
Building applications for the
Linux Standard Base

&

C. Yeoh

The goal of the Linuxe Standard Base (LSB) is to develop and promote a set of

standards that will increase compatibility among Linux distributions and enable

software applications to run on any compliant Linux system. There are currently LSB

specifications available for the Intel Architecture IA-32e processors and for the 32-

and 64-bit PowerPCe, Itaniume, 31- and 64-bit zSeriese, and AMD64e architectures.

This paper describes the process of building LSB-compliant applications, and covers

the use of the LSB development environments, testing of binaries, and packaging.

Development of the Linux** kernel was started by

Linus Torvalds in 1991. By 1992, some early Linux

distributions such as MCC (a Linux distribution

from the Manchester Computing Centre), TAMU (a

distribution from Texas A&M University) and SLS

(Softlanding Linux System) were easily available

over the Internet. Distrowatch.com, a comprehen-

sive Web site following Linux distributions, has over

350 distributions in its database.
1

Standards for operating systems can reduce the

incompatibilities between various implementations.

The POSIX** standard is an example of an API

(application programming interface) standard which

has helped keep a certain level of commonality

among UNIX** implementations. Where there are

large numbers of implementations, as is the case

with Linux, widespread core compatibility makes it

possible to have applications that work correctly on

many implementations.

The Linux Standard Base (LSB) is a set of operating-

system standards with the goal of increasing

compatibility among Linux distributions and en-

abling software applications to run on any Linux-

compliant system.
2
The LSB is developed and

promoted by the LSB workgroup of the Free Stand-

ards Group (FSG), an independent, non-profit

organization dedicated to accelerating the use of free

and open-source software by developing and pro-

moting standards.
3
Other examples of standardiza-

tion workgroups of the FSG are OpenI18n (which

addresses issues of internationalization), Open-

Printing, and the Open Cluster Framework (which

defines standard clustering APIs).

The LSB workgroup is divided into several sub-

projects, each of which is responsible for a major

component of the project; such as, its specification,

futures, testing, sample implementation, example

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 YEOH 369

applications, and the build environment. There are

tools available to test distributions as well as the

& Depending on its intended
use, people have differing
views on what constitutes a
Linux system &

third-party applications that will run on those

distributions.

The project was first announced in May of 1998, and

the first official version of the LSB specification was

released in June 2001. At first only the IA (Intel

Architecture)-32** architecture was supported, but

the 2.0 version released in 2004 supports seven

architectures: IA-32, Itanium**, 32- and 64-bit

PowerPC*, AMD64**, and the 31-bit and 64-bit

z/Architecture*. The breadth of interfaces has also

increased, with support of Cþþ, C99, SUSv3 (Single

UNIX Specification version 3) and IPv6 (Internet

Protocol version 6) also recently being added to the

specification.

This paper, which describes the process of building

LSB-compliant applications, is organized as follows.

In the following section, we describe the structure of

the project and its development. In ‘‘Specification

documents,’’ a brief overview of the structure and

contents of the specification documents is given.

‘‘LSB build tools’’ describes the tools that should be

used to build an application. The following two

sections explain the issues relevant to packaging and

the File Hierarchy Standard. ‘‘Using external librar-

ies’’ presents an application which uses non-LSB-

standard libraries. ‘‘Making the xpaint application

LSB-compliant’’ presents an example of the process

required to build an application, while ‘‘Application

battery’’ describes a pool of applications built to be

compliant, which are available to use as a reference

for commonly encountered problems. ‘‘Testing’’

covers the tools available to test an application for

compliance.

DEVELOPMENT OF THE LINUX STANDARD BASE
The Linux Standard Base project is an open-source

project and is run much like any other open-source

project. It is not controlled or operated by any

company, and contributors come from a broad

range of areas, from programmers to documentation

writers and people with backgrounds in developing

international standards. Like many projects, there

has been an ebb and flow of contributors, with some

having participated continuously from the start of

the project, some having helped out in a few specific

areas, and others who have just recently joined.

There are participants from distribution developers,

application developers, and those simply interested

in standardization of Linux. Most of the direct

participants are paid to work on the LSB, (unlike

most open-source projects), but this phenomenon is

waning.

There is significant industry support for the project,

with developers from large companies such as IBM,

Intel, and Hewlett-Packard actively involved. Rep-

resentatives from the major distributions such as

SUSE, Mandrake, the Debian** project, and Red

Hat, as well as the Open Group which has been

involved in standards development for a long time,

regularly participate in the development of the LSB.

The LSB bases its standard completely on the work

of other open-source projects, most of which do not

run according to fixed schedules, nor are they

necessarily synchronized with each other. This can

present a challenge to standardization, as often it

will be advocated that a much better version of

some component of the standard is almost ready or

has recently become available and should be

adopted. Some distribution developers want to use

the latest cutting-edge technology, while others

would prefer to be more conservative, and use only

features that have been tested for a much longer

period of time. This may cause conflict as to what is

the most appropriate course to take.

