
Designing software architectures
to facilitate accessible Web
applications

&

D. Hoffman

E. Grivel

L. Battle

The Web application is increasingly a platform of choice for complex business software

and online services. However, it remains a challenge to ensure that the Web

application is easy, efficient, and effective for people with disabilities. Accessibility

requires that users with disabilities, including those who are blind, have low vision, or

have mobility impairments, are able to use the applications effectively and with a

reasonable amount of effort. Although there has been important progress in recent

years in describing the relationship between architecture and usability, the topic of

architectural support for accessibility has not been adequately addressed. Based on

our experience in designing Web applications for the United States Social Security

Administration, we have begun to identify guidelines for architectures that support

accessibility. This paper describes common accessibility problems encountered in Web

applications and explains how architecture can help address these problems through

reusable accessible objects, supplementing information in links, buttons, and labels,

assisting in access to Web page visual information, handling errors, and providing

time-out notification and recovery. It also discusses the critical role of architecture in

supporting the best way of meeting the needs of diverse user groups: multiple

dynamic views of the user interface.

INTRODUCTION

As consultants to the United States Social Security

Administration, a government agency that is com-

mitted to accessibility, we have maintained a focus

on improving the user experience for all users of our

Web applications. These applications include so-

phisticated data-entry applications (similar to the

Web version of Turbo Tax**), claims-processing

systems (similar to those used inside insurance

companies), workload-management systems, corre-

spondence-routing systems, and call-center systems.

Such applications require complex navigation, ex-

tensive data entry, conditional relationships among

different data elements, and multiple interrelated

user tasks. The baseline software architecture for the

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HOFFMAN, GRIVEL, AND BATTLE 467

front end of these Web applications is DHTML

(dynamic HTML), which is dynamically produced

using Java** technologies. DHTML may include

HTML (Hypertext Markup Language), CSS (Cascad-

ing Style Sheets), and JavaScript**.

There are several common challenges encountered

when working with project teams to improve

accessibility. One is a lack of comprehensive guide-

lines that apply to interactive Web applications.

While there are many published sources of infor-

mation on Web site accessibility
1,2

and the needs of

users with disabilities,
3

existing Web accessibility

guidelines typically focus on the design of static

informational Web sites or basic Web forms
4–9

and

do not address design issues that typically arise in

complex software applications. They generally dis-

cuss each individual accessibility issue in a vacuum,

without addressing external design constraints or

the interrelation of issues. Moreover, the introduc-

tion of accessibility into an application that is

already fully developed can involve significant

redesign and recoding, which may be considered

outside the project’s scope and budget. Obtaining

input from accessibility specialists before coding

starts (during user-interface design and specifica-

tion) reduces the risk of rework but does not

eliminate the need for significant manual testing and

recoding. For this reason, it is important to look

across suites of related applications and identify

ways of supporting accessibility through the use of

reusable components that consistently implement

common business rules, design requirements, and

other site-wide functionalities, including

accessibility.

Two of the authors recently completed an analysis

of documented accessibility violations and recom-

mendations; in the analysis more than 1,300

accessibility issues, which were identified during

evaluations of 80 software applications over a three-

year period, were compiled and categorized. This

analysis led to the creation of a list of ‘‘Top 20’’

accessibility issues,
10

which we have used in

developing user-interface standards and in review-

ing the architectural implications of accessibility.

Although we considered a wide spectrum of

disability types, we discovered a stronger emphasis

on vision-related disabilities than on other disabil-

ities. There are probably several reasons for this

emphasis, including the fact that vision-related

challenges to access are the most numerous and

significant, the access solutions are relatively

feasible, and the fact that people with vision-related

disabilities are some of the most active participants

in the job market and some of the strongest

advocates for their causes. This paper does not

discuss the full list of recurring accessibility issues;

instead, it focuses on those issues that can be

addressed within an intermediate architectural layer

of reusable software components. We argue that

addressing accessibility issues within such an

architecture can significantly enhance accessibility,

and failing to address them within such an

architecture can significantly limit accessibility.

Accessibility and usability

Software is accessible when the user interface is

designed to meet the special needs of people with

disabilities, allowing them to use software in a

manner that is similar to the way that people

without disabilities use it. Disabilities may include a

limited ability to see, hear, or move (including using

a keyboard or mouse), or to process certain types of

information easily or at all. Software accessibility is

often accomplished by ensuring that necessary

information about user-interface elements is avail-

able to various assistive technologies, such as screen

readers for users who are blind, magnification

software for users who have low vision, or speech

input software for users with mobility impairments.

Although Section 508,
11

the World Wide Web

Consortium Web Accessibility Initiative
12

(W3C**

WAI), and even the ADA
13

(Americans with

Disabilities Act) seek to recommend or mandate

various accessibility standards, our primary focus is

on the shared goal of all such standards: ensuring

that users with disabilities can use software effec-

tively and with a reasonable amount of effort.

Accessibility is closely related to usability, the art

and science of ensuring that software is efficient and

effective to use and that its use is satisfying for

users. Usability practitioners sometimes consider

accessibility to be a subcategory of usability, despite

the fact that, in practice, accessibility is usually

handled separately from usability. Although the

goals of accessibility and usability are similar in

many ways, the specific design enhancements

needed to support usability for a general audience

and accessibility for users with disabilities may

differ significantly and may pose conflicting goals.

In addition, different groups of users with disabil-

ities have different needs. Our experience in

HOFFMAN, GRIVEL, AND BATTLE IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005468

balancing the needs of these different user groups

has led us to conclude that in some situations, one

solution for all users is not desirable.
14

The idea of

multiple views tailored to the needs of different user

groups is explored further in this paper.

Software architecture

There are numerous definitions of ‘‘software archi-

tecture’’ in the technical literature.
15

Essentially,

software architecture describes the organizational

structure of a software system including compo-

nents, interactions, and constraints. Architectural

interactions are abstractions for how components

interact in a system. An architecture includes the

constraints on component selection and the ratio-

nale for choosing a specific component in a given

situation.
16

For our purposes, software architecture

describes the function of components of a system,

including their interaction with each other.

There are many different aspects to the architecture

of a system, including the computer hardware,

software, and network. Even though this paper

discusses software that is developed using a DHTML

front-end architecture, our focus is on an inter-

mediate application layer. This layer is located

between the back-end processes or databases (or

both) and the presentation-layer technologies (such

as HTML, CSS, server-side scripting [e.g., Java-

Server Pages**] and client scripting [e.g., Java-

Script**]). In addition to the business-logic code,

this intermediate application layer includes typically

proprietary common reusable software components.

Just as most software is not designed to run directly

on top of an operating system, complex systems are

commonly built in development environments that

include such an additional layer. This layer of

software components includes tools, functions, and

restrictions that form the core design and basic

architecture of the site or the applications on a site.

It consistently implements common business rules,

design requirements, and other site-wide function-

alities. When such an intermediate architectural

layer is used, it can serve either to limit accessibility

if it is not designed with accessibility in mind or to

enhance accessibility if it is designed with accessi-

bility in mind.

