications who contribute content to it,

developing and managing standards compliance is

complex. Naturally, it is desirable to start by

building compliance at points of entry into the

system. This can be aided by standardizing the suite

of authoring and content management tools sup-

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 KING ET AL. 519

ported in the enterprise and through provision of

templates that provide accessibility features. The

first section of this paper describes innovative use of

template technology that goes beyond providing

compliance; the templates enable even complex

sites to dramatically increase usability for people

with disabilities.

There is no way, however, to control or even be

aware of every point of entry into the Web space in

order to block inaccessible content from entering. A

compliance management system for a large enter-

prise first requires a content discovery mechanism.

Web content discovery systems—known as

‘‘crawlers’’—vary widely in scalability, perfor-

mance, and reliability, and managing them is

complex. Once discovered, content must then be

analyzed for standards compliance. Several com-

mercial products offer automated accessibility anal-

yses of Web documents, and some of these products

incorporate Web crawlers. These tools vary greatly

in their performance and scalability.

After these automated tools discover and analyze

Web content, results must be communicated. For

some enterprises there may be reports on exorbitant

numbers of Web documents addressed to different

content owners, and reliably segmenting the report

data into meaningful categories is very challenging.

For example, the automated tools may generate a

report on 80,000 Web pages that is sent to the

marketing department. This report may state that 30

percent of their content is not compliant, but 20,000

of these pages may actually be owned by the

technical support organization. The second section

of this paper describes how IBM has addressed these

challenges in building an automated compliance

monitoring system for its own internal and external

Web spaces.

Fully automated compliance monitoring, though

useful, cannot indicate whether documents comply

with Web accessibility standards. It can only

identify problems if the violations of standards are

machine-detectable. In fact, more than half of the

provisions included in most standards sets, for

example, U.S. Section 508
1

or the World Wide Web

Consortium (W3C**) Web Content Accessibility

Guidelines (WCAG)
3
, require human judgment to

evaluate. To accurately measure full compliance,

human review of content is mandatory. For a large

Web space, then, this task may not be feasible, and

thus it seems impossible to determine the complete

accessibility picture. One could randomly select a

few sites for human review, but that would not

provide a pan-enterprise perspective. The final

section of this paper describes a new approach to

this problem that leverages knowledge gained from

an automated compliance system to build a sta-

tistical model of the Web space, allowing for the

creation of an economically feasible sampling

system and prediction algorithm that creates a total

compliance picture even for a Web space that

includes millions of documents.

DEVELOPING USABLE ACCESSIBLE SITES

A large number of processes affect the development

and maintenance of accessible Web sites and

applications. For example, authors and developers

can be educated to create accessible content.

Authoring, development, and host services packages

affect how people with disabilities interact with

sites. These topics are discussed on the IBM

Accessibility Center Web site.
4

In this section, we

focus on the development of site templates (such as

those recently implemented in IBM) that have

yielded phenomenal gains, not just in standards

compliance, but in usability enhancements for

people with disabilities. These gains came at little

cost and are very popular with their target audience.

Many people have found the Web more useful as it

grows more capable of information consolidation

and personalization. However, the Web has become

more confusing to people with disabilities. Web

portals, which consolidate many information

sources, are an example of one such simultaneous

advance and step back. A portal page, with its

multiple views into many different kinds of in-

formation, can be a boon to those who are able to

visually scan it like a dashboard and almost

instantly detect new information or points of

interest. On the other hand, portals offer incompre-

hensible chaos to the visitor who is blind or visually

impaired.

Satisfying the requirements described in accessibil-

ity standards is helpful; yet compliance with the

standards is not enough to bring order to the chaos.

The accessibility features described in this section

make a complex page, such as a portal, extremely

usable. Moreover, these features can be used to

great benefit on any type of Web page.

KING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005520

Navigation challenges

Today’s Web portal page is a multicolumn collection

of small blocks or windows, each providing a view

into a specific set of information. The computer

applications that produce these windows are com-

monly called portlets. Each portlet collects and

displays its information independent of others that

may share space on the portal Web page.

As an example, we consider the needs of employees

in a large enterprise with an abundance of infor-

mation resources. The enterprise intranet portal

serves a large employee audience and includes

multiple portal pages, each with a collection of

portlets. In its nonmodified form, the topmost portal

page is the company’s main bulletin board, which

includes company news, stock market information,

an enterprise directory, personal link lists, and

search portlets. A second portal page includes

portlets for work tools, such as asset and expense

reporting, selling information, and personalized

industry news. A third portal page concerns

employees, with portlets for various human-

resources and employee-benefit programs.

To add personalization, employees are given the

ability to move portlets around in order to suit

individual preferences. Any portlet can be moved to

any portal page and positioned on that page as

preferred. The result is a large collection of

information sources and tools that employees add,

delete, and rearrange to meet their own needs and

goals. In essence, every employee has his own

customized enterprise portal.

The challenge in adding accessibility to this portal

is: How can a blind person gain a sense of, and

remember, what and where all the pieces compris-

ing the portal are?

Accessibility solutions

An initial accessibility accommodation for naviga-

tion in this portal consisted of a pair of ‘‘skip links’’

for each portlet, allowing the user to skip to the next

portlet or the previous portlet. These generic aids

might have met accessibility requirements, but they

failed to go beyond compliance and added little to

usability.

Gaining a sense of even a single portal page

containing only a few portlets requires strong

concentration; understanding it is difficult to

achieve. For one blind employee, understanding the

home page took many visits and, finally, some

explanation from a sighted colleague. In order to

improve understanding, the templates used to create

portal pages were enhanced with the following

methods: structured HTML, landmarks, a page

index that accurately described the page, access

keys, and provisions for personalized page styling.

Each of these techniques (described in the following

sections) is embedded directly into the templates,

making it easier for portlet developers and content

producers to keep new pages accessible. An addi-

tional benefit of this approach is that developers no

longer need to remember to include obscure or

infrequently used features.

Structured HTML

HTML coding techniques were changed to use a

semantically correct structure: that is, headings,

paragraphs, and lists. The previous technique used

HTML spans to apply a Cascading Style Sheet (CSS)

appearance to a line of text, making the text appear

like a heading. Spans were eliminated in favor of

true heading markup. These techniques are illus-

trated in Table 1. This change alone had immediate

beneficial impact because assistive tools known as

screen readers have facilities that take advantage of

good structure. For example, a simple screen reader

command can quickly invoke the reading of all

headings on a Web page, giving a blind visitor an

outline of the important information on the page.

Hiding accessibility information

Part of the portal design update consisted of moving

from a layout technique that depended on tables and

‘‘spacer’’ images to one that used CSS technology for

Table 1 Example showing replacement of non-

standard HTML with semantically correct heading;

A. non-semantic technique; B. semantically correct

technique

A ,span class=‘‘page-heading’’.Text for heading
,/span.

