A Linux-based tool for hardware
bring up, Linux development,
and manufacturing

In this paper we describe Bare Metal Linux (BML), a cut-down version of Linux® 2.6
that requires no firmware, has an in-memory root file system, and runs without a
virtualization layer. We designed and implemented BML in order to accelerate the
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bring up of POWERS5 ™-based systems. The use of BML allows testing and validation of
the POWER5-based system to be conducted in parallel with the standard path, which
involves the bring up of a hypervisor, the partition firmware, and the operating system.
BML, which has fast boot times and can be modified quickly, is used in fault detection

during chip manufacturing, POWERS5 chip verification, system-board verification, and
benchmarking for performance. BML is also used to reproduce and resolve problems

in Linux.

Bare Metal Linux (BML), a tool that we implemented
to accelerate the bring up of POWERS* -based
systems, is described in this paper. The POWERS5
processor, released in 2004, is the latest version of
the POWER architecture from IBM (POWER is a
RISC [reduced instruction set computer] architec-
ture). The POWERS design implements two-way
simultaneous multithreading (SMT) on each of the
two processor cores on the chip. SMT combines
multithreading, which consists of multiple threads
utilizing the same processor in one-at-a-time fash-
ion, with the simultaneous use of the multiple
execution units present in a modern processor. In
the two-thread SMT architecture of POWERS, the
execution units not needed by the first thread are
available to the second thread in the same clock
cycle.
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Non-Uniform Memory Access (NUMA) refers to a
computer memory architecture where the memory
access time depends on the memory location.
Specifically, access to local memory is faster than
nonlocal memory. For increased efficiency the
operating system must incorporate in its algorithms
knowledge about NUMA, such as the ratio of access
times to local and remote memories. Although
POWERS systems, which contain multiple memory
controllers distributed throughout the machine, are
not NUMA in the classical sense (remote memory
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latency is very close to local memory latency), they
still benefit from NUMA-aware scheduling.

When a new system is designed, it is necessary to
put the hardware through a series of tests to verify
that it functions as expected. Booting a general-
purpose operating system is a complex exercise
requiring hardware errors to be addressed, initiali-
zations to be set up correctly, and firmware to be
functional before operating-system testing can
commence. This bring-up process is usually done in
stages, incrementally increasing the scope and
coverage of the hardware tested.

Typically the bring up of a processor chip begins at
wafer test, when test patterns are run on the wafer
to detect any circuits that are not working correctly.
After good test sites (on the wafer) have been
identified, the chips are diced and mounted on
substrates to form modules. The bring up then
continues on these modules by mounting them in
test fixtures, which provide the system environ-
ment. At this point the chips execute functional code
sequences intended to verify proper instruction
execution. These low-level tests consist of the
following steps: (1) generate a stream of instruc-
tions, initial conditions, and expected results, (2)
load and run the generated stream and save the
results, and (3) compare these results to the
expected results.

After the low-level tests have verified basic pro-
cessor functions, more complex exercisers are then
used to verify functions in the processor and
memory subsystems. After this stage is completed,
the verification process continues at the operating-
system level. Support is provided to execute larger,
more complex programs that require a file system
for storing code, data, and supporting tools. At this
point support for I/O devices is needed. Whereas it
is fairly straightforward to develop and employ low-
level exercisers for processor core and memory,
when I/0 is required, then the flexibility of a
general-purpose operating system is typically
needed.

The POWERS system predecessor, using POWER4*

2 .
processors,” supported two methods of booting an
operating system. In the first method the operating
system is booted directly on the hardware by
firmware. In the second method the firmware loads
a hypervisor and, at the same time, the system
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resources are allocated to a number of hypervisor-
controlled partitions. Each partition behaves as a
separate virtual computer, on which an operating
system may be loaded.

The POWERS hypervisor provides additional virtu-
alization capabilities compared to those for
POWERA4 systems, and in particular a high degree of
resiliency to runtime errors. Supporting such
advanced functions necessarily involves complexity.
Although the architecture of the hypervisor has been
designed to support additional virtual resources,
these advanced functions were integrated through-
out the hypervisor and the supporting firmware. As
a result, POWERS firmware no longer supports
booting the operating system directly on the hard-
ware.