In recent years, several authors have begun to

describe the relationship between usability and

architecture. Bosch described a direct relationship

between architectural decisions and the ability to

meet quality requirements.
17

Juristo, Moreno, and

Sanchez researched the architectural implications of

usability issues and pointed out the danger of

assuming that usability only affects the presentation

component of software systems.
18

John and Bass
19

have done extensive work on this subject and have

illustrated how, despite the best efforts of architects

to create modularized software that facilitates

changes, it becomes difficult to meet user-experi-

ence requirements after architectures are already

defined. Reference 19 describes a scene in which

usability issues are presented, and one of the

developers exclaims, ‘‘Oh, no, we can’t change

THAT!’’ The problem is that the requested mod-

ification reaches too far into the architecture of the

system to allow economically viable and timely

changes to be made. Even when the functionality is

correct and the user interface is separated from that

functionality, some architecture decisions may un-

knowingly limit the ability to implement usability

requirements. Bass, John, and Kates have published

a collection of architecture patterns intended to help

architects anticipate and accommodate usability.
20

Although these works do not directly address

accessibility issues, the relationship between us-

ability and architecture is similar to the relationship

between accessibility and architecture. In our

experience, a common reason given by development

teams for declining to implement accessibility

features or enhancements in complex Web applica-

tions is a lack of architectural support and the cost in

time and money involved in implementing en-

hancements that require architectural modification.

Conversely, after an accessible solution is built into

the architecture, it is much easier to consistently

extend that solution across multiple applications. In

light of this, the goal of this paper is to extend the

existing work on the relationship between usability

and architecture by providing a set of architectural

recommendations to improve the user experience

for people with disabilities.

ACCESSIBILITY ISSUES AND SOFTWARE
ARCHITECTURE SOLUTIONS
This section provides specific information about

addressing accessibility within an architecture of

reusable software components.

Using libraries of reusable objects

A common challenge in developing accessible

applications is the significant knowledge gap that

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HOFFMAN, GRIVEL, AND BATTLE 469

exists between software developers and accessibility

specialists. Most developers do not have experience

or training in coding for accessibility, and most

accessibility specialists have limited programming

training or experience. These specialists may not be

able to provide sample code that developers can use

to achieve the desired results. This leads to

inconsistent results; for example, different devel-

opers have varied levels of accessibility awareness,

and even when they do implement accessibility

features, they may use different approaches, or code

the same approach differently. In addition, even

when accessibility features are implemented prop-

erly, they must still be manually applied to each

individual page element throughout the entire

application.

Complex Web applications or online services

increasingly use software-generated HTML (utilizing

technologies such as Java-programming-language

custom tags), rather than simple static HTML. In

fact, the use of software-generated HTML is partially

responsible for the very architectural complexities

that distinguish complex Web applications from

static Web sites. The use of software-generated

HTML enables the use of common reusable com-

ponents.

The value of designing with reusable components is

apparent in projects remediating the accessibility of

Web applications. Projects not using reusable

components required manual testing, recoding, and

retesting of dozens of controls across hundreds of

pages. Projects using reusable components required

testing and recoding only for each type of reusable

component. The changes then automatically propa-

gated across the application.

Common accessible solutions can be incorporated

into reusable software components and data repos-

itories across applications or even suites of appli-

cations. Reusable components define the structure

and attributes of a particular type of page element.

These components can use data repositories (i.e.,

flat files, such as Java property files) that contain

attribute values, such as field labels and titles.

Reusable components and data repositories exist

completely in the background and remain invisible

to the user interface, but can be essential to the

consistent and efficient implementation of accessi-

bility features.

The following are some examples of reusable objects

that we have designed to promote accessibility:

1. Fields with associated field labels. Using a

reusable object ensures that field labels are read

with the appropriate fields in a consistent way

throughout the application.

2. Set of radio buttons with captions. This object

is a set of radio buttons with captions. Using a

reusable object ensures that the radio button

caption is read with each set of radio buttons in a

consistent way throughout the application.

3. ‘‘Continue’’ and ‘‘previous’’ page buttons with

associated hotkeys. These buttons and ‘‘hotkeys’’

(keyboard shortcuts, also known as accelerator

keys) allow keyboard users to quickly navigate to

the next or previous page without having to tab

through all the controls on the current page.

The code in reusable objects can enforce certain

coding standards, such as a requirement to provide

alternate or supplemental text for an image, field

label, link, or push button. For example, Java-based

custom tags can be used to encapsulate the logic to

generate consistent, accessible HTML. Although

they cannot ensure that the alternate or supple-

mental text is accurate or appropriate, they can

ensure that the text is not omitted or forgotten

completely. This strategy ensures that once each

type of control has been developed, tested, and

refined, it will always be the same. Reliance on the

knowledge of individual developers or accessibility

specialists in order to code for accessibility is thus

reduced.

Reusable objects also provide the ability to imple-

ment accessibility features by changing a relatively

small number of reusable components, rather than

individually changing many individual controls

across multiple pages throughout an application or

families of applications. The use of reusable

components provides a level of consistency that is

difficult to achieve even after significant testing and

tweaking of individually coded components. The

difference between remediating accessibility issues

in an application that uses reusable components and

one that does not is very significant.

The software architecture should contain reusable

components that encapsulate logic which generates

consistent, accessible HTML and should reference

these components from each place where they are

HOFFMAN, GRIVEL, AND BATTLE IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005470

needed in an application. For example, rather than

coding each set of radio buttons independently,

radio buttons can be standardized into a single

construct (or a limited number of different logical

constructs, if appropriate). This construct should

include code to associate both the radio buttons with

their individual labels and the caption with the

entire set of radio buttons.

Field-specific data attributes are commonly specified

when a reusable control is called. In some situa-

tions, such as when the same type of control appears

in multiple places, there is a benefit from using data

repositories to store the data attributes related to

each control. These data repositories can then be

used to create the controls by populating the

attributes of the reusable components. The data

repositories can include or even require the storage

of various types of supplemental text, as discussed

next.

It is important to note that as consistency improves

through the inclusion of more functionality in the

architecture, flexibility is likely to decline. This is

not necessarily bad, especially if the application is

accurately designed in logical components that

match business needs. However, because merely

using reusable components does not ensure that

anything is implemented correctly, it can also cause

accessibility deficiencies to be implemented consis-

tently. Likewise, it can be more difficult to correct

certain accessibility deficiencies that are incorrectly

implemented after they have become part of the

architecture of reusable software components for a

suite of Web applications.

Supplementing information
One of the most common accessibility issues

involves information that is either not available or

not as readily available to users with disabilities as it

is to other users. For example, the purpose of some

links, push buttons, and field labels on a Web page

may be unclear to screen-reader users without the

surrounding context. In addition, users may not be

aware of the existence of error messages, help, or

tips related to a field, or the fact that a field is

required, if that information is not included in the

field label. Visual users can associate contextual

information by simply scanning with their eyes

without ever removing their primary focus from the

form fields, but screen-reader users must choose

between a textual view that enables the reading of

all content in order and a field manipulation view

that enables the manipulation of all data-entry

fields. Therefore, supplemental information can be

essential for providing comparable access (i.e.,

access for people with disabilities which is com-

parable to that of nondisabled users) to textual

information when screen-reader users are perform-

ing data entry.