...

,span class=‘‘sub-head’’.Text for sub-heading
,/span.

B ,h1.Text for page heading,/h1.

...

,h2.Text for sub-heading,/h2.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 KING ET AL. 521

positioning. Because this new approach used no

spacer images, the traditional method of attaching a

skip link to a spacer image needed reconsideration.

A CSS technique was developed that replaced the

spacer image technique. The technique ‘‘parks’’

accessibility information in an imaginary space far

to the left of what a visual Web browser is capable

of displaying. While screen readers can find this

information, Web browsers do not. This new

method (called ‘‘access’’) was tested with a wide

range of screen readers and is now used for more

than just skip links.
5

See Table 2 for examples of

making accessibility information invisible to the

user.

Landmarks: What part of the page am I listening to

now?

Imagine a shopper not knowing whether he or she is

standing in a shoe store or a bookstore. This is

similar to the experience of trying to understand a

portal page with portlets when using a screen

reader. Knowing which section of the page currently

contains the focus is crucial to understanding the

content presented at that time; that is, the context in

which the information is interpreted is analogous to

the facility in which a shopper finds himself or

herself. Therefore, to provide context, major sec-

tions of the page are marked with landmarks that

are read by screen readers but not displayed in Web

browsers. The portal page includes three landmarks,

shown in bold text in Table 3, followed by the

HTML code for each. Interior ‘‘article’’ pages with

left-hand navigation links and sidebars contain

additional landmarks for those elements.

The portal page index: What portlets are on this

page?

Completely new to this version of the portal is a

portal page index: a table of contents of what

appears on the page. Because the portal can be

highly personalized with a large variety of possible

content, the portal page index is a dynamically

constructed index that matches the precise contents

of the page. It is formulated as a list of links and is

therefore easily handled by at least two of each

screen reader’s built-in functions: the facility for

reading links and the facility for reading lists. A skip

link at the top of the page and a skip link at the start

of each portlet offer quick ways of finding or

returning to the page index. The block of text shown

in Table 4 has the class of ‘‘access,’’ which hides it

off to the left of the browser window. It also has the

identifier ‘‘page-index,’’ which is the target of many

of the skip links within the page.

Table 2 Examples of code that hides accessibility

information: (A) CSS code causes text of class

‘‘access’’ to be hidden from visual display by placing

it 3000 pixels to the left of the browser window; (B)

the class ‘‘access’’ code wraps around a link, hiding

if from view; and (C) the class ‘‘access’’ code wraps

around a paragraph, hiding it from view.

A .access f
position: absolute;

left: -3000px;

width: 500px; g

B ,a class=‘‘access’’ href=‘‘#page-index’’.
Jump to portlet page index,/a.

C ,p class=‘‘access’’.Additional accessibility
information for this site can be found ,a href=‘‘

http://thissite/access-stmt.html’’. on the Accessibility
Statement page.,/a.,/p.

Table 3 Example of landmarks and corresponding

HTML code

Start of masthead ,h2 class=‘‘access’’.Start of
masthead,/h2.

Start portal tabs ,h2 class=‘‘access’’.Start portal
tabs,/h2.

A list of all portlets on this page ,h2 class=
‘‘access’’.A list of all portlets on this page.,/h2.

Table 4 Example of a portal page index.

,div.

,h2 class=‘‘access’’.A list of all portlets on this page.

,/h2.

,ul id=‘‘page-index’’ class=‘‘access’’.

,li.,a href=‘‘#sr’’.Search,/a.,/li.

,li.,a href=‘‘#wn’’.What’s new,/a.,/li.

,li.,a href=‘‘#xx’’.Mail and calendar,/a.,/li.

,li.,a href=‘‘#on’’.On Demand,/a.,/li.

,li.,a href=‘‘#ma’’.Market report,/a.,/li.
,li.,a href=‘‘#el’’.Essential links,/a.,/li.

,li.,a href=‘‘#ne’’.News,/a.,/li.
,/ul.

,/div.

KING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005522

Portlet headings: Coding as an HTML heading

makes them easier to find

Each portlet has a heading (an HTML heading level

element) containing the portlet’s title, a skip link to

the page index, and several properly annotated

images providing edit, maximize, minimize, and

help functions. Simply coding the portlet’s title as a

legitimate HTML heading makes each of the portlet

headings easier to discover with a screen reader. See

Table 5 for sample HTML showing the use of H2, a

semantically correct heading element that can be

found and read by screen readers.

Access keys: Fast access to common Web page

facilities

Access keys are helpful to those who cannot use a

mouse, and are gaining popularity for providing fast

access to common Web page facilities. A de facto

standard is slowly emerging
6

but is not yet accepted

by any standards organization (e.g., W3C). We used

the following subset of the emerging standard:

Alt þ 0 links to this site’s accessibility statement.

Alt þ 1 links to the portal home page.

Alt þ 2 skips to the index of portlets on this page.

Alt þ 9 links to the feedback page.

The Alt þ 0 key is well known as a pathway to

finding accessibility information. Both blind people

and people with mobility impairments often try Altþ
0 to learn of features that a site offers.

Some controversy surrounds the use of Alt keys for

accessibility information,
7

but there are no better

alternatives currently available. The use of Alt keys

has become quasi-standard, and people aware of

access keys will expect to use the Alt key combina-

tions. Lastly, experienced screen reader users are

accustomed to the keystroke combinations used by

their screen reader. For example, Shift þ Alt is the

access key combination in IBM Home Page Reader,

whereas the Altþ Plus key works with the JAWS**

(Job Access with Speech) screen reader.

Personal style sheets: Overriding page styles

What if one needed to override page styles? Every

page on the site carries an identifier in the body tag

that can be used to declare styles specifically for the

site. For example, a visitor with low vision might

prefer a font-scaling factor for this site but does not

want to change the browser setting that affects all

sites. A user style sheet, currently supported by all

modern browsers, is the place to add a declaration

based on the special identifier included on all pages

(for example, every page on the IBM intranet site

includes a BODY element stating ,body id=

"w3-ibm-com".). The example shown in Table 6

increases font size to 140 percent of normal size. It

could just as easily be crafted to change font and

background colors for higher contrast.

Help for people with other disabilities

Though many of the methods described in this paper

seem intended to help only users who are blind,

some help people with other disabilities. Personal

style sheets, as just described, help those with low

vision. Scalable fonts, not described in detail, but

easy to implement, also help those with low vision.

Access keys help not only users who are blind, but

those with mobility impairments who have difficulty

using a mouse. For these people, access keys offer

rapid access to the search field and feedback links.