To help resolve this problem, a set of guidelines has

been developed to decide what qualifies for inclu-

sion in the standard. Generally, the requirements are

that it be considered best practice; that there is an

implementation with a ‘‘no strings attached’’ license

(e.g., BSD/LGPL [Berkeley Software Distribution/

Lesser GNU Public License] licenses); that there is a

stable ABI (application binary interface); and that

the upstream developers are supportive of stan-

dardization. For final inclusion of a feature, it is also

necessary to have test suites to test implementations

utilizing this feature and a consensus among

distribution developers that it is a feature they want

to support.

YEOH IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005370

Depending on its intended use, people have differing

views on what constitutes a Linux system. A result

of this is that there has been contention on how

broad a range of features the LSB specification

should cover. The requirements for an embedded

system are significantly smaller than those of a

desktop system. The LSB 1.x versions of the

specification targeted something between these

implementations (that is, the requirements for most

server-type systems), but there has been consistent

pressure for both more and fewer requirements to be

included. In order to address this, LSB 2.0 split

features into building-block-like modules. Although

only one configuration of modules is currently

supported by the certification program, in the future

this division will allow for embedded and desktop

system configurations to be certified. It also has the

benefit of making it easier for other standardization

groups to reuse the work of the LSB and vice versa.

Although there are other Linux standardization

efforts, they are complementary to the LSB rather

than competing. For example, the China Electronics

Standardization Institute has created a Chinese

Linux Standard that builds upon the LSB docu-

ments.
4

Although ISO (International Organization for

Standardization) has not been directly involved in

the development of the LSB specification, a subset of

the LSB 2.0.1 specification has been submitted to

ISO/IEC (International Electrotechnical Committee)

JTC (Joint Technical Committee) 1 as a publicly

available specification (PAS) submission. At the

time of writing, the submission is undergoing

analysis by the SC22 (Subcommittee 22) group. As

explained in ‘‘Specification documents,’’ there are

strong links between the LSB specification and the

ISO/IEC 9945 standard, and some developers are

working on both standards.

Despite the name of the project, the Linux Standard

Base specification is not intended to be Linux-kernel

specific. Theoretically, it should be possible for a

BSD-based system to become LSB-compliant, and it

is expected that Sun will announce that Solaris** is

compliant with the LSB specification.
5

SPECIFICATION DOCUMENTS

It is important to understand that the LSB specifi-

cation is a binary standard, specifying an application

binary interface (ABI). This is different from some

other well-known standards, such as SUS or POSIX,

which are source or application-programming-

interface (API) standards. Specifying an ABI instead

& The Linux Standard Base
specification is not intended
to be Linux-kernel specific &

of an API standard means that compliant programs

are portable across compliant implementations,

without the need for recompilation. This has

advantages for software developers, as they do not

need to build, test, and maintain a separate version

of their application for each distribution they wish to

support. There are now many users of Linux

systems who either do not have the skill required to

compile applications themselves or do not wish to

spend time doing so, and it is to their advantage to

have prebuilt binaries available. Widespread binary

compatibility also helps distribution developers, as

it makes available a larger pool of applications that

will work with their product. Binary compatibility is

a basic requirement for the large-scale consumer

market.

An ABI defines a low-level interface between a

program and the libraries and operating-system

services that it uses. This contains details such as

the format of the files, calling conventions, Cþþ
‘‘name mangling’’ conventions, and symbols avail-

able and their corresponding versions (if applica-

ble). For example, the System V ABI
6
document is

one of the core specifications upon which the LSB is

built.

The LSB specification is a set of specification

documents. It is divided in two ways, by the

functionality supported and by the architecture. The

functionality documents are split into several

modules, such as core, embedded systems and

packaging, graphics, and desktop. This concept was

introduced in the 2.0 version of the specification, in

order to allow for different LSB module configura-

tions to be certified. For example, a distribution

targeted at the embedded-systems market may only

support the core and embedded-systems modules;

whereas, a desktop system may implement all of

them. The exact configuration of modules that are

available and able to be certified is still in develop-

ment.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 YEOH 371

Because the specification is a binary standard, a

significant portion of the information is architecture-

specific. Therefore the module documents are

& The Linux Standard Base
specification gives two options
for packaging an application &

further divided, such that there is one document that

specifies the architecture-independent information,

and one additional document per architecture that

contains the architecture-specific details.

Where possible, established standards are refer-

enced, rather than duplicating the information. For

example, Linux system developers in most cases

follow the POSIX 1003.1 standard. The LSB lever-

ages the work done by the Austin group who

developed this standard by referencing a subset of

that document. In some cases, the behavior as

implemented on Linux systems is slightly different,

and this is noted in the LSB specifications.

The LSB specification does not cover everything that

would be found in an ordinary Linux installation.

