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In this paper we describe our experience at Colorado State University running
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hundreds of virtual Linux® servers on an IBM S/390® mainframe with the z/VM®
operating system and the way we solved the security, performance, and administra-

tion problems that were encountered.

With the large increase in the number of Web-based
systems in the last decade, the computational
requirements for supporting Web applications grew
dramatically. Frequently an organization required
dozens, hundreds, or even thousands of servers to
support its customer load."” “Server farms” were
created in which machines were used as Web
servers, file servers, database servers, and applica-
tion servers. Although not a new idea—IBM main-
frames have had virtual machine capability since at
least 1972 when the VM operating system (then
known as VM/370) was introduced”*—there has
also been a recent focus on running virtual servers
on powerful personal or mainframe computers.sf9 In
this paper we describe our experience at Colorado
State University (CSU) running hundreds of virtual
Linux** servers on an IBM S/390* mainfrarne10
with the Z/VM*11 operating system.

The 1980s ushered in the personal computer (PC)
era, which provided us with small but powerful
machines that could act as servers in the client-
server model of computing. The PC came at low cost
and allowed end-user control of the system, without
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interference from a central information technology
(IT) department. As client-server computing became
popular, many tasks that had been traditionally
performed on mainframes were migrated to the
smaller and less costly PC servers. In fact, especially
with the advent in the 1990s of the freely available
Linux operating system and other open-source
software such as the Apache Web server, server
farms consisting of dozens or hundreds of these
commodity PC servers were set up to service heavily
used Web sites. The ability to purchase PC servers
for only a few hundred dollars drove demand away
from the mainframe and to these small, inexpensive,
and disposable servers.

Managing large numbers of these servers, however,
had its drawbacks. There had to be physical space to
store them and physical wiring to interconnect
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them. They had to be individually installed,
configured, and maintained. It could take significant
time and support personnel to keep these server
farms running. The low purchase cost of these PC-
based servers belied the real total cost of ownership
associated with operating these server farms.

In the last few years we have witnessed a return to
the mainframe for specialized applications.lb18
Using the ability of z/VM to host multiple virtual
servers running a variety of guest operating systems,
mainframes such as IBM’s S/390 and zSeries* are
now being used to create virtual server
farms.”'*"”*% These systems offer high processing
speed and high bandwidth for I/0; the physical
space they require is comparable to that for hosting
small physical server farms; and it is easy to clone
an initial server as many times as needed. This
cloning can even be automated so that no human
intervention is required to carry it out. Thus some of
the problems encountered in the physical server
farm environment go away. Running virtual Linux
guests on a mainframe leads to space savings, easier
management, and the benefit of the reliability and
security of the mainframe.

One case in which virtual servers are cost-effective
is when they are used as Web and database
servers.”'** In order to support a high-volume Web
site, one that is heavily accessed by large numbers
of people, it is not uncommon to employ hundreds
of virtual servers. In a virtual environment, new
servers can be cloned on demand and a load
balancer distributes incoming requests among them.
Virtual servers use shared resources, such as
memory and computational power, and thus are
superior to physical server farms in terms of the
efficient use of resources.

Because Linux can be used as the guest operating
system on a z/VM virtual machine, the large
collection of open-source software is readily avail-
able and can be run on such a virtual server. Server
farms created in this environment can be controlled
and managed efficiently on a single physical
machine.

The rest of this paper is structured as follows. In the
next section we introduce basic z/VM concepts. In
the following three sections we describe our
experience in running multiple Linux virtual servers
on z/VM at CSU and focus on three types of
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problems we encountered: security issues, per-
formance issues, and administration issues related
to managing Linux instances. We conclude with a
summary and directions for further work.

Z/VM CONCEPTS

z/VM supports the creation of virtual machines by
virtualizing the resources of the computing plat-
form: processing, communication, memory, 1/0,
and networking resources. Although virtual ma-
chines share physical resources, they are isolated
from each other, and each virtual machine provides
the illusion of access to the entire computer. Each
virtual machine hosts a guest operating system such
as z/0S*, 0S/390*, CMS, and Linux. The guests
operate completely independently of one another.