On pages inside the portal, pages formatted as

normal articles, an additional feature helps people

with mobility impairments. A ‘‘Skip to main

content’’ link is made visible the first time they

touch the ‘‘Tab’’ key after loading the page. This

link saves many additional ‘‘Tab’’ keystrokes in

moving through the usual plethora of navigation

links.

Benefit examples
A person able to see and use a mouse can survey a

portal page in a matter of seconds and see what is

available. Without the assistance of the special

accessible usability features described in this article,

a blind person would find it almost impossible to

Table 5 Example of the use of a semantically correct

HTML level-2 heading.

,div class=‘‘portlet-head-blue-med’’.

,h2 class=‘‘portlet-head-blue-med’’.Essential links
,/h2.

,span class=‘‘portlet-icons’’....multiple image
declarations skipped for simplicity...,/span.

,/div.

Table 6 Example of a personal style sheet.

userContent.css (personal style sheet file)

#w3-ibm-com ffont-size:140% !important;g

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 KING ET AL. 523

accomplish the same task. The blind visitor would

make a first attempt by sequentially reading every

word on the page and attempting to discern the

structure from semantics. The result for an experi-

enced screen reader user, after 7 to 12 minutes of

careful inspection, would be a confused picture of

the content.

Instead, with these accessibility features a screen

reader user can press the screen reader’s hot key to

list all headings on a page in outline form. It takes

less than 15 seconds to press the hot key and listen

to the screen reader read the entire list. The blind

user’s understanding of what is available is now

very similar to that of a sighted user. This is a

productivity improvement of as much as 4,800

percent! This may seem like a staggering number,

especially given the simplicity of the solution.

However, it is typical of the magnitude of benefit

that can be obtained with attention to the usability

of accessible design.

Summary

Using the techniques described in this paper, people

who are blind or visually impaired do not need, as

they have in the past, to memorize the position or

sequence of every item on complex Web pages. The

system now provides lists of headings, lists of links,

page indexes, landmarks, and access keys to help

improve their ability to move more quickly to the

information they want and to add information

context.

The portal implementation of the features we have

described has resulted in one of the first portal sites

to offer a set of accessibility features this rich in

capability and choice. Embedding these ease-of-

access features directly into templates greatly

improves the probability that new pages are both

accessible and usable.

AUTOMATED PROGRESS MEASUREMENT

As action plans (such as the widespread adoption of

templates) to improve the accessibility of content

are executed, we expect to see improvement in the

level of compliance to standards. To manage this

progress, metrics are essential in maintaining levels

of quality of the system. Obviously, metrics con-

stitute overhead, so managing cost through effi-

ciency is also important. In this section, we will

survey the approach IBM has taken to developing

the automated compliance reporting component of

its Web Accessibility Standards Reporting Process

(WASRP).

Business requirements
The WASRP has two primary objectives: to inform

the chief information officer of progress by division

or business unit, and to give application owners and

portfolio managers the information they need to

plan and prioritize remediation efforts. Thus, it is

important that the process be capable of delivering

data that can be categorized by business unit and

owning manager.

Each business unit executive has a representative on

the team responsible for enforcing Web accessibility

improvement. These business unit representatives

and their executives need new data often enough to

manage progress toward their annual targets, but it

takes several weeks to receive a report, review it,

and lead a specific application through the change

process. New data indicating the same trends as

previous data is not of much use. To allow sufficient

time to ensure the opportunity for significant and

useful change in the measurements, a 30-day

minimum interval between one report’s delivery

date and the beginning of the next reporting cycle

was set. Because business unit representatives

needed data at least every 90 days, preferring it in 60

days if possible, the report generation cycle time

was set from 30 to 60 days.

Because IBM’s corporate mandate requiring that all

the information technology used or produced by IBM

be accessible does not designate any exceptions, the

scope of the WASRP measurements is any content on

IBM’s Internet or intranet sites. This is a wider scope

than that of any other IBM Web content standard.

The WASRP, when it began in 2000, broke new

ground in IBM. The only application in IBM that had

any measure of how much content existed was the

Web search application. The WASRP even included

sites that the search application filtered out. This all-

inclusive scope would test our concept of scalability.

Technology requirements

The preceding business requirements led to four

primary components for the accessibility standards

reporting process:

1. Web crawler: Crawls each Web space (Internet

and intranet) to locate and capture the content for

analysis.

KING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005524

2. Analysis engine: Analyzes the Web content for

standards violations.

3. Ownership identification: Identifies the owner of

each page of content.

4. Report generation: Combines the analysis data

with the ownership data to generate reports.

Scalability

In March of 2000, when WASRP development

began, the accessibility standards for U.S. Section

508 were still being written. Because we could not

locate any existing work in the area of Web

accessibility that approached the magnitude of what

we were about to attempt, for practical reasons we

started WASRP development by working only on

public Internet sites. This kept our mission in line

with the business priority of focusing first on the

customer while giving the development team an

opportunity to begin its activity in a relatively small

Web space (roughly 3.5 million pages). It took 18

months to move from there to the intranet. That step

proved to be surprisingly more difficult than

anticipated. We thought we had a scalable solution,

but in 2002, when we attempted to go from a 3.5-

million page capacity to a 30-million page capacity,

we learned what scalability really meant. This jump

in scale affected every component of the process,

but crawling was the process most negatively

affected.

Performance

The primary factor affecting WASRP cycle time is

the speed at which data can be moved across

networks. Thirty million pages of Web content is a

great deal of data, and it takes time to find it and

read it. In 2002, we set our absolute minimum

throughput requirement at 30 million pages in 60

days, or 500,000 pages a day. Our projected target

was one million pages a day. The process has been

performing very close to that level since January of

2003, and with a production hardware upgrade, the

one-million-page target will easily be surpassed.

Experimentation with the architecture has been

done and continues (see Figure 1), to assess the

effects of component rearrangement, changing the

amount of parallelism in the process. One funda-

mental principle seems to apply: the less we move

the data, the better. This tends to result in an

architecture which is more serial than parallel.

Intuitively, this does not seem optimal, and we

believe this is an area where there is still plenty of

room for further study.

The crawling component: Content discovery and
retrieval
Because the scope of our implementation included

all content available on IBM’s Internet and intranet

sites, it was necessary to determine what that

entailed. When the project began, we had an

estimate of the number of Web pages from the

database that was used to manage the enterprise

application portfolio, which had been greatly im-

proved as part of IBM’s Y2K effort. We knew there

were some classes of sites that were not included in

that database, but we did not know how much

content was on those sites.

In any large enterprise, the only way to really know

how much Web content is online is to employ a Web

crawler. This is a software package that, given a set

of starting Web pages, looks for and follows every

active element (link, button, etc.) and catalogs its

findings. As the crawler is analyzing a Web page to

find all the other pages to which it points, a process

known as discovery, it can also store the page

content in its repository. We evaluated several

crawlers based on the criteria of the quality of

their discovery abilities, their speed, and their

scalability.