Currently, it covers the core areas of each system,

and coverage is expanding as resources become

available. Although, as described earlier, the in-

formation is split into various documents, the

specification contains a list of interfaces and the

libraries in which they reside, a set of commands

and utilities, definitions of the object format of

executables, runtime linking requirements, and

package format definitions.

Of particular interest to developers porting from

UNIX to Linux systems is a document
7
produced by

Andrew Josey, which summarizes the incompati-

bilities between POSIX and the LSB. Sometimes the

differences are accidental and transitory as updated

releases are made. Others are the result of inten-

tional decisions to differ in design or implementa-

tion. There is an ongoing effort to understand the

reasons for these differences, and an attempt is

being made to harmonize the two standards.

LSB BUILD TOOLS

An LSB-compliant implementation is not required to

construct an LSB-compliant binary. Moreover, an

LSB-compliant distribution is not necessarily a

suitable environment to build a compliant binary

without the use of the tools described later in this

section. Although the default build environment

provides the services and interfaces required by the

specification (such as header files and the default

linkage of symbols in the libraries), it may not match

the standard, nor is it required to do so. The LSB

project has not released any tools that properly check

an implementation for its suitability in natively

building an application, and it is recommended that

tools which are suitable for this always be used.

In practice, apart from the issue of only using

functionality supported by the LSB, there are three

other main issues in creating a binary that is

compliant: LSB header files, stub libraries, and the

LSB linker. These issues are described in the next

subsections.

LSB header files

For interfaces supported by the standard, the

number and size of parameters for functions, the

size of any values returned by a function, and the

size of variables is specified. Also, the meaning of

specific values of parameters for certain functions

has also been standardized. For example, the lseek

library interface, for which POSIX 1003.1 specifies

an API as:

off_t lseek(int fildes, off_t offset, int whence),

it also specified that the third parameter, whence,

can be passed the macro values SEEK_SET,

SEEK_CUR, or SEEK_END. As the LSB is an ABI

standard, it further defines the size of the types (for

each architecture), and the values and meanings of

the macros for the third parameter, as follows:

#define SEEK_SET 0 /* Seek from beginning of file. */

#define SEEK_CUR 1 /* Seek from current position. */

#define SEEK_END 2 /* Seek from end of file. */

The size and number of the parameters of functions

and the definitions of the macros can change over

time. If the version of glibc (the GNU C library) on

the system which builds the application does not

have header files which conform to the ABI, then it

would be possible to create a binary that would

work correctly on the system where it was built, but

would not behave as expected on an LSB-compliant

system.

YEOH IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005372

Using the previous example, if the definitions of the

SEEK modules changed to the following:

#define SEEK_CUR 0 /* Seek from current position. */

#define SEEK_SET 1 /* Seek from beginning of file. */

#define SEEK_END 2 /* Seek from end of file. */

then when an application that ran on an LSB-

compliant system tried to do an absolute seek, it

would do a relative one and vice-versa.

To prevent this problem from occurring, an appli-

cation should be compiled using header files that are

known to conform to the specification. The LSB

project has produced a set of header files that are

known to be compliant for each supported archi-

tecture. All of the interfaces supported by the

standard are stored in an SQL (structured query

language) database. The information in the database

is used to generate both the specification and the

header files used by the build environment.

Stub libraries

Some of the shared libraries supported by the LSB,

such as libc, use symbol versioning, wherein the

specification lists a specific symbol version for each

interface. Each interface in one of these libraries has

a version string associated with it. This allows for

multiple ABI-incompatible versions of the same

function to be contained within the same shared

library. When a binary is linked and the shared

library to which it is linking contains more than one

version of a symbol, the default version defined by

the shared library is used.

Although an LSB-compliant distribution must sup-

ply all of the required interfaces with the specified

versions, these do not necessarily have to be the

default versions. It would not be an uncommon

situation to be building an LSB-compliant applica-

tion on a system where newer versions of the

required interfaces are the default. Ordinary compi-

lation would result in a non-compliant binary.

To address this problem, a set of stub libraries has

been produced for the build environment containing

all of the interfaces required by the specification.

When a shared library implements symbol version-

ing, the appropriate version is used for the

interfaces. Much like the LSB header files, these stub

libraries are generated directly from the information

in the LSB database, ensuring that it is synchronized

with the specification document.

Using the LSB stub libraries instead of the shared

libraries on the development system when linking a

binary ensures that the correct interfaces are used.

Because the shared libraries contain only the

interfaces required by the specification, if an

application uses an interface outside of the specifi-

cation, a link error occurs. It is much better to detect

these sorts of problems as early as possible in the

development process, as opposed to later, when

using a checking tool. The stub libraries are

intended to be used for the production of the binary

to be packaged, and not just as a method to test if

the build system would build a compliant binary.

