Building applications for the
Linux Standard Base

The goal of the Linux™ Standard Base (LSB) is to develop and promote a set of
standards that will increase compatibility among Linux distributions and enable
software applications to run on any compliant Linux system. There are currently LSB

C. Yeoh

specifications available for the Intel Architecture IA-32™ processors and for the 32-

and 64-bit PowerPC™, Itanium™, 31- and 64-bit zSeries™, and AMD64™ architectures.
This paper describes the process of building LSB-compliant applications, and covers
the use of the LSB development environments, testing of binaries, and packaging.

Development of the Linux** kernel was started by
Linus Torvalds in 1991. By 1992, some early Linux
distributions such as MCC (a Linux distribution
from the Manchester Computing Centre), TAMU (a
distribution from Texas A&M University) and SLS
(Softlanding Linux System) were easily available
over the Internet. Distrowatch.com, a comprehen-
sive Web site following Linux distributions, has over
350 distributions in its database.’

Standards for operating systems can reduce the
incompatibilities between various implementations.
The POSIX** standard is an example of an API
(application programming interface) standard which
has helped keep a certain level of commonality
among UNIX** implementations. Where there are
large numbers of implementations, as is the case
with Linux, widespread core compatibility makes it
possible to have applications that work correctly on
many implementations.

The Linux Standard Base (LSB) is a set of operating-
system standards with the goal of increasing

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

compatibility among Linux distributions and en-
abling software applications to run on any Linux-
compliant system.2 The LSB is developed and
promoted by the LSB workgroup of the Free Stand-
ards Group (FSG), an independent, non-profit
organization dedicated to accelerating the use of free
and open-source software by developing and pro-
moting standards.’ Other examples of standardiza-
tion workgroups of the FSG are OpenlI18n (which
addresses issues of internationalization), Open-
Printing, and the Open Cluster Framework (which
defines standard clustering APIs).

The LSB workgroup is divided into several sub-
projects, each of which is responsible for a major
component of the project; such as, its specification,
futures, testing, sample implementation, example

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

YEOH

369



applications, and the build environment. There are
tools available to test distributions as well as the

m Depending on its intended
use, people have differing
views on what constitutes a
Linux system m

third-party applications that will run on those
distributions.

The project was first announced in May of 1998, and
the first official version of the LSB specification was
released in June 2001. At first only the IA (Intel
Architecture)-32** architecture was supported, but
the 2.0 version released in 2004 supports seven
architectures: 1A-32, Itanium**, 32- and 64-bit
PowerPC*, AMDG64**, and the 31-bit and 64-bit
z/Architecture*. The breadth of interfaces has also
increased, with support of C++, C99, SUSv3 (Single
UNIX Specification version 3) and IPv6 (Internet
Protocol version 6) also recently being added to the
specification.

This paper, which describes the process of building
LSB-compliant applications, is organized as follows.
In the following section, we describe the structure of
the project and its development. In “Specification
documents,” a brief overview of the structure and
contents of the specification documents is given.
“LSB build tools” describes the tools that should be
used to build an application. The following two
sections explain the issues relevant to packaging and
the File Hierarchy Standard. “Using external librar-
ies” presents an application which uses non-LSB-
standard libraries. “Making the xpaint application
LSB-compliant” presents an example of the process
required to build an application, while “Application
battery” describes a pool of applications built to be
compliant, which are available to use as a reference
for commonly encountered problems. “Testing”
covers the tools available to test an application for
compliance.

DEVELOPMENT OF THE LINUX STANDARD BASE
The Linux Standard Base project is an open-source
project and is run much like any other open-source
project. It is not controlled or operated by any
company, and contributors come from a broad
range of areas, from programmers to documentation

370 vYEOH

writers and people with backgrounds in developing
international standards. Like many projects, there
has been an ebb and flow of contributors, with some
having participated continuously from the start of
the project, some having helped out in a few specific
areas, and others who have just recently joined.
There are participants from distribution developers,
application developers, and those simply interested
in standardization of Linux. Most of the direct
participants are paid to work on the LSB, (unlike
most open-source projects), but this phenomenon is
waning.

There is significant industry support for the project,
with developers from large companies such as IBM,
Intel, and Hewlett-Packard actively involved. Rep-
resentatives from the major distributions such as
SUSE, Mandrake, the Debian** project, and Red
Hat, as well as the Open Group which has been
involved in standards development for a long time,
regularly participate in the development of the LSB.

The LSB bases its standard completely on the work
of other open-source projects, most of which do not
run according to fixed schedules, nor are they
necessarily synchronized with each other. This can
present a challenge to standardization, as often it
will be advocated that a much better version of
some component of the standard is almost ready or
has recently become available and should be
adopted. Some distribution developers want to use
the latest cutting-edge technology, while others
would prefer to be more conservative, and use only
features that have been tested for a much longer
period of time. This may cause conflict as to what is
the most appropriate course to take.

