D. Hoffman
E. Grivel
L. Battle

Designing software architectures
to facilitate accessible Web
applications

The Web application is increasingly a platform of choice for complex business software
and online services. However, it remains a challenge to ensure that the Web
application is easy, efficient, and effective for people with disabilities. Accessibility
requires that users with disabilities, including those who are blind, have low vision, or
have mobility impairments, are able to use the applications effectively and with a
reasonable amount of effort. Although there has been important progress in recent
years in describing the relationship between architecture and usability, the topic of
architectural support for accessibility has not been adequately addressed. Based on
our experience in designing Web applications for the United States Social Security
Administration, we have begun to identify guidelines for architectures that support
accessibility. This paper describes common accessibility problems encountered in Web
applications and explains how architecture can help address these problems through
reusable accessible objects, supplementing information in links, buttons, and labels,
assisting in access to Web page visual information, handling errors, and providing
time-out notification and recovery. It also discusses the critical role of architecture in
supporting the best way of meeting the needs of diverse user groups: multiple
dynamic views of the user interface.

INTRODUCTION

As consultants to the United States Social Security
Administration, a government agency that is com-
mitted to accessibility, we have maintained a focus
on improving the user experience for all users of our
Web applications. These applications include so-
phisticated data-entry applications (similar to the
Web version of Turbo Tax**), claims-processing
systems (similar to those used inside insurance
companies), workload-management systems, corre-
spondence-routing systems, and call-center systems.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Such applications require complex navigation, ex-
tensive data entry, conditional relationships among
different data elements, and multiple interrelated

user tasks. The baseline software architecture for the

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

HOFFMAN, GRIVEL, AND BATTLE

467

front end of these Web applications is DHTML
(dynamic HTML), which is dynamically produced
using Java** technologies. DHTML may include
HTML (Hypertext Markup Language), CSS (Cascad-
ing Style Sheets), and JavaScript**.

There are several common challenges encountered
when working with project teams to improve
accessibility. One is a lack of comprehensive guide-
lines that apply to interactive Web applications.
While there are many published sources of infor-
mation on Web site accessibilityl’2 and the needs of
users with disabilities,3 existing Web accessibility
guidelines typically focus on the design of static
informational Web sites or basic Web forms"™ and
do not address design issues that typically arise in
complex software applications. They generally dis-
cuss each individual accessibility issue in a vacuum,
without addressing external design constraints or
the interrelation of issues. Moreover, the introduc-
tion of accessibility into an application that is
already fully developed can involve significant
redesign and recoding, which may be considered
outside the project’s scope and budget. Obtaining
input from accessibility specialists before coding
starts (during user-interface design and specifica-
tion) reduces the risk of rework but does not
eliminate the need for significant manual testing and
recoding. For this reason, it is important to look
across suites of related applications and identify
ways of supporting accessibility through the use of
reusable components that consistently implement
common business rules, design requirements, and
other site-wide functionalities, including
accessibility.

Two of the authors recently completed an analysis
of documented accessibility violations and recom-
mendations; in the analysis more than 1,300
accessibility issues, which were identified during
evaluations of 80 software applications over a three-
year period, were compiled and categorized. This
analysis led to the creation of a list of “Top 20”
accessibility issues,10 which we have used in
developing user-interface standards and in review-
ing the architectural implications of accessibility.

Although we considered a wide spectrum of
disability types, we discovered a stronger emphasis
on vision-related disabilities than on other disabil-
ities. There are probably several reasons for this
emphasis, including the fact that vision-related
challenges to access are the most numerous and

468 HOFFMAN, GRIVEL, AND BATTLE

significant, the access solutions are relatively
feasible, and the fact that people with vision-related
disabilities are some of the most active participants
in the job market and some of the strongest
advocates for their causes. This paper does not
discuss the full list of recurring accessibility issues;
instead, it focuses on those issues that can be
addressed within an intermediate architectural layer
of reusable software components. We argue that
addressing accessibility issues within such an
architecture can significantly enhance accessibility,
and failing to address them within such an
architecture can significantly limit accessibility.

Accessibility and usability

Software is accessible when the user interface is
designed to meet the special needs of people with
disabilities, allowing them to use software in a
manner that is similar to the way that people
without disabilities use it. Disabilities may include a
limited ability to see, hear, or move (including using
a keyboard or mouse), or to process certain types of
information easily or at all. Software accessibility is
often accomplished by ensuring that necessary
information about user-interface elements is avail-
able to various assistive technologies, such as screen
readers for users who are blind, magnification
software for users who have low vision, or speech
input software for users with mobility impairments.
Although Section 508,"" the World Wide Web
Consortium Web Accessibility Initiative'" (W3C**
WAI), and even the ADA" (Americans with
Disabilities Act) seek to recommend or mandate
various accessibility standards, our primary focus is
on the shared goal of all such standards: ensuring
that users with disabilities can use software effec-
tively and with a reasonable amount of effort.

Accessibility is closely related to usability, the art
and science of ensuring that software is efficient and
effective to use and that its use is satisfying for
users. Usability practitioners sometimes consider
accessibility to be a subcategory of usability, despite
the fact that, in practice, accessibility is usually
handled separately from usability. Although the
goals of accessibility and usability are similar in
many ways, the specific design enhancements
needed to support usability for a general audience
and accessibility for users with disabilities may
differ significantly and may pose conflicting goals.
In addition, different groups of users with disabil-
ities have different needs. Our experience in

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

balancing the needs of these different user groups
has led us to conclude that in some situations, one
solution for all users is not desirable.'* The idea of
multiple views tailored to the needs of different user
groups is explored further in this paper.

Software architecture

There are numerous definitions of “software archi-
tecture” in the technical literature."” Essentially,
software architecture describes the organizational
structure of a software system including compo-
nents, interactions, and constraints. Architectural
interactions are abstractions for how components
interact in a system. An architecture includes the
constraints on component selection and the ratio-
nale for choosing a specific component in a given
situation.'® For our purposes, software architecture
describes the function of components of a system,
including their interaction with each other.

There are many different aspects to the architecture
of a system, including the computer hardware,
software, and network. Even though this paper
discusses software that is developed using a DHTML
front-end architecture, our focus is on an inter-
mediate application layer. This layer is located
between the back-end processes or databases (or
both) and the presentation-layer technologies (such
as HTML, CSS, server-side scripting [e.g., Java-
Server Pages**] and client scripting [e.g., Java-
Script**]). In addition to the business-logic code,
this intermediate application layer includes typically
proprietary common reusable software components.
Just as most software is not designed to run directly
on top of an operating system, complex systems are
commonly built in development environments that
include such an additional layer. This layer of
software components includes tools, functions, and
restrictions that form the core design and basic
architecture of the site or the applications on a site.
It consistently implements common business rules,
design requirements, and other site-wide function-
alities. When such an intermediate architectural
layer is used, it can serve either to limit accessibility
if it is not designed with accessibility in mind or to
enhance accessibility if it is designed with accessi-
bility in mind.