Screen readers do a very good job of handling

semantically coded informational pages. They also

effectively handle properly coded form fields.

Nonetheless, screen-reader users face a unique

challenge when navigating through pages of mixed

content (form fields and other controls interspersed

with informational screen text), because screen

readers must distinguish between manipulation of

HTML form controls and the reading of HTML

textual information. Even though all of the con-

textual information is likely to be available some-

where on the page, users with disabilities may face

the extra burden of trying to locate and associate the

contextual information while engaged in data-entry

activities (without knowing whether the information

is even available).

Although this use of mixed content does not affect

every link, push button, or field label, there are

often situations when some of the information

needed to understand the purpose of data entry

fields or selection mechanisms is conveyed to the

user through context, that is, a combination of the

surrounding text, page layout, and proximity. For

example, when links are presented within a para-

graph of text or within a table, the surrounding

information often plays a role in communicating

their purpose. Much of this contextual information

is not easily available to screen-reader users, who

may encounter the links or push buttons in

isolation. For example, a user who is tabbing from

control to control, as is typical when completing a

form, may skip over essential screen text without

even realizing that the information is available.

Similarly, a user who accesses links in a special list

of links may not have easy access to surrounding

text information. Low-vision users may also have

difficulties if the contextual clues are too far away

from the link, push button, or field label so that they

cannot seen at the same time when the screen is

magnified.

Links

When links are used in tables, their meaning is

conveyed in part by their row and column location

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HOFFMAN, GRIVEL, AND BATTLE 471

(see, for example, the client name and office code

links in Figure 1). Links are used in many different

ways. When clicking on a link serves to activate a

folder tab or menu system, the link’s purpose may

be conveyed through its visual appearance; when a

link is used to provide pop-up definitions or

examples, its purpose may be conveyed through

proximity to the item being defined; when a link is

used to re-sort a list of items, its purpose may be

conveyed by means of a graphic or simply the

appearance of a link as a table column heading. All

of these situations can potentially create accessibil-

ity challenges because the meaning of the link is not

clear out of context. Unfortunately, in HTML, all

links are simply links, despite the fact that links can

play extremely varied roles.

Field labels

When related fields are grouped, they are often

labeled in a way which assumes that the user has

some knowledge of the grouping. This makes sense

to most users and makes labels more concise, but

again, it can pose a challenge for users who are

blind and may not have access to the context. There

are several common variations on this theme:

1. Fields may share part of their label because they

are logically related to one another. For example,

a ‘‘name’’ label may be subdivided into separate

fields for title, first, middle, last, and suffix; a

telephone number may be subdivided into three

separate fields, as seen in Figure 2.

2. Fields may be arranged in a sentence format that

makes sense when the whole sentence is seen

together, but not when a part of it is seen in

isolation. For example, the first drop-down list in

Figure 3 might be read by a screen reader as

‘‘Show up to select menu with x items’’ for the

first drop-down list, which technically does

provide a label, but does not provide enough

information for the user to understand and make

a selection (the obvious question, ‘‘Show what?’’

cannot be answered without the label for the

second drop-down list: results). For the second

drop-down list, a screen reader might say ‘‘results

select menu with y items,’’ which technically

does provide a label, but one that is not easy to

comprehend. Neither field has a distinct mean-

ingful label without the context of the entire

sentence. A better approach is to use a hidden

label (for example, a title attribute) identifying

the first field as ‘‘number of results to show’’ and

the second field as ‘‘display preference.’’

3. Fields may lack individual labels. For example,

month, day, and year fields, or city, state, and

zip-code fields often do not have separate labels

because their meaning is clear when they are

seen together. Another increasingly common

situation where fields may lack individual labels

is when they appear in tables as seen in Figure 4.

In all these situations field labels may need to be

coded differently to ensure that screen readers read

the correct information.

Field-level instructions and messages

Additional information is sometimes provided at the

field level, as seen in Figure 5. This information may

include instructions or tips for answering the

question and an indication of whether the field is

Figure 3
Fields in sentence format

Show up to 250 results with document summaries

Figure 2
Fields that share part of a label

Daytime Phone:
_ _

Evening Phone:
_ _

Figure 1
Links used in tables

HOFFMAN, GRIVEL, AND BATTLE IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005472

‘‘required’’ or ‘‘optional.’’ Error messages are also

provided when a required field is left blank or when

an inappropriate value is entered. See the section

‘‘Error handling’’ for a discussion of alternative

approaches. Ensuring that all users have compara-

ble access to such directions and cues again presents

a challenge. Users who are blind may not be aware

of the existence of an error message or an

instruction associated with a particular field if it is

not coded as part of the field label. Users with low

vision may not be aware of the additional informa-

tion if it is placed too far from the field to be seen at

the same time with a magnified view, as is the case

in Figure 5.

In order to use supplemental information as an

accessibility solution, labels must be explicitly

associated with the appropriate fields so that they

can be read reliably with screen readers. Although

proper and consistent label placement can usually

enable screen readers to find labels, only explicit

association ensures accurate results. If it is not

possible or desirable to include sufficient informa-

tion in the element (i.e., a visible link, push button

or field label) so that it can be understood out of

context, it is necessary to supplement the label. The

supplementary information must be read by the

screen reader when the reader focuses on the

control.

Our recommended approach to implementing such a

solution is by using a ‘‘title’’ attribute in the link,

push button, or field. The title value should include

both the visual text and the supplementary infor-

mation because, when screen readers are set to read

title attributes, they typically read them instead of,

rather than in addition to, the visual text. There are

times when it is necessary to supplement the text

presented on the screen in more than one way, such

as by including supplementary text before and after

the screen text.

All relevant information should be included in field

title attributes, including error messages, help, tips,

and an indication if the field is required, although it

is important to keep this as brief as possible. If the

help or tip information is too long to be read with

the field, it is helpful to include a brief indicator,

such as ‘‘help follows,’’ inside the title attribute.

Placing a ‘‘tab stop’’ on the remaining help or tip

allows the focus to land there when the user is

tabbing through the form (which can be achieved

for the Internet Explorer** browser through the use

of a ‘‘tabindex’’ attribute) and ensures that the tab

stop immediately follows the field in the tab order.

An alternative approach to supplementing screen

field-label text is to include the supplementary

information within the label tags, hiding it from

view but enabling screen readers to recognize and

speak the information. The following CSS code

visually hides information from the display and, at

the same time, allows screen readers to access the

information:

fposition:absolute; left:0px top:-100px;

width:1px; height:1px; overflow:hidden;g

Unfortunately, neither of these solutions really

addresses the issue for users with low vision.

Generally, it is only possible to mitigate the issue by

using a ‘‘multiple view’’ solution, as discussed later.