LSB linker

The LSB specification requires the use of a non-

standard runtime linker. For example, on IA-32

Linux systems, ordinarily the runtime linker used by

applications is /lib/ld-linux_so.2. During the develop-

ment of the specification, it was realized that there

would be cases where a distribution would want to

ship two versions of a given library: one which is

LSB-compliant, and another which exists either for

backward compatibility reasons or is a newer

version that has some features which the distribu-

tion wants to make available. Occasionally devel-

opers of libraries accidentally make ABI-

incompatible changes without either incrementing

the symbol-version numbers or shared-library ver-

sions. This normally would make it impossible to

ship two ABI-incompatible versions. When all LSB-

compliant applications use the LSB linker, the linker

can arrange for the LSB-compliant version of the

shared library to be used; whereas, the ordinary

Linux linker ensures that all other applications use

the distribution-specific shared library.

The manner in which the runtime linker is used by a

binary varies from compiler to compiler. For

example with gcc (GNU compiler collection), either

the flag -WI,–dynamic-linker=/lib/ld-lsb.so.2 can be

passed to gcc, or alternatively the specifications

(‘‘specs’’) file can be modified to change

/lib/ld-lsb.so.2 to be the default.

The name of the LSB linker is architecture-specific.

For example, for the 32-bit PowerPC architecture, it

is /lib/ld-lsb-ppc32.so.2, and for 64-bit PowerPC, it is

/lib64/ld-lsb-ppc64.so.2. This allows for distributions

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 YEOH 373

to support more than one LSB architecture simulta-

neously. Most commonly, this occurs when 64-bit

& Statically linking a library into
an application is the most
straightforward method to
preserve compliance &

distributions also want to be 32-bit-compliant, but it

leaves open the possibility for emulations of other

architectures to be LSB-compliant as well.

Tools

Two programs have been developed to build

compliant binaries, lsb-build-cc and lsb-build-chroot,

each using a different strategy to achieve the same

goal. They both require the same LSB header files

and stub libraries, and these are supplied separately

in a package called lsb-build-base. In order to build a

compliant Cþþ binary, it is also necessary to use the

lsb-build-cþþ package.

These programs are not intended to be an integrated

development environment (IDE), but instead are

tools that can be used in conjunction with an IDE.

All of the LSB build environment packages can be

downloaded from http://www.linuxbase.org/

download/#lsbdev.

The lsb-build-cc program

The lsb-build-cc strategy is to supply a program which

is invoked instead of the gcc C compiler when

compiling a program. This program, called lsbcc,

supplies extra arguments and modifies existing

arguments passed to it, and then invokes gcc itself,

passing on these arguments. The modifications and

additions are made so that gcc does not use the

standard search path for header files and libraries,

but instead uses a path which points to the LSB-

compliant ones first, before searching the ones

supplied by the distribution.

For build systems that honor the CC environment

variable, just setting CC to lsbcc results in the

binaries being built in an LSB-compliant way. It is

important to have this variable set when running

configure scripts because using lsbcc can change

what functionality is visible to be used for building

the binary.

A program called lsbcþþ is also supplied with the

lsb-build-cc package, which performs a job similar to

that of lsbcc, except that it wraps the gþþ program

for building Cþþ programs.

The lsb-build-chroot program

The lsb-build-chroot package creates a chroot (i.e., a

restricted environment) that programs can be

compiled in. Inside the chroot, /usr/include contains

LSB-compliant header files, and the stub libraries

are contained inside /usr/lib. Also within this

environment, the specs file for gcc is modified so

that the LSB runtime linker is used in any binaries

generated.

The environment can be configured to selectively

incorporate parts of the host system into the

restricted environment. Home directories of speci-

fied user accounts are automatically made available.

An ssh (secure shell) daemon is configured to run

within the chroot so it is possible to login to the

environment. This removes the need for root access

that would normally be required to enter the chroot.

The lsb-build-cþþ package

The lsb-build-cþþ package is required to build a Cþþ
program. This package contains header files rele-

vant to Cþþ. Unlike the header files for other parts of
the LSB specification, the Cþþ header files are not

generated from the database, but instead are a

snapshot from a specific version of gcc. The LSB

database is currently unable to store information of

the complexity required by Cþþ.

LSB 1.3 versions of this package also contain a static

libstdcþþ library which has been compiled to be LSB-

compliant. This was necessary as LSB 1.3 did not

natively support Cþþ, and it was necessary to

statically link the runtime library. As Cþþ is part of

the specifications for LSB 2.0 and above, a stub

library of libstdcþþ is included with lsb-build-base for

the 2.0 versions of the build environment.

Comparing the lsb-build-cc and lsb-build-chroot

programs

For most applications, when the build process is

fairly straightforward and adheres to standard

practice such as the use of the CC environment

variable, lsb-build-cc is the simplest way to build a

compliant application. It has been better tested and

is more mature than lsb-build-chroot. However, there

may be some circumstances where lsb-build-chroot is

YEOH IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005374

preferable, as lsb-build-cc does not cope with

situations where there are hard-coded references to

compilers, headers, or library include paths. Con-

figure scripts can be fairly smart in picking up

header files from the system which may contain

information that conflicts with LSB specification,

and lsb-build-cc is not always able to detect this. The

lsb-build-chroot program presents a sanitized envi-

ronment, with non-compliant headers and libraries

not visible unless explicitly imported.

