
Semantic triage for increased
Web accessibility

&

S. Harper

S. Bechhofer

Visually impaired users are hindered in their efforts to access the largest repository of

electronic information in the world, namely the World Wide Web. A visually impaired

user’s information and presentation requirements are different from those of a sighted

user, in that they are highly individualized and nonvisual. These requirements can

become problems in that the Web is visual-centric with regard to presentation as well

as information order and layout. This can and does hinder users who need access to

information but cannot take advantage of the visual cues available to sighted users. Our

objective is to address these problems by creating usable and appropriately ‘‘displayed’’

Web pages for all users who wish to understand the meaning of the information, as

opposed to its presentation and order. We assert that the only way to accomplish this is

to encode the semantic information of the page directly into the page. In this paper we

describe work toward a low-overhead system to enable just this kind of semantic

encoding. In particular, our approach allows semantics-based triage, that is, prioritized

removal of unnecessary information from the presentation of a Web site, to make the

interaction of visually impaired users with that site more productive.

INTRODUCTION

Access to and movement around complex hyper-

media environments, of which the Web is the most

obvious example, have long been considered im-

portant and major issues in the field of Web design

and usability.
1,2

The commonly used slang phrase

‘‘surfing the Web’’ implies rapid and free access,

pointing to the importance accorded such access by

designers and users alike. It has also long been

established
3,4

that this potentially complex and

difficult access is further complicated, indeed

becomes neither rapid nor free, if the user is visually

impaired. (The term visually impaired is used here

as a general term encompassing the World Health

Organization definition of both profoundly blind

and partially sighted individuals.
5
)

We assert that the preferred way to enhance visually

impaired individuals’ access to information on Web

pages is to encode the meaning of that information

into the specific Web page involved. There are,

however, problems with this approach. Empirical

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HARPER AND BECHHOFER 637

evidence suggests that authors and designers will

not separately create semantic markup to coexist

with standard XHTML (Extensible Hypertext Mark-

up Language) because they see it as an unnecessary

overhead.

Recently, we have seen a movement in Web page

design toward a separation of presentation, meta-

data (XHTML), and information. However, this has

not been enough to support unfettered access for

visually impaired users. Consider the excellent CSS

(Cascading Style Sheet) Zen Garden Web site.
6

This

site is a model of the state of the art, including the

application of current standards as well as the

separation of presentation and content. It is also

visually quite stunning. However, it is still relatively

inaccessible to visually impaired people, because

the information is rendered in an order defined by

the designer and not in the order required by the

user. Visually impaired users interact with these

systems in a serial manner, characteristic of audio

input, as opposed to the parallel manner character-

istic of visual input. For the visually impaired,

content is read from top left to bottom right; there is

no scanning, and progress through information is

slow. Given this interaction paradigm, we can see

that visually impaired users are at a disadvantage,

because they have no idea which items are menus,

what the page layout is, what the extent of the

content is, and where the focus of the information

lies. In effect, the implicit meaning contained in the

visual presentation is lost, and any possibility of

enhanced meaning is also unavailable.

Even when CSS concepts do look as though they

have a meaning with regard to the information

presented, there is no way of relating this to the user

due to the lack of machine-interpretable semantics.

Therefore, the question that we face and that our

Low-Cost Lightweight Instance Store (LLIS) research

approach is dedicated to answering is specifically:

How can semantic information be built into general

purpose Web pages, without compromising the

page’s design vision, such that the information is as

accessible to visually impaired users as it is to

sighted users?

We based our approach on the following set of

beliefs:

1. Visually impaired surfers need access to the

meaning of information to assist in their cogni-

tion, perception, and movement around that

information, and to assist in the formulation of

their world-view.
3,7

This is also true for sighted

users, but pages are normally created with

sighted users in mind, and thus these require-

ments are typically more often met for sighted

users.

2. Based on empirical and anecdotal evidence, in

building Web pages authors and designers will

not accept a semantic overhead, that is, a demand

for significant additional effort to encode seman-

tic information when creating these pages.
8

3. A Web page should itself be thought of as an

application, comprised of functional elements,

presentation elements, and information elements,

within the browser application.

One of the goals of the Semantic Web vision
9

is to

make knowledge accessible to automated agents

and, at the same time, also provide strong human

input and benefit. In this framework, our goal is to

make the role of the objects that support visual

accessibility through presentation explicitly inter-

pretable by humans by means of Web browsers,

thereby enhancing the ability of the visually

impaired to interact with the Web. Thus, it becomes

necessary to associate meta-data and semantics with

XHTML objects. In the context of the Semantic Web,

this also implies that objects should be machine-

understandable rather than simply machine-read-

able.

Our goals and set of beliefs led us to a simple and

lightweight solution. The approach is basically to

create an ontology (a collection of shared terms that

can be communicated to both people and applica-

tions) to represent the meaning of data within

XHTML metatags and then to encode this meaning

into the data by leveraging the class and ID attributes

common to most XHTML elements. CSS presentation

is unaffected, but semantics is then an implicit part of

the data. By using this method to encode semantic

information, we can also deal with legacy sites and

make these compatible with our scheme. Throughout

this paper we use an example site called blogger.com

to show how this can be done.