To help resolve this problem, a set of guidelines has
been developed to decide what qualifies for inclu-
sion in the standard. Generally, the requirements are
that it be considered best practice; that there is an
implementation with a “no strings attached” license
(e.g., BSD/LGPL [Berkeley Software Distribution/
Lesser GNU Public License] licenses); that there is a
stable ABI (application binary interface); and that
the upstream developers are supportive of stan-
dardization. For final inclusion of a feature, it is also
necessary to have test suites to test implementations
utilizing this feature and a consensus among
distribution developers that it is a feature they want
to support.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005



Depending on its intended use, people have differing
views on what constitutes a Linux system. A result
of this is that there has been contention on how
broad a range of features the LSB specification
should cover. The requirements for an embedded
system are significantly smaller than those of a
desktop system. The LSB 1.x versions of the
specification targeted something between these
implementations (that is, the requirements for most
server-type systems), but there has been consistent
pressure for both more and fewer requirements to be
included. In order to address this, LSB 2.0 split
features into building-block-like modules. Although
only one configuration of modules is currently
supported by the certification program, in the future
this division will allow for embedded and desktop
system configurations to be certified. It also has the
benefit of making it easier for other standardization
groups to reuse the work of the LSB and vice versa.

Although there are other Linux standardization
efforts, they are complementary to the LSB rather
than competing. For example, the China Electronics
Standardization Institute has created a Chinese
Linux Standard that builds upon the LSB docu-
ments.*

Although ISO (International Organization for
Standardization) has not been directly involved in
the development of the LSB specification, a subset of
the LSB 2.0.1 specification has been submitted to
ISO/IEC (International Electrotechnical Committee)
JTC (Joint Technical Committee) 1 as a publicly
available specification (PAS) submission. At the
time of writing, the submission is undergoing
analysis by the SC22 (Subcommittee 22) group. As
explained in “Specification documents,” there are
strong links between the LSB specification and the
ISO/IEC 9945 standard, and some developers are
working on both standards.

Despite the name of the project, the Linux Standard
Base specification is not intended to be Linux-kernel
specific. Theoretically, it should be possible for a
BSD-based system to become LSB-compliant, and it
is expected that Sun will announce that Solaris** is
compliant with the LSB speciﬁcation.5

SPECIFICATION DOCUMENTS

It is important to understand that the LSB specifi-
cation is a binary standard, specifying an application
binary interface (ABI). This is different from some

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

other well-known standards, such as SUS or POSIX,
which are source or application-programming-
interface (API) standards. Specifying an ABI instead

m The Linux Standard Base
specification is not intended
to be Linux-kernel specific m

of an API standard means that compliant programs
are portable across compliant implementations,
without the need for recompilation. This has
advantages for software developers, as they do not
need to build, test, and maintain a separate version
of their application for each distribution they wish to
support. There are now many users of Linux
systems who either do not have the skill required to
compile applications themselves or do not wish to
spend time doing so, and it is to their advantage to
have prebuilt binaries available. Widespread binary
compatibility also helps distribution developers, as
it makes available a larger pool of applications that
will work with their product. Binary compatibility is
a basic requirement for the large-scale consumer
market.

An ABI defines a low-level interface between a
program and the libraries and operating-system
services that it uses. This contains details such as
the format of the files, calling conventions, C++
“name mangling” conventions, and symbols avail-
able and their corresponding versions (if applica-
ble). For example, the System V ABI® document is
one of the core specifications upon which the LSB is
built.

The LSB specification is a set of specification
documents. It is divided in two ways, by the
functionality supported and by the architecture. The
functionality documents are split into several
modules, such as core, embedded systems and
packaging, graphics, and desktop. This concept was
introduced in the 2.0 version of the specification, in
order to allow for different LSB module configura-
tions to be certified. For example, a distribution
targeted at the embedded-systems market may only
support the core and embedded-systems modules;
whereas, a desktop system may implement all of
them. The exact configuration of modules that are
available and able to be certified is still in develop-
ment.

YEOH 371



Because the specification is a binary standard, a
significant portion of the information is architecture-
specific. Therefore the module documents are

m The Linux Standard Base
specification gives two options
for packaging an application m

further divided, such that there is one document that
specifies the architecture-independent information,

and one additional document per architecture that

contains the architecture-specific details.

Where possible, established standards are refer-
enced, rather than duplicating the information. For
example, Linux system developers in most cases
follow the POSIX 1003.1 standard. The LSB lever-
ages the work done by the Austin group who
developed this standard by referencing a subset of
that document. In some cases, the behavior as
implemented on Linux systems is slightly different,
and this is noted in the LSB specifications.