When it is necessary to use a compiler other than

gcc, some reengineering of lsbcc and lsbcþþ is

necessary. The amount of work required depends on

how ‘‘command line compatible’’ the compiler is

with gcc and binutils. In contrast, this should be a

fairly straightforward process with lsb-build-chroot,

and LSB-compliant headers and libraries are con-

tained in /usr/include and /usr/lib.

For reasons of efficiency, lsb-build-chroot utilizes a

Linux feature called ‘‘bind mounts,’’ which allows

one part of a file system to be mapped into another.

It is not a copy, but rather the same content is made

available in another part of the directory hierarchy,

analogous to the hard linking of directories. Caution

must be exercised because without properly under-

standing how bind mounts work, it is easy for

someone with root privileges to accidentally remove

important parts of the system such as /lib and /bin

when cleaning out the build environment.

For many applications, initially, it can take a

developer considerable time to configure an

lsb-build-chroot system to import all of the non-LSB

requirements into the build environment. Further

development of the tool should alleviate this

problem.

PACKAGING
The LSB specification gives two options for pack-

aging an application. The first is a packaging format

which is based on RPM** (Red Hat Package Man-

ager). It is a subset of RPM Version 3 that removes

some options, such as trigger scripts which are not

implementable in the context of some package

management systems.

All LSB-compliant implementations must be able to

handle the installation of files for this LSB package

format. It is important to note that the LSB

specification does not require an implementation to

supply the RPM program or use the RPM database. It

merely has to be able to process the package, install

the individual files, and run any installation scripts.

For example, a Debian-based system could use the

program alien to convert the file into a ‘‘deb’’ (a

package in the Debian packaging format), which

would then be installed using dpkg.

The LSB does not require an implementation to have

a database to handle the management of files

installed, nor any commands to perform an instal-

lation. These aspects are implementation specific.

Strict requirements for the naming of a package

were added to the specification to ensure that no

clashes occurred. All packages must start with the

lsb- prefix. If the name contains only one hyphen,

then the name must be registered with the Linux

Assigned Names and Numbering Authority (LA-

NANA). LANANA is part of the Free Standards

Organization, and contact information can be found

at http://www.lanana.org. Alternatively, if more

than one hyphen is used in the name, then the

portion between the first and second hyphen must

be either a LANANA registered name or a fully

qualified domain name in lowercase, which is

owned by the person or organization distributing

the package.

The second option for someone distributing an

application is to provide a package in a format of his

or her choice, along with an installation program

which is itself LSB-compliant. This program would

handle unpacking the package, installing any files,

and executing any installation scripts.

When an installation is done in this manner, it

avoids the implementation’s native package man-

ager. This can remove or degrade the package

manager’s ability to implement some very useful

features such as file collision detection and package

integrity checking. Therefore, a decision not to use

the LSB package format should be made only after

serious consideration.

Package dependencies

An LSB-format package must have certain depen-

dencies. An LSB-1.3-compliant package depends

only on lsb. An LSB-2.0-compliant package must

demonstrate through its package dependencies

which LSB modules are required by the application.

The specification lists the following possible de-

pendencies: lsb-core-,arch., lsb-graphics-,arch.,

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 YEOH 375

lsb-core-noarch, and lsb-graphics-noarch, where ,arch.

indicates the LSB architecture name.

Applications that require the graphics libraries

should depend on one of the lsb graphics depen-

dencies; others simply depend on one of the lsb core

dependencies. The noarch dependencies are pro-

vided for applications that depend only on the

architecture-independent portions of the specifica-

tion. All of these dependencies are provided by an

LSB-compliant distribution.

For example, a 64-bit PowerPC graphics-based

application would depend on lsb-graphics-ppc64, and

a 64-bit zSeries non-graphics application would

depend on lsb-core-s390x. A package that contains

only shell scripts should depend on lsb-core-noarch.

An LSB package should never depend on distribu-

tion-specific dependencies. However, it is allowable

for the package to depend on dependencies provided

by other LSB-compliant packages.

FILE HIERARCHY STANDARD

The LSB specification references the File Hierarchy

Standard (FHS), and all LSB-compliant applications

must be FHS compliant. The following discussion is

not an exhaustive coverage of the requirements to

be FHS compliant, but highlights some of the

important requirements and those that are specific

when read in conjunction with the LSB specifica-

tion.

All LSB-compliant applications are considered to be

add-on application software packages, and as such

should be installed into the /opt hierarchy (see FHS

2.3 Section 3.13). The provider or package name

must be registered with LANANA. To ensure that

there is no conflict of init or cron job script names,

these must also be registered with LANANA.