Virtualization, such as that provided by z/VM, is
often used together with partitioning. On computing
platforms such as the S/390 and the z/Series, the
hardware supports logical partitioning (a logical
partition is referred to as an LPAR) of the machine
into several distinct and isolated regions that
operate independently of one another. Each unit of
physical resource is thus mapped into a specific
partition.

Partitioning and virtualization can be viewed as
complementary technologies. Figure 1 illustrates a
range of possible configurations for running Linux
on an S/390 or zSeries mainframe that involve
virtual machines and LPARs.

In Figure 1A Linux is running natively on the
mainframe, that is, without logical partitioning. This
option is rarely used because it provides for a single
operating-system instance on the entire mainframe.
In fact, it is no longer possible to configure zSeries
mainframes without LPARs—the IBM eServer*
zSeries 900 (z900) series was the last family of
processors that supported this option. In Figure 1B
the machine is configured with three LPARs, and
Linux is running natively within each LPAR, as
before. In this configuration no virtual machines are
created; Linux is running natively and not as a guest
operating system on a virtual machine. The max-
imum number of LPARs depends on the hardware
and varies between 15 and 30. Figure 1C depicts a
configuration without partitions in which z/VM
supports any number of Linux guests (three guests
are shown in the figure). The fourth scenario
illustrated in Figure 1D combines logical partitioning
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Figure 1

Possible configurations for running Linux on S/390 or zSeries

and virtual machines. The figure shows five LPARs;
three of these host operating systems are running
natively; whereas, the other two partitions host z/
VM instances that support a number of virtual
machines. Note that the operating systems running
either in an LPAR or on a z/VM-supported virtual
machine need not be the same.

The fourth option is similar to the design used for
the CSU system. It operates within one of the LPARs
and has approximately 500 virtual Linux-server
z/VM guests running within this LPAR. Anywhere
between 50 and 300 of these are typically active at
any given time. At the time the work described here
was performed, we were using Version 4.4 of z/VM,
running on S/390 hardware, with almost all of the
Linux instances running SLES 8 (SuSE Linux Enter-
prise Server Version 8) and only a few running SLES
7. Although our platform was S/390, most of the
results should apply to the zSeries platform as well.

SECURITY ISSUES

In this section we focus on three security-related
issues: account passwords, ssh (secure shell) keys,
and software updates. Although these are important
issues for all servers, for systems with large
numbers of cloned virtual servers they become
critical.

Account passwords

Access to a Linux instance typically requires an
account and a password. In an environment with
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hundreds of Linux instances, account maintenance
can become extremely time-consuming, and thus
some form of automated maintenance is needed.

Although a z/VM administrator has the ability to
issue commands and push out updates to all Linux
instances (z/VM guests), using this approach has its
drawbacks. Possibly the biggest problem is the time
delay involved. The Linux administrator must
determine what updates are needed, request the
z/VM administrator to perform the updates, wait for
this task to get done, and then inform the Linux-
instance users that the updated machines are ready
for use. Relying on the z/VM administrator to carry
out these updates clearly lengthens the process.

In order to avoid this delay, and to remove much of
the dependency on the z/VM administrator, we
developed a fully Linux-based solution for auto-
matically performing updates on a large number of
instances. This solution relies on ssh/scp (secure
shell/secure copy) and a common Linux user
account that we created on all Linux instances. The
common account has the same login and password
for all instances in the system and is given root
privileges (that is, it is set up with UID 0). This
provides a “back door,” separate from the root user,
through which all virtual servers can be updated
automatically.

Soon after implementing this plan we realized that it
had a serious security flaw. When we created a user
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account with root privileges and with the same
password on all instances, we assumed that the
person who had this information would not share it
with others. We had overlooked, however, that the
owner (administrator) of each Linux instance (not the
z/VM administrator who performs the batch updating
of all Linux instances) has root access and therefore
has access to the /etc/shadow file, which contains all
the encrypted account passwords for the machine.
The instance owner could take the encrypted copy of
the common account password from /etc/shadow and
use a brute force™ password cracker like John the
Ripper25 to decode the password. Although this
process might take weeks or months, once the
password is deciphered it would compromise the
entire environment because all instances have the
same common user login and password.