The LSB specification does not cover everything that
would be found in an ordinary Linux installation.
Currently, it covers the core areas of each system,
and coverage is expanding as resources become
available. Although, as described earlier, the in-
formation is split into various documents, the
specification contains a list of interfaces and the
libraries in which they reside, a set of commands
and utilities, definitions of the object format of
executables, runtime linking requirements, and
package format definitions.

Of particular interest to developers porting from
UNIX to Linux systems is a document’ produced by
Andrew Josey, which summarizes the incompati-
bilities between POSIX and the LSB. Sometimes the
differences are accidental and transitory as updated
releases are made. Others are the result of inten-
tional decisions to differ in design or implementa-
tion. There is an ongoing effort to understand the
reasons for these differences, and an attempt is
being made to harmonize the two standards.

LSB BUILD TOOLS

An LSB-compliant implementation is not required to
construct an LSB-compliant binary. Moreover, an
LSB-compliant distribution is not necessarily a

372 YEOH

suitable environment to build a compliant binary
without the use of the tools described later in this
section. Although the default build environment
provides the services and interfaces required by the
specification (such as header files and the default
linkage of symbols in the libraries), it may not match
the standard, nor is it required to do so. The LSB
project has not released any tools that properly check
an implementation for its suitability in natively
building an application, and it is recommended that
tools which are suitable for this always be used.

In practice, apart from the issue of only using
functionality supported by the LSB, there are three
other main issues in creating a binary that is
compliant: LSB header files, stub libraries, and the
LSB linker. These issues are described in the next
subsections.

LSB header files

For interfaces supported by the standard, the
number and size of parameters for functions, the
size of any values returned by a function, and the
size of variables is specified. Also, the meaning of
specific values of parameters for certain functions
has also been standardized. For example, the Iseek
library interface, for which POSIX 1003.1 specifies
an API as:

off_t Iseek(int fildes, off_t offset, int whence),

it also specified that the third parameter, whence,
can be passed the macro values SEEK_SET,
SEEK_CUR, or SEEK_END. As the LSB is an ABI
standard, it further defines the size of the types (for
each architecture), and the values and meanings of
the macros for the third parameter, as follows:

#define SEEK_SET 0 /* Seek from beginning of file. */
#define SEEK_CUR 1 /* Seek from current position. */
#define SEEK_END 2 /* Seek from end of file. */

The size and number of the parameters of functions
and the definitions of the macros can change over
time. If the version of glibc (the GNU C library) on
the system which builds the application does not
have header files which conform to the ABI, then it
would be possible to create a binary that would
work correctly on the system where it was built, but
would not behave as expected on an LSB-compliant
system.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005



Using the previous example, if the definitions of the
SEEK modules changed to the following:

#define SEEK_CUR O /* Seek from current position. */
#define SEEK_SET 1 /* Seek from beginning of file. */
#define SEEK_END 2 /* Seek from end of file. */

then when an application that ran on an LSB-
compliant system tried to do an absolute seek, it
would do a relative one and vice-versa.

To prevent this problem from occurring, an appli-
cation should be compiled using header files that are
known to conform to the specification. The LSB
project has produced a set of header files that are
known to be compliant for each supported archi-
tecture. All of the interfaces supported by the
standard are stored in an SQL (structured query
language) database. The information in the database
is used to generate both the specification and the
header files used by the build environment.

Stub libraries

Some of the shared libraries supported by the LSB,
such as libc, use symbol versioning, wherein the
specification lists a specific symbol version for each
interface. Each interface in one of these libraries has
a version string associated with it. This allows for
multiple ABI-incompatible versions of the same
function to be contained within the same shared
library. When a binary is linked and the shared
library to which it is linking contains more than one
version of a symbol, the default version defined by
the shared library is used.

Although an LSB-compliant distribution must sup-
ply all of the required interfaces with the specified
versions, these do not necessarily have to be the
default versions. It would not be an uncommon
situation to be building an LSB-compliant applica-
tion on a system where newer versions of the
required interfaces are the default. Ordinary compi-
lation would result in a non-compliant binary.

To address this problem, a set of stub libraries has
been produced for the build environment containing
all of the interfaces required by the specification.
When a shared library implements symbol version-
ing, the appropriate version is used for the
interfaces. Much like the LSB header files, these stub
libraries are generated directly from the information

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

in the LSB database, ensuring that it is synchronized
with the specification document.

Using the LSB stub libraries instead of the shared
libraries on the development system when linking a
binary ensures that the correct interfaces are used.
Because the shared libraries contain only the
interfaces required by the specification, if an
application uses an interface outside of the specifi-
cation, a link error occurs. It is much better to detect
these sorts of problems as early as possible in the
development process, as opposed to later, when
using a checking tool. The stub libraries are
intended to be used for the production of the binary
to be packaged, and not just as a method to test if
the build system would build a compliant binary.