In recent years, several authors have begun to
describe the relationship between usability and
architecture. Bosch described a direct relationship
between architectural decisions and the ability to

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

meet quality requirements.17 Juristo, Moreno, and
Sanchez researched the architectural implications of
usability issues and pointed out the danger of
assuming that usability only affects the presentation
component of software systems.18 John and Bass'’
have done extensive work on this subject and have
illustrated how, despite the best efforts of architects
to create modularized software that facilitates
changes, it becomes difficult to meet user-experi-
ence requirements after architectures are already
defined. Reference 19 describes a scene in which
usability issues are presented, and one of the
developers exclaims, “Oh, no, we can’t change
THAT!” The problem is that the requested mod-
ification reaches too far into the architecture of the
system to allow economically viable and timely
changes to be made. Even when the functionality is
correct and the user interface is separated from that
functionality, some architecture decisions may un-
knowingly limit the ability to implement usability
requirements. Bass, John, and Kates have published
a collection of architecture patterns intended to help
architects anticipate and accommodate usability.20

Although these works do not directly address
accessibility issues, the relationship between us-
ability and architecture is similar to the relationship
between accessibility and architecture. In our
experience, a common reason given by development
teams for declining to implement accessibility
features or enhancements in complex Web applica-
tions is a lack of architectural support and the cost in
time and money involved in implementing en-
hancements that require architectural modification.
Conversely, after an accessible solution is built into
the architecture, it is much easier to consistently
extend that solution across multiple applications. In
light of this, the goal of this paper is to extend the
existing work on the relationship between usability
and architecture by providing a set of architectural
recommendations to improve the user experience
for people with disabilities.

ACCESSIBILITY ISSUES AND SOFTWARE
ARCHITECTURE SOLUTIONS

This section provides specific information about
addressing accessibility within an architecture of
reusable software components.

Using libraries of reusable objects

A common challenge in developing accessible
applications is the significant knowledge gap that

HOFFMAN, GRIVEL, AND BATTLE

469

exists between software developers and accessibility
specialists. Most developers do not have experience
or training in coding for accessibility, and most
accessibility specialists have limited programming
training or experience. These specialists may not be
able to provide sample code that developers can use
to achieve the desired results. This leads to
inconsistent results; for example, different devel-
opers have varied levels of accessibility awareness,
and even when they do implement accessibility
features, they may use different approaches, or code
the same approach differently. In addition, even
when accessibility features are implemented prop-
erly, they must still be manually applied to each
individual page element throughout the entire
application.

Complex Web applications or online services
increasingly use software-generated HTML (utilizing
technologies such as Java-programming-language
custom tags), rather than simple static HTML. In
fact, the use of software-generated HTML is partially
responsible for the very architectural complexities
that distinguish complex Web applications from
static Web sites. The use of software-generated
HTML enables the use of common reusable com-
ponents.

The value of designing with reusable components is
apparent in projects remediating the accessibility of
Web applications. Projects not using reusable
components required manual testing, recoding, and
retesting of dozens of controls across hundreds of
pages. Projects using reusable components required
testing and recoding only for each type of reusable
component. The changes then automatically propa-
gated across the application.

Common accessible solutions can be incorporated
into reusable software components and data repos-
itories across applications or even suites of appli-
cations. Reusable components define the structure
and attributes of a particular type of page element.
These components can use data repositories (i.e.,
flat files, such as Java property files) that contain
attribute values, such as field labels and titles.
Reusable components and data repositories exist
completely in the background and remain invisible
to the user interface, but can be essential to the
consistent and efficient implementation of accessi-
bility features.

470 HOFFMAN, GRIVEL, AND BATTLE

The following are some examples of reusable objects
that we have designed to promote accessibility:

1. Fields with associated field labels. Using a
reusable object ensures that field labels are read
with the appropriate fields in a consistent way
throughout the application.

2. Set of radio buttons with captions. This object
is a set of radio buttons with captions. Using a
reusable object ensures that the radio button
caption is read with each set of radio buttons in a
consistent way throughout the application.

3. “Continue” and “previous” page buttons with
associated hotkeys. These buttons and “hotkeys”
(keyboard shortcuts, also known as accelerator
keys) allow keyboard users to quickly navigate to
the next or previous page without having to tab
through all the controls on the current page.

The code in reusable objects can enforce certain
coding standards, such as a requirement to provide
alternate or supplemental text for an image, field
label, link, or push button. For example, Java-based
custom tags can be used to encapsulate the logic to
generate consistent, accessible HTML. Although
they cannot ensure that the alternate or supple-
mental text is accurate or appropriate, they can
ensure that the text is not omitted or forgotten
completely. This strategy ensures that once each
type of control has been developed, tested, and
refined, it will always be the same. Reliance on the
knowledge of individual developers or accessibility
specialists in order to code for accessibility is thus
reduced.

Reusable objects also provide the ability to imple-
ment accessibility features by changing a relatively
small number of reusable components, rather than
individually changing many individual controls
across multiple pages throughout an application or
families of applications. The use of reusable
components provides a level of consistency that is
difficult to achieve even after significant testing and
tweaking of individually coded components. The
difference between remediating accessibility issues
in an application that uses reusable components and
one that does not is very significant.

The software architecture should contain reusable
components that encapsulate logic which generates
consistent, accessible HTML and should reference
these components from each place where they are

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

needed in an application. For example, rather than
coding each set of radio buttons independently,
radio buttons can be standardized into a single
construct (or a limited number of different logical
constructs, if appropriate). This construct should
include code to associate both the radio buttons with
their individual labels and the caption with the
entire set of radio buttons.

Field-specific data attributes are commonly specified
when a reusable control is called. In some situa-
tions, such as when the same type of control appears
in multiple places, there is a benefit from using data
repositories to store the data attributes related to
each control. These data repositories can then be
used to create the controls by populating the
attributes of the reusable components. The data
repositories can include or even require the storage
of various types of supplemental text, as discussed
next.

It is important to note that as consistency improves
through the inclusion of more functionality in the
architecture, flexibility is likely to decline. This is
not necessarily bad, especially if the application is
accurately designed in logical components that
match business needs. However, because merely
using reusable components does not ensure that
anything is implemented correctly, it can also cause
accessibility deficiencies to be implemented consis-
tently. Likewise, it can be more difficult to correct
certain accessibility deficiencies that are incorrectly
implemented after they have become part of the
architecture of reusable software components for a
suite of Web applications.

Supplementing information

One of the most common accessibility issues
involves information that is either not available or
not as readily available to users with disabilities as it
is to other users. For example, the purpose of some
links, push buttons, and field labels on a Web page
may be unclear to screen-reader users without the
surrounding context. In addition, users may not be
aware of the existence of error messages, help, or
tips related to a field, or the fact that a field is
required, if that information is not included in the
field label. Visual users can associate contextual
information by simply scanning with their eyes
without ever removing their primary focus from the
form fields, but screen-reader users must choose
between a textual view that enables the reading of
all content in order and a field manipulation view

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

that enables the manipulation of all data-entry
fields. Therefore, supplemental information can be
essential for providing comparable access (i.e.,
access for people with disabilities which is com-
parable to that of nondisabled users) to textual
information when screen-reader users are perform-
ing data entry.