The following architectural recommendations sup-

port the supplemental-information accessibility so-

lutions we have described. The architecture should

require that every field have a label. Field labels

should be explicitly associated with the appropriate

fields by using label tags. This ensures that they will

Figure 4
Fields without individual labels

Figure 5
Field-level instruction

Include auto loans, credit cards, and other personal debt.

Monthly Income Before Taxes: $

Down Payment: $

Monthly Debt Payments: $

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HOFFMAN, GRIVEL, AND BATTLE 473

be read reliably by screen readers. If a visible label is

not provided, an alternative label must be provided

instead. The text for supplementary title attributes,

hidden text, or field-label tags should be specified in

data repositories that define all such objects in the

application. This ensures that there is a placeholder

in the architecture to accommodate supplementary

text as needed for all links, push buttons, field

labels, and images.

Reusable components should contain placeholders

for storing any information that can be associated

with a control (error messages, help, or tips, etc.)

within the HTML. The text for title attributes, hidden

text, or field-label tags should be automatically

generated by reusable components, using the

information in the data repositories. In this way, the

architecture enforces the existence of all types of

text that can be associated with a control.

At the architecture level, each element is marked

with a value of ‘‘required,’’ ‘‘optional,’’ or ‘‘condi-

tionally required.’’ This value can be used to

generate the information in the label that indicates

the required fields. This can be represented as an

asterisk for the visible label, and it can be

represented as the word ‘‘Required’’ in the hidden

text.

Different types of links should be recognized as

specific entities by the architecture. For each type of

link, certain attributes should be required (such as

link ‘type’) or optional to provide the necessary

context information for the link.

For instance, a link may have the type of ‘‘dynamic

element.’’ When this link type is defined, attributes

may be provided to augment the information

available when the link is rendered. The link can be

rendered automatically depending on the chosen

view and using the available HTML syntax. The

advantage of this type of generic architectural

solution over manually coding the title attributes,

hidden text, or field labels is that it encourages

consistency, ensures inclusion, and requires less

manual effort.

Providing access to on-screen signposting
Signposting refers to Web page visual information

that communicates the title of the application and

page, any essential system messages, and any

feedback or status messages. Signposting is essential

for helping users know where they are in an

application. However, users with disabilities may

not have comparable access to the signposting cues

that show current location and status information.

Visual users have the ability to quickly scan the

display text and graphics for on-screen signposting.

They can then go directly to the task at hand. In

contrast, screen-reader access is linear—the users

cannot perform a visual scan. They may need to

Figure 6
Signposting conveyed through visual elements

HOFFMAN, GRIVEL, AND BATTLE IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005474

actually listen to a significant amount of potentially

irrelevant text merely to determine their location

within the business task or to determine the system

status.
19

Figure 6 illustrates how much information about the

current location—including the name of the appli-

cation and Web site, the page, and the section—is

available at a glance. Status information, which

includes the existence and number of errors, the

existence (or the lack) of search results, and specific

record or user identifiers, is also typically visible at a

glance.

While modern screen readers provide features that

attempt to help, these features are typically limited

to page structure information, such as the focus

location in terms of percentage of the page or the

control number on the page.

The browser title bar of each page should briefly

provide a summary of the user’s location and any

special status. The title bar should include the name

of the application, followed by the application

section, followed by the page, followed by any

specific user or record identifiers, as appropriate.

Special status information such as the existence of

errors, the existence of search results, or the lack of

search results should be concisely inserted at the

beginning of the title bar when applicable. Other

status information, such as specific record or user

identifiers, should be inserted at the end.

This solution does not replace the display of the

same information on other parts of the page. The

page title, the currently selected tab, the record

identifiers, and any feedback or error messages are

still displayed on the page as appropriate for the

visual layout. The advantage of including them in

the title bar is that they are read by the screen

reader as soon as the page loads, making it easy for

the user to obtain the title bar information on

demand by using an assistive technology key-

stroke. This can provide a significant benefit for

users switching back and forth between multiple

application windows.

Figure 7 shows examples of effective title bar

signposting. In Figure 7A the application name, page

name, and error notification are displayed in the title

bar. In Figure 7B, the page name and notification of

search results are displayed.

To support this accessibility solution, the HTML

page title tags can be used to define the application

name and section and the individual page, as

appropriate. Standard functions can be used to

create the content of the page title tag by using not

only the actual page title but also system-status

information, such as the application name, the

current section, the existence and number of errors,

or the existence and number of search results.

When frames are used and the main content resides

in a child frame (Frame 3 in Figure 8), the frameset

(i.e., a set of frames in a Web page) title bar does not

display the title of the child frame. In this case,

Figure 8
Display of current page name in the title bar

Frame 2

Frame 3

Main content page
is displayed here

Title
Bar

Frame-
set

The title of
the page
displayed in
Frame 3
should be
displayed in
the title bar

Frame 1

Figure 7
Examples of effective title-bar signposting: (A) title bar showing error information; (B) title bar showing search results

B

A

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HOFFMAN, GRIVEL, AND BATTLE 475

JavaScript should be used to display the title of the

current child frame in the title bar of the frameset.

Time-out functionality

Time-out functionality addresses the interval of time

for which an Internet connection may remain open

without any transmission of data. When a time-out

function is used within an Internet application, the

user must receive sufficient notification (at the

beginning of the application and when the time-out

is about to occur), and the user must have the ability

to indicate that more time is required, as mandated

by Section 508.
21

It is also important for the user to

be given the ability to recover after a time-out

occurs.

For security reasons, many Internet applications

employ a time-out function. This is intended to limit

the risks that may occur if an Internet application is

left running unattended on a computer where

someone other than the appropriate user may have

access to it.

Time-out functionality creates a need for three

related usability features: user notification, addi-

tional-time request, and user recovery. However,

time-out functionality is also an accessibility issue

because users with disabilities may work more

slowly with an application and thus may be more

likely to be affected by an application timing out.
22

It is important to notify users in advance that an

application may time out. This notification should

appear at the start of each application and can be

included as part of the instructions for completing

that application. The notice must include the

amount of time that is allowed on a screen before a

session will time out, instructions on how to request

an extension for more time, the number of

extensions that will be granted, the consequences

that result from a session time-out, and a notifica-

tion that client-side scripting is required for this

functionality. (If scripting is turned off, the user will

not receive any notification until after the session

has expired.)

Users should be notified when a session time-out is

about to occur. Providing the user with sufficient

warnings and the opportunity to request more time

can help the user to avoid losing data. User

notifications should be written in such a way that

they are clear and not intimidating.

When there has been no transmission (for example,

continuing to the next page in an application) on an

open connection for the established interval, the

user should receive two or more alerts. The initial

pop-up messages notify users that the application

will time out within a designated time frame,

provide them the opportunity to extend their time,

and specify the length of the available time

extension. The final alert also appears in a pop-up

window and notifies users that their time has

expired and the session has ended. It also informs

them of what data may have been lost as a result

and how to begin a new session. (If client-side

scripting is turned off, the user will not receive any

of the pop-up alert messages.)