LSB linker

The LSB specification requires the use of a non-
standard runtime linker. For example, on IA-32
Linux systems, ordinarily the runtime linker used by
applications is /lib/Id-linux_so.2. During the develop-
ment of the specification, it was realized that there
would be cases where a distribution would want to
ship two versions of a given library: one which is
LSB-compliant, and another which exists either for
backward compatibility reasons or is a newer
version that has some features which the distribu-
tion wants to make available. Occasionally devel-
opers of libraries accidentally make ABI-
incompatible changes without either incrementing
the symbol-version numbers or shared-library ver-
sions. This normally would make it impossible to
ship two ABI-incompatible versions. When all LSB-
compliant applications use the LSB linker, the linker
can arrange for the LSB-compliant version of the
shared library to be used; whereas, the ordinary
Linux linker ensures that all other applications use
the distribution-specific shared library.

The manner in which the runtime linker is used by a
binary varies from compiler to compiler. For
example with gcc (GNU compiler collection), either
the flag -Wl,—dynamic-linker=/lib/Id-Isb.s0.2 can be
passed to gcc, or alternatively the specifications
(“specs”) file can be modified to change
/lib/ld-Isb.s0.2 to be the default.

The name of the LSB linker is architecture-specific.
For example, for the 32-bit PowerPC architecture, it
is /lib/Id-Isb-ppc32.50.2, and for 64-bit PowerPC, it is
/lib64/Id-Isb-ppc64.s0.2. This allows for distributions

YEOH

373



to support more than one LSB architecture simulta-
neously. Most commonly, this occurs when 64-bit

m Statically linking a library into
an application is the most
straightforward method to
preserve compliance m

distributions also want to be 32-bit-compliant, but it
leaves open the possibility for emulations of other
architectures to be LSB-compliant as well.

Tools

Two programs have been developed to build
compliant binaries, Isb-build-cc and Isb-build-chroot,
each using a different strategy to achieve the same
goal. They both require the same LSB header files
and stub libraries, and these are supplied separately
in a package called Isb-build-base. In order to build a
compliant C++ binary, it is also necessary to use the
Isb-build-c++ package.

These programs are not intended to be an integrated
development environment (IDE), but instead are
tools that can be used in conjunction with an IDE.
All of the LSB build environment packages can be
downloaded from http://www.linuxbase.org/
download/#lIsbdev.

The Isb-build-cc program

The Isb-build-cc strategy is to supply a program which
is invoked instead of the gcc C compiler when
compiling a program. This program, called Isbcc,
supplies extra arguments and modifies existing
arguments passed to it, and then invokes gcc itself,
passing on these arguments. The modifications and
additions are made so that gcc does not use the
standard search path for header files and libraries,
but instead uses a path which points to the LSB-
compliant ones first, before searching the ones
supplied by the distribution.

For build systems that honor the CC environment
variable, just setting CC to Isbcc results in the
binaries being built in an LSB-compliant way. It is
important to have this variable set when running
configure scripts because using Isbcc can change
what functionality is visible to be used for building
the binary.

374  YEOH

A program called Isbct+ is also supplied with the
Isb-build-cc package, which performs a job similar to
that of Isbcc, except that it wraps the g++ program
for building C++ programs.

The Isb-build-chroot program

The Isb-build-chroot package creates a chroot (i.e., a
restricted environment) that programs can be
compiled in. Inside the chroot, /usr/include contains
LSB-compliant header files, and the stub libraries
are contained inside /usr/lib. Also within this
environment, the specs file for gcc is modified so
that the LSB runtime linker is used in any binaries
generated.

The environment can be configured to selectively
incorporate parts of the host system into the
restricted environment. Home directories of speci-
fied user accounts are automatically made available.
An ssh (secure shell) daemon is configured to run
within the chroot so it is possible to login to the
environment. This removes the need for root access
that would normally be required to enter the chroot.

The Isb-build-c++ package

The Isb-build-c++ package is required to build a C++
program. This package contains header files rele-
vant to C++. Unlike the header files for other parts of
the LSB specification, the C++ header files are not
generated from the database, but instead are a
snapshot from a specific version of gcc. The LSB
database is currently unable to store information of
the complexity required by C++.

LSB 1.3 versions of this package also contain a static
libstdc++- library which has been compiled to be LSB-
compliant. This was necessary as LSB 1.3 did not
natively support CH++, and it was necessary to
statically link the runtime library. As C++ is part of
the specifications for LSB 2.0 and above, a stub
library of libstdct++ is included with Isb-build-base for
the 2.0 versions of the build environment.

Comparing the Isb-build-cc and Isb-build-chroot
programs

For most applications, when the build process is
fairly straightforward and adheres to standard
practice such as the use of the CC environment
variable, Isb-build-cc is the simplest way to build a
compliant application. It has been better tested and
is more mature than Isb-build-chroot. However, there
may be some circumstances where Isb-build-chroot is

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005



preferable, as Isb-build-cc does not cope with
situations where there are hard-coded references to
compilers, headers, or library include paths. Con-
figure scripts can be fairly smart in picking up
header files from the system which may contain
information that conflicts with LSB specification,
and Isb-build-cc is not always able to detect this. The
Isb-build-chroot program presents a sanitized envi-
ronment, with non-compliant headers and libraries
not visible unless explicitly imported.

