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In this paper we describe Bare Metal Linux (BML), a cut-down version of Linuxt 2.6

that requires no firmware, has an in-memory root file system, and runs without a

virtualization layer. We designed and implemented BML in order to accelerate the

bring up of POWER5e-based systems. The use of BML allows testing and validation of

the POWER5-based system to be conducted in parallel with the standard path, which

involves the bring up of a hypervisor, the partition firmware, and the operating system.

BML, which has fast boot times and can be modified quickly, is used in fault detection

during chip manufacturing, POWER5 chip verification, system-board verification, and

benchmarking for performance. BML is also used to reproduce and resolve problems

in Linux.

Bare Metal Linux (BML), a tool that we implemented

to accelerate the bring up of POWER5*
1
-based

systems, is described in this paper. The POWER5

processor, released in 2004, is the latest version of

the POWER architecture from IBM (POWER is a

RISC [reduced instruction set computer] architec-

ture). The POWER5 design implements two-way

simultaneous multithreading (SMT) on each of the

two processor cores on the chip. SMT combines

multithreading, which consists of multiple threads

utilizing the same processor in one-at-a-time fash-

ion, with the simultaneous use of the multiple

execution units present in a modern processor. In

the two-thread SMT architecture of POWER5, the

execution units not needed by the first thread are

available to the second thread in the same clock

cycle.

Non-Uniform Memory Access (NUMA) refers to a

computer memory architecture where the memory

access time depends on the memory location.

Specifically, access to local memory is faster than

nonlocal memory. For increased efficiency the

operating system must incorporate in its algorithms

knowledge about NUMA, such as the ratio of access

times to local and remote memories. Although

POWER5 systems, which contain multiple memory

controllers distributed throughout the machine, are

not NUMA in the classical sense (remote memory

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 VENTON ET AL. 319



latency is very close to local memory latency), they

still benefit from NUMA-aware scheduling.

When a new system is designed, it is necessary to

put the hardware through a series of tests to verify

that it functions as expected. Booting a general-

purpose operating system is a complex exercise

requiring hardware errors to be addressed, initiali-

zations to be set up correctly, and firmware to be

functional before operating-system testing can

commence. This bring-up process is usually done in

stages, incrementally increasing the scope and

coverage of the hardware tested.

Typically the bring up of a processor chip begins at

wafer test, when test patterns are run on the wafer

to detect any circuits that are not working correctly.

After good test sites (on the wafer) have been

identified, the chips are diced and mounted on

substrates to form modules. The bring up then

continues on these modules by mounting them in

test fixtures, which provide the system environ-

ment. At this point the chips execute functional code

sequences intended to verify proper instruction

execution. These low-level tests consist of the

following steps: (1) generate a stream of instruc-

tions, initial conditions, and expected results, (2)

load and run the generated stream and save the

results, and (3) compare these results to the

expected results.

After the low-level tests have verified basic pro-

cessor functions, more complex exercisers are then

used to verify functions in the processor and

memory subsystems. After this stage is completed,

the verification process continues at the operating-

system level. Support is provided to execute larger,

more complex programs that require a file system

for storing code, data, and supporting tools. At this

point support for I/O devices is needed. Whereas it

is fairly straightforward to develop and employ low-

level exercisers for processor core and memory,

when I/O is required, then the flexibility of a

general-purpose operating system is typically

needed.

The POWER5 system predecessor, using POWER4*

processors,
2
supported two methods of booting an

operating system. In the first method the operating

system is booted directly on the hardware by

firmware. In the second method the firmware loads

a hypervisor and, at the same time, the system

resources are allocated to a number of hypervisor-

controlled partitions. Each partition behaves as a

separate virtual computer, on which an operating

system may be loaded.

The POWER5 hypervisor provides additional virtu-

alization capabilities compared to those for

POWER4 systems, and in particular a high degree of

resiliency to runtime errors. Supporting such

advanced functions necessarily involves complexity.

Although the architecture of the hypervisor has been

designed to support additional virtual resources,

these advanced functions were integrated through-

out the hypervisor and the supporting firmware. As

a result, POWER5 firmware no longer supports

booting the operating system directly on the hard-

ware.

This presented a problem during the bring-up phase

of system development, when the hardware and the

software were brought together. At this stage, the

I/O had very limited testing. Without a general-

purpose operating system running, the POWER5

bring-up team could not run operating system-based

exercisers on the new hardware. Yet, the hypervisor

had to be functional before an operating system

could be booted. Complex error recovery during

early bring up was not desirable because it had the

potential to hide errors from the debug engineers.