To address this problem we changed the way the
common user account could be accessed. The
account was stripped of its privileged (UID 0) status
and made into a standard user. Then the account
was given root access via the sudo”® command. To
solve the brute force attack problem, the password
was set to a randomly generated 255-character
string using blowfish”’ encryption, and then the
account was “locked” with the usermod -L user
command, thus removing the ability to login in the
normal manner using /etc/shadow passwords.28 To
allow login, we decided the best alternative would
be to use the public and private keys (described
more fully in the next section) built into the
OpenSSH tool set. With this method, each instance
could retain a copy of the common user account’s
public key while the private key would be kept on a
secured instance with limited access. This secured
instance could then be used as the point from which
all other instances would be accessed and batch
updates performed.

At the time, using this method seemed to be the
simplest and most secure way to remove depen-
dency on the z/VM administrator while at the same
time enabling easy and secure updating of large
numbers of virtual servers in an automated fashion
from one of the Linux instances. An alternative
approach would be to use public and private keys to
allow automatic connection without passwords
through the root account. This would eliminate the
need to connect through a regular user account and
then use sudo to perform commands. If the root
user’s private key were known only to those who
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were administering the collection of Linux clones,
then this approach would be relatively secure.

ssh keys

In an ssh session a public and private key pair is
used to securely exchange a one-time symmetric
key, which then is used to encrypt all of that
session’s communication. One or more of these
public and private key pairs are typically stored in
the system-wide /etc/ssh directory and $HOME/.ssh
user directories on Linux systems. They are gen-
erated by tools within the OpenSSH suite and should
be unique to an individual host. Of course, the
public key portion can and should be made widely
available, but the private key portion must be kept
absolutely secure and private because it is used to
authenticate a person or machine.”

We created these keys while building a “golden
image” instance from which we cloned all the other
Linux instances. Unfortunately, we overlooked the
fact that all instances ended up with identical public
and private keys; that is, every instance held a copy
of the public and private key pair. Needless to say,
the security implications could have been serious.
By using the private portion of the public-private
key pair, a Linux instance administrator or a
malicious attacker could capture and decrypt the ssh
session symmetric key and thus be able to monitor
the traffic to another Linux instance and decrypt all
the transmissions for that session. This would be
possible because the attacker’s instance held a copy
of the same private key that was used by each and
every host. Any ssh traffic to and from their machine
could be captured and read by the attacker, while
the users would erroneously believe their commu-
nication was secure because they were using ssh.
The entire set of virtual servers was at risk.

This security hole also allows for a man-in-the-
middle attack, in which the attacker intercepts the
traffic to or from another Linux instance, possibly
makes changes to it, and passes it on to the intended
destination. The two sides are unaware of the third
party (man in the middle) who gained access to the
information exchanged.

Whereas there is an easy fix for this problem, it is a
matter that can easily be overlooked, and, as

mentioned above, could have serious consequences.
Most sshd init scripts (typically located in /etc/initd
on most enterprise-grade installations) can generate
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new keys if none are present when the script is run.
The solution is therefore to remove the keys from
the golden image and allow them to be generated
upon the next start of the sshd daemon on each
cloned Linux instance. These files are typically
found in /etc/ssh and can be easily identified: all
keys have “key” in the file name.

Software updates

Updating the software in our environment, especially
when security vulnerabilities are identified, is im-
portant. Linux for the S/390 is relatively new and only
a handful of vendors support it (e.g., Red Hat, Inc.).
We noticed that security patches from our vendor
were not available early and lagged behind those for
other platforms, such as Intel* * x86. We could either
wait longer for the software updates for our platform
or attempt to build the fixes directly from the source
code. Waiting for the product release was a big
inconvenience at times and not a viable alternative
when there were security vulnerabilities involved.