This presented a problem during the bring-up phase
of system development, when the hardware and the
software were brought together. At this stage, the
I/0 had very limited testing. Without a general-
purpose operating system running, the POWERS
bring-up team could not run operating system-based
exercisers on the new hardware. Yet, the hypervisor
had to be functional before an operating system
could be booted. Complex error recovery during
early bring up was not desirable because it had the
potential to hide errors from the debug engineers.
For these reasons relying on the hypervisor for the
bring up was ruled out.

Our solution was to create Bare Metal Linux (BML)
by modifying the Linux** kernel to run directly on
the hardware, leaving out both the hypervisor and
the firmware layer. By not including any error
recovery and by supporting only simple configura-
tions, we kept the BML code simple. For example,
the code that configured the I/0 subsystem was only
a few pages long. Handling complex configurations
was deferred until after the hypervisor became
operational on the system. By eliminating many
code layers, along with the associated initialization
delays, we achieved rapid boot times for BML, an
important feature of the tool. Figure 1 illustrates the
POWERS bring-up process using BML.

Related work

There are many firmware solutions targeted at CPU
and system bring up. IBM has the PIBS’ (PowerPC*
Initialization and Boot Software) firmware stack,
and there are other products that offer similar
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Figure 1
POWERS bring-up process using BML

functionality.4 By presenting a common layer
between the hardware and the software, they isolate
many of the platform details from the operating
system. A similar solution is provided by the Linux-
based LinuxBIOS,5 which serves as a firmware stack
that initializes the hardware and boots a second-
stage operating system.

In addition, many embedded boards are brought up
without firmware, and instead a minimal boot
loader is used to load a Linux kernel.® In this case
the boot-loader does some low-level initialization
and loads the kernel, which is then responsible for
initializing the rest of the system.

Other methods for accelerating system bring up are
based on simulation and include the technique
known as virtual power on.” This technique, used
extensively by the IBM zSeries* development team,
employs simulation to debug firmware and resolve
operating-system bring-up issues before hardware is
available.

Firmware solutions and LinuxBIOS still require a
kernel to be loaded and control to be transferred to
this kernel. This means there are two code bases to
work with as well as interface constraints between
them. BML on the other hand was developed as a
single code base, which made it easy to develop and
debug incrementally. The virtual power-on concept
is complementary and focused on software.
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The rest of the paper is organized as follows. In the
next section, “BML design,” we describe the key
changes we made to the Linux kernel. In the
following section, “Experience,” we describe how
BML performed as a tool for POWERS bring up. We
also describe several additional applications that
BML was found to be helpful with, such as chip
manufacturing and Linux development. The section
“Conclusion” contains some final comments.

BML DESIGN

A number of changes were needed to run the Linux
kernel without a firmware stack. We describe some
of the key changes we made in order to adapt the
Linux kernel to our environment in the following
subsections.

Hardware discovery

IBM POWERS systems use Open Firmware® to load
the operating system, which then would normally
interact with this firmware during early boot and
initialization. Among other things, Open Firmware
provides a method of device and system discovery
in which various system parameters can be deter-
mined, such as the amount of system memory, the
number of CPUs, and the location of PCI (Peripheral
Component Interconnect) host bridges. PCI is laid
out in a tree structure with the host bridge at the
root. The host bridge is the point at which the CPU
interfaces with the PCI subsystem.

In the BML environment there is no Open Firmware
code to provide this information. This, however,
presents less of a problem than it seems at first.
Because Linux is highly portable, architecture-
specific system interfaces such as Open Firmware
and ACPI’ (an open industry specification for
configuration and power management) cannot be
used throughout the operating system. Instead, the
architecture-specific system interfaces are isolated in
small, easy-to-modify sections of code. A simple
interface was provided to accept the critical system
information that is normally gathered by means of
Open Firmware. This involved loading a number of
parameter values into general-purpose registers
before starting the kernel initialization thread. The
parameters were as follows:

* Number of CPUs—POWERS systems can have up
to 128 threads. A 128-bit mask of the available
CPU threads was passed in by means of a pair of
registers.
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* Memory size—The memory size in gigabytes was
passed in by means of a register. In the interest of
simplicity, memory was required to be contiguous
starting at address zero.

* Memory layout—The POWERS5 processor has an
on-chip memory controller. On machines with
multiple chips this means there are multiple
memory controllers with memory distributed
among them. Although not required for initial
bring up, passing in the memory layout allowed
Linux to optimize the use of all memory con-
trollers. This improved test coverage, as more of
the system could be exercised. The memory layout
was specified as an array of bytes in a single
register, each byte containing the size of the
memory in gigabytes behind that memory con-
troller.

