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In this paper we describe our experience at Colorado State University running

hundreds of virtual Linuxt servers on an IBM S/390t mainframe with the z/VMt

operating system and the way we solved the security, performance, and administra-

tion problems that were encountered.

With the large increase in the number of Web-based

systems in the last decade, the computational

requirements for supporting Web applications grew

dramatically. Frequently an organization required

dozens, hundreds, or even thousands of servers to

support its customer load.
1,2

‘‘Server farms’’ were

created in which machines were used as Web

servers, file servers, database servers, and applica-

tion servers. Although not a new idea—IBM main-

frames have had virtual machine capability since at

least 1972 when the VM operating system (then

known as VM/370) was introduced
3,4

—there has

also been a recent focus on running virtual servers

on powerful personal or mainframe computers.
5–9

In

this paper we describe our experience at Colorado

State University (CSU) running hundreds of virtual

Linux** servers on an IBM S/390* mainframe
10

with the z/VM*
11

operating system.

The 1980s ushered in the personal computer (PC)

era, which provided us with small but powerful

machines that could act as servers in the client-

server model of computing. The PC came at low cost

and allowed end-user control of the system, without

interference from a central information technology

(IT) department. As client-server computing became

popular, many tasks that had been traditionally

performed on mainframes were migrated to the

smaller and less costly PC servers. In fact, especially

with the advent in the 1990s of the freely available

Linux operating system and other open-source

software such as the Apache Web server, server

farms consisting of dozens or hundreds of these

commodity PC servers were set up to service heavily

used Web sites. The ability to purchase PC servers

for only a few hundred dollars drove demand away

from the mainframe and to these small, inexpensive,

and disposable servers.

Managing large numbers of these servers, however,

had its drawbacks. There had to be physical space to

store them and physical wiring to interconnect
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them. They had to be individually installed,

configured, and maintained. It could take significant

time and support personnel to keep these server

farms running. The low purchase cost of these PC-

based servers belied the real total cost of ownership

associated with operating these server farms.

In the last few years we have witnessed a return to

the mainframe for specialized applications.
12–18

Using the ability of z/VM to host multiple virtual

servers running a variety of guest operating systems,

mainframes such as IBM’s S/390 and zSeries* are

now being used to create virtual server

farms.
7,16,19,20,

These systems offer high processing

speed and high bandwidth for I/O; the physical

space they require is comparable to that for hosting

small physical server farms; and it is easy to clone

an initial server as many times as needed. This

cloning can even be automated so that no human

intervention is required to carry it out. Thus some of

the problems encountered in the physical server

farm environment go away. Running virtual Linux

guests on a mainframe leads to space savings, easier

management, and the benefit of the reliability and

security of the mainframe.

One case in which virtual servers are cost-effective

is when they are used as Web and database

servers.
21–23

In order to support a high-volume Web

site, one that is heavily accessed by large numbers

of people, it is not uncommon to employ hundreds

of virtual servers. In a virtual environment, new

servers can be cloned on demand and a load

balancer distributes incoming requests among them.

Virtual servers use shared resources, such as

memory and computational power, and thus are

superior to physical server farms in terms of the

efficient use of resources.

Because Linux can be used as the guest operating

system on a z/VM virtual machine, the large

collection of open-source software is readily avail-

able and can be run on such a virtual server. Server

farms created in this environment can be controlled

and managed efficiently on a single physical

machine.

The rest of this paper is structured as follows. In the

next section we introduce basic z/VM concepts. In

the following three sections we describe our

experience in running multiple Linux virtual servers

on z/VM at CSU and focus on three types of

problems we encountered: security issues, per-

formance issues, and administration issues related

to managing Linux instances. We conclude with a

summary and directions for further work.

Z/VM CONCEPTS

z/VM supports the creation of virtual machines by

virtualizing the resources of the computing plat-

form: processing, communication, memory, I/O,

and networking resources. Although virtual ma-

chines share physical resources, they are isolated

from each other, and each virtual machine provides

the illusion of access to the entire computer. Each

virtual machine hosts a guest operating system such

as z/OS*, OS/390*, CMS, and Linux. The guests

operate completely independently of one another.