For these reasons relying on the hypervisor for the

bring up was ruled out.

Our solution was to create Bare Metal Linux (BML)

by modifying the Linux** kernel to run directly on

the hardware, leaving out both the hypervisor and

the firmware layer. By not including any error

recovery and by supporting only simple configura-

tions, we kept the BML code simple. For example,

the code that configured the I/O subsystem was only

a few pages long. Handling complex configurations

was deferred until after the hypervisor became

operational on the system. By eliminating many

code layers, along with the associated initialization

delays, we achieved rapid boot times for BML, an

important feature of the tool. Figure 1 illustrates the

POWER5 bring-up process using BML.

Related work
There are many firmware solutions targeted at CPU

and system bring up. IBM has the PIBS
3
(PowerPC*

Initialization and Boot Software) firmware stack,

and there are other products that offer similar
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functionality.
4
By presenting a common layer

between the hardware and the software, they isolate

many of the platform details from the operating

system. A similar solution is provided by the Linux-

based LinuxBIOS,
5
which serves as a firmware stack

that initializes the hardware and boots a second-

stage operating system.

In addition, many embedded boards are brought up

without firmware, and instead a minimal boot

loader is used to load a Linux kernel.
6
In this case

the boot-loader does some low-level initialization

and loads the kernel, which is then responsible for

initializing the rest of the system.

Other methods for accelerating system bring up are

based on simulation and include the technique

known as virtual power on.
7
This technique, used

extensively by the IBM zSeries* development team,

employs simulation to debug firmware and resolve

operating-system bring-up issues before hardware is

available.

Firmware solutions and LinuxBIOS still require a

kernel to be loaded and control to be transferred to

this kernel. This means there are two code bases to

work with as well as interface constraints between

them. BML on the other hand was developed as a

single code base, which made it easy to develop and

debug incrementally. The virtual power-on concept

is complementary and focused on software.

The rest of the paper is organized as follows. In the

next section, ‘‘BML design,’’ we describe the key

changes we made to the Linux kernel. In the

following section, ‘‘Experience,’’ we describe how

BML performed as a tool for POWER5 bring up. We

also describe several additional applications that

BML was found to be helpful with, such as chip

manufacturing and Linux development. The section

‘‘Conclusion’’ contains some final comments.

BML DESIGN

A number of changes were needed to run the Linux

kernel without a firmware stack. We describe some

of the key changes we made in order to adapt the

Linux kernel to our environment in the following

subsections.

Hardware discovery
IBM POWER5 systems use Open Firmware

8
to load

the operating system, which then would normally

interact with this firmware during early boot and

initialization. Among other things, Open Firmware

provides a method of device and system discovery

in which various system parameters can be deter-

mined, such as the amount of system memory, the

number of CPUs, and the location of PCI (Peripheral

Component Interconnect) host bridges. PCI is laid

out in a tree structure with the host bridge at the

root. The host bridge is the point at which the CPU

interfaces with the PCI subsystem.

In the BML environment there is no Open Firmware

code to provide this information. This, however,

presents less of a problem than it seems at first.

Because Linux is highly portable, architecture-

specific system interfaces such as Open Firmware

and ACPI
9
(an open industry specification for

configuration and power management) cannot be

used throughout the operating system. Instead, the

architecture-specific system interfaces are isolated in

small, easy-to-modify sections of code. A simple

interface was provided to accept the critical system

information that is normally gathered by means of

Open Firmware. This involved loading a number of

parameter values into general-purpose registers

before starting the kernel initialization thread. The

parameters were as follows:

� Number of CPUs—POWER5 systems can have up

to 128 threads. A 128-bit mask of the available

CPU threads was passed in by means of a pair of

registers.

Final Manufacturing Steps

System Test

Operating System

Figure 1
POWER5 bring-up process using BML 

Chip Fabrication

Partition Firmware

Hypervisor
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� Memory size—The memory size in gigabytes was

passed in by means of a register. In the interest of

simplicity, memory was required to be contiguous

starting at address zero.
� Memory layout—The POWER5 processor has an

on-chip memory controller. On machines with

multiple chips this means there are multiple

memory controllers with memory distributed

among them. Although not required for initial

bring up, passing in the memory layout allowed

Linux to optimize the use of all memory con-

trollers. This improved test coverage, as more of

the system could be exercised. The memory layout

was specified as an array of bytes in a single

register, each byte containing the size of the

memory in gigabytes behind that memory con-

troller.
� Number and location of I/O bridges—POWER5

systems can have multiple I/O bridges; the

number and location can vary from system to

system. A method of specifying which I/O bridges

exist in a given system was required. Again a bit

mask was used, each bit representing the avail-

ability of a possible bridge connection.