* Number and location of I/O bridges—POWERS
systems can have multiple I/O bridges; the
number and location can vary from system to
system. A method of specifying which I/0 bridges
exist in a given system was required. Again a bit
mask was used, each bit representing the avail-
ability of a possible bridge connection.

In-memotry root file system

The Linux 2.6 kernel supports a memory-based file
system initialized from a cpio10 archive. The
purpose of this mechanism is to move data files and
complex initialization functions out of the kernel
and into user space. The mount of the root file
system is performed from the memory-based file
system, which is populated with only a few device
files and directories.

Early in the bring up, there were some programs we
needed to run before writing the PCI probe code
(“probe” is used as shorthand for “probing for
hardware discovery”). By removing the call to
mount the root file system device, we were able to
populate the entire file system in memory and run
the programs from there. This turned out to be very
useful, as we were able to load a Debian**''
distribution-based root file system that, because it
was operating without a hard drive, did not risk
hard-drive corruption during reboots and made our
code easily transportable to different systems in the
laboratory. Recent additions to the kernel allow us
to load the cpio archive without any changes to the
kernel source. These additions also allow the file
system to be loaded separately as an initrd" image,
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removing the need to rebuild the kernel image to
change the file system.

1/0 probe

Most devices on POWERS systems connect by
means of PCI-X** " buses. Normally Open Firmware
would probe, assign address spaces to, and initialize
all PCI and PCI-X devices. This procedure is
relatively complex and requires setting up registers
in the entire hierarchy of devices, including host
bridges, PCI-PCI bridges, and PCI devices.

In Linux 2.4 for 64-bit PowerPC architecture, the PCI
code relies on Open Firmware to perform this task.
In the BML environment this is not possible because
the firmware layer does not exist. It is not necessary
to perform this initialization, however, because
Linux itself is capable of performing the probe and
initialization. This functionality is required because
a number of architectures, such as some embedded
32-bit PowerPC platforms, have no firmware layer
and therefore have to provide full support for PCI
probe in the operating system.

In Linux 2.6 for 64-bit PowerPC architecture, the PCI
code was designed to support the generic Linux code
to work with both methods, either relying on Open
Firmware or allowing the Linux kernel to do the
probe and initialization.

Parallelizing the 1/0 probe

During bring up of both hardware and operating-
system software, many reboots are often required.
Hardware failures and operating-system bugs can be
hard to isolate, and repetitive attempts are often the
only method of progress. For example, the Linux
out-of-memory (OOM) killer bug14 (discussed later
in this paper) took five reboots before the problem
was isolated.

Some problems require many attempts, in the tens
or even hundreds. The time it takes to recreate a
problem is a critical factor in how fast the bug can be
found and fixed. Attempts to recreate the problem
often require rebooting the operating system—to
achieve repeatability, to cope with the loss of
machine (hardware or software) state, or to add
instrumentation as new hypotheses are formulated.
The time it takes to reboot a machine can be a
significant portion of the time it takes to recreate the
problem. On machines with large amounts of I/0
(e.g., disk and network adapters) reboot times
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increase as firmware and operating-system software
perform initializations and probe for more devices.
During the bring up of the larger POWERS systems,
when it became clear that the lengthy boot times
were an impediment to making progress, a study
was undertaken to determine where the time was
spent. The largest contributor to the boot time on a
large POWERS machine with 500 disks and
360-gigabit network interfaces was found to be the
I/0 probe code in the Linux kernel.

The Linux 2.6 kernel serializes the probe of all PCI
and scs1*’ (small computer system interface)
devices because adding the host to the SCSI
subsystem is performed during the adapter probe
callback from the PCI subsystem. In this scheme the
machine could spend a great deal of time waiting for
a single, possibly non-existent hardware device to
respond. Because on a large SMP (symmetric
multiprocessing) machine only one CPU thread out
of a large number is utilized while the remaining
resources are effectively idle, parallelizing the probe
function was needed.

Because in a parallelized execution of the I/0 probe
devices can come up in any order, initialization
scripts that rely on a specific order may no longer
work, and thus persistent device naming is impor-
tant in this environment. Persistent device naming is
an operating-system feature in which devices are
identified consistently from boot to boot, even if the
configuration is changed. For example, if a network
card is moved from one IO slot to another, the
operating-system user sees it as the same device. In
the Linux 2.6 kernel, the device-naming policy was
moved into user space by the udev'® program using
the sysfs file system.