For building our own fixes, it is convenient to have
the Linux instances generated as clones. As all
instances are replicas of each other, binaries built
from the source on one instance will run flawlessly
on others; therefore, we keep a control instance (a
copy of the golden image) for such purposes and
avoid making major changes to it. We use this
instance to configure and build software packages
from the source and then push out the updates to
each instance. (The techniques used to perform the
pushing out of updates are discussed in “Making
Changes to Large Numbers of Virtual Linux Serv-
ers.”) Alternatively, we use the compiled source to
build an RPM (Red Hat Package Manager) file that
installs the binaries. The RPM method is preferable
because RPM files keep a record of the software
package installation dependencies.

Regardless of the method used, it is vital that
attention be paid, not only to the patches for the
S/390 platform, but also to the security patches for
other architectures. This is done via the mailing lists
that all major vendors provide. If S/390 patches are
not promptly released, action must be taken to avoid
the possibility of a security exposure.

PERFORMANCE ISSUES

Whereas there are many advantages to using virtual
servers, there can be performance limitations in such
an environment, especially when many instances run

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

with a heavy load or run the same application at the
same time. Ideally, when many instances are active,
resource usage should be spread out over time rather
than concentrated at a particular time. When resource
consumption is high there could be “thrashing,” a
situation in which resources are increasingly ex-
pended on swapping jobs and less real work is
accomplished. Thus, the ideal workload for virtual
server farms involves independent resource requests
that peak at different times.

In this section we look at some problems associated
with large numbers of concurrently running cron
jobs, and CPU-intensive jobs.

cron jobs

Jobs that are executed periodically, cron jobs, are
defined in crontab files and scheduled for execution
by the crond daemon. Jobs can be run daily, hourly,
monthly, or following any other recurring schedule
desired. Every distribution of Linux comes with a
default set of cron jobs; the specific jobs included
depend on the Linux distribution. Examples of cron
jobs are: rebuilding the RPM database, rebuilding
the man index, updating the slocate index, rotating
log files, and cleaning temporary files. Most of these
jobs, which are disk I/O-intensive rather than CPU-
intensive, can cause significant performance prob-
lems in a cloned virtual environment.

Most current Linux distributions try to simplify cron
job management by including the script run-crons,
typically located in /sbin, /usr/sbin, or /usr/lib
depending on the distribution used. The existence of
run-crons allows the Linux administrator to place
executable scripts inside of a directory instead of
having to put each cron job in the /etc/crontab file.
Every 15 minutes this script is run in order to check
the /etc/cron.hourly, /etc/cron.daily, /etc/cron.weekly,
and /etc/cron.monthly directories, and identify the
jobs that are to be executed. Running this script on a
large number of instances can cause problems. In
our environment, with all the system clocks
synchronized, every 15 minutes all instances be-
came unresponsive for up to 1.5 minutes because of
the high load caused by all of them simultaneously
trying to execute this script. Moreover, this is just
run-crons checking to see if there are jobs to be run,
not actually running any!

The situation worsens when run-crons determines
there are jobs to be run. When 500 instances (a
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Figure 2
CPU queueing due to execution of cron jobs

typical value at CSU) initiate the same process at the
same time this puts the host machine under heavy
load. z/VM itself even contributes to the load spike.
Because all resource requests cannot be handled
simultaneously, z/VM builds an “eligible” queue.
When the requests in the queue are processed, each
is allocated one (processor) time slice.

Under this load the system becomes unresponsive
for long periods of time—in some cases, hours.
Figure 2 shows the system load as the number of
requests in the queue due to the execution of cron
jobs. (None of this queuing occurs when the cron
jobs are not running.) The number of jobs in the
queue is plotted against the time of day. Any time
when there is significant queuing, the system
becomes to some extent unresponsive.

As Figure 2 shows, there are blocks of time where
the system would not function well because of this
dqueuing. For instance, we see many spikes above
25, and one spike over 150, between 6:15 p.m.
(18:15) and 10:30 p.m. (22:30). Because the queue is
relatively large, the response time is very slow, a
performance that is not acceptable.

For solving the overload problem caused by cron
jobs we use a twofold approach: (1) eliminate
unnecessary cron jobs, and (2) avoid the simulta-
neous execution of jobs by Linux instances when-
ever possible.
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We now describe each one of these approaches in
turn.