Virtualization, such as that provided by z/VM, is

often used together with partitioning. On computing

platforms such as the S/390 and the z/Series, the

hardware supports logical partitioning (a logical

partition is referred to as an LPAR) of the machine

into several distinct and isolated regions that

operate independently of one another. Each unit of

physical resource is thus mapped into a specific

partition.

Partitioning and virtualization can be viewed as

complementary technologies. Figure 1 illustrates a

range of possible configurations for running Linux

on an S/390 or zSeries mainframe that involve

virtual machines and LPARs.

In Figure 1A Linux is running natively on the

mainframe, that is, without logical partitioning. This

option is rarely used because it provides for a single

operating-system instance on the entire mainframe.

In fact, it is no longer possible to configure zSeries

mainframes without LPARs—the IBM eServer*

zSeries 900 (z900) series was the last family of

processors that supported this option. In Figure 1B

the machine is configured with three LPARs, and

Linux is running natively within each LPAR, as

before. In this configuration no virtual machines are

created; Linux is running natively and not as a guest

operating system on a virtual machine. The max-

imum number of LPARs depends on the hardware

and varies between 15 and 30. Figure 1C depicts a

configuration without partitions in which z/VM

supports any number of Linux guests (three guests

are shown in the figure). The fourth scenario

illustrated in Figure 1D combines logical partitioning
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and virtual machines. The figure shows five LPARs;

three of these host operating systems are running

natively; whereas, the other two partitions host z/

VM instances that support a number of virtual

machines. Note that the operating systems running

either in an LPAR or on a z/VM-supported virtual

machine need not be the same.

The fourth option is similar to the design used for

the CSU system. It operates within one of the LPARs

and has approximately 500 virtual Linux-server

z/VM guests running within this LPAR. Anywhere

between 50 and 300 of these are typically active at

any given time. At the time the work described here

was performed, we were using Version 4.4 of z/VM,

running on S/390 hardware, with almost all of the

Linux instances running SLES 8 (SuSE Linux Enter-

prise Server Version 8) and only a few running SLES

7. Although our platform was S/390, most of the

results should apply to the zSeries platform as well.

SECURITY ISSUES

In this section we focus on three security-related

issues: account passwords, ssh (secure shell) keys,

and software updates. Although these are important

issues for all servers, for systems with large

numbers of cloned virtual servers they become

critical.

Account passwords

Access to a Linux instance typically requires an

account and a password. In an environment with

hundreds of Linux instances, account maintenance

can become extremely time-consuming, and thus

some form of automated maintenance is needed.

Although a z/VM administrator has the ability to

issue commands and push out updates to all Linux

instances (z/VM guests), using this approach has its

drawbacks. Possibly the biggest problem is the time

delay involved. The Linux administrator must

determine what updates are needed, request the

z/VM administrator to perform the updates, wait for

this task to get done, and then inform the Linux-

instance users that the updated machines are ready

for use. Relying on the z/VM administrator to carry

out these updates clearly lengthens the process.

In order to avoid this delay, and to remove much of

the dependency on the z/VM administrator, we

developed a fully Linux-based solution for auto-

matically performing updates on a large number of

instances. This solution relies on ssh/scp (secure

shell/secure copy) and a common Linux user

account that we created on all Linux instances. The

common account has the same login and password

for all instances in the system and is given root

privileges (that is, it is set up with UID 0). This

provides a ‘‘back door,’’ separate from the root user,

through which all virtual servers can be updated

automatically.

Soon after implementing this plan we realized that it

had a serious security flaw. When we created a user

Figure 1
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account with root privileges and with the same

password on all instances, we assumed that the

person who had this information would not share it

with others. We had overlooked, however, that the

owner (administrator) of each Linux instance (not the

z/VMadministratorwhoperforms the batchupdating

of all Linux instances) has root access and therefore

has access to the /etc/shadow file, which contains all

the encrypted account passwords for the machine.

The instance owner could take the encrypted copy of

the common account password from /etc/shadow and

use a brute force
24

password cracker like John the

Ripper
25

to decode the password. Although this

process might take weeks or months, once the

password is deciphered it would compromise the

entire environment because all instances have the

same common user login and password.