Another difficulty with parallelizing the I/O probe is
that there are some I/0 devices that must be probed
during boot to allow the machine to be usable. This
often includes a network device as well as a disk
containing the operating system. One possible
solution to this problem is to store the location of
these devices in NVRAM (non-volatile random
access memory) and query it at boot time. The
operating system can then skip all I/0 devices that
are not required.

In a bring-up environment in which hardware is
changing often, keeping NVRAM up to date is time
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consuming and error prone. Instead, a small number
of I/0 slots are specified to be probed at boot, and
the rest of the slots are to be probed under the
control of the user.

The existing boot-time I/O probe code in the Linux 2.6
kernel could have been modified to probe all I/0 at
boot time with multiple threads. However, there are a
number of advantages to performing the probe after
the boot. After user space is initialized, a debug
environment that is much richer in features is
available. For example, the user can log in and
selectively activate the I/0 devices required for the
test. Some tests can be initiated immediately, such as
CPU core tests, while the I/0 is being probed in the
background. Also the user can selectively activate the
I/0 devices required for the test and avoid the time-
intensive alternatives of either physically removing
these I/0 devices from the machine or waiting for
them to be probed and initialized. Finally, existing
user-space tools can be used to identify failing I/0
adapters, such as the ethtool"’ utility that can cause
indicator lights to blink on supported adapters.

The POWERS architecture allows for multiple PCI-X
host bridges, and this offers a useful and convenient
way to partition the I/0O adapters into those that are
required at boot and those that are not. This also ties
in well with the Linux 2.6 PCI probe architecture, in
which the probe iterates over each host bridge,
performing an exhaustive search of the buses
“below” it (controlled by it).

Consequently, the BML kernel was modified to
probe at boot a single host bridge. All I/O devices
required for the boot are placed behind this host
bridge, and any subsequent I/O operations are
spread across the remaining host bridges. During the
boot, devices are still probed serially, but because
the number of devices involved is small—typically
one network device and a few SCSI disks—this step
is completed quickly.

In order to support a parallel probe scheme in the
BML kernel, we broke the problem into a number of
steps. As the first step, when the machine completes
booting and the user initiates a parallel probe
operation, a kernel thread is created for each group
of host bridges. Each thread probes the buses below
it in parallel and initiates a built-in self-test (BIST) of
all adapters. At this stage no adapters are initialized.
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Upon completion of the first step, another kernel
thread is created for each host bridge. Its job is to
add all the devices found in step 1, using the existing
Linux 2.6 hot-plug infrastructure. At this stage the
SCSI host is registered with the SCSI subsystem, but
the probing of devices is suppressed.

The sysfs file system can selectively probe each SCSI
device. The BML parallel probe uses this capability
in its final step in discovering SCSI disks.

Compilation environment

One of the major advantages of using the Linux kernel
is the full availability of its source code for both
inspection and modification. When chasing both
hardware and software bugs, rapid turnaround times
allow hypotheses to be tested quickly, which ulti-
mately leads to bugs being found faster. Experience
shows that a compilation environment that is
responsive and easy to use is an important asset. In the
course of developing BML we adapted several existing
technologies to our compilation environment.

A critical element of the compilation environment
that we incorporated is the distcc package, written
by Martin Pool."® According to its Web site, distcc is
a “program to distribute builds of C, C++, Objective
C or Objective C+t+ code across several machines on
a network.” While the original setup consisted of a
single CPU POWER4 partition, it was quickly
augmented with a number of retired four-way
POWER3* systems. Due to ease of configuration and
transparent failover of distcc, all users of the
compilation environment were able to take advan-
tage of the extra processing capacity. Furthermore,
because the standard BML file system image
included the distcc server, as POWERS systems were
brought up in the laboratory, they could be
incorporated into the distcc build farm easily.

Although the core BML team was small (three
people), there was still a need for a revision control
system. The choice of this revision control system
was first based on the requirement to track the
rapidly changing Linux 2.5 (a development release)
kernel tree. This served the double purpose of
finding new Linux bugs early (as new kernels were
regularly tested in the laboratory) and incorporating
new features into BML, as they were merged into the
main tree. In addition, there was the requirement to
merge changes back into the main Linux kernel tree.
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Because the team was small, it was important to get
the changes merged into the main tree—anything
merged into the main tree was no longer a
maintenance load.