Eliminate unnecessary cron jobs

Sometimes we are able to eliminate the default cron
jobs altogether because, it turns out, most of them
are more a convenience then a necessity. These jobs
help clean up (e.g., by removing temporary files),
perform backup (e.g., backup of configuration files),
and help keep the system up to date (e.g., by
updating database indexes). In our case, we found
that none of the default cron jobs were essential;
they were rotating log files, rebuilding the RPM
database, and cleaning up temporary files. Although
these processes are very helpful, they are not
essential.

Eliminating long-running cron jobs is especially
useful because their impact is greater. In our case,
the job that rebuilt the RPM database was especially
problematic because it took the longest to run.
When the default cron jobs are removed, the Linux
instance owners have to add their own cron jobs
when needed. If, however, many system admin-
istrators chose to reinstall the default cron jobs, then
this solution would fail. The solution would also fail
if some of the default cron jobs are deemed
necessary and thus cannot be removed from all
Linux instances.

By default, the root cron table, /etc/crontab, invokes
the run-crons script, which then checks a series of
directories for scripts to run as cron jobs. A user on a
dedicated server observes the execution of
run-crons taking between 0.1 seconds to 2 seconds to
run when the files inspected have not been updated
since the last execution, and 15 seconds to 2.5
minutes when some of these files have been deleted
and need to be updated or when long-running jobs
are processed. In contrast, when hundreds of Linux
instances cause the simultaneous execution of the
script, then the system experiences a significant
slowdown.

On our system, the repetitive call to this script every
15 minutes was a problem. It performed extra
processing and disk I/O that caused queuing and a
serious increase in response times for all our users.
With 500 active instances, it resulted in an average
of 1.5 minutes of time where the system was totally
unresponsive and an additional 2.5 minutes when
the system was very slow. Having such a slowdown
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every 15 minutes is not acceptable. It is preferable to
change the /etc/crontab file to directly execute the
script at the time the system administrator deemed
appropriate. Using this “direct” crontab method
removes some of the overhead associated with the
run-crons script. It is worth the extra effort to run cron
jobs directly when contrasted with the minimal
convenience run-crons gives and the resulting slow-
down that occurs.

Avoid the simultaneous execution of jobs by Linux
instances

After removing all nonessential cron jobs, we vary
the times at which the remaining jobs would execute
so as to avoid simultaneous execution of these jobs.
The steps involved are: (1) determine the maximum
number of instances that can simultaneously ex-
ecute the cron jobs without causing excessive
queuing, and (2) create an execution plan to allow
no more than the maximum number of instances to
be running these cron jobs at the same time.

After eliminating the unnecessary cron jobs and
running the remaining ones directly rather than
through run-crons, we tested and timed the execution
of these scripts using the time command. The results
were placed in a file in /tmp. We first had to find the
point where so many virtual servers were executing
the cron jobs at the same time that it caused z/VM
queuing to occur. We achieved this by gradually
increasing the number of active instances and by
determining the point when queuing becomes
excessive.

We configured 110 instances on which we would
run the scripts and synchronized the time on all
these machines. The rest of the 500 instances were
left idle. Thirty seconds after the designated
execution time the system became unresponsive,
and the system was left virtually unusable for a
period of 1 hour and 37 minutes. Figure 3 shows the
results of our experiments as a function of the length
of the unresponsiveness period as a function of the
number of active instances. When the system
became responsive again, minor forensics were
carried out by examining the generated time files.
The average time that it took to execute the cron jobs
on a single instance was just under 3 minutes. With
all 110 instances attempting to execute the cron jobs
at the same time, all instances slowed down
considerably. Twenty-six showed somewhat rea-
sonable times—in the range of 6-10 minutes each.
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Unresponsiveness interval due to the simultaneous
execution of cron jobs

An additional block of 17 took an average of 25
minutes for each instance. This trend continued
until the longest execution time was reached, 105
minutes, and the jobs were done.