To address this problem we changed the way the

common user account could be accessed. The

account was stripped of its privileged (UID 0) status

and made into a standard user. Then the account

was given root access via the sudo
26

command. To

solve the brute force attack problem, the password

was set to a randomly generated 255-character

string using blowfish
27

encryption, and then the

account was ‘‘locked’’ with the usermod -L user

command, thus removing the ability to login in the

normal manner using /etc/shadow passwords.
28

To

allow login, we decided the best alternative would

be to use the public and private keys (described

more fully in the next section) built into the

OpenSSH tool set. With this method, each instance

could retain a copy of the common user account’s

public key while the private key would be kept on a

secured instance with limited access. This secured

instance could then be used as the point from which

all other instances would be accessed and batch

updates performed.

At the time, using this method seemed to be the

simplest and most secure way to remove depen-

dency on the z/VM administrator while at the same

time enabling easy and secure updating of large

numbers of virtual servers in an automated fashion

from one of the Linux instances. An alternative

approach would be to use public and private keys to

allow automatic connection without passwords

through the root account. This would eliminate the

need to connect through a regular user account and

then use sudo to perform commands. If the root

user’s private key were known only to those who

were administering the collection of Linux clones,

then this approach would be relatively secure.

ssh keys
In an ssh session a public and private key pair is

used to securely exchange a one-time symmetric

key, which then is used to encrypt all of that

session’s communication. One or more of these

public and private key pairs are typically stored in

the system-wide /etc/ssh directory and $HOME/.ssh

user directories on Linux systems. They are gen-

erated by tools within the OpenSSH suite and should

be unique to an individual host. Of course, the

public key portion can and should be made widely

available, but the private key portion must be kept

absolutely secure and private because it is used to

authenticate a person or machine.
29

We created these keys while building a ‘‘golden

image’’ instance from which we cloned all the other

Linux instances. Unfortunately, we overlooked the

fact that all instances ended up with identical public

and private keys; that is, every instance held a copy

of the public and private key pair. Needless to say,

the security implications could have been serious.

By using the private portion of the public-private

key pair, a Linux instance administrator or a

malicious attacker could capture and decrypt the ssh

session symmetric key and thus be able to monitor

the traffic to another Linux instance and decrypt all

the transmissions for that session. This would be

possible because the attacker’s instance held a copy

of the same private key that was used by each and

every host. Any ssh traffic to and from their machine

could be captured and read by the attacker, while

the users would erroneously believe their commu-

nication was secure because they were using ssh.

The entire set of virtual servers was at risk.

This security hole also allows for a man-in-the-

middle attack, in which the attacker intercepts the

traffic to or from another Linux instance, possibly

makes changes to it, and passes it on to the intended

destination. The two sides are unaware of the third

party (man in the middle) who gained access to the

information exchanged.

Whereas there is an easy fix for this problem, it is a

matter that can easily be overlooked, and, as

mentioned above, could have serious consequences.

Most sshd init scripts (typically located in /etc/initd

on most enterprise-grade installations) can generate
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new keys if none are present when the script is run.

The solution is therefore to remove the keys from

the golden image and allow them to be generated

upon the next start of the sshd daemon on each

cloned Linux instance. These files are typically

found in /etc/ssh and can be easily identified: all

keys have ‘‘key’’ in the file name.

Software updates

Updating the software in our environment, especially

when security vulnerabilities are identified, is im-

portant. Linux for the S/390 is relatively newand only

a handful of vendors support it (e.g., Red Hat, Inc.).

We noticed that security patches from our vendor

were not available early and lagged behind those for

other platforms, such as Intel** x86. We could either

wait longer for the software updates for our platform

or attempt to build the fixes directly from the source

code. Waiting for the product release was a big

inconvenience at times and not a viable alternative

when there were security vulnerabilities involved.