Screen readers do a very good job of handling
semantically coded informational pages. They also
effectively handle properly coded form fields.
Nonetheless, screen-reader users face a unique
challenge when navigating through pages of mixed
content (form fields and other controls interspersed
with informational screen text), because screen
readers must distinguish between manipulation of
HTML form controls and the reading of HTML
textual information. Even though all of the con-
textual information is likely to be available some-
where on the page, users with disabilities may face
the extra burden of trying to locate and associate the
contextual information while engaged in data-entry
activities (without knowing whether the information
is even available).

Although this use of mixed content does not affect
every link, push button, or field label, there are
often situations when some of the information
needed to understand the purpose of data entry
fields or selection mechanisms is conveyed to the
user through context, that is, a combination of the
surrounding text, page layout, and proximity. For
example, when links are presented within a para-
graph of text or within a table, the surrounding
information often plays a role in communicating
their purpose. Much of this contextual information
is not easily available to screen-reader users, who
may encounter the links or push buttons in
isolation. For example, a user who is tabbing from
control to control, as is typical when completing a
form, may skip over essential screen text without
even realizing that the information is available.
Similarly, a user who accesses links in a special list
of links may not have easy access to surrounding
text information. Low-vision users may also have
difficulties if the contextual clues are too far away
from the link, push button, or field label so that they
cannot seen at the same time when the screen is
magnified.

Links

When links are used in tables, their meaning is
conveyed in part by their row and column location

HOFFMAN, GRIVEL, AND BATTLE

471

. Office Claim
Client Name Estab Data Level Claim Office e
“lientName DOB il Type Code Type Status
Sraith, Joe 03/31/1975 | 05/22/2003 | Initial iDIEl 268 |FO Closed
Widgle ,
Smith Kyle 02/07/1977 | 07/26/2003 Initial CDBD 268 | FO | Closed
chih CDBA 268 FO Closed
DB 268 FO Closed
Smith, Kvle | 02/07/1978 | 12/23/2002 | Initial \cOED 267 |FO | Pending
dstinn |coeop 267 |FO |Pending
Srith, Kyle ’mmns?s 08/07/2002 _ Initial CDBD (268 |FO | Closed
Ashton CDBD 268 FO Closed
Figure 1

Links used in tables

(see, for example, the client name and office code
links in Figure T). Links are used in many different
ways. When clicking on a link serves to activate a
folder tab or menu system, the link’s purpose may
be conveyed through its visual appearance; when a
link is used to provide pop-up definitions or
examples, its purpose may be conveyed through
proximity to the item being defined; when a link is
used to re-sort a list of items, its purpose may be
conveyed by means of a graphic or simply the
appearance of a link as a table column heading. All
of these situations can potentially create accessibil-
ity challenges because the meaning of the link is not
clear out of context. Unfortunately, in HTML, all
links are simply links, despite the fact that links can
play extremely varied roles.

Field labels

When related fields are grouped, they are often
labeled in a way which assumes that the user has
some knowledge of the grouping. This makes sense
to most users and makes labels more concise, but
again, it can pose a challenge for users who are
blind and may not have access to the context. There
are several common variations on this theme:

1. Fields may share part of their label because they
are logically related to one another. For example,

Daytime Phone:
| - -
Evening Phone:

Figure 2
Fields that share part of a label

472 HOFFMAN, GRIVEL, AND BATTLE

Show up to | 250 =] results | with document summaries

Figure 3
Fields in sentence format

a “name” label may be subdivided into separate
fields for title, first, middle, last, and suffix; a
telephone number may be subdivided into three
separate fields, as seen in Figure 2.

2. Fields may be arranged in a sentence format that
makes sense when the whole sentence is seen
together, but not when a part of it is seen in
isolation. For example, the first drop-down list in
Figure 3 might be read by a screen reader as
“Show up to select menu with x items” for the
first drop-down list, which technically does
provide a label, but does not provide enough
information for the user to understand and make
a selection (the obvious question, “Show what?”
cannot be answered without the label for the
second drop-down list: results). For the second
drop-down list, a screen reader might say “results
select menu with y items,” which technically
does provide a label, but one that is not easy to
comprehend. Neither field has a distinct mean-
ingful label without the context of the entire
sentence. A better approach is to use a hidden
label (for example, a title attribute) identifying
the first field as “number of results to show” and
the second field as “display preference.”

3. Fields may lack individual labels. For example,
month, day, and year fields, or city, state, and
zip-code fields often do not have separate labels
because their meaning is clear when they are
seen together. Another increasingly common
situation where fields may lack individual labels
is when they appear in tables as seen in Figure 4.

In all these situations field labels may need to be
coded differently to ensure that screen readers read
the correct information.

Field-level instructions and messages

Additional information is sometimes provided at the
field level, as seen in Figure 5. This information may
include instructions or tips for answering the
question and an indication of whether the field is

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

“required” or “optional.” Error messages are also
provided when a required field is left blank or when
an inappropriate value is entered. See the section
“Error handling” for a discussion of alternative
approaches. Ensuring that all users have compara-
ble access to such directions and cues again presents
a challenge. Users who are blind may not be aware
of the existence of an error message or an
instruction associated with a particular field if it is
not coded as part of the field label. Users with low
vision may not be aware of the additional informa-
tion if it is placed too far from the field to be seen at
the same time with a magnified view, as is the case
in Figure 5.

In order to use supplemental information as an
accessibility solution, labels must be explicitly
associated with the appropriate fields so that they
can be read reliably with screen readers. Although
proper and consistent label placement can usually
enable screen readers to find labels, only explicit
association ensures accurate results. If it is not
possible or desirable to include sufficient informa-
tion in the element (i.e., a visible link, push button
or field label) so that it can be understood out of
context, it is necessary to supplement the label. The
supplementary information must be read by the
screen reader when the reader focuses on the
control.

Our recommended approach to implementing such a
solution is by using a “title” attribute in the link,
push button, or field. The title value should include
both the visual text and the supplementary infor-
mation because, when screen readers are set to read
title attributes, they typically read them instead of,
rather than in addition to, the visual text. There are
times when it is necessary to supplement the text
presented on the screen in more than one way, such
as by including supplementary text before and after
the screen text.

All relevant information should be included in field
title attributes, including error messages, help, tips,
and an indication if the field is required, although it
is important to keep this as brief as possible. If the
help or tip information is too long to be read with
the field, it is helpful to include a brief indicator,
such as “help follows,” inside the title attribute.
Placing a “tab stop” on the remaining help or tip
allows the focus to land there when the user is

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Payee: Name A Amount Send On Deliver By Last
Sort by: Nickname mimiddiyyy
Baltimore Gas and s | [B 01/23/9004
Electric -9112 Delivery Time: 2 days $230.70
Citibank $ (| 01/13/2004
Citibark -9749 Delivery Time: 2 days $350.00
Camcast Cable -8-04-5 $ | [BB 01/09/2004
Delivery Time: 2 days $120.00
Director of Finance s | [B 01/23/2004
Howard Cnty -2161 Delivery Time: 5 days $27.73

Figure 4
Fields without individual labels

tabbing through the form (which can be achieved
for the Internet Explorer** browser through the use
of a “tabindex” attribute) and ensures that the tab
stop immediately follows the field in the tab order.