The same process was repeated five times, each time
decreasing the number of instances tested by 15. At
35 instances we found there was no unresponsive-
ness—the cron jobs finished running in about three
minutes, and no queuing was encountered. At this
point we started adding one instance at a time and
repeating the test, until we reach 42 instances where
we found that queuing resumed.

After we determined the load the system could
handle, we needed to customize the cron jobs to stay
within this load level. The crontab file which we had
modified earlier made this easy to do.

From our earlier testing we had found that there was
no queuing when we had 35 virtual servers running
cron jobs simultaneously. To be conservative, we
divided this number in half and then backed off a
little, taking 15 as the number of instances that can
run cron jobs simultaneously. Because this number
was far from the queuing threshold, we were
confident that it would not hinder the mainframe’s
normal performance and would allow normal use
for all users. It was also a large enough block so that
all the instances would complete their cron jobs
within a reasonable amount of time, 6 minutes in
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this case. Allowing for some safety margin, groups
of 15 instances were programmed to execute their
jobs at 12-minute intervals. Using this schedule all
500 virtual servers could complete the cron jobs
within a seven-hour time period during the night,
with the blocks of instances staggered and thus not
causing the queuing and slowdown to occur. The
contents of /etc/crontab are illustrated below, with
each different crontab entry initiating the running of
the cron jobs on a different block of instances at a
different time of the day.

Crontab 1—for the Tst block of 15 instances:
#will execute at 11:12 pm (23:12) every day.
12 23 * * * /path/to/your/script

Crontab 2—for the 2nd block of 15 instances:
#will execute at 11:24 pm (23:24) every day.
24 23 * * * /path/to/your/script

Crontab 3—for the 3rd block of 15 instances:
#will execute at 11:36 pm (23:36) every day
36 23 * * * /path/to/your/script

Crontab 9—for the 9th block of 15 instances:
#will execute at 1:48 am (01:48) every day
48 1 * * * /path/to/your/script

A different version of the crontab file was pushed to
each block of 15 instances. The system queuing
problem was alleviated (no process slices showed
up in the “available” queues), and we still had the
convenience of using cron jobs.

More recently we have developed a way to
automatically generate these crontab files with the
time offsets generated directly from the IP (Internet
Protocol) addresses of the virtual Linux instances

. 30
and the total number of instances.

Control CPU-intensive processes

Some applications have high CPU requirements. In
other cases “looping” can occur in which the job
runs indefinitely unless interrupted by the system.
When this happens, all other processes slow down
almost to a stop.

To prevent these situations from impacting the
performance of other instances, we created a simple
but effective script that identifies the processes
whose CPU use is excessive. When FCONX (an IBM
monitoring utility) detects high CPU usage by an
instance, it calls a script that kills any process using
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more than 75 percent of the CPU. The script, written
. . . . 31
in perl, is available on our Web site.

ADMINISTRATION ISSUES

The automated updating of large numbers of virtual
Linux servers is facilitated by tools such as ssh and
scp (part of the OpenSSH suite). The ssh command,
which uses public key authentication, has two uses.
It can be used simply to login and gain access to an
interactive command shell on a remote machine and
also to run commands on a remote machine. The ssh
and scp commands provide rexec functionality in a
secure manner. The scp command, which also uses
public key authentication, is used to copy files
securely from one location to another.

The sshTool script, which we wrote to help manage
our virtual Linux instances, is a tool based ssh

and scp that performs remote Linux management
tasks.”' This script reads IP addresses (or host names)
and a command string from a file and accepts as
arguments local and remote paths of a file. Using
these three inputs the script can then run the
command on or push the file to all the specified
instances. A Linux administrator with moderate shell-
scripting skills can quickly configure sshTool to push
out updates. However, there are a couple of items that
must be configured on the servers before this will
work.

As mentioned in the section on account passwords,
a common Linux user account with the ability to
gain root access is needed on all instances. The sudo
utility is a good method for providing root access
because it can be used to control what the user can
and cannot run and because it logs the commands
used in the process. This user must be authenticated
through ssh trusted keys. As we saw above, trusted
keys have great benefits for secure access and also
remove the need to use a password at login.
Authentication without password is vital to auto-
mation because automatic execution of commands
is not practical when a password needs to be entered
manually for each of several hundred virtual Linux
instances.