Some of the accessibility checking tools that were

available when we started the project included a

crawling component. We quickly found, however,

that the tools were not capable of meeting any of our

minimum criteria. We learned that enterprise-scale

Web crawlers are a very advanced technology

Figure 1
WASRP architecture

Report
Delivery
FTP Site

Cluster for
Intranet Crawler

Reporting
System

Portfolio
Database

Cluster for
Internet Crawler

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 KING ET AL. 525

requiring enormous resources to develop and

maintain. The field continues to evolve rapidly

along with the Web. During the last four years, we

have investigated approximately six crawlers, and

& It is desirable to start by
building compliance at points
of entry into the system &

we have completely changed the crawling package

twice. In our present implementation, crawling is

built on an IBM research technology known as

WebFountain*.
8

With our present WebFountain configuration, we

store, on average, 1.5 million documents a day in

the data repository. Storing the documents in a local

data repository provides a tremendous throughput

advantage because the checker described in the next

section does not have to go back to the Web to read

the content; the checker can access the content in a

local database, which is faster by nearly three orders

of magnitude.

Compliance analysis
Once we have crawled the Web space and stored all

the content we wish to analyze in the crawler’s data

repository, we have to analyze it for accessibility

errors. In March of 2000, most of the tools for Web

accessibility checking were still in a very rudimen-

tary state, except for Bobby** Version 3.2.
9

Initially,

we built Perl** scripts that ran the command line

version of the Bobby tool to analyze the data in local

files and write reports in XML. This proved to be

unreliable and slow as well as clumsy to manage,

especially when we were trying to run multiple

instances of Bobby at one time to increase

throughput.

We needed a better way to control the Bobby tool.

Only the checking function was needed, and all the

other functions built around it were interfering. We

approached the Bobby tool developers, who were at

that time at the Center for Applied Special Tech-

nologies, to see if we could access Bobby’s checking

function through an application programming in-

terface (API). They had not intended their Java**

class definitions to work as an external API, but the

definitions were designed well enough that using the

definitions as an API became a superb solution. We

developed a middleware package, IBM Web Stan-

dards Checker (IWSC), that reads data from the

crawler repository, feeds it to a configurable number

of instances of Bobby that are running in parallel,

and then writes the results to a reporting database.

This gave us the control we needed to get

throughputs in excess of 80,000 pages per hour on a

single CPU system with 1 gigabyte of RAM running

at 1.5 MHz. By running five such machines in

parallel, we could process 250,000 to 400,000 pages

per hour. Because the architecture design includes

hardware scalability, by adding more hardware, we

could increase that throughput simply by adding

more systems to the cluster.

Since then, we have abstracted the IWSC Java

interface with Bobby in an IWSC checker interface

class. This allowed us to write Java classes to serve

as wrappers around the APIs of other checking

programs and plug them into IWSC. We have

written such an interface class for WebKing**, and

we can now plug WebKing’s checking capabilities

into WASRP. The extensibility of this architecture

has proven to be an extremely valuable feature as

we work to improve and expand our checking

capabilities.

Content ownership identification

In order to generate reports that categorize data by

line of management, we need means for identifying

a management owner of the pages discovered by the

crawler. One option we have considered is to use the

meta-data from the page content. Some IBM content

has meta-data tags that name the page author. We

could extract that information, look up the author in

our enterprise directory of employees, and associate

the page with the employee’s business unit. That

meta-data, however, is frequently not present.

Another option is to compare the URL (uniform

resource locator) string to a list of URLs for which

the owner is known. This, for now, has proven to be

the better option.

The IBM enterprise portfolio management database

contains data about IBM’s Web applications. Typi-

cally, an application can be thought of as a Web site,

or a collection of Web sites, differing only in

localization features, that has been developed to

serve a specific set of business objectives. The

portfolio database record for each application

includes the URLs for each deployment of that

application. We refer to the URL for the home page

as the top-level URL.

KING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005526

The Java program we developed to assign each of

the 30 million URLs discovered by the crawler to an

application is called Internet Resource Ownership

Identifier (IROI). To assign a URL found by the

crawler to an application, IROI compares the URL to

top-level URLs in the portfolio database to determine

if the URL that the crawler found is a child of any of

the top-level URLs. For example, if the crawler

found http://www.ibm.com/employment/uk/

faq.html, IROI would recognize it as belonging to the

application listed in the portfolio with the top-level

URL http://www.ibm.com/employment/uk/. Un-

fortunately, the process is not always that simple.

Sometimes the form of the URL in the portfolio

database is not the same as what the crawler finds.

For instance, the portfolio database could accurately

list the same application with a home page as http://

www.uk.ibm.com/employment. Note the different

location of the country code. Nonetheless, it refers

to the same home page. If we load that page and

click on the link labeled ‘‘FAQ’’ (frequently asked

questions), the address that is displayed in the

browser address bar is http://www-5.ibm.com/

employment/uk/faq.html. Given these last two

forms of the URL string, it is now less obvious that

the FAQ page is a child of the home page. Never-

theless, it is, and IROI can determine that. There is a

wide variety of such ‘‘tweaking’’ of URL strings that

must be accounted for in IROI’s algorithms. The

tweaking is configurable in several ways, primarily

through a set of Java classes that implement an

abstract class that represents an allowed tweaking.

There are some pages, such as portals, that can

contain content from multiple sources. The content

thus may have multiple owners that may even be

from different business units. At this time, our

measurement system makes the portal owner

responsible for overseeing compliance of portlet

content.

This has debatable merit, but is presently a

technological limitation. To resolve this issue, we

first need a means for the content-checking engine

to provide a portlet context for any errors that it

may find. Then, we would need a means other

than URL string analysis to identify the owner of

the portlet (this would likely be analysis of meta-

data).

As IWSC can run a configurable number of checker

instances in parallel, IROI can run a configurable

number of URL comparison threads in parallel. It

presently runs on a server with four 700 MHz

processors and has an average throughput of over

300,000 URLs per hour.

Reporting
The accessibility error data from IWSC and the

ownership data from IROI are stored in a DB2*

database where they can be combined, by URL, to

generate reports. We run a Java application that

generates standard reports in comma-separated-

value format for delivery to the business unit

representatives, but, with all the data in a relational

database, it is also easy to generate any kind of

custom report that is desired.

Summary

The automatic compliance reporting component of

WASRP is an assembly of component technologies

that all have other uses beyond automated Web

accessibility-standards-compliance reporting. We

built the ability to use best-of-breed component

technologies in the system by designing an archi-

tecture that allows the component technologies

to be individually upgraded or changed. This has

also allowed the system’s functions to be more

easily expanded, for example, to include

reporting on other types of standards. This type

of flexibility has allowed us to economically meet

all our business requirements, especially the

most difficult challenges of performance and scal-

ability.