When it is necessary to use a compiler other than
gce, some reengineering of Isbcc and Isbct+ is
necessary. The amount of work required depends on
how “command line compatible” the compiler is
with gcc and binutils. In contrast, this should be a
fairly straightforward process with Isb-build-chroot,
and LSB-compliant headers and libraries are con-
tained in /usr/include and /usr/lib.

For reasons of efficiency, Isb-build-chroot utilizes a
Linux feature called “bind mounts,” which allows
one part of a file system to be mapped into another.
It is not a copy, but rather the same content is made
available in another part of the directory hierarchy,
analogous to the hard linking of directories. Caution
must be exercised because without properly under-
standing how bind mounts work, it is easy for
someone with root privileges to accidentally remove
important parts of the system such as /lib and /bin
when cleaning out the build environment.

For many applications, initially, it can take a
developer considerable time to configure an
Isb-build-chroot system to import all of the non-LSB
requirements into the build environment. Further
development of the tool should alleviate this
problem.

PACKAGING

The LSB specification gives two options for pack-
aging an application. The first is a packaging format
which is based on RPM** (Red Hat Package Man-
ager). It is a subset of RPM Version 3 that removes
some options, such as trigger scripts which are not
implementable in the context of some package
management systems.

All LSB-compliant implementations must be able to
handle the installation of files for this LSB package
format. It is important to note that the LSB

specification does not require an implementation to

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

supply the RPM program or use the RPM database. It
merely has to be able to process the package, install
the individual files, and run any installation scripts.
For example, a Debian-based system could use the
program alien to convert the file into a “deb” (a
package in the Debian packaging format), which
would then be installed using dpkg.

The LSB does not require an implementation to have
a database to handle the management of files
installed, nor any commands to perform an instal-
lation. These aspects are implementation specific.
Strict requirements for the naming of a package
were added to the specification to ensure that no
clashes occurred. All packages must start with the
Isb- prefix. If the name contains only one hyphen,
then the name must be registered with the Linux
Assigned Names and Numbering Authority (LA-
NANA). LANANA is part of the Free Standards
Organization, and contact information can be found
at http://www.lanana.org. Alternatively, if more
than one hyphen is used in the name, then the
portion between the first and second hyphen must
be either a LANANA registered name or a fully
qualified domain name in lowercase, which is
owned by the person or organization distributing
the package.

The second option for someone distributing an
application is to provide a package in a format of his
or her choice, along with an installation program
which is itself LSB-compliant. This program would
handle unpacking the package, installing any files,
and executing any installation scripts.

When an installation is done in this manner, it
avoids the implementation’s native package man-
ager. This can remove or degrade the package
manager’s ability to implement some very useful
features such as file collision detection and package
integrity checking. Therefore, a decision not to use
the LSB package format should be made only after
serious consideration.

Package dependencies

An LSB-format package must have certain depen-
dencies. An LSB-1.3-compliant package depends
only on Isb. An LSB-2.0-compliant package must
demonstrate through its package dependencies
which LSB modules are required by the application.
The specification lists the following possible de-
pendencies: Isb-core-<arch>, Isb-graphics-<arch>,

YEOH

375



Isb-core-noarch, and Isb-graphics-noarch, where <arch>
indicates the LSB architecture name.

Applications that require the graphics libraries
should depend on one of the Isb graphics depen-
dencies; others simply depend on one of the Isb core
dependencies. The noarch dependencies are pro-
vided for applications that depend only on the
architecture-independent portions of the specifica-
tion. All of these dependencies are provided by an
LSB-compliant distribution.

For example, a 64-bit PowerPC graphics-based
application would depend on Isb-graphics-ppc64, and
a 64-bit zSeries non-graphics application would
depend on Isb-core-s390x. A package that contains
only shell scripts should depend on Isb-core-noarch.

An LSB package should never depend on distribu-
tion-specific dependencies. However, it is allowable
for the package to depend on dependencies provided
by other LSB-compliant packages.

FILE HIERARCHY STANDARD

The LSB specification references the File Hierarchy
Standard (FHS), and all LSB-compliant applications
must be FHS compliant. The following discussion is
not an exhaustive coverage of the requirements to
be FHS compliant, but highlights some of the
important requirements and those that are specific
when read in conjunction with the LSB specifica-
tion.

All LSB-compliant applications are considered to be
add-on application software packages, and as such
should be installed into the /opt hierarchy (see FHS
2.3 Section 3.13). The provider or package name
must be registered with LANANA. To ensure that
there is no conflict of init or cron job script names,
these must also be registered with LANANA.