An alternative approach to supplementing screen
field-label text is to include the supplementary
information within the label tags, hiding it from
view but enabling screen readers to recognize and
speak the information. The following CSS code
visually hides information from the display and, at
the same time, allows screen readers to access the
information:

{position:absolute; Teft:0px top:-100px;
width:1px; height:1px; overflow:hidden;}

Unfortunately, neither of these solutions really
addresses the issue for users with low vision.
Generally, it is only possible to mitigate the issue by
using a “multiple view” solution, as discussed later.

The following architectural recommendations sup-
port the supplemental-information accessibility so-
lutions we have described. The architecture should
require that every field have a label. Field labels
should be explicitly associated with the appropriate
fields by using label tags. This ensures that they will

Monthly Income Before Taxes: $§ |
Down Payment: §$ |
Monthly Debt Payments: § |

Include auto loans, credit cards, and other personal debt.

Figure 5
Field-level instruction

HOFFMAN, GRIVEL, AND BATTLE

473

l /3 About Your Medicines - Microsoft Internet Explorer provided by IE6 > SEF

Efe Edit Wew Favortes Tocks Help

2, Social SecurityOnline

Sign Off About You [l Medical History

information about each of them later.

“Ml< Disability Report - Appeal - Form 3441

Medical History: About Your Medicines

Please list all prescription and over-the-counter medications that you are taking for your condition. We will ask you for more

List all prescription and over-the-counter medications:

(13 I‘E

Name: John Public
SSN: 743-99.0065

Copy the name directly from 1. |
the medicine bottle, if you

have it. 2. I

Figure 6
Signposting conveyed through visual elements

be read reliably by screen readers. If a visible label is
not provided, an alternative label must be provided
instead. The text for supplementary title attributes,
hidden text, or field-label tags should be specified in
data repositories that define all such objects in the
application. This ensures that there is a placeholder
in the architecture to accommodate supplementary
text as needed for all links, push buttons, field
labels, and images.

Reusable components should contain placeholders
for storing any information that can be associated
with a control (error messages, help, or tips, etc.)
within the HTML. The text for title attributes, hidden
text, or field-label tags should be automatically
generated by reusable components, using the
information in the data repositories. In this way, the
architecture enforces the existence of all types of
text that can be associated with a control.

At the architecture level, each element is marked
with a value of “required,” “optional,” or “condi-
tionally required.” This value can be used to
generate the information in the label that indicates
the required fields. This can be represented as an
asterisk for the visible label, and it can be
represented as the word “Required” in the hidden
text.

Different types of links should be recognized as
specific entities by the architecture. For each type of

474 HOFFMAN, GRIVEL, AND BATTLE

link, certain attributes should be required (such as
link ‘type’) or optional to provide the necessary
context information for the link.

For instance, a link may have the type of “dynamic
element.” When this link type is defined, attributes
may be provided to augment the information
available when the link is rendered. The link can be
rendered automatically depending on the chosen
view and using the available HTML syntax. The
advantage of this type of generic architectural
solution over manually coding the title attributes,
hidden text, or field labels is that it encourages
consistency, ensures inclusion, and requires less
manual effort.

Providing access to on-screen signposting
Signposting refers to Web page visual information
that communicates the title of the application and
page, any essential system messages, and any
feedback or status messages. Signposting is essential
for helping users know where they are in an
application. However, users with disabilities may
not have comparable access to the signposting cues
that show current location and status information.

Visual users have the ability to quickly scan the
display text and graphics for on-screen signposting.
They can then go directly to the task at hand. In
contrast, screen-reader access is linear—the users
cannot perform a visual scan. They may need to

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

/2l 1 error on page - Adult Disability and Work History Report - Should You Complete This Report? - IEG.0 SP1 > FO

/-a 2 search results - Social Security Administration Search Results - IE6.0 SP1 > FO

Figure 7

Examples of effective title-bar signposting: (A) title bar showing error information; (B) title bar showing search results

actually listen to a significant amount of potentially
irrelevant text merely to determine their location
within the business task or to determine the system
status.'”

Figure 6 illustrates how much information about the
current location—including the name of the appli-
cation and Web site, the page, and the section—is
available at a glance. Status information, which
includes the existence and number of errors, the
existence (or the lack) of search results, and specific
record or user identifiers, is also typically visible at a
glance.

While modern screen readers provide features that
attempt to help, these features are typically limited
to page structure information, such as the focus
location in terms of percentage of the page or the
control number on the page.

The browser title bar of each page should briefly
provide a summary of the user’s location and any
special status. The title bar should include the name
of the application, followed by the application
section, followed by the page, followed by any
specific user or record identifiers, as appropriate.
Special status information such as the existence of
errors, the existence of search results, or the lack of
search results should be concisely inserted at the
beginning of the title bar when applicable. Other
status information, such as specific record or user
identifiers, should be inserted at the end.

This solution does not replace the display of the
same information on other parts of the page. The
page title, the currently selected tab, the record
identifiers, and any feedback or error messages are
still displayed on the page as appropriate for the
visual layout. The advantage of including them in
the title bar is that they are read by the screen
reader as soon as the page loads, making it easy for

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

the user to obtain the title bar information on
demand by using an assistive technology key-
stroke. This can provide a significant benefit for
users switching back and forth between multiple
application windows.

Figure 7 shows examples of effective title bar
signposting. In Figure 7A the application name, page
name, and error notification are displayed in the title
bar. In Figure 7B, the page name and notification of
search results are displayed.

To support this accessibility solution, the HTML
page title tags can be used to define the application
name and section and the individual page, as
appropriate. Standard functions can be used to
create the content of the page title tag by using not
only the actual page title but also system-status
information, such as the application name, the
current section, the existence and number of errors,
or the existence and number of search results.

When frames are used and the main content resides
in a child frame (Frame 3 in Figure 8), the frameset
(i.e., a set of frames in a Web page) title bar does not
display the title of the child frame. In this case,

Title [. —
Bar _; i
Frame 2 The title of
the page
Frame 1 Frame 3 displayed in
Frame—< ; Frame 3
set Main content page shoyld be
is displayed here displayed in
the title bar
\
Figure 8

Display of current page name in the title bar

HOFFMAN, GRIVEL, AND BATTLE

475

JavaScript should be used to display the title of the
current child frame in the title bar of the frameset.

Time-out functionality

Time-out functionality addresses the interval of time
for which an Internet connection may remain open
without any transmission of data. When a time-out
function is used within an Internet application, the
user must receive sufficient notification (at the
beginning of the application and when the time-out
is about to occur), and the user must have the ability
to indicate that more time is required, as mandated
by Section 508.%" It is also important for the user to
be given the ability to recover after a time-out
occurs.

For security reasons, many Internet applications
employ a time-out function. This is intended to limit
the risks that may occur if an Internet application is
left running unattended on a computer where
someone other than the appropriate user may have
access to it.

Time-out functionality creates a need for three
related usability features: user notification, addi-
tional-time request, and user recovery. However,
time-out functionality is also an accessibility issue
because users with disabilities may work more
slowly with an application and thus may be more
likely to be affected by an application timing out.”?