For building our own fixes, it is convenient to have

the Linux instances generated as clones. As all

instances are replicas of each other, binaries built

from the source on one instance will run flawlessly

on others; therefore, we keep a control instance (a

copy of the golden image) for such purposes and

avoid making major changes to it. We use this

instance to configure and build software packages

from the source and then push out the updates to

each instance. (The techniques used to perform the

pushing out of updates are discussed in ‘‘Making

Changes to Large Numbers of Virtual Linux Serv-

ers.’’) Alternatively, we use the compiled source to

build an RPM (Red Hat Package Manager) file that

installs the binaries. The RPM method is preferable

because RPM files keep a record of the software

package installation dependencies.

Regardless of the method used, it is vital that

attention be paid, not only to the patches for the

S/390 platform, but also to the security patches for

other architectures. This is done via the mailing lists

that all major vendors provide. If S/390 patches are

not promptly released, action must be taken to avoid

the possibility of a security exposure.

PERFORMANCE ISSUES

Whereas there are many advantages to using virtual

servers, there can be performance limitations in such

an environment, especially whenmany instances run

with a heavy load or run the same application at the

same time. Ideally, when many instances are active,

resource usage should be spread out over time rather

than concentrated at a particular time.When resource

consumption is high there could be ‘‘thrashing,’’ a

situation in which resources are increasingly ex-

pended on swapping jobs and less real work is

accomplished. Thus, the ideal workload for virtual

server farms involves independent resource requests

that peak at different times.

In this section we look at some problems associated

with large numbers of concurrently running cron

jobs, and CPU-intensive jobs.

cron jobs

Jobs that are executed periodically, cron jobs, are

defined in crontab files and scheduled for execution

by the crond daemon. Jobs can be run daily, hourly,

monthly, or following any other recurring schedule

desired. Every distribution of Linux comes with a

default set of cron jobs; the specific jobs included

depend on the Linux distribution. Examples of cron

jobs are: rebuilding the RPM database, rebuilding

the man index, updating the slocate index, rotating

log files, and cleaning temporary files. Most of these

jobs, which are disk I/O-intensive rather than CPU-

intensive, can cause significant performance prob-

lems in a cloned virtual environment.

Most current Linux distributions try to simplify cron

job management by including the script run-crons,

typically located in /sbin, /usr/sbin, or /usr/lib

depending on the distribution used. The existence of

run-crons allows the Linux administrator to place

executable scripts inside of a directory instead of

having to put each cron job in the /etc/crontab file.

Every 15 minutes this script is run in order to check

the /etc/cron.hourly, /etc/cron.daily, /etc/cron.weekly,

and /etc/cron.monthly directories, and identify the

jobs that are to be executed. Running this script on a

large number of instances can cause problems. In

our environment, with all the system clocks

synchronized, every 15 minutes all instances be-

came unresponsive for up to 1.5 minutes because of

the high load caused by all of them simultaneously

trying to execute this script. Moreover, this is just

run-crons checking to see if there are jobs to be run,

not actually running any!

The situation worsens when run-crons determines

there are jobs to be run. When 500 instances (a
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typical value at CSU) initiate the same process at the

same time this puts the host machine under heavy

load. z/VM itself even contributes to the load spike.

Because all resource requests cannot be handled

simultaneously, z/VM builds an ‘‘eligible’’ queue.

When the requests in the queue are processed, each

is allocated one (processor) time slice.

Under this load the system becomes unresponsive

for long periods of time—in some cases, hours.

Figure 2 shows the system load as the number of

requests in the queue due to the execution of cron

jobs. (None of this queuing occurs when the cron

jobs are not running.) The number of jobs in the

queue is plotted against the time of day. Any time

when there is significant queuing, the system

becomes to some extent unresponsive.

As Figure 2 shows, there are blocks of time where

the system would not function well because of this

queuing. For instance, we see many spikes above

25, and one spike over 150, between 6:15 p.m.

(18:15) and 10:30 p.m. (22:30). Because the queue is

relatively large, the response time is very slow, a

performance that is not acceptable.

For solving the overload problem caused by cron

jobs we use a twofold approach: (1) eliminate

unnecessary cron jobs, and (2) avoid the simulta-

neous execution of jobs by Linux instances when-

ever possible.

We now describe each one of these approaches in

turn.