Traditional tools such as CVS' did not fit in well
with this development model. Andrew Morton, head
of Linux 2.6 kernel development, has developed a
simple yet powerful set of scripts20 that have proven
to work very well instead.

The final piece in the environment was the ccache
package, written by Andrew Tridgell.21 Because
ccache wraps the invocation of the compiler and
intelligently caches compiled objects, the compila-
tion time was accelerated even more.

EXPERIENCE

We describe in this section our experience using
BML for POWERS bring up. We also discuss the role
BML played in investigating various problems we
encountered and the impact BML had on Linux
development.

Figure 2 shows the BML early test machine. The
system represents the largest single SMP system in
IBM’s history, consisting of a 32-CPU POWERS5
processor, 128 threads, and 32 I/O drawers (it is a
prototype of the IBM eServer* p5 595 system). The
setup consists of four racks. The second rack from
the right contains the CPU and its power supply. The
remaining three racks contain the I/0 drawers with
disks and network adapters.

POWERS5 bring up

We created BML by modifying the Linux kernel to
run directly on the hardware, leaving out both the
hypervisor and the firmware layer. By leaving out
error recovery and by supporting only simple
configurations, we kept the BML code simple and
achieved rapid boot times. The role BML played in
POWERS bring up went beyond what we initially
planned and extended to system-board verification,
benchmarking for performance, and chip manufac-
turing.

Processor verification

BML’s flexibility, which enabled us to cope with a

multitude of problems, made it the bring-up vehicle
of choice throughout the POWERS program. It was
the first operating system booted on each of the
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Figure 2
BML early test machine

POWERS5-based systems. This was partly due to the
amount of work required to bring up the hypervisor,
but in many cases there was no immediate need for
the hypervisor to be used in system testing. This
allowed more hardware resources to be focused on
hardware verification. In addition, it allowed the
firmware and hypervisor teams time to work
through issues encountered in their code while the
hardware team could work through hardware test-
ing and problem resolution in parallel. The hyper-
visor and firmware components, being part of a
product shipped to customers, must be maintain-
able. This means the hardware has to be described
to the firmware through configuration data. Because
BML was not constrained in the same way, we were
able to write temporary code in order to address a
system configuration issue without regard to long-
term maintainability.

BML is not only simple in design, but it has proven
to be very flexible as well. During the POWERS
chip’s initial bring up, access to memory was not
possible. With several functional processors in
hand, a team of engineers developed a method to
reroute the local memory requests to a remote
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system’s memory via the I/0 interface. This was
accomplished by changing the basic memory map
layout of the system and the associated chip
initializations. In addition, changes to the Linux
kernel were needed to ensure all memory accesses
were cache-inhibited. This capability alone saved us
several weeks in bring up, as it allowed us time to
work through several hardware configuration issues
and a wide range of system and Linux issues. After
access to system memory became available, Linux
was booted on the system, and the standard system
exercisers were running within a matter of hours, in
large part due to the learning that occurred during
the configuration using only a remote memory.

By using BML on the POWERS chip, the developers
uncovered several problems. Though these prob-
lems could have been discovered with an operating-
system-plus-hypervisor configuration, finding them
with BML had three significant advantages: (1) With
BML these problems were discovered earlier in the
bring-up process, thus allowing fixes to be fabri-
cated in silicon sooner; (2) the rapid boot time
allowed high debug productivity with BML; and (3)
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recreating a problem was often quicker without the
virtualization layers of the hypervisor.

Due to BML’s fast boot times and quick turnaround
time, it quickly became clear that the tool was
usable outside the initial bring-up process. With a
fully functional operating system at hand that was
capable of booting quickly, the additional uses for
BML were many.

System-board verification

System-board verification was one of the first tasks
BML assisted with after the initial POWERS system
bring up. As each new system model became
available to the laboratory teams, the board design
and features that were enabled in that system
needed to be verified. With a wide assortment of
Linux-supported I/0 devices, we were able to fully
configure most POWERS systems and verify that a
large portion of the board functions were opera-
tional. In the cases in which failures were observed,
because BML was the only code running on the
system, we were able to quickly determine the
source of the problem.