It is important to notify users in advance that an
application may time out. This notification should
appear at the start of each application and can be
included as part of the instructions for completing
that application. The notice must include the
amount of time that is allowed on a screen before a
session will time out, instructions on how to request
an extension for more time, the number of
extensions that will be granted, the consequences
that result from a session time-out, and a notifica-
tion that client-side scripting is required for this
functionality. (If scripting is turned off, the user will
not receive any notification until after the session
has expired.)

Users should be notified when a session time-out is
about to occur. Providing the user with sufficient
warnings and the opportunity to request more time
can help the user to avoid losing data. User
notifications should be written in such a way that
they are clear and not intimidating.

476 HOFFMAN, GRIVEL, AND BATTLE

When there has been no transmission (for example,
continuing to the next page in an application) on an
open connection for the established interval, the
user should receive two or more alerts. The initial
pop-up messages notify users that the application
will time out within a designated time frame,
provide them the opportunity to extend their time,
and specify the length of the available time
extension. The final alert also appears in a pop-up
window and notifies users that their time has
expired and the session has ended. It also informs
them of what data may have been lost as a result
and how to begin a new session. (If client-side
scripting is turned off, the user will not receive any
of the pop-up alert messages.)

It is important to provide users with the opportunity
to recover gracefully from an expired session. This
means clearly notifying them that the session has
ended, indicating what data may have been lost, and
providing the ability to immediately log back into
the application.

To support this accessibility solution, an application
or family of applications should establish a consis-
tent and reusable architectural component for
providing the time-out functionality. The time-out
interval should begin when the user enters a page.
Any interaction with the server (such as progressing
to the next page or submitting information) should
reset the timer.

A pop-up window (a first alert message) should
notify the user that the application will time out
within a certain time interval and provide the user
with the option to extend the time interval. If more
time is not requested, or no more extensions are
possible, a pop-up window containing the final alert
should notify the user that the time interval has
expired and the session has ended.

An HTML page should appear when the time
interval has expired. This page also should appear if
the user attempts to perform an action on a page
after the session has already expired. It should
provide the ability to immediately log back in to
complete the application or to return to a reasonable
point of reentry.

Implementing time-out functionality involves a

unique challenge. The client must contact the server
within the inactivity interval to inform it that the

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

user has requested additional time. The server must
then respond by sending back an HTML page,
potentially interfering with the partially completed
form. One technique for handling this response from
the server without forcing the user to begin the form
again is by sending the form and data to the server
(without performing any server-side validation),
temporarily saving the data in a separate location,
sending the form and data back to the browser as
the response from the server, and using a combi-
nation of XHTML and JavaScript to reset the field
values to their previous values and reset the focus to
its previous location. This solution, however, is very
complicated and should be weighted against using
an alternative, the simpler frameset solution.

The frameset technique involves creating a parent
frame and two child frames. One of the child frames
is used as the form that the user fills out, and the
other is a hidden frame. When the time-out is about
to occur and contact needs to be made with the
server to keep the connection alive, the hidden
frame is used as the target for making the call to the
server. The response that is returned from the server
can then be directed to that hidden frame unbe-
knownst to the user, and the hidden page can be
used to restart the timer. In this way, the connection
to the server is extended, and the user can continue
filling out the page without interruption. This
solution is currently used in public Web applica-
tions, but is somewhat complicated. In addition,
hidden frames can create significant confusion if
they are read by screen readers. (With some screen
readers, this problem can be avoided by setting the
height and width of the hidden frame to zero.)
Developers have continued to search for better
solutions.

As this paper was being prepared for publication, it
was discovered that HTTP (Hypertext Transfer
Protocol) actually includes a straightforward means
of preventing the response from a server from
interfering with the partially completed form that
submitted the request to the server. This can be
accomplished as follows. The client sends a request
for additional time to the server, specifying a desired
response of status code 204. The server then sends a
response to the client consisting of only an HTTP
status line with status code 204 (signifying that no
content is coming) and a blank line, which does not
interfere with the current page. Early testing

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

indicates that this method may, in fact, provide a
simple, elegant solution.”’

Error handling for accessibility

Several important architectural aspects of error
handling have already been covered in earlier
sections: providing comparable access to on-screen
signposting (ensuring that all users are aware of the
existence and number of errors) and supplementing
information (ensuring that all users have compara-
ble access to error messages and cues associated
with a particular field).

Another important architectural aspect of error
handling is ensuring that users can find the errors on
a page. Typically, visual users can scan the page
from top to bottom, looking for a distinctive visual
cue that identifies the error. Users with disabilities
require a comparable, efficient means of finding
errors.

Even when input fields are designed with error
prevention in mind, errors sometimes still occur.
The application generates error messages for the
fields that are in error, which typically must be
corrected before the user can proceed to the next
page. However, this can present challenges for
several groups of users.

Because users who are color-blind may not be able
to distinguish red from black, it is not acceptable to
rely on color alone to enable users to find error
locations. Users who have low vision may have
difficulty finding where the errors occurred on the
page, especially if the page is long, because with a
magnified screen they may not be able to see the
error text and they may need to search for it by
scrolling up, down, and sideways until they find the
errors. Users who are blind may need to tab through
each field on the page to listen for error messages.
This can be extremely time-consuming and frus-
trating. Users who have mobility impairments may
find it difficult and frustrating to tab through a long
page to get to an error when they can plainly see the
location of the field.

A user should be able to quickly identify the
locations of errors and navigate to them easily.
There are several possible ways to do this. One
approach is to display a page with only the error

HOFFMAN, GRIVEL, AND BATTLE

477

2 Errors on Page - Application Title — Page Title

Page Title

The title bar
informs the user
of errors when
page is loaded.

There are 2 errors on this page.

The error summary
message makes the user
aware of the existence
and number of errors.

« Error: Zip code
Each item in the list of errors
is a hyperlink that jJumps
Short paragraph of introductory] down the page to the field
paragraph of introductory text o, Where the error occurred.
of introductory text or instruction

« Error: Phone number

¢ application.

First, Middle Initial, Last |

The link at the top
of the page takes the

[

Suffix (if any) | W

user to the input Street Address Line 1 |

field, (or to the label),
where the user can
fix the error.

Street Address Line 2 |

@ Zip code is missing

City, State, ZIP |

@ Phone number is missing

L

Phone Number:

The field label includes
hidden text to ensure
that all necessary

information is spoken
with the field label.

The red ball graphic
appears to the left of
the error message
(or to the left of the
field label).

Figure 9
Error handling

Extension:

? This is my phone number
| don't have a phone, but you can
leave a message at this number

The text of the error
message appears
above the input field.

fields on it. This makes it easy to see and navigate to
the errors. However, that approach is rarely used
because it requires the coding of a separate page and
can confuse users. It also may prevent users from
revising related errors that were not caught by the
system logic. Another possible approach is to use
individual pop-up alert messages for each error. The
focus can even be moved directly to the error when
the user acknowledges the pop-up alert. This
approach is not commonly used because users may
become frustrated by repeated pop-up error mes-
sages when they make multiple errors on a page. If
this approach is used, it is especially important to
also use error prevention techniques in order to
minimize the appearance of numerous error pop-up
alerts. Additional considerations include client-side
browser issues and complications associated with
providing client-side error handling for errors that
require server-side error checking.