Eliminate unnecessary cron jobs

Sometimes we are able to eliminate the default cron

jobs altogether because, it turns out, most of them

are more a convenience then a necessity. These jobs

help clean up (e.g., by removing temporary files),

perform backup (e.g., backup of configuration files),

and help keep the system up to date (e.g., by

updating database indexes). In our case, we found

that none of the default cron jobs were essential;

they were rotating log files, rebuilding the RPM

database, and cleaning up temporary files. Although

these processes are very helpful, they are not

essential.

Eliminating long-running cron jobs is especially

useful because their impact is greater. In our case,

the job that rebuilt the RPM database was especially

problematic because it took the longest to run.

When the default cron jobs are removed, the Linux

instance owners have to add their own cron jobs

when needed. If, however, many system admin-

istrators chose to reinstall the default cron jobs, then

this solution would fail. The solution would also fail

if some of the default cron jobs are deemed

necessary and thus cannot be removed from all

Linux instances.

By default, the root cron table, /etc/crontab, invokes

the run-crons script, which then checks a series of

directories for scripts to run as cron jobs. A user on a

dedicated server observes the execution of

run-crons taking between 0.1 seconds to 2 seconds to

run when the files inspected have not been updated

since the last execution, and 15 seconds to 2.5

minutes when some of these files have been deleted

and need to be updated or when long-running jobs

are processed. In contrast, when hundreds of Linux

instances cause the simultaneous execution of the

script, then the system experiences a significant

slowdown.

On our system, the repetitive call to this script every

15 minutes was a problem. It performed extra

processing and disk I/O that caused queuing and a

serious increase in response times for all our users.

With 500 active instances, it resulted in an average

of 1.5 minutes of time where the system was totally

unresponsive and an additional 2.5 minutes when

the system was very slow. Having such a slowdown

Figure 2
CPU queueing due to execution of cron jobs
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every 15 minutes is not acceptable. It is preferable to

change the /etc/crontab file to directly execute the

script at the time the system administrator deemed

appropriate. Using this ‘‘direct’’ crontab method

removes some of the overhead associated with the

run-crons script. It is worth the extra effort to run cron

jobs directly when contrasted with the minimal

convenience run-crons gives and the resulting slow-

down that occurs.

Avoid the simultaneous execution of jobs by Linux

instances

After removing all nonessential cron jobs, we vary

the times at which the remaining jobs would execute

so as to avoid simultaneous execution of these jobs.

The steps involved are: (1) determine the maximum

number of instances that can simultaneously ex-

ecute the cron jobs without causing excessive

queuing, and (2) create an execution plan to allow

no more than the maximum number of instances to

be running these cron jobs at the same time.

After eliminating the unnecessary cron jobs and

running the remaining ones directly rather than

through run-crons, we tested and timed the execution

of these scripts using the time command. The results

were placed in a file in /tmp. We first had to find the

point where so many virtual servers were executing

the cron jobs at the same time that it caused z/VM

queuing to occur. We achieved this by gradually

increasing the number of active instances and by

determining the point when queuing becomes

excessive.

We configured 110 instances on which we would

run the scripts and synchronized the time on all

these machines. The rest of the 500 instances were

left idle. Thirty seconds after the designated

execution time the system became unresponsive,

and the system was left virtually unusable for a

period of 1 hour and 37 minutes. Figure 3 shows the

results of our experiments as a function of the length

of the unresponsiveness period as a function of the

number of active instances. When the system

became responsive again, minor forensics were

carried out by examining the generated time files.

The average time that it took to execute the cron jobs

on a single instance was just under 3 minutes. With

all 110 instances attempting to execute the cron jobs

at the same time, all instances slowed down

considerably. Twenty-six showed somewhat rea-

sonable times—in the range of 6–10 minutes each.

An additional block of 17 took an average of 25

minutes for each instance. This trend continued

until the longest execution time was reached, 105

minutes, and the jobs were done.

The same process was repeated five times, each time

decreasing the number of instances tested by 15. At

35 instances we found there was no unresponsive-

ness—the cron jobs finished running in about three

minutes, and no queuing was encountered. At this

point we started adding one instance at a time and

repeating the test, until we reach 42 instances where

we found that queuing resumed.