INTRODUCING THE HUMAN REVIEW
COMPONENT

Automated compliance reporting provides a very

limited view of accessibility compliance status. It

cannot report the actual level of compliance. For

instance, with strictly automated checking, it is not

possible to make a claim like ‘‘90 percent of our Web

pages are fully compliant with accessibility stan-

dards.’’ As explained earlier, it is an extremely

useful tool, especially when it comes to monitoring

progress in the first phases of compliance efforts

because it can identify sources of problems, but it is

not capable of identifying pages where there are no

problems at all.

More than half of the provisions included in most

standards sets, for example, the U.S. Section 508

standard
1

or the W3C WCAG guidelines, require

human judgment to evaluate. In addition, among

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 KING ET AL. 527

the violations that are machine-detectable, the

absence of a violation does not equate to compli-

ance. For example, the lack of an alt text error does

& Access keys help not only
users who are blind but
also those with mobility
impairments who have
difficulty using a mouse &

not mean that alt text standards are met. This is

because the alt text standards require that alt text be

appropriate, a matter of human judgment that is

beyond the capability of any existing or potential

software.

The total IBM Web space includes nearly 30

million pages. If one person reviewed one page

every 5 minutes, the evaluation would be finished

in 1200 years. Alternatively, we could pick the top

100,000 pages and try to get it done in a month;

for that we would need 53 people working full

time.

The human review component (HRC) of WASRP

addresses this challenge with nonrandom

sampling and statistical inference. The statistical

approach included in the solution to this problem is

the core of what makes it both feasible and

revolutionary.

Fundamentals of the method

If one were to conduct human accessibility reviews

of a few hundred randomly selected pages out of

several million pages on IBM’s Internet presence,

the results would not give much useful information

about how accessible the remaining millions are.

There are simply too many factors, such as different

authors or departments, amount of training, or static

versus dynamic pages, affecting the accessibility of

the pages to expect the random sampling to predict

how accessible all the pages are with any useful

degree of certainty.

In light of this, how can a few hundred human

reviews be made more representative of the

remainder of the pages? Is it possible that a method

for choosing pages to review exists which would

enable the human review results for those pages to

predict the accessibility of all the pages? This can be

done by leveraging the available knowledge of the

entire population of millions of pages that we have

from two primary sources: our map of Web pages to

the IBM application portfolio and automated

checking and mining of information from every Web

page in the total population.

First, our mapping of the millions of pages to IBM

Web applications (as described in the section

‘‘Content ownership identification’’) derived from

our portfolio management system provides a basis

from which we can make further meaningful

subdivisions of the pages, to generate representative

samples. By analogy, demographers divide the U.S.

population into smaller groups based on an attribute

such as income and then independently sample

those groups based on already well-established

knowledge of the groups’ characteristic behaviors.

In the IBM Web space, we must work from available

information about each application and sample the

application economically in order to leverage our

predictions of the overall state of the application’s

accessibility. We have three categories of available

and useful knowledge for each application: the tree

structure of the applications, the distribution of

machine-detectable accessibility errors within each

application, and a partial understanding of the

HTML structure of machine-scanned pages.

The division of the millions of pages into individual

Web applications is immensely valuable because it

provides a starting point for analyzing the tree

structure of the Web space. This first division

provides a list of top-level pages for each Web site

that represents starting points for subdivision into

samples of pages that have similar characteristics.

Knowledge of the tree structure (top-level pages

and subsequent server directory structure) of a set

of Web pages is valuable because accessibility

errors tend to cluster on pages within the tree

structure.
10

Our second primary source of information about the

entire population of millions of Web pages comes

from machine-automated checking and mining of

structural information from the Web pages. From

this we know what machine-detectable accessibility

errors are present, and we can also collect some

measures of the HTML structure of those pages, for

example, counts of graphics, headings, or form

elements. Because Web developers who do not build

KING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005528

accessible Web pages tend to make both mistakes

that are machine-detectable and mistakes that are

not machine-detectable, it is reasonable to assume

that pages which are similar in their distributions of

machine-detectable errors and structure will also be

similar in their distribution of errors that cannot be

detected automatically. This assumption is the key

to reaching a worthwhile level of certainty with a

practical level of investment in manpower in

conducting human reviews.

By traversing the application tree structure and

measuring the similarities of pages with respect to

machine-detectable traits, we can mathematically

determine sets of related pages for which we expect

the distribution of errors that are not machine-

detectable to be similar. We can then sample a very

small number of pages in each set and have a high

degree of certainty that the distribution of errors in

the sample is statistically equivalent to the distri-

bution of errors in the set.

Scope of outcomes

The scope of measurements produced by the HRC is

defined in terms of the Web space and the

granularity of supportable subdivisions of the Web

space. There are two Web spaces: Internet and

intranet. There are three possible levels of gran-

ularity in each Web space: enterprise, business unit,

and application. Reporting costs increase with the

level of granularity; for example, making claims

about each application would require that every

application be sampled.

Until we have a working prototype of the HRC

process, it is not possible to know what level of

granularity can be supported within the financial

and cycle-time constraints under which the pro-

duction version of the process will operate. We

believe it will be practical to create reports that

support statements such as ‘‘X percent of Internet

content and Y percent of intranet content owned by

business unit U is compliant.’’ In addition, the HRC

measurements will also provide data describing the

degree of noncompliance, for example, ‘‘Typical

pages owned by business unit U have N severe

problems.’’

We can estimate the cost for the most detailed and

most expensive reports as follows. The process is

designed to yield an average review time of five

minutes per page. The 3.5 million pages of Internet

Web space are divided into approximately 200

applications. With experimental modeling, we

& When we attempted to go
from a 3.5-million page
capacity to a 30-million page
capacity, we learned what
scalability really meant &

estimate the average number of pages (p) that will

be required from each sample, and the average

number of samples (s) required from each applica-

tion, in order to support an acceptable degree of

certainty. This results in a period of time equal to

(p�s�200 reviews)�(5/60) hours to review the Internet

Web space. The intranet Web space is divided into a

similar number of applications. The values for p and

s, however, may be different for the latter Web

space.

Process description

The HRC process has three basic parts. First, URLs

for sample page sets are extracted from the

automated-compliance-reporting data repository.

Second, the sample of URLs undergoes human

review for accessibility errors. Finally, the resulting

data is merged with the data from the automated-

compliance-reporting process to yield a complete

report. The sample set, extraction, and merge

algorithms depend on the statistical model of the

Web space, which we now describe.

The error profile of a Web page is a numeric

representation of all the accessibility errors on that

page. Two common methods for defining an error

profile are a pair (number of priority-one errors,

number of priority-two errors) and a set fnumber of

type-one errors, number of type-two errors, . . . ,

number of type-n errorsg, where priority is a

categorization by severity of error and type one, type

two, . . . type n are tests for a specific type of error.