It is important to provide users with the opportunity

to recover gracefully from an expired session. This

means clearly notifying them that the session has

ended, indicating what data may have been lost, and

providing the ability to immediately log back into

the application.

To support this accessibility solution, an application

or family of applications should establish a consis-

tent and reusable architectural component for

providing the time-out functionality. The time-out

interval should begin when the user enters a page.

Any interaction with the server (such as progressing

to the next page or submitting information) should

reset the timer.

A pop-up window (a first alert message) should

notify the user that the application will time out

within a certain time interval and provide the user

with the option to extend the time interval. If more

time is not requested, or no more extensions are

possible, a pop-up window containing the final alert

should notify the user that the time interval has

expired and the session has ended.

An HTML page should appear when the time

interval has expired. This page also should appear if

the user attempts to perform an action on a page

after the session has already expired. It should

provide the ability to immediately log back in to

complete the application or to return to a reasonable

point of reentry.

Implementing time-out functionality involves a

unique challenge. The client must contact the server

within the inactivity interval to inform it that the

HOFFMAN, GRIVEL, AND BATTLE IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005476

user has requested additional time. The server must

then respond by sending back an HTML page,

potentially interfering with the partially completed

form. One technique for handling this response from

the server without forcing the user to begin the form

again is by sending the form and data to the server

(without performing any server-side validation),

temporarily saving the data in a separate location,

sending the form and data back to the browser as

the response from the server, and using a combi-

nation of XHTML and JavaScript to reset the field

values to their previous values and reset the focus to

its previous location. This solution, however, is very

complicated and should be weighted against using

an alternative, the simpler frameset solution.

The frameset technique involves creating a parent

frame and two child frames. One of the child frames

is used as the form that the user fills out, and the

other is a hidden frame. When the time-out is about

to occur and contact needs to be made with the

server to keep the connection alive, the hidden

frame is used as the target for making the call to the

server. The response that is returned from the server

can then be directed to that hidden frame unbe-

knownst to the user, and the hidden page can be

used to restart the timer. In this way, the connection

to the server is extended, and the user can continue

filling out the page without interruption. This

solution is currently used in public Web applica-

tions, but is somewhat complicated. In addition,

hidden frames can create significant confusion if

they are read by screen readers. (With some screen

readers, this problem can be avoided by setting the

height and width of the hidden frame to zero.)

Developers have continued to search for better

solutions.

As this paper was being prepared for publication, it

was discovered that HTTP (Hypertext Transfer

Protocol) actually includes a straightforward means

of preventing the response from a server from

interfering with the partially completed form that

submitted the request to the server. This can be

accomplished as follows. The client sends a request

for additional time to the server, specifying a desired

response of status code 204. The server then sends a

response to the client consisting of only an HTTP

status line with status code 204 (signifying that no

content is coming) and a blank line, which does not

interfere with the current page. Early testing

indicates that this method may, in fact, provide a

simple, elegant solution.
23

Error handling for accessibility

Several important architectural aspects of error

handling have already been covered in earlier

sections: providing comparable access to on-screen

signposting (ensuring that all users are aware of the

existence and number of errors) and supplementing

information (ensuring that all users have compara-

ble access to error messages and cues associated

with a particular field).

Another important architectural aspect of error

handling is ensuring that users can find the errors on

a page. Typically, visual users can scan the page

from top to bottom, looking for a distinctive visual

cue that identifies the error. Users with disabilities

require a comparable, efficient means of finding

errors.

Even when input fields are designed with error

prevention in mind, errors sometimes still occur.

The application generates error messages for the

fields that are in error, which typically must be

corrected before the user can proceed to the next

page. However, this can present challenges for

several groups of users.

Because users who are color-blind may not be able

to distinguish red from black, it is not acceptable to

rely on color alone to enable users to find error

locations. Users who have low vision may have

difficulty finding where the errors occurred on the

page, especially if the page is long, because with a

magnified screen they may not be able to see the

error text and they may need to search for it by

scrolling up, down, and sideways until they find the

errors. Users who are blind may need to tab through

each field on the page to listen for error messages.

This can be extremely time-consuming and frus-

trating. Users who have mobility impairments may

find it difficult and frustrating to tab through a long

page to get to an error when they can plainly see the

location of the field.

A user should be able to quickly identify the

locations of errors and navigate to them easily.

There are several possible ways to do this. One

approach is to display a page with only the error

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HOFFMAN, GRIVEL, AND BATTLE 477

fields on it. This makes it easy to see and navigate to

the errors. However, that approach is rarely used

because it requires the coding of a separate page and

can confuse users. It also may prevent users from

revising related errors that were not caught by the

system logic. Another possible approach is to use

individual pop-up alert messages for each error. The

focus can even be moved directly to the error when

the user acknowledges the pop-up alert. This

approach is not commonly used because users may

become frustrated by repeated pop-up error mes-

sages when they make multiple errors on a page. If

this approach is used, it is especially important to

also use error prevention techniques in order to

minimize the appearance of numerous error pop-up

alerts. Additional considerations include client-side

browser issues and complications associated with

providing client-side error handling for errors that

require server-side error checking.

The common approach for presenting errors is to

display the same page that was seen the first time

but with errors clearly marked. The best way to

accelerate this process and ensure that all user

groups are able to find errors is to provide a bulleted

list of links to the error fields at the top of the page,

as shown in Figure 9. Each link should contain the

word ‘‘error,’’ followed by the field label of the field

that contains the error or a shortened version of that

field label. Selecting the link should move the focus

to the erroneous field.

An application or family of applications should

establish a consistent and reusable architectural

component for providing a bulleted list of links to

errors. The business logic component of the

application should determine whether errors

occurred.

Figure 9
Error handling

Short paragraph of introductory text or instructions for completing this page of the application.
paragraph of introductory text or instructions for completing this page
of introductory text or instructions for completing this page of the application.

Phone Number:

Page Title

? This is my phone number
? I don’t have a phone, but you can
 leave a message at this number

Extension:

Suffix (if any)

Phone number is missing

2 Errors on Page - Application Title – Page Title

There are 2 errors on this page.

• Error: Zip code

• Error: Phone number

Street Address Line 1

Street Address Line 2

City, State, ZIP

First, Middle Initial, Last

Zip code is missing

The title bar
informs the user
of errors when
page is loaded.

The link at the top
of the page takes the
user to the input
field, (or to the label),
where the user can
fix the error.

The red ball graphic
appears to the left of
the error message
(or to the left of the
field label).

The error summary
message makes the user
aware of the existence
and number of errors.

The field label includes
hidden text to ensure
that all necessary
information is spoken
with the field label.

Each item in the list of errors
is a hyperlink that jumps
down the page to the field
where the error occurred.

The text of the error
message appears
above the input field.

HOFFMAN, GRIVEL, AND BATTLE IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005478

The text for the abbreviated field label (used in the

list of error links at the top of the page) should be

specified in an attribute in the HTML page or from

data repositories, if they are being used to define

field attributes. This ensures that there is a

placeholder in the architecture to accommodate the

text for the same-page navigation links to the error

fields.