In-memory root file system

The Linux 2.6 kernel supports a memory-based file

system initialized from a cpio
10

archive. The

purpose of this mechanism is to move data files and

complex initialization functions out of the kernel

and into user space. The mount of the root file

system is performed from the memory-based file

system, which is populated with only a few device

files and directories.

Early in the bring up, there were some programs we

needed to run before writing the PCI probe code

(‘‘probe’’ is used as shorthand for ‘‘probing for

hardware discovery’’). By removing the call to

mount the root file system device, we were able to

populate the entire file system in memory and run

the programs from there. This turned out to be very

useful, as we were able to load a Debian**
11

distribution-based root file system that, because it

was operating without a hard drive, did not risk

hard-drive corruption during reboots and made our

code easily transportable to different systems in the

laboratory. Recent additions to the kernel allow us

to load the cpio archive without any changes to the

kernel source. These additions also allow the file

system to be loaded separately as an initrd
12

image,

removing the need to rebuild the kernel image to

change the file system.

I/O probe
Most devices on POWER5 systems connect by

means of PCI-X**
13

buses. Normally Open Firmware

would probe, assign address spaces to, and initialize

all PCI and PCI-X devices. This procedure is

relatively complex and requires setting up registers

in the entire hierarchy of devices, including host

bridges, PCI-PCI bridges, and PCI devices.

In Linux 2.4 for 64-bit PowerPC architecture, the PCI

code relies on Open Firmware to perform this task.

In the BML environment this is not possible because

the firmware layer does not exist. It is not necessary

to perform this initialization, however, because

Linux itself is capable of performing the probe and

initialization. This functionality is required because

a number of architectures, such as some embedded

32-bit PowerPC platforms, have no firmware layer

and therefore have to provide full support for PCI

probe in the operating system.

In Linux 2.6 for 64-bit PowerPC architecture, the PCI

code was designed to support the generic Linux code

to work with both methods, either relying on Open

Firmware or allowing the Linux kernel to do the

probe and initialization.

Parallelizing the I/O probe

During bring up of both hardware and operating-

system software, many reboots are often required.

Hardware failures and operating-system bugs can be

hard to isolate, and repetitive attempts are often the

only method of progress. For example, the Linux

out-of-memory (OOM) killer bug
14

(discussed later

in this paper) took five reboots before the problem

was isolated.

Some problems require many attempts, in the tens

or even hundreds. The time it takes to recreate a

problem is a critical factor in how fast the bug can be

found and fixed. Attempts to recreate the problem

often require rebooting the operating system—to

achieve repeatability, to cope with the loss of

machine (hardware or software) state, or to add

instrumentation as new hypotheses are formulated.

The time it takes to reboot a machine can be a

significant portion of the time it takes to recreate the

problem. On machines with large amounts of I/O

(e.g., disk and network adapters) reboot times
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increase as firmware and operating-system software

perform initializations and probe for more devices.

During the bring up of the larger POWER5 systems,

when it became clear that the lengthy boot times

were an impediment to making progress, a study

was undertaken to determine where the time was

spent. The largest contributor to the boot time on a

large POWER5 machine with 500 disks and

360-gigabit network interfaces was found to be the

I/O probe code in the Linux kernel.

The Linux 2.6 kernel serializes the probe of all PCI

and SCSI
15

(small computer system interface)

devices because adding the host to the SCSI

subsystem is performed during the adapter probe

callback from the PCI subsystem. In this scheme the

machine could spend a great deal of time waiting for

a single, possibly non-existent hardware device to

respond. Because on a large SMP (symmetric

multiprocessing) machine only one CPU thread out

of a large number is utilized while the remaining

resources are effectively idle, parallelizing the probe

function was needed.

Because in a parallelized execution of the I/O probe

devices can come up in any order, initialization

scripts that rely on a specific order may no longer

work, and thus persistent device naming is impor-

tant in this environment. Persistent device naming is

an operating-system feature in which devices are

identified consistently from boot to boot, even if the

configuration is changed. For example, if a network

card is moved from one IO slot to another, the

operating-system user sees it as the same device. In

the Linux 2.6 kernel, the device-naming policy was

moved into user space by the udev
16

program using

the sysfs file system.