Not all of the commands listed in the FHS are
present on an LSB-compliant system. Because only
those commands and utilities explicitly defined in
the LSB specification are ensured to be in an
compliant distribution, an application must not
attempt to use any others.

With the introduction of the /media directory, FHS
2.3 clarified where removable media such as CD-
ROM and floppy discs should be mounted in the
system.

376  YEOH

USING EXTERNAL LIBRARIES

Since the current coverage of the LSB specification is
relatively small compared to what is shipped in a
standard Linux distribution, some applications may
require functionality outside of the specification. In
most cases it is possible to use non-LSB library
functionality in an application and still remain
compliant.

Static Linking

Statically linking a library into an application is the
most straightforward method to preserve compli-
ance. The library itself must be LSB-compliant,
which may require the inclusion of further libraries
to be statically linked. This may not always work, as
a library may use an interface which is not in the
LSB but resides in a library which is part of the LSB.
An example of this would be a library which calls
the strfry library interface, which on a Linux system
based on glibc (the GNU C Library) resides in libc.so,
but is not included in the LSB specification. In these
sorts of cases, or situations where it is undesirable to
statically link even more libraries, it is necessary to
build a version of the library which does not use this
functionality. At the cost of reduced functionality,
some libraries can be configured during build time
to not use other libraries.

By default Isb-build-cc links a library statically (rather
than dynamically) if the library is not part of the LSB
specification. When using Isb-build-chroot, one
should only import the static version of the library
into the environment.

Supplying shared libraries

An alternative to statically linking a non-LSB library
is to dynamically link against the library and include
a copy of the shared library in the package. Where
this method is used, the shared library itself needs to
be LSB-compliant. Like the binary itself, it is
allowable for that shared library to be dynamically
linked against other non-LSB-required libraries, but
those libraries must also be included with the
application under the same restrictions as the first
shared library.

As Isb-build-cc by default only statically links non-

LSB-specified libraries, it is necessary to instruct it to
dynamically link the library through the use of the
LSBCC_SHAREDLIBS environment variable. The value
of LSBCC_SHAREDLIBS must be a colon-separated list
of library names to be dynamically linked. When Isb-

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005



build-chroot is used, simply importing the shared
library into the environment causes it to be
dynamically linked.

MAKING THE XPAINT APPLICATION

LSB COMPLIANT

The xpaint application was one of the applications
chosen to be part of the LSB application battery
(described at length in the following section). The
xpaint application is a fairly simple drawing program
based on X11 (the X windowing system for bitmap
displays), and is a good example of an application
that exercises the graphics components of the LSB
specification.

Several source code changes were required to build
a compliant binary, though some of these were
general bug fixes necessary to support the broad
range of architectures supported by the LSB. A
common example of this involved parts of the
application that were not written correctly for 64-bit
architectures. For example:

static void
scrollCB(Widget w, Locallnfo * I, XtPointer position)

{

float *percent = NULL;

if (Ipercent) return;
if ((int) position>0)
1 *percent 4= 1.0/256.0;

On 64-bit architectures the XtPointer parameter is a
64-bit value, and casting it to an integer causes
errors at runtime. Similarly, some files had proto-
types for common library functions such as malloc
and free that were incorrect (for all architectures).
These were removed, and header files were included
with the correct declarations. In a few cases
sys_errlist was used, but because this is not part of
the LSB, the code was changed to use the strerror
library interface, which is part of the specification.

The last class of changes were those necessary to
make the application FHS-compliant. The xpaint
application uses the xmkmf tool to do most of its
configuration, which made it easy to make the
changes required:

xmkmf -DBinDir="/opt/Isb-xpaint/bin" -DLibDir=
"/opt/Isb-xpaint/lib" \

-DEtcX1 1Directory="/opt/Isb-xpaint/etc" -DManPath=
" /opt/Isb-xpaint/man"

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

And on installation:

make BINDIR = "/opt/Isb-xpaint/bin" LIBDIR =
"/opt/Isb-xpaint/lib"

ETCX11DIR = "/opt/Isb-xpaint/etc" MANPATH =
" /opt/Isb-xpaint/man"

install install. man

Although not encountered when building xpaint,
applications that use configure scripts to build often
run into problems. This is because configure scripts
often do not test directly for a feature being present,
but the developer assumes that it should be present.
For example, some scripts assume that if a system
uses a certain version of glibc (or above), then IPv6
support will be present. LSB 1.3 does not support
IPv6, but the configure scripts detected a certain
version of glibc and so configured the build to
include IPv6 support. Despite this, the compilation
may fail if the required header information is
missing. Application developers should ensure that
the configuration scripts look for the exact func-
tionality desired.

APPLICATION BATTERY

The application battery is a set of open-source
applications (such as Samba, Apache**, and TCL
[Tool Command Language]) which have been built
by the LSB team such that they are compliant with
the LSB standard. Together they utilize a significant
percentage of the functionality offered by the LSB
specification. They are used as part of the procedure
for certifying a distribution and also serve as a useful
test for the LSB build environments.