478 HOFFMAN, GRIVEL, AND BATTLE

The common approach for presenting errors is to
display the same page that was seen the first time
but with errors clearly marked. The best way to
accelerate this process and ensure that all user
groups are able to find errors is to provide a bulleted
list of links to the error fields at the top of the page,
as shown in Figure 9. Each link should contain the
word “error,” followed by the field label of the field
that contains the error or a shortened version of that
field label. Selecting the link should move the focus
to the erroneous field.

An application or family of applications should
establish a consistent and reusable architectural
component for providing a bulleted list of links to
errors. The business logic component of the
application should determine whether errors
occurred.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

The text for the abbreviated field label (used in the
list of error links at the top of the page) should be
specified in an attribute in the HTML page or from
data repositories, if they are being used to define
field attributes. This ensures that there is a
placeholder in the architecture to accommodate the
text for the same-page navigation links to the error
fields.

A reusable component should read the abbreviated
field-label names (or shortened versions of those
names) and link target information from an attribute
in the HTML page or from the data repository.
Whenever an error is indicated by the business logic
component, the reusable component should gener-
ate the appropriate error link by inserting the data
into placeholders. The same reusable component
should automatically supplement the field-label
information to reflect the error status by adding a
nonvisual component to the beginning of the field
label stating the word “error” and adding the actual
error message to the end of the field label. This
ensures that the error status information is available
to non-visual users, even when they tab through the
page instead of using the error links.

Multiple user-interface views

In many situations, the benefits of accessibility are
broad, and the general user population is likely to
benefit from a solution that addresses the special
needs of users with disabilities. For example, if
sidewalks have curb cuts, they are accessible to
people in wheelchairs and to people pushing baby
carriages and shopping carts, as well as to those on
bicycles and roller blades.** Likewise, if software
can be used without vision, it is accessible to people
who are blind and to people who are in darkness or
whose eyes are otherwise occupied.25

There is a tendency, however, to oversimplify the
issue, with claims that accessibility universally
benefits all users.”>’ Often, accessibility enhance-
ments do improve general usability; at other times
they have no impact on general usability; and at still
other times they can have an adverse effect on
general usability. Likewise, usability enhancements
often have a positive impact on users with dis-
abilities, but there are times when usability en-
hancements have a negative impact on accessibility.
In summary, the best solution for one group
sometimes compromises the needs of another

group.m’zg’29 There are times when trying to design

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

one solution that meets everyone’s needs results in a
solution that is inadequate for everyone.

User interface elements that commonly cause trade-
offs in software include images that are used to
convey information (which benefit sighted users but
pose potential challenges for users who are blind or
have low vision), graphical icons or clickable
images (which benefit sighted users but pose
potential challenges for users who are blind, have
low vision, or have mobility impairments), and title
attributes (which benefit users who are blind but
pose potential challenges to users with mobility
impairments). Similar trade-offs apply to tab stops
on text, multicolumn page layouts, left-justified field
label layouts, and differences in control type
preferences. These issues and more are explained in
the following.

A first step toward resolving contradictory require-
ments can be the use of multiple views of an
application. In Reference 14, two of the authors
advocated providing alternate or multiple views to
address trade-offs between different types of user
groups and to optimize the user experience of those
user groups. In the following, we take a compre-
hensive look at specific features of such multiple
views and their architectural implications. It should
be noted that using multiple views introduces an
added dimension of complexity. Nevertheless, de-
velopers increasingly prefer to develop multiple-
view solutions rather than deal with the complex-
ities of conflicting requirements in a single view.

We do not suggest separate applications or pages for
groups with special needs because we recognize that
a legitimate concern exists that such dual source
applications or separate interfaces would not be
designed or maintained equally. Instead, emerging
technologies that enable dynamic and customized
views of the same application page may present an
opportunity to improve overall user experience.

Simply to meet existing requirements such as
Section 508, an architecture should include support
for customizing all content presentation using the
style sheet. There should not be any direct specifi-
cation (hard coding) of appearances (colors, fonts,
sizes, styles) in the HTML files. Users must be able
to customize text fonts, color, and size, and even be
able to use the page with the style sheet turned off, if
they so require or prefer, or to replace the style sheet

HOFFMAN, GRIVEL, AND BATTLE

479

with their own style sheet.”’ However, in practice, it
is not realistic to assume that most users will be
capable of sophisticated customization, especially if
it requires creating their own style sheets. Therefore,
rather than providing a single style sheet for all
users, we propose providing users with carefully
designed specialized style sheets, each specifically
targeted toward a different user group, and provid-
ing an easy-to-use mechanism for choosing among
them. While the primary focus of providing multiple
views is on the use of multiple style sheets, some
features would require customization at the DHTML
level. When necessary, the equivalence of DHTML
“alternate” accessible views can be ensured by
defining information sources on an abstract level
and deriving the specific page implementation based
on the view preference.

The following are some of the features that could be
accommodated through the use of a multiple-view
architecture:

® Images. When information is conveyed through
graphics, it is not accessible to all users. This issue
is challenging because sometimes information is
conveyed in graphics precisely because it makes
more sense in a graphical form than it does in text.
For example, many user manuals contain screen
captures or illustrations. Online applications may
contain bar charts and other graphical represen-
tations of data. Multiple views should allow visual
users to see the images by default and should
replace the images with text for users who are
blind or have low vision. For users of voice input
devices who may have trouble knowing how to
activate graphical icons or clickable images, the
icons or images can either be supplemented with
text or simply replaced with text.

* Page layout. Common problems for users with low
vision include objects that are too far apart and the
need for both horizontal and vertical scrolling
around the page, which can be disorienting. Using
a layout where field labels are right-justified for
users with low vision and left-justified in a
standard view can alleviate this issue. In addition,
using an entirely different narrow view could
reduce horizontal scrolling.

Changing controls. Some types of controls work
better than others for a particular user group.
Multiple views could enable the replacement of

480 HOFFMAN, GRIVEL, AND BATTLE

one control with another. For example, the “A
through Z” links in an alphabetical index can be
replaced with a drop-down list so that users who
are blind or have mobility impairments do not
need to navigate through the whole alphabet to
make a selection. Another example is a set of radio
buttons with a large number of options, or any set
of radio buttons in a frequently used application.
Although most users do best with radio buttons,
screen-reader users benefit from a drop-down list
because it enables them to quickly and directly
navigate to the desired option with a keystroke.
Both control options can appear in the same
HTML code. Each style sheet can display one of
the controls and hide the other one.

e Internal page navigation. When a page includes
more than two unique sections, it can be difficult
for users who are blind to navigate to different
parts of the page. Existing accessibility require-
ments specify the use of “skip” links to provide a
means of skipping to the main content of the page.
Providing a bulleted list of same-page links in a
special view can enhance that feature to include
skip links to various sections of the page, rather
than just a single “main content” section. The
standard view would not include the bulleted list
of page navigation links.

e Field-level help tab behavior. By default, text on
HTML pages does not receive focus when a user is
tabbing through a page. As a result, non-visual
users who tab through a Web form will jump past
any directions and cues, without even knowing
that they appear on the page. There are no formal
standards that specifically require text on a Web
page to receive a tab focus. However, when a
keyboard is the interface to a form or application,
users typically tab through the controls. Enabling
the screen text to receive the focus allows non-
visual users to access and hear all page elements
when tabbing through the form. Section 508
requires that Web forms allow people using
assistive technology to access all information, field
elements, and functionality required for comple-
tion and submission of a form, including all
directions and cues. It also requires access to and
use of information that is comparable to that
provided to nondisabled individuals. Just as the
only way to provide comparable access to a screen
text field label is by associating it with the field so
that it is read with the field, so too, comparable