Another difficulty with parallelizing the I/O probe is

that there are some I/O devices that must be probed

during boot to allow the machine to be usable. This

often includes a network device as well as a disk

containing the operating system. One possible

solution to this problem is to store the location of

these devices in NVRAM (non-volatile random

access memory) and query it at boot time. The

operating system can then skip all I/O devices that

are not required.

In a bring-up environment in which hardware is

changing often, keeping NVRAM up to date is time

consuming and error prone. Instead, a small number

of I/O slots are specified to be probed at boot, and

the rest of the slots are to be probed under the

control of the user.

The existing boot-time I/Oprobe code in the Linux 2.6

kernel could have been modified to probe all I/O at

boot timewithmultiple threads. However, there are a

number of advantages to performing the probe after

the boot. After user space is initialized, a debug

environment that is much richer in features is

available. For example, the user can log in and

selectively activate the I/O devices required for the

test. Some tests can be initiated immediately, such as

CPU core tests, while the I/O is being probed in the

background. Also the user can selectively activate the

I/O devices required for the test and avoid the time-

intensive alternatives of either physically removing

these I/O devices from the machine or waiting for

them to be probed and initialized. Finally, existing

user-space tools can be used to identify failing I/O

adapters, such as the ethtool
17

utility that can cause

indicator lights to blink on supported adapters.

The POWER5 architecture allows for multiple PCI-X

host bridges, and this offers a useful and convenient

way to partition the I/O adapters into those that are

required at boot and those that are not. This also ties

in well with the Linux 2.6 PCI probe architecture, in

which the probe iterates over each host bridge,

performing an exhaustive search of the buses

‘‘below’’ it (controlled by it).

Consequently, the BML kernel was modified to

probe at boot a single host bridge. All I/O devices

required for the boot are placed behind this host

bridge, and any subsequent I/O operations are

spread across the remaining host bridges. During the

boot, devices are still probed serially, but because

the number of devices involved is small—typically

one network device and a few SCSI disks—this step

is completed quickly.

In order to support a parallel probe scheme in the

BML kernel, we broke the problem into a number of

steps. As the first step, when the machine completes

booting and the user initiates a parallel probe

operation, a kernel thread is created for each group

of host bridges. Each thread probes the buses below

it in parallel and initiates a built-in self-test (BIST) of

all adapters. At this stage no adapters are initialized.
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Upon completion of the first step, another kernel

thread is created for each host bridge. Its job is to

add all the devices found in step 1, using the existing

Linux 2.6 hot-plug infrastructure. At this stage the

SCSI host is registered with the SCSI subsystem, but

the probing of devices is suppressed.

The sysfs file system can selectively probe each SCSI

device. The BML parallel probe uses this capability

in its final step in discovering SCSI disks.

Compilation environment

One of themajor advantages of using the Linux kernel

is the full availability of its source code for both

inspection and modification. When chasing both

hardware and software bugs, rapid turnaround times

allow hypotheses to be tested quickly, which ulti-

mately leads to bugs being found faster. Experience

shows that a compilation environment that is

responsiveandeasy touse is an important asset. In the

courseof developingBMLweadapted several existing

technologies to our compilation environment.

A critical element of the compilation environment

that we incorporated is the distcc package, written

by Martin Pool.
18

According to its Web site, distcc is

a ‘‘program to distribute builds of C, Cþþ, Objective
C or Objective Cþþ code across several machines on

a network.’’ While the original setup consisted of a

single CPU POWER4 partition, it was quickly

augmented with a number of retired four-way

POWER3* systems. Due to ease of configuration and

transparent failover of distcc, all users of the

compilation environment were able to take advan-

tage of the extra processing capacity. Furthermore,

because the standard BML file system image

included the distcc server, as POWER5 systems were

brought up in the laboratory, they could be

incorporated into the distcc build farm easily.

Although the core BML team was small (three

people), there was still a need for a revision control

system. The choice of this revision control system

was first based on the requirement to track the

rapidly changing Linux 2.5 (a development release)

kernel tree. This served the double purpose of

finding new Linux bugs early (as new kernels were

regularly tested in the laboratory) and incorporating

new features into BML, as they were merged into the

main tree. In addition, there was the requirement to

merge changes back into the main Linux kernel tree.