Not all of the commands listed in the FHS are

present on an LSB-compliant system. Because only

those commands and utilities explicitly defined in

the LSB specification are ensured to be in an

compliant distribution, an application must not

attempt to use any others.

With the introduction of the /media directory, FHS

2.3 clarified where removable media such as CD-

ROM and floppy discs should be mounted in the

system.

USING EXTERNAL LIBRARIES

Since the current coverage of the LSB specification is

relatively small compared to what is shipped in a

standard Linux distribution, some applications may

require functionality outside of the specification. In

most cases it is possible to use non-LSB library

functionality in an application and still remain

compliant.

Static Linking
Statically linking a library into an application is the

most straightforward method to preserve compli-

ance. The library itself must be LSB-compliant,

which may require the inclusion of further libraries

to be statically linked. This may not always work, as

a library may use an interface which is not in the

LSB but resides in a library which is part of the LSB.

An example of this would be a library which calls

the strfry library interface, which on a Linux system

based on glibc (the GNU C Library) resides in libc.so,

but is not included in the LSB specification. In these

sorts of cases, or situations where it is undesirable to

statically link even more libraries, it is necessary to

build a version of the library which does not use this

functionality. At the cost of reduced functionality,

some libraries can be configured during build time

to not use other libraries.

By default lsb-build-cc links a library statically (rather

than dynamically) if the library is not part of the LSB

specification. When using lsb-build-chroot, one

should only import the static version of the library

into the environment.

Supplying shared libraries

An alternative to statically linking a non-LSB library

is to dynamically link against the library and include

a copy of the shared library in the package. Where

this method is used, the shared library itself needs to

be LSB-compliant. Like the binary itself, it is

allowable for that shared library to be dynamically

linked against other non-LSB-required libraries, but

those libraries must also be included with the

application under the same restrictions as the first

shared library.

As lsb-build-cc by default only statically links non-

LSB-specified libraries, it is necessary to instruct it to

dynamically link the library through the use of the

LSBCC_SHAREDLIBS environment variable. The value

of LSBCC_SHAREDLIBS must be a colon-separated list

of library names to be dynamically linked. When lsb-

YEOH IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005376

build-chroot is used, simply importing the shared

library into the environment causes it to be

dynamically linked.

MAKING THE XPAINT APPLICATION
LSB COMPLIANT
The xpaint application was one of the applications

chosen to be part of the LSB application battery

(described at length in the following section). The

xpaint application is a fairly simple drawing program

based on X11 (the X windowing system for bitmap

displays), and is a good example of an application

that exercises the graphics components of the LSB

specification.

Several source code changes were required to build

a compliant binary, though some of these were

general bug fixes necessary to support the broad

range of architectures supported by the LSB. A

common example of this involved parts of the

application that were not written correctly for 64-bit

architectures. For example:

static void

scrollCB(Widget w, LocalInfo * I, XtPointer position)

f
float *percent = NULL;

. . .

if (!percent) return;

if ((int) position.0)

*percent þ¼ 1.0/256.0;g

On 64-bit architectures the XtPointer parameter is a

64-bit value, and casting it to an integer causes

errors at runtime. Similarly, some files had proto-

types for common library functions such as malloc

and free that were incorrect (for all architectures).

These were removed, and header files were included

with the correct declarations. In a few cases

sys_errlist was used, but because this is not part of

the LSB, the code was changed to use the strerror

library interface, which is part of the specification.

The last class of changes were those necessary to

make the application FHS-compliant. The xpaint

application uses the xmkmf tool to do most of its

configuration, which made it easy to make the

changes required:

xmkmf -DBinDir="/opt/lsb-xpaint/bin" -DLibDir=

"/opt/lsb-xpaint/lib" \

-DEtcX11Directory="/opt/lsb-xpaint/etc" -DManPath=

"/opt/lsb-xpaint/man"

And on installation:

make BINDIR = "/opt/lsb-xpaint/bin" LIBDIR =

"/opt/lsb-xpaint/lib"

ETCX11DIR = "/opt/lsb-xpaint/etc" MANPATH =

"/opt/lsb-xpaint/man"

install install.man

Although not encountered when building xpaint,

applications that use configure scripts to build often

run into problems. This is because configure scripts

often do not test directly for a feature being present,

but the developer assumes that it should be present.

For example, some scripts assume that if a system

uses a certain version of glibc (or above), then IPv6

support will be present. LSB 1.3 does not support

IPv6, but the configure scripts detected a certain

version of glibc and so configured the build to

include IPv6 support. Despite this, the compilation

may fail if the required header information is

missing. Application developers should ensure that

the configuration scripts look for the exact func-

tionality desired.

APPLICATION BATTERY

The application battery is a set of open-source

applications (such as Samba, Apache**, and TCL

[Tool Command Language]) which have been built

by the LSB team such that they are compliant with

the LSB standard. Together they utilize a significant

percentage of the functionality offered by the LSB

specification. They are used as part of the procedure

for certifying a distribution and also serve as a useful

test for the LSB build environments.