A reusable component should read the abbreviated

field-label names (or shortened versions of those

names) and link target information from an attribute

in the HTML page or from the data repository.

Whenever an error is indicated by the business logic

component, the reusable component should gener-

ate the appropriate error link by inserting the data

into placeholders. The same reusable component

should automatically supplement the field-label

information to reflect the error status by adding a

nonvisual component to the beginning of the field

label stating the word ‘‘error’’ and adding the actual

error message to the end of the field label. This

ensures that the error status information is available

to non-visual users, even when they tab through the

page instead of using the error links.

Multiple user-interface views

In many situations, the benefits of accessibility are

broad, and the general user population is likely to

benefit from a solution that addresses the special

needs of users with disabilities. For example, if

sidewalks have curb cuts, they are accessible to

people in wheelchairs and to people pushing baby

carriages and shopping carts, as well as to those on

bicycles and roller blades.
24

Likewise, if software

can be used without vision, it is accessible to people

who are blind and to people who are in darkness or

whose eyes are otherwise occupied.
25

There is a tendency, however, to oversimplify the

issue, with claims that accessibility universally

benefits all users.
26,27

Often, accessibility enhance-

ments do improve general usability; at other times

they have no impact on general usability; and at still

other times they can have an adverse effect on

general usability. Likewise, usability enhancements

often have a positive impact on users with dis-

abilities, but there are times when usability en-

hancements have a negative impact on accessibility.

In summary, the best solution for one group

sometimes compromises the needs of another

group.
14,28,29

There are times when trying to design

one solution that meets everyone’s needs results in a

solution that is inadequate for everyone.

User interface elements that commonly cause trade-

offs in software include images that are used to

convey information (which benefit sighted users but

pose potential challenges for users who are blind or

have low vision), graphical icons or clickable

images (which benefit sighted users but pose

potential challenges for users who are blind, have

low vision, or have mobility impairments), and title

attributes (which benefit users who are blind but

pose potential challenges to users with mobility

impairments). Similar trade-offs apply to tab stops

on text, multicolumn page layouts, left-justified field

label layouts, and differences in control type

preferences. These issues and more are explained in

the following.

A first step toward resolving contradictory require-

ments can be the use of multiple views of an

application. In Reference 14, two of the authors

advocated providing alternate or multiple views to

address trade-offs between different types of user

groups and to optimize the user experience of those

user groups. In the following, we take a compre-

hensive look at specific features of such multiple

views and their architectural implications. It should

be noted that using multiple views introduces an

added dimension of complexity. Nevertheless, de-

velopers increasingly prefer to develop multiple-

view solutions rather than deal with the complex-

ities of conflicting requirements in a single view.

We do not suggest separate applications or pages for

groups with special needs because we recognize that

a legitimate concern exists that such dual source

applications or separate interfaces would not be

designed or maintained equally. Instead, emerging

technologies that enable dynamic and customized

views of the same application page may present an

opportunity to improve overall user experience.

Simply to meet existing requirements such as

Section 508, an architecture should include support

for customizing all content presentation using the

style sheet. There should not be any direct specifi-

cation (hard coding) of appearances (colors, fonts,

sizes, styles) in the HTML files. Users must be able

to customize text fonts, color, and size, and even be

able to use the page with the style sheet turned off, if

they so require or prefer, or to replace the style sheet

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HOFFMAN, GRIVEL, AND BATTLE 479

with their own style sheet.
30

However, in practice, it

is not realistic to assume that most users will be

capable of sophisticated customization, especially if

it requires creating their own style sheets. Therefore,

rather than providing a single style sheet for all

users, we propose providing users with carefully

designed specialized style sheets, each specifically

targeted toward a different user group, and provid-

ing an easy-to-use mechanism for choosing among

them. While the primary focus of providing multiple

views is on the use of multiple style sheets, some

features would require customization at the DHTML

level. When necessary, the equivalence of DHTML

‘‘alternate’’ accessible views can be ensured by

defining information sources on an abstract level

and deriving the specific page implementation based

on the view preference.

The following are some of the features that could be

accommodated through the use of a multiple-view

architecture:

� Images. When information is conveyed through

graphics, it is not accessible to all users. This issue

is challenging because sometimes information is

conveyed in graphics precisely because it makes

more sense in a graphical form than it does in text.

For example, many user manuals contain screen

captures or illustrations. Online applications may

contain bar charts and other graphical represen-

tations of data. Multiple views should allow visual

users to see the images by default and should

replace the images with text for users who are

blind or have low vision. For users of voice input

devices who may have trouble knowing how to

activate graphical icons or clickable images, the

icons or images can either be supplemented with

text or simply replaced with text.

� Page layout. Common problems for users with low

vision include objects that are too far apart and the

need for both horizontal and vertical scrolling

around the page, which can be disorienting. Using

a layout where field labels are right-justified for

users with low vision and left-justified in a

standard view can alleviate this issue. In addition,

using an entirely different narrow view could

reduce horizontal scrolling.

� Changing controls. Some types of controls work

better than others for a particular user group.

Multiple views could enable the replacement of

one control with another. For example, the ‘‘A

through Z’’ links in an alphabetical index can be

replaced with a drop-down list so that users who

are blind or have mobility impairments do not

need to navigate through the whole alphabet to

make a selection. Another example is a set of radio

buttons with a large number of options, or any set

of radio buttons in a frequently used application.

Although most users do best with radio buttons,

screen-reader users benefit from a drop-down list

because it enables them to quickly and directly

navigate to the desired option with a keystroke.

Both control options can appear in the same

HTML code. Each style sheet can display one of

the controls and hide the other one.

� Internal page navigation. When a page includes

more than two unique sections, it can be difficult

for users who are blind to navigate to different

parts of the page. Existing accessibility require-

ments specify the use of ‘‘skip’’ links to provide a

means of skipping to the main content of the page.

Providing a bulleted list of same-page links in a

special view can enhance that feature to include

skip links to various sections of the page, rather

than just a single ‘‘main content’’ section. The

standard view would not include the bulleted list

of page navigation links.

� Field-level help tab behavior. By default, text on

HTML pages does not receive focus when a user is

tabbing through a page. As a result, non-visual

users who tab through a Web form will jump past

any directions and cues, without even knowing

that they appear on the page. There are no formal

standards that specifically require text on a Web

page to receive a tab focus. However, when a

keyboard is the interface to a form or application,

users typically tab through the controls. Enabling

the screen text to receive the focus allows non-

visual users to access and hear all page elements

when tabbing through the form. Section 508

requires that Web forms allow people using

assistive technology to access all information, field

elements, and functionality required for comple-

tion and submission of a form, including all

directions and cues. It also requires access to and

use of information that is comparable to that

provided to nondisabled individuals. Just as the

only way to provide comparable access to a screen

text field label is by associating it with the field so

that it is read with the field, so too, comparable

HOFFMAN, GRIVEL, AND BATTLE IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005480

access to associated directions, help, or examples

must be provided. Providing a tab focus is a

means of providing comparable access. Of the

most popular browsers, only Internet Explorer

supports the use of the ‘‘tabindex’’ attribute

(typically tabindex¼0) to provide a tab focus to

screen text. There is a significant need for a W3C-

compliant means of associating text field-level

help information with a particular field, so that the

user can be made aware that the help information

exists and access it with an assistive technology

keystroke. Similarly, there is a need to enable

screen readers to have tab stops on specific strings

of text without affecting functionality when a

screen reader is not being used. When forms

contain field-level directions, help, or examples, a

key technique for providing comparable access to

those features is changing the tab behavior by

placing ‘‘tabindexes’’ on the screen text. This

feature should be activated in a screen reader or

low-vision view. It should not be used in a

mobility-impaired view because extra tab stops

can make navigation frustrating and lead to user

fatigue.