After we determined the load the system could

handle, we needed to customize the cron jobs to stay

within this load level. The crontab file which we had

modified earlier made this easy to do.

From our earlier testing we had found that there was

no queuing when we had 35 virtual servers running

cron jobs simultaneously. To be conservative, we

divided this number in half and then backed off a

little, taking 15 as the number of instances that can

run cron jobs simultaneously. Because this number

was far from the queuing threshold, we were

confident that it would not hinder the mainframe’s

normal performance and would allow normal use

for all users. It was also a large enough block so that

all the instances would complete their cron jobs

within a reasonable amount of time, 6 minutes in

10

Figure 3
Unresponsiveness interval due to the simultaneous 
execution of cron jobs
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this case. Allowing for some safety margin, groups

of 15 instances were programmed to execute their

jobs at 12-minute intervals. Using this schedule all

500 virtual servers could complete the cron jobs

within a seven-hour time period during the night,

with the blocks of instances staggered and thus not

causing the queuing and slowdown to occur. The

contents of /etc/crontab are illustrated below, with

each different crontab entry initiating the running of

the cron jobs on a different block of instances at a

different time of the day.

Crontab 1—for the 1st block of 15 instances:

#will execute at 11:12 pm (23:12) every day.

12 23 * * * /path/to/your/script

Crontab 2—for the 2nd block of 15 instances:

#will execute at 11:24 pm (23:24) every day.

24 23 * * * /path/to/your/script

Crontab 3—for the 3rd block of 15 instances:

#will execute at 11:36 pm (23:36) every day

36 23 * * * /path/to/your/script

. . .

Crontab 9—for the 9th block of 15 instances:

#will execute at 1:48 am (01:48) every day

48 1 * * * /path/to/your/script

. . .

A different version of the crontab file was pushed to

each block of 15 instances. The system queuing

problem was alleviated (no process slices showed

up in the ‘‘available’’ queues), and we still had the

convenience of using cron jobs.

More recently we have developed a way to

automatically generate these crontab files with the

time offsets generated directly from the IP (Internet

Protocol) addresses of the virtual Linux instances

and the total number of instances.
30

Control CPU-intensive processes

Some applications have high CPU requirements. In

other cases ‘‘looping’’ can occur in which the job

runs indefinitely unless interrupted by the system.

When this happens, all other processes slow down

almost to a stop.

To prevent these situations from impacting the

performance of other instances, we created a simple

but effective script that identifies the processes

whose CPU use is excessive. When FCONX (an IBM

monitoring utility) detects high CPU usage by an

instance, it calls a script that kills any process using

more than 75 percent of the CPU. The script, written

in perl, is available on our Web site.
31

ADMINISTRATION ISSUES
The automated updating of large numbers of virtual

Linux servers is facilitated by tools such as ssh and

scp (part of the OpenSSH suite). The ssh command,

which uses public key authentication, has two uses.

It can be used simply to login and gain access to an

interactive command shell on a remote machine and

also to run commands on a remote machine. The ssh

and scp commands provide rexec functionality in a

secure manner. The scp command, which also uses

public key authentication, is used to copy files

securely from one location to another.

The sshTool script, which we wrote to help manage

our virtual Linux instances, is a tool based ssh

and scp that performs remote Linux management

tasks.
31
This script reads IP addresses (or host names)

and a command string from a file and accepts as

arguments local and remote paths of a file. Using

these three inputs the script can then run the

command on or push the file to all the specified

instances. ALinux administratorwithmoderate shell-

scripting skills can quickly configure sshTool to push

out updates. However, there are a couple of items that

must be configured on the servers before this will

work.

As mentioned in the section on account passwords,

a common Linux user account with the ability to

gain root access is needed on all instances. The sudo

utility is a good method for providing root access

because it can be used to control what the user can

and cannot run and because it logs the commands

used in the process. This user must be authenticated

through ssh trusted keys. As we saw above, trusted

keys have great benefits for secure access and also

remove the need to use a password at login.