(The concept of an error profile can be extended to

include structural similarity by adding components

that are counts of structural elements.) A group of

pages has an average error profile. The Web-space

model makes it possible to predict the average

profile of non-machine-detectable errors for a

population based on errors found during human

review of a sample of the population.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 KING ET AL. 529

The application that extracts the sample URLs from

the data repository for the automated-compliance-

reporting process is called the Web-space modeler

(WSM). The first task of the WSM is to divide the

total population of URLs in the Web space into

subpopulations to be sampled (see Figure 2). It does

this by the use of two principles. First, similar

problems are likely to be found in similar locations

within an application. Second, differences between

error profiles suggest the boundaries of page clusters

(subpopulations) within the application. The WSM

uses the errors found by automated compliance

checking to create error profiles for every page in the

total population.

Assuming we can afford the finest level of

granularity, each application will contain at least

one subpopulation. In this case, the WSM will

examine all the pages in each application to

determine if the pages in that application should be

divided into multiple subpopulations. The WSM

starts with the top-level page of an application that

was identified during the ownership identification

process (see the section ‘‘Content ownership

identification’’) of the WASRP. It first compares the

error profiles of pages in the same directory as the

top-level page, grouping pages with sufficiently

similar error profiles together in a subpopulation.

As the attention of the WSM passes from the

‘‘roots’’ to the ‘‘leaves’’ of the directory tree, pages

are assigned to existing or new subpopulations

sequentially, starting with pages in directories that

are closest to the directory of the top-level page. If

the unassigned URLs have error profiles similar to

those of their nearest neighbor, they are assigned

to the subpopulation to which the neighbor

belongs. Otherwise, a new subpopulation is created

to contain the dissimilar pages.

After the WSM assigns the pages of an application to

subpopulations, it selects a sample set of pages

within each subpopulation for human review. When

human reviewers find errors on pages, those errors

are assumed to be characteristic of pages within the

subpopulation they represent. The number of pages

selected for human review depends on the number

of subpopulations. Because labor is expensive

compared to automatic review, there is a motivation

to keep the number of subpopulations low. The

number of subpopulations depends largely on how

similar we wish error profiles for clustered URLs to

be. There is also the possibility, if the number of

subpopulations is low compared to the amount of

time available for human review, that we will be

able to oversample from subpopulations that hap-

pen to contain URLs with relatively diverse error

profiles.

Human page review procedure

This section describes the steps necessary for the

human review procedure.

Choosing an error profiling method

The type of error profile we choose to generate with

the human review procedure determines the accu-

racy and efficiency of the procedure, which is very

important for containing expense.

An example of an inexpensive profile is an

‘‘excellent-good-fair-poor’’ scale in which ‘‘excel-

lent’’ means the page has no errors of any kind,

‘‘good’’ indicates one error, ‘‘fair’’ indicates two to

four errors, and ‘‘poor’’ indicates five or more errors.

Using this profile, it is likely that many pages would

be rated as ‘‘poor’’ after evaluation of only one or

two criteria, and all evaluation of remaining criteria

could be skipped. If knowledge of which types of

errors are most common is used to order the criteria,

this could result in a very efficient procedure.

A downside to such a simple profile is that it does

not include any means for weighting the importance

of a criterion and that it does not allow a great deal

of distinction among applications; for example, two

applications could be rated as fair, but one might be

much worse than the other. This reduces the value

Figure 2
The Web-space modeler

1. All URLs
 and their
 accessibility
 errors

2. Top-level
 URLs

Web-Space Modeler

Similar
Error
Profiles

Dissimilar
Error
Profiles

Output

URLs in
Population 1

URLs in
Population n

URLs in
Population 3

URLs in
Population 2

Input

KING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005530

of the data to managers who may be prioritizing

remediation expenses.

Some accessibility errors are more serious than

others. For example, missing or misleading alt text

errors on an image link or an image button are

serious errors and roughly of equal importance.

Those errors on active images are more serious than

missing alt text on an informational image. Finally,

missing alt text on formatting images is of the least

importance.

One way to score the results of the human review is

a list of error counts: the number of severe errors,

moderate errors, and minor errors. This is related to,

but not the same as, the priority distribution of

errors employed in the automatic review. In

particular, missing alt text on a formatting image is a

priority-one error in the automatic review but it is

viewed here as a minor error. We call this a

‘‘severity error profile.’’

The relationship between human-review error re-

porting and automatic-review error reporting is

important. We are projecting the findings about

errors in a small subset of the whole population. The

more homogeneous the population is, the better that

prediction will be. In a population where half the

pages have 10 priority-one errors and half have 10

priority-two errors, if error reporting takes account

only of error count, the whole population is seen as

homogeneous. On the other hand, if the error profile

is taken to be a pair of numbers, priority-one errors

and priority-two errors, then the populations are

almost as different as possible, as measured by the

error similarity calculations presented in the section

‘‘Error similarity and average error profile calcula-

tions.’’

There is an interesting Web accessibility competi-

tion called the Accessibility Internet Rally,
11

which

is staged in cities around the United States. For the

rally, Web design and development teams are

trained in accessibility issues and then paired with

nonprofit organizations for whom they build Web

sites in a one-day rally. Volunteer judges then judge

the sites, and the winning teams are announced at a

gala event. It is important there too to limit the

amount of time required for judging. That process
12

is similar to the severity error profile described

earlier except that at most three errors are counted

in each category. With no errors in a given category

(e.g., severe errors), the team gets zero points; one

error yields five points; two errors yield nine points,

and three errors results in the maximum score

which is 10 points. Of course, high scores are bad.

This ‘‘capped’’ severity error profile has the benefit

that the judge or human reviewer can just stop

counting or analyzing once three errors in a given

category are found.

Our human review procedure collects data that

can be formulated in several ways; obviously the

error count could always be used, but we can also

obtain a count of errors by error type or by error

severity.

Procedure outline

In designing the human review process, we were

confronted with two major requirements that

seemed to be at odds with each other. On the one

hand, we wanted to minimize the time required to

complete the human review on each page; on the

other hand, we wanted to maximize the likelihood

of finding errors if errors were present.

The tools we use for human review are crucial in

order to meet time requirements. We use ‘‘favelets’’

that modify the visible page by highlighting con-

structs (borders around images) and adding text to

the page (the alt text on the images). Figure 3 shows

a sample of part of the IBM Home Page with a

favelet having highlighted active images and dis-

playing their alt text.

Favelets (also called ‘‘bookmarklets’’) have been

around for a long time,
13

but only recently has the

idea been applied to accessibility in the work of the

Accessible Information Services of the National

Information Library Service of Australia.
14

Favelets

consist of JavaScript** code that is associated with a

favorite link in a browser. When the favelet is

activated, the current page can be modified.