� Field-level help location. Field-level help should be

placed near the field to which it applies for the

benefit of most users, although the appropriate

placement can vary depending on the visual layout

of the page or application and the length of the

help text. Nevertheless, the best placement of field-

level help for the benefit of users who are blind or

who have low vision is within the label tag.

Alternate views could allow field-level help to be

turned on and off by the user in a frequently used

application, so that novices could see the field-

level help and experts could choose to turn it off. In

addition, alternate views could allow an applica-

tion to display help and tips to the right of the data-

entry fields to complement the visual layout in the

standard view, but move the help and tips next to

the field label, immediately below the label text,

for users who are blind or who have low vision.

� Title attributes. Usually, title attributes provide

benefit to some users, without hindering other

users. The exception can be users who use voice

recognition software. Title attributes that start

with text that is different from the screen text can

interfere with easy access to the control by voice.

An alternate view for persons with mobility

impairments can eliminate the title attributes.

� Repetitions and abbreviations. Words that are

hard to pronounce or are not unique on the page

can also create problems for voice access. Some-

times such situations cannot be avoided without

hindering other users. Alternate views can address

the situations where trade-offs are inevitable.

� Font size and color. The size and color of fonts can

give clear and concise cues to visual users. Those

same cues must be provided through extra text or

other means for users with visual impairments.

� Page organization. In a typical Web application,

information and data entry are organized in

sections, pages, and other groupings. Determining

exactly how to distribute that information

throughout the pages often involves compromises

between different usability and accessibility con-

siderations. Multiple views can provide multiple

organization options.

It is useful to separate presentation from content and

from functionality. This is normally considered a

best practice, but it is a prerequisite to the creation

of multiple views. Developers should be directed to

use styles rather than directly specifying any fonts,

colors, sizes, or appearances in the HTML code.

From an architectural perspective, it is important to

ensure that style sheets are comprehensive enough

to accommodate all presentation needs, so that no

additional specific coding is required.

One should avoid using absolute text units like

points and pixels. Instead, relative sizes should be

used so that the user can adjust browser preferences

to display text in a larger font. If possible, using style

sheets rather than HTML tables for page layout is

helpful. Tables should ideally only be used to format

tabular information.

Styles should be named for their semantic meaning

rather than for their display attributes. For example,

a style should be named ‘‘error message’’ rather than

‘‘bold red text.’’ Using semantically based names

makes it easier to apply the correct style when

multiple styles may appear similar to the developer

but may have very different effects on accessibility.

A single source should be used for the page content,

both to ensure in practice and to reassure in

perception that the content is consistent throughout

all views. When possible, style sheets should be

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HOFFMAN, GRIVEL, AND BATTLE 481

used for providing alternate view functionality.

When aspects of alternate view functionality cannot

be provided by using style sheets, then XHTML or

other technology layers can be used to handle that

functionality. Different style sheets can be created

that are optimized for each group of users (for

example, users who are blind, who have low vision,

or who have impaired mobility).

A mechanism can be created to enable a user to

switch between multiple display preferences, in-

cluding switching from one style sheet to another

‘‘on the fly.’’ The desired view preference should be

maintained both during the current session and

between sessions, when appropriate. Properties of

reusable objects that are not optimized for all users

could indicate the specific group or groups for which

they are optimized. Generating the entire applica-

tion using libraries of reusable objects can facilitate

the implementation of a multiple view solution.

Reviewing and adapting the architecture

Although we can work to ensure that software

architectures address known accessibility issues,

even the most extensive architecture planning is

unlikely to anticipate every future situation and

desired functionality. Even with the best of archi-

tectures, we are likely to hear yet again the

exclamation, ‘‘Oh, no, we can’t change THAT!’’

when a new requested modification is not addressed

by the architecture and reaches too far into the

architecture of the system to allow economically

viable and timely changes to be made.

The only solution to such iterative issues is to

recursively refine the architecture. While it may not

be feasible to implement the desired feature in the

current application, it may be feasible to conduct a

post-implementation architecture review with ac-

cessibility input. Iterating the architecture is neces-

sary in order to keep the accessibility features up to

date with emerging user interface standards.

CONCLUSIONS

This paper has provided an introduction to the

relationship between accessibility and architecture,

described common architecture-related accessibility

issues, and provided architectural guidelines for

addressing those issues. These guidelines are

certainly incomplete, especially regarding the use of

multiple views to address the needs of different user

groups, but it is hoped that they will provide a

starting point for systems architects and developers

who want to know how architectures can be

improved, as well as for accessibility specialists who

need to specify requirements for accessibility and

engage in cooperative work with development

teams. An increased understanding of this important

relationship may lead to the development of tools

and assessment techniques that assist software

architects in designing to support accessibility. In

our work, we will continue to evaluate accessibility

issues and design solutions for their architectural

implications in our efforts to improve the user

experience for people with disabilities.

ACKNOWLEDGMENTS
We would like to thank our colleagues Dena

Fishkind, Craig Cecil, and Jeremy Linzer for the

insights that they have shared over the past four

years and during the writing of this paper. Their

expertise in software development and architecture

was instrumental to the writing of this paper. We are

also grateful for the support of Sean Wheeler, the

technical lead for usability at the Social Security

Administration, and John Palumbo, the lead advocate

for software accessibility within Operations at the

Social Security Administration.

**Trademark, service mark, or registered trademark of Intuit,
Inc., Sun Microsystems, Inc., the Massachusetts Institute of
Technology, or Microsoft Corporation.

CITED REFERENCES AND NOTES
1. J. Thatcher, M. Burks, S. Swierenga, C. Waddell, B.

Regan, P. Bohman, S. L. Henry, and M. Urban,
Constructing Accessible Web Sites, Glasshaus, Birming-
ham, U.K. (2002).

2. Developer Guidelines for Web Accessibility, IBM Web
Accessibility Center, http://www-306.ibm.com/able/
guidelines/web/accessweb.html.

3. M. Theofanos and G. Redish, ‘‘Bridging the Gap: Between
Accessibility and Usability,’’ ACM Interactions 10, No. 6,
36–51 (November–December 2003).

4. Creating Accessible Forms, WebAIM—Web Accessibility
in Mind (2005), http://www.webaim.org/techniques/
forms/.

5. S. Faulkner, Techniques for Making Forms More Acces-
sible, Accessible Information Solutions, National Infor-
mational Library Service (NILS) (2004), http://
www.nils.org.au/ais/web/resources/WSG_Oct_04/
toc.html.