Authentication without password is vital to auto-

mation because automatic execution of commands

is not practical when a password needs to be entered

manually for each of several hundred virtual Linux

instances.

The final setup in configuring such an automated

approach for updates is to address strict host key

checking. The strict host key checking configuration

indicates how much ssh needs to know ahead of

time about the machines it is attempting to connect

to, and to what extent the administrator is willing to
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allow ssh to update on-the-fly at connection time.

Strict host key checking can be set to YES, NO, or

ASK, and can be configured permanently with the

StrictHostKeyChecking parameter in the ssh_config file

or temporarily, just for the current connection, by

using the -o flag on the ssh command line. The

ssh_config file is typically found in /etc/ssh but may

be found other places (such as /usr/local/ssh),

depending on how ssh was installed.

A StrictHostKeyChecking value of YES indicates that

keys for all hosts to which you wish to connect must

exist ahead of time in the system-wide ssh_known_-

hosts file or the user-based version of this file,

known_hosts, that may also exist in $HOME/.ssh for

each user. If the key of the host to which ssh is

attempting to connect is not in either of these

known_hosts files and StrictHostKeyChecking is set to

YES, then the connection will be denied. If StrictHost-

KeyChecking is set to NO, then the key of the host to

which ssh is attempting to connect will automatically

be added to the known_hosts file if it does not already

exist or will automatically be updated if it is different

from one in the known_hosts file, and the connection

will be made. If StrictHostKeyChecking is set to ask,

then ssh will prompt the user as to whether this key

should be added to the known_hostsfile, and, if so,will

add it and proceed with the connection. A good

summary of how to set up host keys has been written

by Hatch.
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The safest way to do this would be to capture all

known and verified host keys ahead of time and to

store them all in the system-wide ssh_known_hosts

file on the Linux instance from which the updates

are to be pushed. Having done this, one could then

set StrictHostKeyChecking permanently to YES in the

ssh_config file and make any connections safely and

securely. Less safe, though workable, would be to

temporarily set StrictHostKeyChecking to NO and

assume that the host’s keys have not changed. This,

though, opens up the possibility that a key may

have been maliciously changed on a target host, or

that a man-in-the-middle attack has occurred. In

either case, with StrictHostKeyChecking set to NO, the

connection is allowed and may be vulnerable to

a hacker’s attack. Setting StrictHostKeyChecking to NO

allowed us to easily automate updates across many

Linux instances; however, in order to do this, we

had to assume that we knew the host keys had not

been changed, either in a valid way or maliciously.

Storing of these host keys and the possible reduction

in strict host key checking should only be done on

one instance—the instance from which the sshTool

script is to be used. Having a single instance from

which this script can be run is desirable in order to

minimize the security exposure.

Once these tasks are completed, it is easy for a Linux

administrator to automatically push updates to any

or all of the instances. And, at the same time, the

Linux administrator is now less dependent on the

z/VM administrator for maintaining the virtual

Linux servers.

CONCLUSIONS

Running Linux on an IBM mainframe is still a fairly

new development. We have addressed in this paper

some of the more common challenges for this

environment: security, performance, and adminis-

tration.

We have shown that attention must be paid to the

problem of contention associated with the sharing of

resources. A well-designed plan must be put in place

to ensure that simultaneous requests by a large

number of instances for computing resources are

avoided. Otherwise, performance may quickly de-

grade.

Security is another issue that makes the virtual server

environment different from physical server farms.

Because of the existence of multiple, almost identi-

cal, cloned servers, new ways of thinking about

protection are required. Compromised security on

one server might compromise the security of all other

servers. Some issues that seem insignificant at first

may become large problems in the future. Because of

this, it is important to implement an automated

system for maintaining the multiple instances. It is

not a complex task, and it brings great benefits when

implemented. The ssh and scp commands, and the

use of public and private keys, were shown to be

useful tools in this implementation.

When the servers are clones of each other and

execute independently, then we have efficient use of

resources. Managing the virtual servers is easier, as

for example, when additional servers are to be

allocated in an on demand environment. These

features have the potential for reducing the overall

cost of running and maintaining a server farm.
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