Because the team was small, it was important to get

the changes merged into the main tree—anything

merged into the main tree was no longer a

maintenance load.

Traditional tools such as CVS
19

did not fit in well

with this development model. Andrew Morton, head

of Linux 2.6 kernel development, has developed a

simple yet powerful set of scripts
20

that have proven

to work very well instead.

The final piece in the environment was the ccache

package, written by Andrew Tridgell.
21

Because

ccache wraps the invocation of the compiler and

intelligently caches compiled objects, the compila-

tion time was accelerated even more.

EXPERIENCE

We describe in this section our experience using

BML for POWER5 bring up. We also discuss the role

BML played in investigating various problems we

encountered and the impact BML had on Linux

development.

Figure 2 shows the BML early test machine. The

system represents the largest single SMP system in

IBM’s history, consisting of a 32-CPU POWER5

processor, 128 threads, and 32 I/O drawers (it is a

prototype of the IBM eServer* p5 595 system). The

setup consists of four racks. The second rack from

the right contains the CPU and its power supply. The

remaining three racks contain the I/O drawers with

disks and network adapters.

POWER5 bring up

We created BML by modifying the Linux kernel to

run directly on the hardware, leaving out both the

hypervisor and the firmware layer. By leaving out

error recovery and by supporting only simple

configurations, we kept the BML code simple and

achieved rapid boot times. The role BML played in

POWER5 bring up went beyond what we initially

planned and extended to system-board verification,

benchmarking for performance, and chip manufac-

turing.

Processor verification

BML’s flexibility, which enabled us to cope with a

multitude of problems, made it the bring-up vehicle

of choice throughout the POWER5 program. It was

the first operating system booted on each of the
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POWER5-based systems. This was partly due to the

amount of work required to bring up the hypervisor,

but in many cases there was no immediate need for

the hypervisor to be used in system testing. This

allowed more hardware resources to be focused on

hardware verification. In addition, it allowed the

firmware and hypervisor teams time to work

through issues encountered in their code while the

hardware team could work through hardware test-

ing and problem resolution in parallel. The hyper-

visor and firmware components, being part of a

product shipped to customers, must be maintain-

able. This means the hardware has to be described

to the firmware through configuration data. Because

BML was not constrained in the same way, we were

able to write temporary code in order to address a

system configuration issue without regard to long-

term maintainability.

BML is not only simple in design, but it has proven

to be very flexible as well. During the POWER5

chip’s initial bring up, access to memory was not

possible. With several functional processors in

hand, a team of engineers developed a method to

reroute the local memory requests to a remote

system’s memory via the I/O interface. This was

accomplished by changing the basic memory map

layout of the system and the associated chip

initializations. In addition, changes to the Linux

kernel were needed to ensure all memory accesses

were cache-inhibited. This capability alone saved us

several weeks in bring up, as it allowed us time to

work through several hardware configuration issues

and a wide range of system and Linux issues. After

access to system memory became available, Linux

was booted on the system, and the standard system

exercisers were running within a matter of hours, in

large part due to the learning that occurred during

the configuration using only a remote memory.

By using BML on the POWER5 chip, the developers

uncovered several problems. Though these prob-

lems could have been discovered with an operating-

system-plus-hypervisor configuration, finding them

with BML had three significant advantages: (1) With

BML these problems were discovered earlier in the

bring-up process, thus allowing fixes to be fabri-

cated in silicon sooner; (2) the rapid boot time

allowed high debug productivity with BML; and (3)

Figure 2
BML early test machine
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recreating a problem was often quicker without the

virtualization layers of the hypervisor.

Due to BML’s fast boot times and quick turnaround

time, it quickly became clear that the tool was

usable outside the initial bring-up process. With a

fully functional operating system at hand that was

capable of booting quickly, the additional uses for

BML were many.

System-board verification

System-board verification was one of the first tasks

BML assisted with after the initial POWER5 system

bring up. As each new system model became

available to the laboratory teams, the board design

and features that were enabled in that system

needed to be verified. With a wide assortment of

Linux-supported I/O devices, we were able to fully

configure most POWER5 systems and verify that a

large portion of the board functions were opera-

tional. In the cases in which failures were observed,

because BML was the only code running on the

system, we were able to quickly determine the

source of the problem.