The outline of the paper is as follows: In the next

section we discuss in more detail the concept of

semantics and its application in our work. In

particular, the Semantic Web aims at making Web

resources more accessible to automated processes

HARPER AND BECHHOFER IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005638

by adding semantic annotations, meta-data that

describes information content. It is envisaged that

the semantics in these semantic annotations will be

given by ontologies, which in turn will provide a

source of precisely defined terms (vocabularies) that

are amenable to automated reasoning. (In this

context, an important concept is that of a foundation

ontology, a core glossary in whose terms everything

else must be described.) We use this automated

reasoning to assist with our triage activity. (The

term triage is used in this paper to describe the

sorting and allocation of information on the basis of

need or likely benefit.)

Adding semantics to an XHTML document is not a

new concept. Work dates from the late 1990s, and

concrete solutions were proposed as early as 2002.

Likewise, transcoding, a technology used to adapt

incomplete or badly written hypertext Web content,

has been in use since the mid-to-late 1990s. Both

technology domains are important to our work, as

they place our contribution in context. In the next

section of the paper, we describe the problems

associated with this prior work and give an over-

view of why our system is both different and

unique. We then describe the concepts, rationale,

and techniques behind our system, focusing on

XHTML. We show how these features are referenced

through XHTML pages and demonstrate how our

lightweight LLIS system can contribute to the

accessibility of information by means of low-cost

semantics in the form of an instance store (described

later). We again consider the legacy site blogger.

com, for which we have created an ontology, and

show how our Mozilla**-based LLIS application can

transform its pages into more accessible forms.

Thus far we have demonstrated the first stage in a

more elaborate system to enable semantic informa-

tion to be freely accessible by all users. By knowing

the meaning of the information that is being

encountered, visually impaired users are able to

perform their own triage on that information. In the

final section of the paper we discuss our conclusions

from the work done to date and our plans for future

work.

ON SEMANTICS
As articulated by Tim Berners-Lee,

9
the Semantic

Web vision describes a Web in which resources are

accessible not only to humans but also to automated

processes, for example, automated agents roaming

the Web performing useful tasks such as improved

(in terms of precision) search and resource discov-

ery, information brokering, and information filter-

ing. The automation of tasks depends on elevating

the status of the Web from machine-readable to

something we might call machine-understandable.

The key idea is to have data on the Web defined and

linked in such a way that its meaning is explicitly

interpretable by software processes rather than just

being implicitly interpretable by humans.

To realize this vision, it is necessary to annotate

Web resources with meta-data (i.e., data describing

content and functionality). Such annotations and

meta-data are, however, of limited value to auto-

mated processes unless these processes share a

common understanding as to their meaning. This

sharing of meaning will be achieved partly through

the use of ontologies.
10

There has been substantial effort toward this goal.

For example, the Semantic Web Language Stack

consists of a number of languages and specifications

intended to deliver meta-data and ontologies.
11

The

Resource Description Framework (RDF) provides a

simple data model based on triples (so-called

because each RDF triple consists of a subject, a

predicate, and an object).
12

This gives a common

data model, but does not supply any ontological

primitives. The RDF Schema (RDFS) approach

provides basic machinery allowing the definition of

classes and properties along with simple class

hierarchies.
13

However, RDFS is a relatively inex-

pressive language, and realistic domain ontologies

require the ability to describe concepts and classes

in a rich way. This capability is provided by OWL,

the recently standardized W3C** (World Wide Web

Consortium) Web Ontology Language.
14

OWL is an

expressive language, in which rich, explicit de-

scriptions of terms or concepts can be given.

Moreover, OWL is a formal language—it has a well-

defined semantics that describes how such rich

expressions should be interpreted. The provision of

the semantics means that the information contained

in the ontology, for example, concept descriptions,

is then amenable to automated reasoning. This latter

process draws, in particular, on work from the

knowledge representation community.
15

A reason-

ing engine, or reasoner, can then make inferences

about the relationships among classes and support

queries over collections of instances.
16,17

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HARPER AND BECHHOFER 639

Overall, this approach supports the use of compo-

sitional or property-based modeling. Rather than

explicitly building a subsumption (or kind-of)

hierarchy explicitly, concepts can be described, and

the hierarchical relationships between those de-

scriptions can then be inferred. The process of

constructing such hierarchies is often referred to as

classification. OWL supports the description of

concepts in terms of both necessary and sufficient

conditions. This is in contrast to traditional frame-

based systems, in which, in general, necessary

conditions can be described but sufficient conditions

are not. For example, we can now define the

removableCSSComponent concept as being one for

which the isRemovable property is set to true. Any

concepts which are described as having this

property and value combination will then be

classified as being concepts of the kind

removableCSSComponent. This is a simple example,

but more complex situations involving Boolean

combinations of concepts and quantification of

relationships (e.g., the statement that a menu-only

page is one which contains only elements that are

kinds of menus) can be supported. The semantics

ensures that the interpretations of these combina-

tions, and thus the inferences that can be drawn, are

consistent.

OWL thus provides a mechanism that supports

interoperation of applications not just at a syntactic

level (through the adoption of common formats

based on XML (Extensible Markup Language)), but

also at a semantic level. It is this provision of well-

behaved and well-specified inference procedures

based on shared semantics that creates the machine

understandability of the Semantic Web.