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

access to associated directions, help, or examples
must be provided. Providing a tab focus is a
means of providing comparable access. Of the
most popular browsers, only Internet Explorer
supports the use of the “tabindex™ attribute
(typically tabindex=0) to provide a tab focus to
screen text. There is a significant need for a W3C-
compliant means of associating text field-level
help information with a particular field, so that the
user can be made aware that the help information
exists and access it with an assistive technology
keystroke. Similarly, there is a need to enable
screen readers to have tab stops on specific strings
of text without affecting functionality when a
screen reader is not being used. When forms
contain field-level directions, help, or examples, a
key technique for providing comparable access to
those features is changing the tab behavior by
placing “tabindexes” on the screen text. This
feature should be activated in a screen reader or
low-vision view. It should not be used in a
mobility-impaired view because extra tab stops
can make navigation frustrating and lead to user
fatigue.

e Field-level help location. Field-level help should be
placed near the field to which it applies for the
benefit of most users, although the appropriate
placement can vary depending on the visual layout
of the page or application and the length of the
help text. Nevertheless, the best placement of field-
level help for the benefit of users who are blind or
who have low vision is within the label tag.
Alternate views could allow field-level help to be
turned on and off by the user in a frequently used
application, so that novices could see the field-
level help and experts could choose to turn it off. In
addition, alternate views could allow an applica-
tion to display help and tips to the right of the data-
entry fields to complement the visual layout in the
standard view, but move the help and tips next to
the field label, immediately below the label text,
for users who are blind or who have low vision.

e Title attributes. Usually, title attributes provide
benefit to some users, without hindering other
users. The exception can be users who use voice
recognition software. Title attributes that start
with text that is different from the screen text can
interfere with easy access to the control by voice.
An alternate view for persons with mobility
impairments can eliminate the title attributes.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

® Repetitions and abbreviations. Words that are
hard to pronounce or are not unique on the page
can also create problems for voice access. Some-
times such situations cannot be avoided without
hindering other users. Alternate views can address
the situations where trade-offs are inevitable.

e Font size and color. The size and color of fonts can
give clear and concise cues to visual users. Those
same cues must be provided through extra text or
other means for users with visual impairments.

e Page organization. In a typical Web application,
information and data entry are organized in
sections, pages, and other groupings. Determining
exactly how to distribute that information
throughout the pages often involves compromises
between different usability and accessibility con-
siderations. Multiple views can provide multiple
organization options.

It is useful to separate presentation from content and
from functionality. This is normally considered a
best practice, but it is a prerequisite to the creation
of multiple views. Developers should be directed to
use styles rather than directly specifying any fonts,
colors, sizes, or appearances in the HTML code.
From an architectural perspective, it is important to
ensure that style sheets are comprehensive enough
to accommodate all presentation needs, so that no
additional specific coding is required.

One should avoid using absolute text units like
points and pixels. Instead, relative sizes should be
used so that the user can adjust browser preferences
to display text in a larger font. If possible, using style
sheets rather than HTML tables for page layout is
helpful. Tables should ideally only be used to format
tabular information.

Styles should be named for their semantic meaning
rather than for their display attributes. For example,
a style should be named “error message” rather than
“bold red text.” Using semantically based names
makes it easier to apply the correct style when
multiple styles may appear similar to the developer
but may have very different effects on accessibility.

A single source should be used for the page content,
both to ensure in practice and to reassure in
perception that the content is consistent throughout
all views. When possible, style sheets should be

HOFFMAN, GRIVEL, AND BATTLE

481

used for providing alternate view functionality.
When aspects of alternate view functionality cannot
be provided by using style sheets, then XHTML or
other technology layers can be used to handle that
functionality. Different style sheets can be created
that are optimized for each group of users (for
example, users who are blind, who have low vision,
or who have impaired mobility).

A mechanism can be created to enable a user to
switch between multiple display preferences, in-
cluding switching from one style sheet to another
“on the fly.” The desired view preference should be
maintained both during the current session and
between sessions, when appropriate. Properties of
reusable objects that are not optimized for all users
could indicate the specific group or groups for which
they are optimized. Generating the entire applica-
tion using libraries of reusable objects can facilitate
the implementation of a multiple view solution.

Reviewing and adapting the architecture
Although we can work to ensure that software
architectures address known accessibility issues,
even the most extensive architecture planning is
unlikely to anticipate every future situation and
desired functionality. Even with the best of archi-
tectures, we are likely to hear yet again the
exclamation, “Oh, no, we can’t change THAT!”
when a new requested modification is not addressed
by the architecture and reaches too far into the
architecture of the system to allow economically
viable and timely changes to be made.

The only solution to such iterative issues is to
recursively refine the architecture. While it may not
be feasible to implement the desired feature in the
current application, it may be feasible to conduct a
post-implementation architecture review with ac-
cessibility input. Iterating the architecture is neces-
sary in order to keep the accessibility features up to
date with emerging user interface standards.

CONCLUSIONS

This paper has provided an introduction to the
relationship between accessibility and architecture,
described common architecture-related accessibility
issues, and provided architectural guidelines for
addressing those issues. These guidelines are
certainly incomplete, especially regarding the use of
multiple views to address the needs of different user
groups, but it is hoped that they will provide a

482 HOFFMAN, GRIVEL, AND BATTLE

starting point for systems architects and developers
who want to know how architectures can be
improved, as well as for accessibility specialists who
need to specify requirements for accessibility and
engage in cooperative work with development
teams. An increased understanding of this important
relationship may lead to the development of tools
and assessment techniques that assist software
architects in designing to support accessibility. In
our work, we will continue to evaluate accessibility
issues and design solutions for their architectural
implications in our efforts to improve the user
experience for people with disabilities.

ACKNOWLEDGMENTS

We would like to thank our colleagues Dena
Fishkind, Craig Cecil, and Jeremy Linzer for the
insights that they have shared over the past four
years and during the writing of this paper. Their
expertise in software development and architecture
was instrumental to the writing of this paper. We are
also grateful for the support of Sean Wheeler, the
technical lead for usability at the Social Security
Administration, and John Palumbo, the lead advocate
for software accessibility within Operations at the
Social Security Administration.

**Trademark, service mark, or registered trademark of Intuit,
Inc., Sun Microsystems, Inc., the Massachusetts Institute of
Technology, or Microsoft Corporation.

CITED REFERENCES AND NOTES
1. J. Thatcher, M. Burks, S. Swierenga, C. Waddell, B.
Regan, P. Bohman, S. L. Henry, and M. Urban,
Constructing Accessible Web Sites, Glasshaus, Birming-
ham, U.K. (2002).

2. Developer Guidelines for Web Accessibility, IBM Web
Accessibility Center, http://www-306.ibm.com/able/
guidelines/web/accessweb.html.