6. I. Lloyd, Accessible HTML/XHTML Forms, The Web
Standards Project (May 2004), http://webstandards.org/
learn/tutorials/accessible-forms/01-accessible-
forms.html.

HOFFMAN, GRIVEL, AND BATTLE IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005482

7. Permanent Archive: Invisible Form Prompts, Juicy Studio
(September 18, 2004), http://www.juicystudio.com/
invisible-form-prompts.asp.

8. J. Thatcher, Accessible Forms, JimThatcher.com Accessi-
bility Consulting (2002), http://www.jimthatcher.com/
webcourse8.htm.

9. I. Lloyd, Better Accessible Forms, Accessify.com (2002),
http://www.accessify.com/tutorials/
better-accessible-forms.asp.

10. D. Hoffman and L. Battle, ‘‘Top 20 Design Recommen-
dations for Accessible (and Usable) Web Applications,’’
Proceedings of the Usability Professionals’ Association
(UPA) Conference (2005, forthcoming).

11. Section 508 of the Rehabilitation Act of 1973, http://
www.section508.gov/.

12. The World Wide Web Consortium (W3C) Web Accessi-
bility Initiative (WAI), http://www.w3.org/WAI/.

13. U.S. Department of Justice, Americans with Disabilities
Act, ADA Home Page, http://www.usdoj.gov/crt/ada/
adahom1.htm.

14. L. Battle and D. Hoffman, ‘‘Design Patterns and Guide-
lines for Usable and Accessible Web Applications,’’
Proceedings of the Usability Professionals’ Association
(UPA) Conference, p. 4 (2004).

15. How Do You Define Software Architecture?, Carnegie
Mellon Software Engineering Institute (2005), http://
www.sei.cmu.edu/architecture/definitions.html.

16. P. Clements and P. Kogut, ‘‘The Software Architecture
Renaissance,’’ Bridge, Issue 3, The Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, pp.
11–18 (1994).

17. J. Bosch, Design and Use of Software Architectures:
Adopting and Evolving a Product Line Approach, Pearson
Education, Addison-Wesley and ACM Press (2000).

18. N. Juristo, A. M. Moreno, and M. I. Sánchez, ‘‘Clarifying
the Relationship between Software Architecture and
Usability,’’ Proceedings of the Sixteenth International
Conference on Software Engineering and Knowledge
Engineering, p. 2 (2004).

19. B. E. John, B. L. Bass, N. Juristo, and M.-I. Sanchez-
Segura, ‘‘Avoiding ‘We can’t change THAT!’: Software
Architecture and Usability,’’ Tutorial materials presented
at the Conference on Human-Computer Interaction (CHI
2004), Vienna, Austria (April 24–29, 2004), pp. 5–6 &
23–24, http://www-2.cs.cmu.edu/;bej/usa/
publications/FinalCHI2004Tutorial.pdf.

20. L. Bass, B. John, and J. Kates, Achieving Usability
Through Software Architecture, Carnegie Mellon Software
Engineering Institute technical report (March 2001).

21. Section 508, Subpart B § 1194.22 (p), http://
www.section508.gov/index.cfm?FuseAction¼
Content&ID¼12#Web.

22. Web-Based Intranet and Internet Information and Appli-
cations, The Access Board (June 2001), http://
www.access-board.gov/sec508/guide/1194.22.htm.

23. Private communication with L. McLeroy.

24. E. Bergman and E. Johnson, ‘‘Toward Accessible Human-
Computer Interaction,’’ in Advances in Human-Computer
Interaction, Volume 5, J. Nielsen, Editor (1995), http://
www.sun.com/access/developers/
updt.HCI.advance.html.

25. G. C. Vanderheiden and S. L. Henry, ‘‘Designing Flexible,
Accessible Interfaces That Are More Usable by Every-
one,’’ Tutorial presented at the Conference on Human

Factors in Computing Systems (CHI 2003) (2003), http://
www.chi2003.org/docs/t10.pdf.

26. S. Pemberton, ‘‘Accessibility is for Everyone,’’ ACM
Interactions 10, No. 6, 4–5 (November–December 2003).

27. S. Salamone, ‘‘Improved Web Access for Disabled Users
Benefits All,’’ TechRepublic (December 2001), http://
techrepublic.com.com/5100-6301-5032988.html.

28. J. Moore and J. Mathews, ‘‘The Blind Leading the Blind,’’
http://www.aarp.org/olderwiserwired/
oww-events/Articles/a2004-03-03-oww-blind-leading-
blind.html.

29. G. Redish and M. Theofanos, ‘‘Achieving Experience
Equity and Universal Usable Access,’’ http://redish.net/
content/talks.html.

30. Section 508 Standards, Subpart B § 1194.22 (d), http://
www.section508.gov/index.cfm?FuseAction¼
Content&ID¼12#Web.

Accepted for publication February 24, 2005.

David Hoffman
MILVETS Systems Technology, 4675 Annex Building, 6401
Security Boulevard, Baltimore, Maryland 21235
(dyhoffman@yahoo.com). Mr. Hoffman is a senior
accessibility and usability specialist with extensive Web
technology experience. In his current position, he provides
user interface accessibility and usability design support for the
Social Security Administration. He serves as a top agency
expert on interactions between Web applications and assistive
technologies, as well as on achieving Web application
accessibility. In addition to mentoring various project teams in
accessibility issues, Mr. Hoffman contributes to the definition
of implementable interactive standards that incorporate both
accessibility and usability. Mr. Hoffman holds a master’s
degree in applied information technology from Towson
University. He is a member of the Usability Professionals’
Association (UPA).

Eric Grivel
Lockheed Martin Information Technology, 3300 Lord Baltimore
Drive, Baltimore, Maryland 21244 (egrivel@acm.org). Mr.
Grivel is a senior software developer with 18 years of
professional experience in architecture and application design
and implementation. In his current position at Lockheed
Martin, he supports the Social Security Administration’s Web
applications. Mr. Grivel has a master’s degree from the Delft
University of Technology. He is a member of the Association
for Computing Machinery (ACM).

Lisa Battle
Lockheed Martin Information Technology, 3300 Lord Baltimore
Drive, Baltimore, Maryland 21244 (lbattle@acm.org). Ms.
Battle is a senior user interface designer with more than 12
years of experience creating usable software, Web-based
applications, and Web sites for clients in a variety of industries
and the federal government. Her work focuses on making
users successful and achieving business goals through a
combination of analysis and iterative design techniques. Over
the past five years, Ms. Battle has been instrumental in
introducing user-centered design into the Social Security
Administration, as well as contributing to standards definition
and integrating user-centered methods into project life cycles.
Ms. Battle holds a master’s degree in cognitive psychology and
human factors from George Mason University. She is a
member of the Usability Professionals’ Association (UPA) and
the Association for Computing Machinery (ACM-CHI). &

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HOFFMAN, GRIVEL, AND BATTLE 483

Published online August 4, 2005.