RELATED WORK

As we have seen, semantics (in the form of

ontologies) provides a source of precisely defined

terms (vocabularies) that are amenable to auto-

mated reasoning. We use semantics to drive our

triage. There have been other prior solutions based

on qualitatively similar approaches. These solutions

either annotate or encode terms within XHTML, and

then use transcoding and page-clipping techniques

to reformat the information. Here we describe these

technologies as they relate to our solution.

Encoding semantic information into XHTML

As noted previously, adding semantics to an XHTML

document is not a new concept. For example,

Berners-Lee proposed embedding XML RDF in

HTML (Hypertext Markup Language) documents as

part of the tag project.
18

However these documents

did not pass XHTML validation checking and thus

did not find favor within the community.
19

A

subsequent version was created that did pass

validation when a small DTD (Document Type

Definition) using XHTML Modularization was in-

cluded. However, this was not considered to be a

good solution, as it involved the creation of unique

extensions more or less arbitrarily. In fact, this work

concluded that the RDF specification describes how

to understand the semantics (in terms of RDF

triples) in an RDF document that contains only RDF,

but does not explain how and when one can extract

semantics from documents in other namespaces that

contain embedded RDF. (A namespace is a set of

names defined according to some naming conven-

tion.) Similarly, the XHTML specification explains

how to process XHTML namespace content, but

gives no indication about how to process embedded

RDF information.
18

Other methods have been proposed in which object

or script elements are used. However, in these cases

the code becomes unreadable and therefore less

workable, although this can be partially remedied by

linking to the RDF in an external file.
20

Use of the

XHTML link element has also been proposed.

However the main problem with this method is that

the RDF is not actually embedded in the HTML

source, but rather in a separate file.
20

If the original

information should change, this latter file would

need to be synchronized with the now changed

original information, and the amount of work

needed to create the resource is the same as creating

two separate and disjoint files. Time and effort are

not saved.

As an alternative, Connolly proposed the HyperRDF

system, in which HTML is used as the conduit to

allow XSLT (Extensible Style Language Transfor-

mations) to transform information into RDF. How-

ever, HyperRDF cannot be validated, because the

head element does not allow an ID attribute.
21

Augmented meta-data for XHTML is an implemen-

tation that allows so-called Dublin Core meta-data to

be incorporated in Web pages in a way that is

compatible with today’s Web browsers.
22

The basic

premise is that one can take the profile attribute to

be a global namespace prefix for all of the rel/meta

HARPER AND BECHHOFER IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005640

and name attributes throughout the document. This

approach is mainly useful for authors who them-

selves want to use a simple mechanism for

producing RDF from their XHTML. It is ineffective

from the point of view of anyone who wants to

randomly extract RDF from XHTML because one

cannot tell whether the author actually wanted the

assertions to be converted into the specific triples

produced by the algorithm.

GRDDL

The most recent thinking on semantic encoding

comes in the form of GRDDL (Gleaning Resource

Descriptions from Dialects of Languages).
23

This

work is being undertaken by the W3C Web

Coordination Group and is a mechanism for encod-

ing RDF statements in XHTML and XML. GRDDL

shares some common features with HyperRDF and

works on the principle that the HTML specification

provides a mechanism for authors to use particular

meta-data vocabularies, and thereby indicate the

author’s intent to use those terms in accordance

with the conventions of the community that

originated them. Authors may wish to define addi-

tional link types not described in this specification. If

they do so, they should use a profile to cite the

conventions used to define the link types. GRDDL is

one of these profiles and uses XSLT to transform a

page into an RDF description.

Why GRDDL does not work for us

Our research centers around both the designer and

the user. We wish to support the designer because,

in doing so, we make sure our target user group is

supported by the designer’s creation. However, in

our conversations with designers the resounding

message we have received is:

If there is any kind of overhead above the normal

concept creation then we are less likely to

implement it. If our design is compromised in any

way we will not implement. We create beautiful

and effective sites; we’re not information archi-

tects.
24

Many Web designers have migrated from print

media to Web design, and this preexisting experi-

ence in creating static artifacts causes them to see a

design as fixed and immutable once created. In this

view, a designer creates and controls the develop-

ment of what is in effect a piece of art, which should

not be changed or violated once created. It can be

difficult to convey to designers the idea that users

often require Web pages to adapt to their needs, and

this need sometimes goes beyond art.

We suggest that designers need a lightweight, no-

frills approach to including semantic information

& Designers need a
lightweight, no-frills approach
to including semantic
information within XHTML
documents &

within XHTML documents. In effect the addition of

the semantic information should be seamless,

indivisible, and have a low-cost design overhead in

terms of both time and effort.

Transcoding

Transcoding is a technology used to adapt Web

content so that it can be viewed on any of the

increasingly diverse devices available at a given

instant. It has been used for a number of years in the

context of making incomplete or badly written

hypertext accessible to visually impaired users and

their accessibility technologies. Transcoding in this

context normally involves the following elements:

1. Syntactic changes, for example, shrinking or

removing images
25

2. Semantic rearrangement and fragmentation of

pages based on the meaning of a section
26,27

3. Annotation of the page created by a reader
9

4. Generated annotations created by the content

management system
28

There are a number of different ways that trans-

coding can take place. In one example, the original

material (an HTML document, for example) is

analyzed by a program that creates a separate

version containing annotations. The annotations

include information that instruct the reformatting

process. Inaccessible elements are removed or

altered. Available systems are typically based along

these lines and usually address a specific problem

set. Some are annotation-based;
25

others generate

text-only versions;
26,27

some filter the content;
29

others are specifically used for small-scale device

interaction.
28

Regardless of which system is used, it

invariably does not transform all inaccessible

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HARPER AND BECHHOFER 641

elements but rather a subset, leaving holes in the

accessibility of the resulting transcode. Transcoding

approaches are discussed in more detail in the

following subsections.