Benchmarking for performance

The successful bring up of a POWER5 system results

in a stable system. The next major hurdle for the

POWER5 team is evaluating the hardware perfor-

mance through benchmarking. Again BML seemed

to be ideally suited for the task. When performance

problems were identified, using hardware perfor-

mance counters, hardware traces, and Linux tools

such as Oprofile,
22

most of the problems were

quickly corrected by changes to POWER5 initializa-

tions or changes to Linux itself. A baseline per-

formance was first obtained by running a suite of

benchmarks. These included such standard bench-

marks as SDET,
23

SPECjbb**,
24

SPEC CPU2000,
25

STREAM,
26

and Netperf.
27

In addition, several

simple tests were written to measure other per-

formance characteristics of the system. At first

several of the benchmarks performed more slowly

than expected. Using an iterative approach, tuning

knobs were adjusted, and the expected performance

was eventually achieved. The stress of these

benchmarks also uncovered several time-out values

that needed adjusting in order to avoid flagging

errors during normal operation.

During POWER5 development many workloads were

simulated and SMT gains projected. However, it was

not until the chips arrived at the laboratory that an

accurate performance evaluation through measure-

ments could be performed. Although simple appli-

cations can be modified to run without a general-

purpose operating system,many applications such as

SPECjbb (a Java** application benchmark modeling

a three-tier server-side application) are complex and

rely on operating-system facilities. Because BML was

booting on all POWER5 platforms early, we used it to

quantify the SMT gains. To a user-space application

the BML environment is almost impossible to

distinguish from the standard firmware and hyper-

visor environment. We found all standard applica-

tions would run without changes, including

STREAM, SPEC** CPU2000, SPECjbb, and others.

BML was used to tune the dynamic resource-

balancing logic in the POWER5 processor core.

Following this tuning several benchmarks showed

significant improvement in performance. Figure 3

illustrates the improvement in the relative through-

put using SMT over a single-thread-per-processor

configuration. The results shown were obtained with

the SPECjbb benchmark on a 32-CPU IBM eServer p5

595 system. The SPECjbb benchmark uses a ‘‘ware-

house’’ as its basic unit of independent work.

Throughput rises as warehouses are added until the

limit of the machine is reached. With SMT disabled,

maximum throughput is reached at 32 warehouses,

one warehouse per CPU. When SMT is enabled,

throughput continues to increase, although at a

slower rate, until all 64 threads are active. The graph

shows close to a 40 percent improvement in relative

throughput.

Figure 3
Relative throughput improvement with SMT
(SPECjbb benchmark, IBM eServer p5 595) 
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After most of the tuning task was completed, a large

number of ‘‘what-if’’ questions arose. For example,

the POWER5 processor has several power-saving

features that needed to be tested. Almost all these

features were controllable by changing initializa-

tions in the POWER5 chip. By comparing results

against the baseline measurements, we were able to

verify that performance was not negatively impacted

by these features.

Chip manufacturing

While bring up and verification of the POWER5 chip

was in full swing at various laboratories inside IBM,

the manufacturing team was researching how to best

screen each chip for faults. This screening is

absolutely critical to the success of POWER5

products. In addition to detecting faults, the data

collected on each chip during the screening process

are used to determine the POWER5 system that the

chip is best suited for, based on its power and cooling

requirements. BML appeared to be the perfect tool

for screening the POWER5 chip. First, the major

exerciser suite used in testing the processor had

already been ported to Linux and had been in use for

several months in the bring-up laboratories (thus no

porting of the exerciser code was required). In

addition, because BML boot times are low, the

screening process is more efficient (any time spent

booting directly subtracts from the time available for

testing the chip). The manufacturing team quickly

adopted BML as their screening tool, which is now

used to screen every POWER5 chip produced.

Impact on Linux development

BML was instrumental in identifying and resolving a

number of Linux kernel problems.

Bug in the out-of-memory killer

When the machine is completely out of memory,

one of the active tasks has to be terminated (killed)

in order to free its memory allocation, so that the

rest of the system can operate. In Linux this is the

responsibility of the OOM killer.

In the past there had been reports of the OOM killer

misbehaving and killing the entire system. However,

these reports were few, and the problem could not

be recreated in the laboratory. Further, there existed

code specifically designed to avoid the problem.

During a stress test using BML on a 64-CPU machine

with only a few gigabytes of memory, we discovered

that this failure scenario could be replicated in less

than 1 minute.