Benchmarking for performance

The successful bring up of a POWERS system results
in a stable system. The next major hurdle for the
POWERS team is evaluating the hardware perfor-
mance through benchmarking. Again BML seemed
to be ideally suited for the task. When performance
problems were identified, using hardware perfor-
mance counters, hardware traces, and Linux tools
such as Oproﬁle,22 most of the problems were
quickly corrected by changes to POWERS initializa-
tions or changes to Linux itself. A baseline per-
formance was first obtained by running a suite of
benchmarks. These included such standard bench-
marks as SDET,”’ SPECjbb**,>* SPEC CPU2000,”
STREAM,26 and Netperf.27 In addition, several
simple tests were written to measure other per-
formance characteristics of the system. At first
several of the benchmarks performed more slowly
than expected. Using an iterative approach, tuning
knobs were adjusted, and the expected performance
was eventually achieved. The stress of these
benchmarks also uncovered several time-out values
that needed adjusting in order to avoid flagging
errors during normal operation.

During POWERS development many workloads were
simulated and SMT gains projected. However, it was
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Relative throughput improvement with SMT
(SPECjbb benchmark, IBM eServer p5 595)

not until the chips arrived at the laboratory that an
accurate performance evaluation through measure-
ments could be performed. Although simple appli-
cations can be modified to run without a general-
purpose operating system, many applications such as
SPECjbb (a Java** application benchmark modeling
a three-tier server-side application) are complex and
rely on operating-system facilities. Because BML was
booting on all POWERS platforms early, we used it to
quantify the SMT gains. To a user-space application
the BML environment is almost impossible to
distinguish from the standard firmware and hyper-
visor environment. We found all standard applica-
tions would run without changes, including
STREAM, SPEC** CPU2000, SPECjbb, and others.
BML was used to tune the dynamic resource-
balancing logic in the POWERS processor core.
Following this tuning several benchmarks showed
significant improvement in performance. Figure 3
illustrates the improvement in the relative through-
put using SMT over a single-thread-per-processor
configuration. The results shown were obtained with
the SPECjbb benchmark on a 32-CPU IBM eServer p5
595 system. The SPECjbb benchmark uses a “ware-
house” as its basic unit of independent work.
Throughput rises as warehouses are added until the
limit of the machine is reached. With SMT disabled,
maximum throughput is reached at 32 warehouses,
one warehouse per CPU. When SMT is enabled,
throughput continues to increase, although at a
slower rate, until all 64 threads are active. The graph
shows close to a 40 percent improvement in relative
throughput.
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After most of the tuning task was completed, a large
number of “what-if” questions arose. For example,
the POWERS processor has several power-saving
features that needed to be tested. Almost all these
features were controllable by changing initializa-
tions in the POWERS chip. By comparing results
against the baseline measurements, we were able to
verify that performance was not negatively impacted
by these features.

Chip manufacturing

While bring up and verification of the POWERS chip
was in full swing at various laboratories inside IBM,
the manufacturing team was researching how to best
screen each chip for faults. This screening is
absolutely critical to the success of POWERS5
products. In addition to detecting faults, the data
collected on each chip during the screening process
are used to determine the POWERS system that the
chip is best suited for, based on its power and cooling
requirements. BML appeared to be the perfect tool
for screening the POWERS chip. First, the major
exerciser suite used in testing the processor had
already been ported to Linux and had been in use for
several months in the bring-up laboratories (thus no
porting of the exerciser code was required). In
addition, because BML boot times are low, the
screening process is more efficient (any time spent
booting directly subtracts from the time available for
testing the chip). The manufacturing team quickly
adopted BML as their screening tool, which is now
used to screen every POWERS chip produced.

Impact on Linux development
BML was instrumental in identifying and resolving a
number of Linux kernel problems.

Bug in the out-of-memory killer

When the machine is completely out of memory,
one of the active tasks has to be terminated (killed)
in order to free its memory allocation, so that the
rest of the system can operate. In Linux this is the
responsibility of the OOM Kkiller.

In the past there had been reports of the OOM killer
misbehaving and killing the entire system. However,
these reports were few, and the problem could not
be recreated in the laboratory. Further, there existed
code specifically designed to avoid the problem.

During a stress test using BML on a 64-CPU machine
with only a few gigabytes of memory, we discovered
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that this failure scenario could be replicated in less
than 1 minute.

Armed with an easily reproducible test case, the
SMP race (a case in which multiple processors
access data without required serialization or lock-
ing) in the code was found, and the problem was
fixed. Whereas the bug would seldom surface in
smaller machines, the large 64-CPU POWERS5
machine displayed it reliably.