Annotation

The goal of annotations for Web-content trans-

coding has been to provide better support either for

audio rendering, and thus for visually impaired

users, or for visual rendering in small-screen

devices. The problem of rendering Web pages in

audio has some similarities to the problem of

displaying Web pages on small-screen devices. For

example, in both cases only a small portion of the

page is viewable at any point. However, there are

major differences in requirements. Although the

amount of information that can be accessed at one

time on a small-screen device is certainly limited,

the interaction is still visual. The provided visual

rendering is persistent (i.e., the screen acts as an

external memory device), as opposed to audio

rendering, which is transient. Additionally, audio is

less focused and more serial in nature than visual

rendering, and the user cannot easily and quickly

shift focus.

Various proxy-based systems to transcode Web

pages have also been proposed, based on external

annotations for visually impaired users.
30,31

Their

main focus is on extracting visually fragmented

groupings, as well as information about roles and

importance. More specifically, eight different roles

have been proposed for such annotation, including

proper content, header, and footer roles. Such roles

are mainly focused at an abstract level and are not

rich enough to fully annotate the page for accessi-

bility. They do not support deep understanding and

analysis of pages, and consequently the supported

transcoding is constrained by these proposed roles.

Other work has centered on small-screen devices

and proposes a system to transcode an HTML

document by fragmenting it into several docu-

ments.
32

The transcoding is based on an external

annotation framework. In addition to the differences

explained previously, because the focus is small-

screen devices, the physical and performance con-

straints of these devices must be considered,

including, for example, screen size, memory size,

and connection bandwidth. These are not, however,

the primary considerations for users accessing Web

pages in audio.

Semantic transcoding

In semantic transcoding, semantics provides the

machine understandability and knowledge reason-

ing, and transcoding provides the transformation

technique. Presently, however, such systems are

limited to page analysis,
33

wherein a page built

according to a set template can be analyzed and

transformed by semantic or semantic-like technolo-

gies. Annotation is another popular way to add

semantics to legacy systems. These applications rely

on the XHTML page being annotated by using a

specified ontology or taxonomy. These annotations

are normally stored in an annotation database and

are then used when the page is processed to make

the transformations.
34

However, even the few

systems that try to remove themselves from XHTML

presentation to a more service-oriented (XML)

model still specifically require that the data source

be modified, a serious limitation.
35

Transcoding summary

Each of these types of transformations is fraught

with problems with regard to the acceptability of the

results generated. This is especially true when both

sighted users and visually impaired users wish to

use the same Web page. Automatic transcoding

based on removing parts of a page results in too

much information loss, and manual transcoding is

nearly impossible when applied to dynamic Web

sites. Most systems use their own custom proxy

servers or client-side interfaces, and these systems

require a significant set-up cost in terms of user

time. Finally, some systems require custom auto-

matic annotation by a content generator, and so are

not available to every user and all systems.

Often transcoding systems lean toward solving the

problems of one user group and potentially destroy

the content, structure, and context for other non-

target groups. This directly challenges the nature of

the World Wide Web and of other open hypermedia

systems in general.

THE LLIS APPROACH

Our LLIS Triage Tool is unique in that it uses an

ontology created from a preexisting CSS to allow

triage of XHTML components. An overview of the

system can be seen in Figure 1. The CSS (compo-

nent 1 in Figure 1) is used to create concepts in the

ontology (component 3). These concepts are marked

with attributes such as isRemovable, and new

container classes such as removableCSSComponent

HARPER AND BECHHOFER IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005642

are created. As described previously, by providing

appropriate definitions for such concepts along with

descriptions of specific concepts in the ontology, we

can achieve the effect of classifying all removable

concepts below removableCSSComponent in the

hierarchy. Classification functionality is provided by

an Ontology Service (component 5). When an

XHTML document arrives in the Mozilla** browser

with the LLIS sidebar (component 4), the docu-

ment’s object model is parsed to see if there exists a

link element looking similar to (and explained

later):

,link rel=‘‘ontology’’ rev=‘‘bo’’ type=‘‘text/owl’’

href=‘‘http://www.blogger.com/ontology/blogger.owl’’/.

The LLIS application then retrieves the ontology,

much as Mozilla retrieves the CSS document. The

ontology is passed to the Ontology Service, and LLIS

can now ask questions based on the actions

required. These questions are preconfigured and

anchored to the buttons on the LLIS sidebar (see

Figure 2). Once a button is selected, a message is

sent to the Ontology Service asking, for example,

that all of the items suitable for removal be returned

to the LLIS. The Service complies, and the LLIS

parses the Document Object Model (DOM), looking

for removable components and discarding them. In

this way all pages created in blogger.com (close to a

million entries) can be modified by using this one

simple ontology and tool. Although the ontology is

specific to the site, the triage can also work for any

number of other sites which have had a specific

triage ontology created for them—as long as they

call the base ontology, which includes the remov-

able container classes and the isRemovable concept.