As seen in the figure, each image has alt text

corresponding to the text on the image, with two

exceptions. The ‘‘skip to main content’’ link is an

invisible image, and there is another image just

below the IBM logo that is suspicious. Active images

should never have empty alt text (i.e., alt¼""),

which this one does, unless there is text in the

containing anchor that specifies the target of the

link. In this case, the tester can move the mouse

from the rectangle that has alt¼"" to the link text

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 KING ET AL. 531

‘‘select country/region’’ and determine that the

image is in fact inside the anchor and the alt¼""
text is acceptable.

With favelets designed specifically for our human

review process—leaving to automatic review what

can be done automatically—the human review

process can be streamlined significantly. The fol-

lowing is a brief overview of the steps of the IBM

human review process.

1. Begin with a favelet that alerts the reviewer to

multimedia and audio-file types that require

captions or text transcripts and that must be

examined.

2. Use a favelet to highlight active images (image

links, image map areas, inputs of type image) and

their alt text to be checked for adequacy. Here

and in the other steps of the human review

process, the actual errors, like having no alt text

at all, are not reviewed because they will have

been picked up in the automatic review

process. The favelet alerts the reviewer to, for

example, ‘‘1 alt text error and 5 active images to

review.’’

3. Use a favelet to highlight formatting images for

which the alt text needs to be checked.

4. Run a favelet on the page to highlight larger

images and their alt text to be reviewed. The

reviewer needs to check those large images for

charts, graphs, or screen shots that may require a

long description; then a favelet is applied to the

page to examine the long descriptions and

determine adequacy.

5. Apply a favelet to determine the number of form

controls for which the labeling needs to be

reviewed and highlight labels and titles.

6. Examine the page to see if data tables are present,

and if so, use a favelet to highlight the table

markup; check that the markup meets accessi-

bility requirements.

7. Test the skip link and record an error if it is

not present or if it does not work with the

keyboard.

There are additional tests that can be applied and

used only if certain data items are present on the

Figure 3
Example of a favelet showing alt text for images

KING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005532

sampled page. For example, the automatic test could

look for plug-ins or applets, and if found, trigger a

human review of those objects for accessibility. We

are not including these tests in the first version of

the human review component.

Error similarity and average error profile
calculations
In the preceding section, we discussed how the

WSM uses the difference between two error profiles

to determine whether the Web pages they represent

belong to the same subpopulation. The measure-

ment of the differences between two error profiles is

called the error similarity. There are a variety of

ways to calculate error similarity. The options we

are employing in our prototype models are de-

scribed in the following subsections.

N-space error similarities

Similarity between the accessibility errors of a pair

of pages is represented by a single number. As errors

are often qualitatively different (e.g., alt text errors

and labeling errors), in n-space error similarity, the

different types are considered as n independent

dimensions that describe a multidimensional space.

The numbers of errors of a particular type are

represented as values along the dimension repre-

senting that error type. Thus, vectors within the

error space represent each URL’s error report, and

similarity between pairs of error reports is described

as differences between vector pairs. Two metrics of

error similarity are used, and their usefulness to

represent variance in error similarity is discussed in

the next subsection.

Euclidean error similarity

The similarity of the error reports of two pages is set

as the distance between the endpoints of their error

vectors. The more similar the error profiles of two

pages are, the smaller this distance is. If two pages

have the same kinds and numbers of each error

type, their corresponding vectors are the same, and

the similarity is zero.

Cosine error similarity

Cosine similarity deemphasizes the importance of

the number of errors on similarity and focuses more

on error type. The cosine similarity of vectors is the

cosine of the angle between the two vectors. If the

error vector of one page is a multiple of the error

report of another page, then the similarity is

maximal.

Average error profile

This profile is calculated as the average number of

errors of each type for each URL within a sub-

population or directory.

& We store, on average, 1.5
million documents a day in the
data repository &

Sampling methods
In the interest of finding an efficient and accurate

sampling method, we compare three different

methods of selecting URLs for human review.

In the first method, random sampling, the pop-

ulation set is the unit of interest, that is, the

application or business unit. Random sampling is

easily accomplished but may be inaccurate. In the

second method, subpopulations are defined as the

top-level URL and the URLs behind it. Only the top-

level URLs undergo human review. This method

has the clear advantage of being easily accom-

plished, and its drawback is that it is not clear that

the top-level URLs will be representative of other

URLs within an application. The third sampling

method defines populations based on folder struc-

ture and error similarity, as described in the

section, ‘‘Process description.’’ The accuracy of

these three sampling schemes can be evaluated

through simulation.

Calculating sample size for a population set
The number of individual URLs selected for human

review is determined according to the mean error

similarity within each subpopulation. We assume

that populations with a greater mean error sim-

ilarity (i.e., URLs that are very divergent in error

profiles), as indicated through WASRP, are also

very divergent in types of errors as assessed by

HRC (see the section ‘‘Web-space model assump-

tions’’). Thus, HRC sampling is more extensive for

subpopulations with high mean error similarity.

We assume that proportioning sampling in this

way allows more accurate prediction of the fraction

of pages that fail to meet Web accessibility

standards.

In the overview of the process of forming subpop-

ulations in the section ‘‘Process description,’’ we

described how error similarity determines the way

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 KING ET AL. 533

to cluster nearby subpopulations of URLs. We use a

threshold for determining the degree of similarity

sufficient to split or combine folders. This threshold,

named theta, needs to be ‘‘tuned’’ in order to satisfy

prediction accuracy and the amount of time devoted

to conducting reviews.

Making assertions about application

accessibility

We wish to make assertions about the population

based upon both human and automated reviews.

WASRP gives us reports of errors for every URL, but

for errors that can be found only through human

review, we must generalize from our HRC sample to

the entire population. By combining our automated

data with the inferences we generate from human

review, we are able to say, with a good degree of

confidence, that x percent of the pages in a

population are 100 percent compliant with accessi-

bility requirements.

Web-space model assumptions

IWSC and HRC error similarity must co-vary so that

subpopulation formation, based on IWSC, is rele-

vant for HRC. Data from the IWSC automated

review is used to split applications into discrete

populations for HRC sampling; thus the errors that

are found by automated and human accessibility

review must be congruent. The congruence only

need be in the similarity of accessibility errors that

are found in neighboring pages. It is assumed that if

errors found among pages in a population by

automated review are diverse, then the errors found

by manual review will also be diverse. This

assumption can be tested by conducting human

reviews on 100 percent of the pages for a repre-

sentative set of subpopulations and comparing those

results to results made following the proposed

sampling methods.