Random driver scalability

Linux has a random number generator (random
driver) whose output is used by various kernel
functions. In order to increase the randomness of
this component, some random external events are
tracked, and this information is stored in a so-called
entropy (randomness) pool, for use by the algorithm
that produces the random numbers.

During the stress tests for measuring maximum I/0
bandwidth during POWERS bring up, we spotted a
serious drop in network I/O performance on our
large machine. We traced this performance deteri-
oration to the use of a global lock taken when device
interrupts associated with the use of external events
by the random number generator occur. We solved
the problem by a change to the Linux 2.6 kernel; the
random number generation algorithm now recog-
nizes when there is sufficient randomness in the
entropy pool, in which case no additional external
random events are used, and thus the use of the
global lock is decreased.

SCSI-probe race conditions

During the development of the parallel probe feature
in BML, we discovered a number of race conditions
in the SCSI probe code.”® In one test, 500 SCSI disks
were probed in parallel, which took about 10
seconds to complete. This environment provided a
good platform for testing locking performance in the
Linux kernel.

SCSl-driver error handling

Device drivers provide an interface for connecting
hardware devices to the operating system. Although
these device drivers should handle malfunctioning
hardware gracefully, often the error paths associated
with these malfunctions are not well tested.

A laboratory environment like ours has a mix of
hardware components, some of which may not
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always function correctly. When large machines are
built, it is possible to end up with defective adapters
or disk devices. For this reason, it is highly desirable
to enable the remaining hardware in the system to
be used until the defective hardware can be

replaced. We discovered and fixed several deadlocks
in the error paths of two SCSI host-adapter drivers.

Linux hot spots

While running various workloads, traces were taken
of the system bus and analyzed to find and fix Linux
kernel performance issues. For instance, traces were
used to locate hot spots where many CPUs were
accessing shared cache lines. Armed with this data,
changes were made to the Linux kernel to improve
the situation.

One example of such a change was a cache line that
was being accessed frequently. By looking at a map
of the Linux kernel, it was determined that a
variable that was modified a lot by one CPU
(tb_last_stamp) was in the same cache line as
some read-only data used by each CPU at every
timer interrupt. In the Linux 2.6 kernel release, the
timer interrupt runs 1000 times a second, so on a 64-
CPU 128-thread machine, the cache line was being
fetched 128,000 times a second. After separating
tb_Tast_stamp from the read-only data, these
128,000 cache-line transfers each second were
removed completely. This performance oversight
was corrected in the Linux 2.6.7 kernel.

Detecting interprocess communication errors
Tests designed to find CPU bugs often stress-test the
underlying operating system. One such test utilizes
the interprocess communication (IPC) mechanism.
Repeated and closely spaced starts and stops of this
test led to intense activity in the creation and
deletion of IPC resources, which in turn exposed
deadlocks in the IPC code.

SMT- and NUMA-aware scheduler

While the POWERS bring-up work was in progress,
the Linux community was working on enhancing
the scheduler to make it SMT- and NUMA-aware.
Nick Piggin was working on an approach he called
sched domains,”” which provides support for plat-
forms with SMT and NUMA features. The POWERS5
architecture provided a perfect testbed because it
has both features.

With BML running on the largest POWERS5 ma-
chines, the prototypes of sched domains were tested.
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BML enabled us to obtain results quickly and
allowed us to test many scheduling options. Based
on our testing, the scheduler was accepted in the
Linux 2.6.7 kernel. Had we waited until the
firmware and the hypervisor stack were operational,
we would have been unable to provide timely
feedback to the Linux community.

CONCLUSION

During the POWERS chip bring up, BML proved to
be an efficient and flexible tool. Using BML in the
manufacturing of POWERS systems has benefited
both the POWERS bring-up effort and Linux devel-
opment. BML enabled the operating system-level
testing to start early, thus reducing the time to
market of POWERS systems. Stress testing the Linux
kernel on a leading-edge system led to the resolution
of some bugs and increased its robustness. We
expect that BML will continue to be used in the bring
up of future systems.

* Trademark or registered trademark of International Business
Machines Corporation.

** Trademark or registered trademark of Linus Torvalds, PCI-
SIG Corporation, Software in the Public Interest, Inc., or
Standard Performance Evaluation Corporation.
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