For an application developer, the battery is a useful

resource of examples of problems encountered

when porting an application and the methods used

to fix them. The application battery subgroup does

not release source packages, but the procedure used

to build the applications is available in CVS

(Concurrent Versions System). The information can

be accessed anonymously with the following com-

mands:

$ cvs -d:pserver:anonymous@cvs.gforge.

freestandards.org/cvsroot/lsb login

$ cvs -z3 -d:pserver:anonymous@cvs.gforge.

freestandards.org:/cvsroot/lsb co appbat

The application battery information is downloaded

into a directory named appbat. Some tools from the

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 YEOH 377

Automated Linux From Scratch
10

project are used to

build the applications. The configuration files are

written in XML (Extensible Markup Language) and

are easy to understand. Also stored in the repository

are the patches which are applied to applications to

achieve compliance.

TESTING

There are a number of tools currently under

development to check that an application conforms

to the LSB specification. At the time of writing, only

lsbappchk is mature enough to use in the certification

program, although it is expected that the lsbdynchk

program will soon be added to the certification

process with lsbpkgchk to follow later. These tools

are described in the following subsections.

The lsbappchk program

The lsbappchk program tests individual executables

for conformance to the LSB specification. It tests that

the application dynamically links only the permitted

shared libraries, and from them, links only the

specified functions and global data. When extra

shared libraries are shipped with an application, the

program can be informed of these, and it will allow

linkage to them. It will perform the same tests on any

of those shared libraries in the samemanner as it does

the executable. The object format of the executable

and any associated libraries are also checked.

Examples

The following is an example of running lsbappchk on

the cat utility, which is shipped as part of the

distribution. Note that while lsappchk is not LSB-

compliant, it is not always expected or possible for

all applications that are shipped with the distribu-

tion be compliant. An LSB-compliant distribution

must supply all of the interfaces required by the

specification (e.g., runtime libraries and utilities),

but they do not need to be implemented such that

they themselves as applications are compliant.

cyeoh@rockhopper:~$ lsbappchk /bin/cat

lsbappchk for LSB Specification 2.0.1.20040718

Checking binary /bin/cat

Incorrect program interpreter: /lib/ld-linux.so.2

Header[1] PT_INTERP Failed

Found wrong intepreter in .interp section: /lib/ld-linux.so.2

instead of: /lib/ld-lsb.so.2

Symbol_overflow used, but not part of LSB-Core

Symbol fputs_unlocked used, but not part of LSB-Core

In the preceding messages, lsbappchk has detected

that the standard Linux runtime linker is being used

instead of the LSB-specified one. This commonly

happens when the LSB build tools are not used to

link an executable. It has also detected that the

binary uses functions_overflow and fputs_unlocked,

which are not in the LSB specification. By making

some small code changes and compiling within an

LSB build environment, this code could be made

compliant easily.

The lsbappchk tool automatically generates a journal

file, which must be submitted during the certifica-

tion process. The file is human-readable and a

summary can be produced by using the tjreport tool.

The format of the journal file is fundamentally the

same as that produced by the Test Environment

Toolkit
11

(TET), although it does not use TET.

The lsbappchk program outputs warning messages

which do not necessarily affect certification. To

remove any doubt as to what is a certification

problem and what is just a warning, the journal file

explicitly classifies test results as failures if they

would block certification.

The following example would test the program foo

as it is dynamically linked against the bar library,

which is shipped with the application:

lsbappchk -L/opt/foo/bin/foo/bar.so.1 foo

The full path name of the shared librarymust be used,

and where multiple libraries are specified, they are

searched in order. Librariesmay be specifiedmultiple

times where interlibrary cycles exist.

By default, the tool only checks against the LSB-core

specification. The -M flag must be used for applica-

tions which require other LSB configurations:

lsbappchk -M LSB-Graphics xpaint

Alternatively, the -A flag can be used to include

interfaces from all LSB modules.

The lsbdynchk program

The lsbdynchk program is a tool that measures the

conformance of an application as it is running.

Although the lsbappchk tool can verify that only LSB-

specified interfaces are used, it is unable to verify that

they are used correctly. Taking the example of lseek in

the section ‘‘LSB build tools,’’ lsbappchk is unable to

YEOH IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005378

determinewhen lseek is called that the first parameter

is a valid file descriptor, or that the third parameter is

one of SEEK_SET, SEEK_CUR, or SEEK_END.

The dynamic checker intercepts the library calls

and, where possible, checks that the values of the

parameters are within the range allowable by the

ABI. The tool relies on the application under test

being exercised in a manner that covers as much of

the logic as possible. While it is unlikely that all

code paths will be tested in all situations, lsbdynchk

can be useful in detecting problems.