3. M. Theofanos and G. Redish, “Bridging the Gap: Between
Accessibility and Usability,” ACM Interactions 10, No. 6,
36-51 (November-December 2003).

4. Creating Accessible Forms, WebAIM—Web Accessibility
in Mind (2005), http://www.webaim.org/techniques/
forms/.

5. S. Faulkner, Techniques for Making Forms More Acces-
sible, Accessible Information Solutions, National Infor-
mational Library Service (NILS) (2004), http://
www.nils.org.au/ais/web/resources/WSG_Oct_04/
toc.html.

6. 1. Lloyd, Accessible HTML/XHTML Forms, The Web
Standards Project (May 2004), http://webstandards.org/
learn/tutorials/accessible-forms/01-accessible-
forms.html.

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

7. Permanent Archive: Invisible Form Prompts, Juicy Studio
(September 18, 2004), http://www.juicystudio.com/
invisible-form-prompts.asp.

8. J. Thatcher, Accessible Forms, JimThatcher.com Accessi-
bility Consulting (2002), http://www.jimthatcher.com/
webcourse8.htm.

9. L Lloyd, Better Accessible Forms, Accessify.com (2002),
http://www.accessify.com/tutorials/
better-accessible-forms.asp.

10. D. Hoffman and L. Battle, “Top 20 Design Recommen-
dations for Accessible (and Usable) Web Applications,”
Proceedings of the Usability Professionals’ Association
(UPA) Conference (2005, forthcoming).

11. Section 508 of the Rehabilitation Act of 1973, http://
www.section508.gov/.

12. The World Wide Web Consortium (W3C) Web Accessi-
bility Initiative (WAI), http://www.w3.org/WAI/.

13. U.S. Department of Justice, Americans with Disabilities
Act, ADA Home Page, http://www.usdoj.gov/crt/ada/
adahom1.htm.

14. L. Battle and D. Hoffman, “Design Patterns and Guide-
lines for Usable and Accessible Web Applications,”
Proceedings of the Usability Professionals’ Association
(UPA) Conference, p. 4 (2004).

15. How Do You Define Software Architecture?, Carnegie
Mellon Software Engineering Institute (2005), http://
www.sei.cmu.edu/architecture/definitions.html.

16. P. Clements and P. Kogut, “The Software Architecture
Renaissance,” Bridge, Issue 3, The Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, pp.
11-18 (1994).

17. J. Bosch, Design and Use of Software Architectures:
Adopting and Evolving a Product Line Approach, Pearson
Education, Addison-Wesley and ACM Press (2000).

18. N. Juristo, A. M. Moreno, and M. I. Sdnchez, “Clarifying
the Relationship between Software Architecture and
Usability,” Proceedings of the Sixteenth International
Conference on Software Engineering and Knowledge
Engineering, p. 2 (2004).

19. B. E. John, B. L. Bass, N. Juristo, and M.-I. Sanchez-
Segura, “Avoiding ‘We can’t change THAT!": Software
Architecture and Usability,” Tutorial materials presented
at the Conference on Human-Computer Interaction (CHI
2004), Vienna, Austria (April 24-29, 2004), pp. 5-6 &
23-24, http://www-2.cs.cmu.edu/~bej/usa/
publications/Final CHI2004 Tutorial.pdf.

20. L. Bass, B. John, and J. Kates, Achieving Usability
Through Software Architecture, Carnegie Mellon Software
Engineering Institute technical report (March 2001).

21. Section 508, Subpart B § 1194.22 (p), http://
www.section508.gov/index.cfm?FuseAction=
Content&ID=12#Web.

22. Web-Based Intranet and Internet Information and Appli-
cations, The Access Board (June 2001), http://
www.access-board.gov/sec508/guide/1194.22.htm.

23. Private communication with L. McLeroy.

24. E.Bergman and E. Johnson, “Toward Accessible Human-
Computer Interaction,” in Advances in Human-Computer
Interaction, Volume 5, J. Nielsen, Editor (1995), http://
www.sun.com/access/developers/
updt.HCI.advance.html.

25. G. C. Vanderheiden and S. L. Henry, “Designing Flexible,
Accessible Interfaces That Are More Usable by Every-
one,” Tutorial presented at the Conference on Human

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005

Factors in Computing Systems (CHI 2003) (2003), http://
www.chi2003.org/docs/t10.pdf.

26. S. Pemberton, “Accessibility is for Everyone,” ACM
Interactions 10, No. 6, 4-5 (November-December 2003).

27. S. Salamone, “Improved Web Access for Disabled Users
Benefits All,” TechRepublic (December 2001), http://
techrepublic.com.com/5100-6301-5032988.html.

28. J. Moore and J. Mathews, “The Blind Leading the Blind,”
http://www.aarp.org/olderwiserwired/
oww-events/Articles/a2004-03-03-oww-blind-leading-
blind.html.

29. G. Redish and M. Theofanos, “Achieving Experience
Equity and Universal Usable Access,” http://redish.net/
content/talks.html.

30. Section 508 Standards, Subpart B § 1194.22 (d), http://
www.section508.gov/index.cfm?FuseAction=
Content&ID=12#Web.

Accepted for publication February 24, 2005.
Published online August 4, 2005.

David Hoffman

MILVETS Systems Technology, 4675 Annex Building, 6401
Security Boulevard, Baltimore, Maryland 21235
(dyhoffman@yahoo.com). Mr. Hoffman is a senior
accessibility and usability specialist with extensive Web
technology experience. In his current position, he provides
user interface accessibility and usability design support for the
Social Security Administration. He serves as a top agency
expert on interactions between Web applications and assistive
technologies, as well as on achieving Web application
accessibility. In addition to mentoring various project teams in
accessibility issues, Mr. Hoffman contributes to the definition
of implementable interactive standards that incorporate both
accessibility and usability. Mr. Hoffman holds a master’s
degree in applied information technology from Towson
University. He is a member of the Usability Professionals’
Association (UPA).

Eric Grivel

Lockheed Martin Information Technology, 3300 Lord Baltimore
Drive, Baltimore, Maryland 21244 (egrivel@acm.org). Mr.
Grivel is a senior software developer with 18 years of
professional experience in architecture and application design
and implementation. In his current position at Lockheed
Martin, he supports the Social Security Administration’s Web
applications. Mr. Grivel has a master’s degree from the Delft
University of Technology. He is a member of the Association
for Computing Machinery (ACM).

Lisa Battle

Lockheed Martin Information Technology, 3300 Lord Baltimore
Drive, Baltimore, Maryland 21244 (lbattle@acm.org). Ms.
Battle is a senior user interface designer with more than 12
years of experience creating usable software, Web-based
applications, and Web sites for clients in a variety of industries
and the federal government. Her work focuses on making
users successful and achieving business goals through a
combination of analysis and iterative design techniques. Over
the past five years, Ms. Battle has been instrumental in
introducing user-centered design into the Social Security
Administration, as well as contributing to standards definition
and integrating user-centered methods into project life cycles.
Ms. Battle holds a master’s degree in cognitive psychology and
human factors from George Mason University. She is a
member of the Usability Professionals’ Association (UPA) and
the Association for Computing Machinery (ACM-CHI). M

HOFFMAN, GRIVEL, AND BATTLE

483