Armed with an easily reproducible test case, the

SMP race (a case in which multiple processors

access data without required serialization or lock-

ing) in the code was found, and the problem was

fixed. Whereas the bug would seldom surface in

smaller machines, the large 64-CPU POWER5

machine displayed it reliably.

Random driver scalability

Linux has a random number generator (random

driver) whose output is used by various kernel

functions. In order to increase the randomness of

this component, some random external events are

tracked, and this information is stored in a so-called

entropy (randomness) pool, for use by the algorithm

that produces the random numbers.

During the stress tests for measuring maximum I/O

bandwidth during POWER5 bring up, we spotted a

serious drop in network I/O performance on our

large machine. We traced this performance deteri-

oration to the use of a global lock taken when device

interrupts associated with the use of external events

by the random number generator occur. We solved

the problem by a change to the Linux 2.6 kernel; the

random number generation algorithm now recog-

nizes when there is sufficient randomness in the

entropy pool, in which case no additional external

random events are used, and thus the use of the

global lock is decreased.

SCSI-probe race conditions

During the development of the parallel probe feature

in BML, we discovered a number of race conditions

in the SCSI probe code.
28

In one test, 500 SCSI disks

were probed in parallel, which took about 10

seconds to complete. This environment provided a

good platform for testing locking performance in the

Linux kernel.

SCSI-driver error handling

Device drivers provide an interface for connecting

hardware devices to the operating system. Although

these device drivers should handle malfunctioning

hardware gracefully, often the error paths associated

with these malfunctions are not well tested.

A laboratory environment like ours has a mix of

hardware components, some of which may not
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always function correctly. When large machines are

built, it is possible to end up with defective adapters

or disk devices. For this reason, it is highly desirable

to enable the remaining hardware in the system to

be used until the defective hardware can be

replaced. We discovered and fixed several deadlocks

in the error paths of two SCSI host-adapter drivers.

Linux hot spots

While running various workloads, traces were taken

of the system bus and analyzed to find and fix Linux

kernel performance issues. For instance, traces were

used to locate hot spots where many CPUs were

accessing shared cache lines. Armed with this data,

changes were made to the Linux kernel to improve

the situation.

One example of such a change was a cache line that

was being accessed frequently. By looking at a map

of the Linux kernel, it was determined that a

variable that was modified a lot by one CPU

(tb_last_stamp) was in the same cache line as

some read-only data used by each CPU at every

timer interrupt. In the Linux 2.6 kernel release, the

timer interrupt runs 1000 times a second, so on a 64-

CPU 128-thread machine, the cache line was being

fetched 128,000 times a second. After separating

tb_last_stamp from the read-only data, these

128,000 cache-line transfers each second were

removed completely. This performance oversight

was corrected in the Linux 2.6.7 kernel.

Detecting interprocess communication errors

Tests designed to find CPU bugs often stress-test the

underlying operating system. One such test utilizes

the interprocess communication (IPC) mechanism.

Repeated and closely spaced starts and stops of this

test led to intense activity in the creation and

deletion of IPC resources, which in turn exposed

deadlocks in the IPC code.

SMT- and NUMA-aware scheduler

While the POWER5 bring-up work was in progress,

the Linux community was working on enhancing

the scheduler to make it SMT- and NUMA-aware.

Nick Piggin was working on an approach he called

sched domains,
29

which provides support for plat-

forms with SMT and NUMA features. The POWER5

architecture provided a perfect testbed because it

has both features.

With BML running on the largest POWER5 ma-

chines, the prototypes of sched domains were tested.

BML enabled us to obtain results quickly and

allowed us to test many scheduling options. Based

on our testing, the scheduler was accepted in the

Linux 2.6.7 kernel. Had we waited until the

firmware and the hypervisor stack were operational,

we would have been unable to provide timely

feedback to the Linux community.

CONCLUSION

During the POWER5 chip bring up, BML proved to

be an efficient and flexible tool. Using BML in the

manufacturing of POWER5 systems has benefited

both the POWER5 bring-up effort and Linux devel-

opment. BML enabled the operating system-level

testing to start early, thus reducing the time to

market of POWER5 systems. Stress testing the Linux

kernel on a leading-edge system led to the resolution

of some bugs and increased its robustness. We

expect that BML will continue to be used in the bring

up of future systems.

* Trademark or registered trademark of International Business
Machines Corporation.

** Trademark or registered trademark of Linus Torvalds, PCI-
SIG Corporation, Software in the Public Interest, Inc., or
Standard Performance Evaluation Corporation.
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