The lsbpkgchk program

The aim of the lsbpkgchk tool is to verify that LSB

applications packaged using the LSB package format

are structured correctly. Fundamentally, the tool

checks that the RPM format is correct and that

features of RPM not supported by the LSB are not

used. It also checks that the files within the package

will be installed into areas consistent with the FHS.

CONCLUSIONS

The LSB specification is essentially a ‘‘trailing’’

standard. The LSB project avoids the invention of

new technology, but instead documents and stan-

dardizes existing practice. It helps application

developers communicate their requirements to the

operating system developers. With the release of

LSB 2.0, and the support of features such as Cþþ,
LSB compliance offers application writers a way to

have their applications work well on a wide range of

Linux platforms.

Further information about building LSB applications

can be found at the LSB project site at http://

www.linuxbase.org. The book Building Applications

with the Linux Standard Base (published in October

2004) contains detailed information about the Linux

Standard Base.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Institute of Electrical
and Electronic Engineers, Inc., The Open Group, Linus
Torvalds, Software In The Public Interest, Incorporated, Red
Hat Incorporated, Sun Microsystems, Inc., or Apache Software
Foundation.

CITED REFERENCES AND NOTES
1. ‘‘Linux Distributions - Facts and Figures,’’ (November

2004), http://distrowatch.com/stats.php.

2. Linux Standard Base Project, http://www.linuxbase.org.

3. Free Standards Group, http://www.freestandards.org.

4. China Electronics Standardization Institute (CESI),
http://www.cesi.ac.cn/.

5. ‘‘Solaris steals Linux’s clothes,’’ (November 17, 2004),
http://www.computerweekly.com/articles/
article.asp?liArticleID=135131&liArticleTypeID=
1&liCategoryID=1&liChannelID=9&liFlavourID=
1&sSearch=&nPage=1.

6. System V Application Binary Interface, Edition 4.1, The
Santa Cruz Operation (1996), http://www.caldera.com/
developers/devspecs/gabi41.pdf.

7. A. Josey, Conflicts between ISO/IEC 9945 (POSIX) and the
Linux Standard Base, ISO/IEC Joint Technical Committee
Technical Report (informative) (2003), http://
www.jtc1.org/FTP/Public/JTC1/DOCREG/
J1N71712.pdf.

8. The init scripts are the shell scripts bundled with
applications which can start and stop the application.
They are mostly used with applications which have
server-based components and run during the booting or
shutting-down phase of the operating system. They are
also used to tell server-based applications to reread
configuration files.

9. The cron job scripts are scripts run at defined times or
intervals (e.g., once a day or at 1 AM every Thursday).
They are often supplied as part of applications to do
maintenance work.

10. Automated Linux From Scratch (ALFS)–News, http://
www.linuxfromscratch.org/alfs/news.html.

11. TETworks: Home page for TETware, The Open Group,
http://tetworks.opengroup.org.

GENERAL REFERENCES
Core Members of the Linux Standard Base Team, Building
Applications with the Linux Standard Base, Prentice Hall, PTR,
Upper Saddle River, NJ (October 2004).

Linux Standard Base Specification 2.0, Free Standards Group
(2004), http://www.linuxbase.org/spec.

C. Yeoh, ‘‘Building LSB-compliant Applications,’’ Proceedings
of the 9th International Linux System Technology Conference
(Linux Kongress)(September 2002), http://ozlabs.org/
~cyeoh/presentations/blap-lk2002.pdf.

Standard for Information Technology, Portable Operating
System Interface (POSIX), IEEE Std 1003.1–2003 (2003).

C. Yeoh, ‘‘Building LSB-compliant Applications,’’ Proceedings
of the Linux.conf.au 2004, http://ozlabs.org/~cyeoh/
presentations/lca2004/index.html.

C. Yeoh, ‘‘Linux Standard Base,’’ Projeto Software Livre Brasil
2004, http://ozlabs.org/~cyeoh/presentations/sl-2004/
index.html.

Accepted for publication July 30, 2004.

Christopher Yeoh
IBM Server Group, 8 Brisbane Avenue, Canberra, ACT 2600,
Australia (yeoh@au1.ibm.com) Christopher Yeoh has a
B. Eng. degree in electrical and electronic engineering with
first class honors and a B. Sc. degree in applied mathematics
and computing science, both from the University of Adelaide.
He has been using Linux since 1994 and became involved with
the Linux Standard Base project in 2000, when he was
working for Linuxcare. Mr. Yeoh joined IBM in 2001, at
OzLabs in the IBM Linux Technology Center in Canberra,

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 YEOH 379

Published online April 20, 2005.

Australia. He has been working on various aspects of the LSB,
including test-suite development and the build environment,
and is acting as the technical lead for the LSB build
environment. He is also currently involved with K42, an open-
source research operating system developed at the IBM
Thomas J. Watson Research Center. Previously, he worked on
the design and development of multidimensional graphical
visualization and geographic-information-system products
with real-time capabilities. &

YEOH IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005380