Although we have used blogger.com as an example

for legacy sites, we are by no means limited to this

kind of use.

Our system is in reality a process for associating

ontology concepts with instances encoded within

XHTML pages. We suggest that meaning should be

encoded within the elements of XHTML and CSS by

using ontologies that can be created in the normal

Ontology
Service

Figure 1
LLIS system overview

1 2

3

CSS

Ontology

XHTML

Triaged
XHTML

Mozilla Platform

LLIS
Triage Tool

4

6

5

Figure 2
De-Fluffing the HiTokyo Web Log (see http://hitokyo.blogspot.com/ for the original site)

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HARPER AND BECHHOFER 643

way. Ontological concepts and properties are en-

coded into both the elements and attributes of the

XHTML document, and are used as identifiers

within CSS that link presentation to XHTML

elements. Our system revolves around a software

process (described later) that converts an XHTML

document into a series of instances and ontological

concepts. Users view the document in a Web

browser as they normally would. However, brows-

ers that are aware of the semantics can use the

ontological information to provide more intelligent

access to the instances of information than was

previously possible.

Because our system works with CSS, our method is

unsuitable for legacy sites that do not use CSS to

separate presentation from structure. However, it is

suitable for all sites, old or new, which do separate

style and presentation in this manner. Our system is

therefore compatible with the earlier versions of the

vast majority of modern (maintained) Web sites,

and the number of sites that can be transformed in

this way is increasing daily. Because we do not

annotate or modify the actual XHTML document,

our system does not force developers into costly and

time-consuming reengineering to achieve compati-

bility with earlier versions.

Implementing semantic concepts
We are suggesting a simple and flexible system

without significant semantic overhead. To achieve

this, we use the following group of techniques to

encode semantics directly into a page:

� Class and ID attributes—XHTML class or ID

attributes are used to encode a piece of semantic

information, in the form of a concept class or

property, into a defined piece of XHTML delimited

by the closing element identifier. This is normally

achieved by using the div and span elements to

unite the presentation style (CSS) and the seman-

tic meaning (ontology) for the user.

� Nonpresentational XHTML attributes—We can

leverage the implicit information contained in the

names of XHTML elements if we have a corre-

sponding ontology. Elements that are nonpresen-

tational (for example, ,address.) can be used to

encapsulate meaning within the page.

� Individuals—Unique individuals are defined by

use of the anchor element, wherein the href

attribute is used to signify a unique item.

� Namespaces—We include namespaces in XHTML

documents so that multiple ontologies can be used

to describe one document. To implement this we

use the link element of the XHTML header

section. We use the rel attribute to signify the

ontology, the type attribute to signify the type, the

rev attribute to signify the namespace, and the

href attribute to specify the URI (Uniform

Resource Identifier) of the ontology. However, to

circumvent the restrictions of annotation and

modification this requirement may place on the

developer, we also search for ontologies present in

the root directory of the Web site (that is, we look

for files with the ‘‘.owl’’ extension). Secondly, we

allow the ontology to be directly encoded within

the page. In fact, we follow the cues laid down by

the originators of the CSS concept and link XHTML

to ontologies along these lines.

The suggested approach provides a mechanism for

encoding ‘‘lightweight’’ information. Of course this

approach has its limitations. For example, we can

capture simple instantiation of atomic classes along

with property assertions, but not richer assertions

such as instantiation of arbitrary class expressions.

We stress that our approach is not intended as a

replacement for other representations, but is rather a

complementary mechanism. For example, we can

still expect the class and property definitions in the

ontology to be encoded using existing approaches,

such as RDF/XML.

Using instances to increase accessibility

To test our system we extended our Triage Ontology

with Web logging terms, and from these created a

specific ontology for blogger.com (see Figure 3).

The ontology was created in OWL using the Protégé

tool and comprises a small set of concepts and

subconcepts derived from the blogger.com CSS

template. Some of these concepts were further

annotated with a Boolean property called

isRemovable (as previously mentioned) and an

integer property called howImportant. The ontology

is better visualized in Figure 3, which shows the

blogger.com hierarchy.

The hierarchical (subclass) relationships for the

class removableCSSComponents are inferred (using

the ‘‘racer’’ reasoner
36

) and show that deleted-

comment, description, footer, profilecontainer,

and sidebar can all be removed. Figure 3 also

shows that although profilecontainer subconcepts

HARPER AND BECHHOFER IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005644

(like profile-data) were not marked as removable,

this relationship has been inferred from the ontology.

Our LLIS Triage Tool, a Mozilla-based application

(see Figure 2), has three types of functionality: De-

Fluff, ReOrder, and Toggle Menu. De-Fluffing re-

moves all information that is classified as removable

based on its location in the ontology (not in CSS or

XHTML). ReOrder rearranges the page so that the

most important pieces of information are moved to

the top of the document based on the ontology’s

howImportant restriction. Finally, Toggle Menu

moves menu items from their current location to the

top of the DOM (as a child of the DOM body).

Interestingly, our ontology contains two concepts,

recently and archive-list, which have no CSS

entries but are used as CSS class identifiers in

blogger.com. These two concepts encompass the list

of recent posts and the monthly archive lists and can

be used as menus for previous postings. Axioms

asserting that the concepts recently and archive-

list are subclasses of menu are thus added to the

ontology. As discussed later, our application can then

treat recently and archive-list as kinds of menus

and perform appropriate operations upon them.