Measurement of error similarity should be valid,

accurately representing similarity of errors in a way

that could reveal real-world relations among pages,

such as use of similar templates or creation by the

same author. Because the forming of populations

also accounts for tree structure, this assumption is

not as vital as the first; that is, if two pages that

belong to different business units and that were

created by different authors have a high error

similarity by chance, they will not be assumed to be

in the same population.

CONCLUDING REMARKS

The process of ensuring accessibility of a large Web

presence is bounded by many constraints. Varia-

bility of implementation stems from differing pro-

duction techniques over time and among the many

business units within the firm. Automated analysis

is effective for only a subset of the required features,

leaving the remaining features to undergo human

inspection. Time and cost realities lead us to a

multifaceted approach.

Templates are very beneficial for providing a high

level of compliance for new documents, especially

in the area of navigation features. A robust

education program helps developers and content

producers understand how to ensure standards

compliance for the content they add to the tem-

plates.

Automated techniques crawl and analyze machine-

testable features of the entire inventory, reporting

on areas needing remediation. The most daunting

part of compliance assurance, human review, can be

efficiently guided by statistical sampling processes

that optimally segment the Web space for compli-

ance-level assertions.

The combination of these techniques, repeated at a

regular frequency, identifies problems for remedia-

tion. No single approach can achieve the effective-

ness and cost efficiency of the combination of these

techniques. The use of these techniques results in a

Web presence that is more accessible and more

easily used by a significant population of people

with various disabilities.

ACKNOWLEDGMENTS
Human review, typically including analysis of source

code, has long been a staple of Web accessibility

evaluation. We are grateful to the people of

Accessible Information Services of the National

Information and Library Services of Australia. Their

ideas concerning using favelets for human review of

Web pages are key to the success of this project. We

are grateful to John Slatin and Kay Lewis for their

input.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Massachusetts Institute of Technology, Watchfire Corpora-
tion, The Perl Foundation, Parasoft, or Sun Microsystems, Inc.

KING ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005534

CITED REFERENCES AND NOTES
1. Section 508 of the Rehabilitation Act: Electronic and

Information Technology Accessibility Standard, U.S.
Access Board (2000), http://www.access-board.gov/
508.htm.

2. D. M. West, State and Federal E-Government in the United
States (2003), http://www.insidepolitics.org/
egovt03us.html.

3. Web Content Accessibility Guidelines, Version 1.0, World
Wide Web Consortium, W3C Recommendation (May 5,
1999), http://www.w3.org/TR/WCAG10/.

4. IBM Accessibility Center Web site, http://www.ibm.
com/able.

5. Screen Reader Visibility Web site, http://css-discuss.
incutio.com/?page=screenreadervisibility.

6. Building In Universal Accessibility þ Checklist,
CabinetOffice (May 2002), http://www.cabinetoffice.
gov.uk/e-government/resources/handbook/html/
2-4.asp.

7. D. Featherstone, ‘‘More Reasons Why We Don’t Use
Accesskeys,’’ Web posting (December 6, 2003), http://
www.wats.ca/articles/accesskeyconflicts/37.

8. D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak,
A. Tomkins, and J. Zien, ‘‘How to Build a WebFountain:
An Architecture for Very Large-Scale Text Analytics,’’
IBM Systems Journal 43, No. 1, 64–77 (2004).

9. Bobby was originally developed by the Center for Applied
Special Technologies (http://www.cast.org) and later
purchased by Watchfire Corporation.

10. P. Bronstad and J. Slatin, ‘‘Using Web Site Interconnec-
tivity to Find Clusters of Accessibility Problems,’’
Proceedings of the Conference on Technology and Persons
with Disabilities (2004), http://www.csun.edu/cod/conf/
2004/proceedings/147.htm.

11. AIR-Austin Web site, http://www.knowbility.org/
air-austin/.

12. J. M. Slatin and S. Rush, Maximum Accessibility, Making
Your Web Sites More Usable for Everyone, Addison-
Wesley, Boston, MA (2003).

13. G. R. Notess, ‘‘Bookmarklets, Favelets, and Keymarks:
Shortcuts Galore,’’ Online 27, No. 4 (July 2003), http://
www.infotoday.com/online/jul03/OnTheNet.shtml.

14. Web Accessibility Tool Bar, National Information and
Library Services (NILS), Accessible Information Solutions
(2004), http://www.nils.org.au/ais/web/resources/
toolbar/index.html.

Accepted for publication February 15, 2005.

Matthew King
IBM Corporate Headquarters, 90 South Cascade Ave., Suite
800, Colorado Springs, CO 80903, (mattking@us.ibm.com).
Mr. King is a staff engineer in IBM’s corporate IT organization.
Since 1998, he has been directing efforts to ensure the
accessibility of all IT infrastructure and tools used in IBM
worldwide. His interest in accessibility extends beyond his 15-
year IBM career as he is blind and has been using and working
on assistive technologies since the 1980s while attending the
University of Notre Dame. In 1989 he received a B.S. degree
with majors in electrical engineering and music and started at
IBM as a manufacturing engineer.

James W. Thatcher
Accessibility Consulting, 800 Double Bend Back Road, Austin,
TX 78746, (jim@jimthatcher.com). Dr. Thatcher retired in
2000 after 37 years in IBM Research. He received his Ph.D.
degree in computer science from the University of Michigan in
1963. In the early 1980s, after 20 years of research in
theoretical computer science, he developed one of the first
screen access systems which, in 1986, became IBM Screen
Reader for DOS. He then led the development of the first screen
reader for a graphical user interface, IBM Screen Reader/2. In
1996 he joined the IBM Accessibility Center and led the
development of the IBM Accessibility Guidelines. He was vice-
chair of the Advisory Committee impanelled by the Access
Board to propose accessibility standards for Section 508.

Philip Matthew Bronstad
Brandeis University, Department of Psychology, MS 062 PO Box
549110, Waltham, MA 02454, (bronstad@brandeis.edu). Dr.
Bronstad is a postdoctoral fellow at Brandeis University. He
received his Ph.D. degree in quantitative psychology at the
University of Texas at Austin in 2004, where he worked in the
psychology department and at the Institute for Technology
and Learning. Dr. Bronstad studies face perception and
human-computer interaction.

Robert Easton
IBM Thomas J. Watson Research Center, PO Box 218, Yorktown
Heights, New York 10598 (bob_easton@us.ibm.com). Mr.
Easton is a senior Internet analyst in the Information
Technology department at the Watson Research Center. He
manages the Collaborative Computing group that focuses on the
integration of collaborative technology into IBM’s computing
infrastructure. His current research interests include improving
accessibility techniques for Internet-based applications. Mr.
Easton received an M.S. degree in management of technology
from Polytechnic University in Brooklyn, NY. &

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 KING ET AL. 535

Published online August 11, 2005.