The final setup in configuring such an automated
approach for updates is to address strict host key
checking. The strict host key checking configuration
indicates how much ssh needs to know ahead of
time about the machines it is attempting to connect
to, and to what extent the administrator is willing to

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005



allow ssh to update on-the-fly at connection time.
Strict host key checking can be set to YES, NO, or
ASK, and can be configured permanently with the
StrictHostKeyChecking parameter in the ssh_config file
or temporarily, just for the current connection, by
using the -o flag on the ssh command line. The
ssh_config file is typically found in /etc/ssh but may
be found other places (such as /usr/local/ssh),
depending on how ssh was installed.

A StrictHostKeyChecking value of YES indicates that
keys for all hosts to which you wish to connect must
exist ahead of time in the system-wide ssh_known_-
hosts file or the user-based version of this file,
known_hosts, that may also exist in $HOME/.ssh for
each user. If the key of the host to which ssh is
attempting to connect is not in either of these
known_hosts files and StrictHostKeyChecking is set to
YES, then the connection will be denied. If StrictHost-
KeyChecking is set to NO, then the key of the host to
which ssh is attempting to connect will automatically
be added to the known_hosts file if it does not already
exist or will automatically be updated if it is different
from one in the known_hosts file, and the connection
will be made. If StrictHostKeyChecking is set to ask,
then ssh will prompt the user as to whether this key
should be added to the known_hosts file, and, if so, will
add it and proceed with the connection. A good
summary of how to set up host keys has been written
by Hatch.”

The safest way to do this would be to capture all
known and verified host keys ahead of time and to
store them all in the system-wide ssh_known_hosts
file on the Linux instance from which the updates
are to be pushed. Having done this, one could then
set StrictHostKeyChecking permanently to YES in the
ssh_config file and make any connections safely and
securely. Less safe, though workable, would be to
temporarily set StrictHostKeyChecking to NO and
assume that the host’s keys have not changed. This,
though, opens up the possibility that a key may
have been maliciously changed on a target host, or
that a man-in-the-middle attack has occurred. In
either case, with StrictHostKeyChecking set to NO, the
connection is allowed and may be vulnerable to

a hacker’s attack. Setting StrictHostKeyChecking to NO
allowed us to easily automate updates across many
Linux instances; however, in order to do this, we
had to assume that we knew the host keys had not
been changed, either in a valid way or maliciously.
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Storing of these host keys and the possible reduction
in strict host key checking should only be done on
one instance—the instance from which the sshTool
script is to be used. Having a single instance from
which this script can be run is desirable in order to
minimize the security exposure.

Once these tasks are completed, it is easy for a Linux
administrator to automatically push updates to any
or all of the instances. And, at the same time, the
Linux administrator is now less dependent on the
z/VM administrator for maintaining the virtual
Linux servers.

CONCLUSIONS

Running Linux on an IBM mainframe is still a fairly
new development. We have addressed in this paper
some of the more common challenges for this
environment: security, performance, and adminis-
tration.

We have shown that attention must be paid to the
problem of contention associated with the sharing of
resources. A well-designed plan must be put in place
to ensure that simultaneous requests by a large
number of instances for computing resources are
avoided. Otherwise, performance may quickly de-
grade.

Security is another issue that makes the virtual server
environment different from physical server farms.
Because of the existence of multiple, almost identi-
cal, cloned servers, new ways of thinking about
protection are required. Compromised security on
one server might compromise the security of all other
servers. Some issues that seem insignificant at first
may become large problems in the future. Because of
this, it is important to implement an automated
system for maintaining the multiple instances. It is
not a complex task, and it brings great benefits when
implemented. The ssh and scp commands, and the
use of public and private keys, were shown to be
useful tools in this implementation.

When the servers are clones of each other and
execute independently, then we have efficient use of
resources. Managing the virtual servers is easier, as
for example, when additional servers are to be
allocated in an on demand environment. These
features have the potential for reducing the overall
cost of running and maintaining a server farm.
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