The LLIS application for triage

The LLIS application is a Mozilla sidebar which

parses the XHTML DOM and finds instance,

concept, and property terms referred to in the

associated ontology that are also present within the

DOM and CSS (see ‘‘ID/CLASS Results’’ in Figure 2).

It does this by connecting
37

to an Ontology Service

by means of the DIG (Description Logic Implemen-

tation Group)
38

interface. The ontology URL (Uni-

form Resource Locator) is supplied to the Ontology

Service, and the LLIS application formulates and

sends questions to this Service. These questions are

based upon the specific task that the LLIS has been

asked to perform. For instance, if we wanted to

remove all the concepts (and therefore CSS blocks)

with the restriction isRemovable=true in the ontol-

ogy, we query the Ontology Service asking for all

removable components. These components are

variable and are based on the ontology for the

specific document. Both the returned list and the

DOM are parsed, and similarities are derived by

matching class or ID attributes containing an

ontological term in the XHTML and the Ontology

Service list. If a match is found, that CSS block can

be removed. A particularly useful aspect of this

process is that the concept within the ontology does

not have to be marked as removable because this

can be inferred by the reasoner from the ontological

structure of the OWL DL (Web Ontology Language

Description Logic).

This is also the case when the is-a-kind-of

relationship is used with regard to the recently and

archive-list concepts. LLIS knows how to process

menu concepts (from the Triage Ontology); therefore,

when it passes archive-list to the Ontology

Service and asks whether it is a menu, the reasoner

will respond that it is. We can therefore choose to

move it either to the top of the document or back to

its original position. The reordering of the DOM does

not, in general, change the visual appearance of the

presentation because CSS takes care of the page

layout. The reordering does, however, move the

information in the XHTML document, and changes

Figure 3
Inferred blogger.com ontology

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HARPER AND BECHHOFER 645

are noticeable if style information is removed. This

is exactly the outcome for which we had hoped

because accessibility technologies access the

XHTML DOM as presented and often exclude the

style and placement information.

Building a Web site suitable for triage
We now examine in more detail what is required to

build a Web site suitable for triage. XHTML and CSS

are built as part of the standard site creation. The

only part that needs to be added for a new site is the

link element in the XHTML head element pointing

to the ontology that will be created to assist in the

triage task.

The method for creating the site-specific ontology is

the same, regardless of whether this is a legacy site

or a newly created site. Figure 4 shows an XHTML

code fragment from a randomly chosen blogger.com

entry. Notice the block structure of enclosing

XHTML div elements and their associated class

and ID attributes. These attributes can also be seen

in the ontology (Figure 3), where they follow a

similar block structure. It seems evident, then, that

the ontology can be created from an analysis of the

class and ID attributes found in the XHTML file (see

Figure 4) that are also found in the style information

of the CSS. Indeed the ontology for blogger.com was

created by a simple analysis of the CSS style

elements (see Figure 5). Again, neither the original

XHTML nor CSS documents are modified or

destroyed in this process.

Once the user asks the triage tool to, for example,

De-Fluff the XHTML document, a query is sent

to the Ontology Service asking it to return all

removableCSSComponents. These components in

turn identify class and ID specifiers within the

XHTML. We then simply remove the CSS blocks to

which these specifiers refer.

CONCLUSIONS
Our system suggests a method of encoding light-

weight markup into Web pages to afford a low-cost,

but very valuable semantic benefit. With the essence

of the information design being abstracted from

what the graphic or Web designer created, the

current system gives a taste of how semantics can be

represented simply and effectively within Web

pages. Additionally, we have shown how this can be

Figure 4
Example sidebar code from blogger.com

HARPER AND BECHHOFER IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005646

achieved without incurring a significant overhead

with regard to marking up the semantic information

and validating it to strict XHTML 1.0. We propose

that the inclusion of semantic information directly in

XHTML is the only effective way to assist users who

are visually impaired to access Web pages and, at

the same time, avoid decreasing or compromising

the creative activity of authors and designers.

Indeed, this work represents the first stage in a more

elaborate system to enable semantic information to

be freely accessible to all users. In particular,

knowing the meaning of the information that is

being encountered will allow visually impaired

users to perform their own triage on that informa-

tion, making the Web significantly more accessible

to them.

**Trademark, service mark, or registered trademark of the
Massachusetts Institute of Technology or the Mozilla Foundation.

CITED REFERENCES
1. C. Chen, ‘‘Structuring and Visualizing the WWW by

Generalized Similarity Analysis,’’ Proceedings of the 8th
ACM Conference on Hypertext (Hypertext’97),

Southampton, UK, April 6–11, 1997, ACM, New York
(1997), pp. 177–186.

2. R. Furuta, F. M. Shipman III, C. C. Marshall, D. Brenner,
and H.-W. Hsieh, ‘‘Hypertext Paths and the World Wide
Web: Experiences with Walden’s Paths,’’ Proceedings of
the 8th ACM Conference on Hypertext (Hypertext’97),
Southampton, UK, April 6–11, 1997, ACM, New York
(1997), pp. 167–176.