For an application developer, the battery is a useful
resource of examples of problems encountered
when porting an application and the methods used
to fix them. The application battery subgroup does
not release source packages, but the procedure used
to build the applications is available in CVS
(Concurrent Versions System). The information can
be accessed anonymously with the following com-
mands:

$ cvs -d:pserver:anonymous@cvs.gforge.
freestandards.org/cvsroot/Isb login

$ cvs -z3 -d:pserver:anonymous@cvs.gforge.
freestandards.org:/cvsroot/Isb co appbat

The application battery information is downloaded
into a directory named appbat. Some tools from the

YEOH

377



Automated Linux From Scratch'® project are used to
build the applications. The configuration files are
written in XML (Extensible Markup Language) and
are easy to understand. Also stored in the repository
are the patches which are applied to applications to
achieve compliance.

TESTING

There are a number of tools currently under
development to check that an application conforms
to the LSB specification. At the time of writing, only
Isbappchk is mature enough to use in the certification
program, although it is expected that the Isbdynchk
program will soon be added to the certification
process with Isbpkgchk to follow later. These tools
are described in the following subsections.

The Isbappchk program

The Isbappchk program tests individual executables
for conformance to the LSB specification. It tests that
the application dynamically links only the permitted
shared libraries, and from them, links only the
specified functions and global data. When extra
shared libraries are shipped with an application, the
program can be informed of these, and it will allow
linkage to them. It will perform the same tests on any
of those shared libraries in the same manner as it does
the executable. The object format of the executable
and any associated libraries are also checked.

Examples

The following is an example of running Isbappchk on
the cat utility, which is shipped as part of the
distribution. Note that while Isappchk is not LSB-
compliant, it is not always expected or possible for
all applications that are shipped with the distribu-
tion be compliant. An LSB-compliant distribution
must supply all of the interfaces required by the
specification (e.g., runtime libraries and utilities),
but they do not need to be implemented such that
they themselves as applications are compliant.

cyeoh@rockhopper:~$ Isbappchk /bin/cat

Isbappchk for LSB Specification 2.0.1.20040718

Checking binary /bin/cat

Incorrect program interpreter: /lib/Id-linux.so.2

Header[ 1] PT_INTERP Failed

Found wrong intepreter in .interp section: /lib/Id-linux.so.2
instead of: /lib/Id-Isb.s0.2

Symbol_overflow used, but not part of LSB-Core

Symbol fputs_unlocked used, but not part of LSB-Core

378 YEOH

In the preceding messages, Isbappchk has detected
that the standard Linux runtime linker is being used
instead of the LSB-specified one. This commonly
happens when the LSB build tools are not used to
link an executable. It has also detected that the
binary uses functions_overflow and fputs_unlocked,
which are not in the LSB specification. By making
some small code changes and compiling within an
LSB build environment, this code could be made
compliant easily.

The Isbappchk tool automatically generates a journal
file, which must be submitted during the certifica-
tion process. The file is human-readable and a
summary can be produced by using the tjreport tool.
The format of the journal file is fundamentally the
same as that produced by the Test Environment
Toolkit"' (TET), although it does not use TET.

The Isbappchk program outputs warning messages
which do not necessarily affect certification. To
remove any doubt as to what is a certification
problem and what is just a warning, the journal file
explicitly classifies test results as failures if they
would block certification.

The following example would test the program foo
as it is dynamically linked against the bar library,
which is shipped with the application:

Isbappchk -L/opt/foo/bin/foo/bar.so.1 foo

The full path name of the shared library must be used,
and where multiple libraries are specified, they are
searched in order. Libraries may be specified multiple
times where interlibrary cycles exist.

By default, the tool only checks against the LSB-core
specification. The -M flag must be used for applica-
tions which require other LSB configurations:

Isbappchk -M LSB-Graphics xpaint

Alternatively, the -A flag can be used to include
interfaces from all LSB modules.

The Isbdynchk program

The Isbdynchk program is a tool that measures the
conformance of an application as it is running.
Although the Isbappchk tool can verify that only LSB-
specified interfaces are used, it is unable to verify that
they are used correctly. Taking the example of Iseek in
the section “LSB build tools,” Isbappchk is unable to

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005



determine when Iseek is called that the first parameter
is a valid file descriptor, or that the third parameter is
one of SEEK_SET, SEEK_CUR, or SEEK_END.

The dynamic checker intercepts the library calls
and, where possible, checks that the values of the
parameters are within the range allowable by the
ABI. The tool relies on the application under test
being exercised in a manner that covers as much of
the logic as possible. While it is unlikely that all
code paths will be tested in all situations, Isbdynchk
can be useful in detecting problems.