3. M. Brambring, ‘‘Mobility and Orientation Processes of the
Blind,’’ in Electronic Spatial Sensing for the Blind:
Contributions from Perception, Rehabilitation and Com-
puter Vision, Proceedings of the NATO Advanced Research
Workshop on Visual Spatial Prosthesis for the Blind, Lake
Arrowhead, CA, September 10–13, 1984, D. H. Warren
and E. R. Strelow, Editors, Dordrecht; Lancaster: Nijhoff
Publishers in cooperation with NATO Scientific Affairs
Division (1985) pp. 493–508.

4. C. Asakawa and C. Laws, ‘‘Home Page Reader: IBM’s
Talking Web Browser,’’ Proceedings of the 1998 Closing the
Gap Conference, Minneapolis, MN, October 22–24, 1998.
See also IBM Home Page Reader, IBM Corporation, http://
www-3.ibm.com/able/solution_offerings/hpr.html.

5. A Short Guide to Blindness, Royal National Institute of the
Blind, London, UK (February 1996).

6. D. Shea, CSS Zen Garden, http://www.csszengarden.
com/.

7. A. G. Dodds, C. I. Howarth, and D. C. Carter, ‘‘The Mental
Maps of the Blind,’’ Journal of Visual Impairment and
Blindness 76, 5–12 (1982).

8. S. Harper, Y. Yesilada, and C. Goble, Editors, Proceedings
of the International Cross-Disciplinary Workshop on Web
Accessibility (W4A 2004), New York, May 18, 2004,
ACM, New York (2004).

9. T. Berners-Lee, Weaving the Web, Orion Business Books,
London, UK (1999).

10. T. R. Gruber, ‘‘Towards Principles for the Design of
Ontologies Used for Knowledge Sharing,’’ Proceedings of
the International Workshop on Formal Ontology, Padova,
Italy, March, 1993. A substantially revised version is
available at http://www.ececs.uc.edu/;mazlack/
CS690.f2004/Semantic.Web.Ontology.Papers/
Gruber.93b.pdf.

11. T. Berners-Lee, Semantic Web Architecture, World Wide
Web Consortium (December 6, 2000), http://www.w3.
org/2000/Talks/1206-xml2k-tbl/slide10-0.html.

12. Resource Description Framework (RDF), World Wide Web
Consortium, http://www.w3.org/RDF/.

13. D. Brickley and R. V. Guha, RDF Vocabulary Description
Language 1.0: RDF Schema, W3C Recommendation,
World Wide Web Consortium (February 10, 2004),
http://www.w3.org/TR/rdf-schema/.

14. M. Dean and G. Schreiber, OWL Web Ontology Language
Reference, W3C Recommendation, World Wide Web
Consortium (February 10, 2004), http://www.w3.org/
TR/owl-ref/.

15. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen,
‘‘From SHIQ and RDF to OWL: The Making of a Web
Ontology Language,’’ Journal of Web Semantics 1, No. 1,
7–26 (2003).

16. S. Bechhofer, I. Horrocks, and D. Turi, Implementing the
Instance Store, Preprint CSPP-29, Department of Com-
puter Science, University of Manchester (August 2004).

17. I. Horrocks, L. Li, D. Turi, and S. Bechhofer, ‘‘The Instance
Store: DL Reasoning with Large Numbers of Individuals,’’
Proceedings of the 2004 Description Logics Workshop (DL
2004), Whistler, BC, Canada, June 6–8, 2004, pp. 31–40,

Figure 5
Example style sheet code from blogger.com

IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005 HARPER AND BECHHOFER 647

http://sunsite.informatik.rwth-aachen.de/Publications/
CEUR-WS//Vol-104/04Horrocks-final.pdf.

18. T. Berners-Lee, RDF in HTML, World Wide Web
Consortium (2002), http://www.w3.org/2002/04/
htmlrdf.

19. N. Kew, Why Validate? World Wide Web Consortium
(September 24, 2001), http://lists.w3.org/Archives/
Public/www-validator/2001Sep/0126.html.

20. S. B. Palmer, RDF in HTML: Approaches (June 2, 2002),
http://infomesh.net/2002/rdfinhtml/.

21. D. Connolly, HyperRDF: Using XHTML Authoring Tools
with XSLT to Produce RDF Schemas, World Wide Web
Consortium (August 13, 2000), http://www.w3.org/
2000/07/hs78/.

22. M. Altheim and S. B. Palmer, Augmented Metadata in
XHTML, Sun Microsystems, Inc. (2002), http://
infomesh.net/2002/augmeta/.

23. D. Hazaël-Massieux and D. Connolly, Gleaning Resource
Descriptions from Dialects of Languages (GRDDL), World
Wide Web Consortium (December 7, 2004), http://
www.w3.org/2004/01/rdxh/spec.

24. S. Harper, Y. Yesilada, and C. Goble, ‘‘Workshop Report:
W4A—International Cross-Disciplinary Workshop on
Web Accessibility 2004,’’ SIGCAPH Computers and the
Physically Handicapped 76, 2–20 (2004).

25. M. Hori, G. Kondoh, K. Ono, S.-I. Hirose, and S. Singhal,
‘‘Annotation-Based Web Content Transcoding,’’ Proceed-
ings of 9th International World Wide Web Conference
(WWW9), Amsterdam, The Netherlands, May 15–19,
2000, http://www9.org/w9cdrom/169/169.html.

26. W. Myers, BETSIE (BBC Education Text to Speech
Internet Enhancer) Home Page, British Broadcasting
Corporation (BBC) Education, http://www.bbc.co.uk/
education/betsie/.

27. ftextualise;g, Codix.net, Ltd., http://codix.net/solutions/
products/textualise/index.html.

28. O. Buyukkokten, H. G. Molina, A. Paepcke, and T.
Winograd, ‘‘Power Browser: Efficient Web Browsing for
PDAs,’’ Proceedings of the 2000 SIGCHI Conference on
Human Factors in Computing Systems (CHI 2000), The
Hague, The Netherlands, April 1–6, 2000, ACM, New
York (2000), pp. 430–437.

29. WebCleaner—A Filtering HTTP Proxy, SourceForget,
http://webcleaner.sourceforge.net.

30. H. Takagi and C. Asakawa, ‘‘Transcoding Proxy for
Nonvisual Web Access,’’ Proceedings of the Fourth
International ACM SIGCAPH Conference on Assistive
Technologies (ASSETS 2000), Arlington, VA,
November 13–15, 2000, ACM, New York (2000),
pp. 164–171.

31. C. Asakawa and H. Takagi, ‘‘Annotation-Based Trans-
coding for Nonvisual Web Access,’’ Proceedings of the
Fourth International ACM SIGCAPH Conference on
Assistive Technologies (ASSETS 2000), Arlington, VA,
November 13–15, 2000, ACM, New York (2000), pp.
172–179.

32. M. Hori, G. Kondoh, K. Ono, S.-I. Hirose, and S. Singhal,
‘‘Annotation-Based Web Content Transcoding,’’ Proceed-
ings of the 9th International World Wide Web Conference
on Computer Networks: The International Journal of
Computer and Telecommunications Networking, Amster-
dam, The Netherlands, May 15–19, 2000, North-Holland
Publishing Co., Amsterdam, The Netherlands (2000),
pp. 197–211.

33. L. Seeman, ‘‘The Semantic Web, Web Accessibility, and
Device Independence,’’ Proceedings of the International
Cross-Disciplinary Workshop on Web Accessibility (W4A

2004), New York, May 18, 2004, ACM, New York (2004),
pp. 67–73.

34. Y. Yesilada, S. Harper, C. Goble, and R. Stevens,
‘‘Ontology Based Semantic Annotation for Enhancing
Mobility Support for Visually Impaired Web Users,’’
Proceedings of the K-CAP 2003 Workshop on Knowledge
Markup and Semantic Annotation (Semannot 2003),
Sannibel, FL, October 26, 2003, http://sunsite.
informatik.rwth-aachen.de/Publications/CEUR-WS/
Vol-101/Yeliz_Yesilada-et-al.pdf.

35. A. W. Huang and N. Sundaresan, ‘‘A Semantic Trans-
coding System to Adapt Web Services for Users with
Disabilities,’’ Proceedings of the Fourth International ACM
SIGCAPH Conference on Assistive Technologies (ASSETS
2000), Arlington, VA, November 13–15, 2000, ACM, New
York (2000), pp. 156–163.

36. I. Horrocks and P. F. Patel-Schneider, ‘‘Three Theses of
Representation in the Semantic Web,’’ Proceedings of the
Twelfth International World Wide Web Conference
(WWW’03), Budapest, Hungary, May 20–24, 2003, ACM,
New York (2003), pp. 39–47.

37. L. Carr, S. Kampa, W. Hall, S. Bechhofer, and C. Goble,
‘‘Ontologies and Hypertext,’’ in Handbook on Ontologies,
S. Staab and R. Studer, Editors, Springer, New York
(2004), pp. 517–532.

38. S. Bechhofer, The DIG Description Logic Interface:
DIG/1.1, University of Manchester (February 7, 2003),
http://dl-Web.man.ac.uk/dig/2003/02/interface.pdf.

Accepted for publication January 14, 2005.

Simon Harper
School of Computer Science, University of Manchester,
Manchester, M13 9PL, UK (sharper@cs.man.ac.uk). Dr.
Harper is a Research Fellow in the Information Management
Group of the Department of Computer Science at the
University of Manchester where he is working on integrated
hypermedia and database solutions in accessibility. He comes
from an industrial background as a software consultant with a
major energy provider. His research interests are a synthesis
of hypermedia, cognition, and rehabilitation engineering. He
also works on the Journal of Web Semantics and is a Web
developer for the ACM SigWeb.

Sean Bechhofer
School of Computer Science, University of Manchester,
Manchester, M13 9PL, UK (seanb@cs.man.ac.uk). Mr.
Bechhofer is a Lecturer in the Information Management Group
of the School of Computer Science at the University of
Manchester. Over the last 10 years, he has worked on tools
and infrastructure to support the use of Semantic Web
technology, publishing numerous articles in journals,
conferences, and books. He was a key participant in the
COHSE (Conceptual Open Hypermedia Service) project, which
combined open hypermedia with ontological services to
produce an early example of a Semantic Web application. He
was also mainly responsible for developing OilEd, one of the
first ontology development tools to use reasoning. He was a
member of the W3C WebOnt Ontology Language Working
Group, providing key experience that led to the acceptance of
OWL as a W3C recommendation and implementing one of the
first validating parsers for OWL, along with supporting
infrastructure for the use of OWL in applications. &

HARPER AND BECHHOFER IBM SYSTEMS JOURNAL, VOL 44, NO 3, 2005648

Published online August 5, 2005.