The Isbpkgchk program

The aim of the Isbpkgchk tool is to verify that LSB
applications packaged using the LSB package format
are structured correctly. Fundamentally, the tool
checks that the RPM format is correct and that
features of RPM not supported by the LSB are not
used. It also checks that the files within the package
will be installed into areas consistent with the FHS.

CONCLUSIONS

The LSB specification is essentially a “trailing”
standard. The LSB project avoids the invention of
new technology, but instead documents and stan-
dardizes existing practice. It helps application
developers communicate their requirements to the
operating system developers. With the release of
LSB 2.0, and the support of features such as C++,
LSB compliance offers application writers a way to
have their applications work well on a wide range of
Linux platforms.

Further information about building LSB applications
can be found at the LSB project site at http://
www.linuxbase.org. The book Building Applications
with the Linux Standard Base (published in October
2004) contains detailed information about the Linux
Standard Base.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Institute of Electrical
and Electronic Engineers, Inc., The Open Group, Linus
Torvalds, Software In The Public Interest, Incorporated, Red
Hat Incorporated, Sun Microsystems, Inc., or Apache Software
Foundation.

CITED REFERENCES AND NOTES

1. “Linux Distributions - Facts and Figures,” (November
2004), http://distrowatch.com/stats.php.

2. Linux Standard Base Project, http://www.linuxbase.org.

3. Free Standards Group, http://www.freestandards.org.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

4. China Electronics Standardization Institute (CESI),
http://www.cesi.ac.cn/.

5. “Solaris steals Linux’s clothes,” (November 17, 2004),
http://www.computerweekly.com/articles/
article.asp?liArticleID = 135131&liArticleTypelD =
1&liCategorylD = 1&liChannelID = 9&liFlavourID =
1&sSearch = &nPage=1.

6. System V Application Binary Interface, Edition 4.1, The
Santa Cruz Operation (1996), http://www.caldera.com/
developers/devspecs/gabi41.pdf.

7. A.Josey, Conflicts between ISO/IEC 9945 (POSIX) and the
Linux Standard Base, ISO/IEC Joint Technical Committee
Technical Report (informative) (2003), http://
www.jtcl.org/FTP/Public/JTC1/DOCREG/
JIN71712.pdf.

8. The init scripts are the shell scripts bundled with
applications which can start and stop the application.
They are mostly used with applications which have
server-based components and run during the booting or
shutting-down phase of the operating system. They are
also used to tell server-based applications to reread
configuration files.

9. The cron job scripts are scripts run at defined times or
intervals (e.g., once a day or at 1 AM every Thursday).
They are often supplied as part of applications to do
maintenance work.

10. Automated Linux From Scratch (ALFS)-News, http://
www.linuxfromscratch.org/alfs/news.html.

11. TETworks: Home page for TETware, The Open Group,
http://tetworks.opengroup.org.

GENERAL REFERENCES

Core Members of the Linux Standard Base Team, Building
Applications with the Linux Standard Base, Prentice Hall, PTR,
Upper Saddle River, NJ (October 2004).

Linux Standard Base Specification 2.0, Free Standards Group
(2004), http://www .linuxbase.org/spec.

C. Yeoh, “Building LSB-compliant Applications,” Proceedings
of the 9th International Linux System Technology Conference
(Linux Kongress)(September 2002), http://ozlabs.org/

~ cyeoh/presentations/blap-1k2002.pdf.

Standard for Information Technology, Portable Operating
System Interface (POSIX), IEEE Std 1003.1-2003 (2003).

C. Yeoh, “Building LSB-compliant Applications,” Proceedings
of the Linux.conf.au 2004, http://ozlabs.org/~cyeoh/
presentations/Ica2004/index.html.

C. Yeoh, “Linux Standard Base,” Projeto Software Livre Brasil
2004, http://ozlabs.org/~cyeoh/presentations/sl-2004/
index.html.

Accepted for publication July 30, 2004.
Published online April 20, 2005.

Christopher Yeoh

IBM Server Group, 8 Brisbane Avenue, Canberra, ACT 2600,
Australia (yeoh@aul.ibm.com) Christopher Yeoh has a

B. Eng. degree in electrical and electronic engineering with
first class honors and a B. Sc. degree in applied mathematics
and computing science, both from the University of Adelaide.
He has been using Linux since 1994 and became involved with
the Linux Standard Base project in 2000, when he was
working for Linuxcare. Mr. Yeoh joined IBM in 2001, at
OzLabs in the IBM Linux Technology Center in Canberra,

YEOH

379



Australia. He has been working on various aspects of the LSB,
including test-suite development and the build environment,
and is acting as the technical lead for the LSB build
environment. He is also currently involved with K42, an open-
source research operating system developed at the IBM
Thomas J. Watson Research Center. Previously, he worked on
the design and development of multidimensional graphical
visualization and geographic-information-system products
with real-time capabilities. H

380 vYEOH IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005



