Integrating Web technologies in

Eclipse

In this paper we describe an approach and an implementation for integrating Web
technologies in Eclipse, a Java- and component-based platform. First, we support
embedding of Ul (user interface) artifacts that are developed using either widget or
markup technologies. Second, we provide support for DOM (Document Object Model)

J. Ponzo
O. Gruber

programming. We implement this approach by bridging the relevant foundation
technologies—COM (Component Object Model) and XPCOM (Cross Platform

Component Object Model)—which allows us to embed the engines of the two major
browsers, Internet Explorer and Mozilla®. We discuss several possible applications of
this work, such as seamless access to online help systems and Web-based
development of administrative tools.

The world of end-user applications has been divided
between Web applications and traditional applica-
tions. Whereas traditional applications use widget
technologies for their user interface (UI), Web
applications use markup rendering technologies,
such as HTML (Hypertext Markup Language), CSS
(Cascading Style Sheets), and scripting (e.g., Java-
Script**). The advantages of combining both tech-
nologies in a single application has recently been
demonstrated in products such as Lotus Notes*,
Quicken**, and Microsoft Money 2005. It is our goal
to offer these advantages in the Eclipse platforrn.l

Eclipse, an open-source project that started as a
platform for developing IDEs (Integrated Develop-
ment Environments), is a platform for developing
applications based on software components.
Through components, Eclipse provides integration
frameworks such as the Eclipse Workbench for Ul
integration and the Eclipse Workspace for data

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

integration. Recently, Eclipse has evolved toward
the concept of a Rich Client Platform, the integration
not only of tools but also of applications.2 With this
goal in mind, we feel that it is particularly important
to appeal equally to Java** and Web developers.

To that end, we integrate Web technologies in
Eclipse. Here we use the term “integration” to imply
a tighter relationship than simple “embedding.” The
integration is performed in two steps: (1) embedding
of UI artifacts, and (2) support for Document Object
Model (DOM) programming. The UI artifacts that
can be embedded in the Eclipse Workbench are
developed by using either widget or markup

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

PONZO AND GRUBER 279

technologies. The DOM is the in-memory parsed tree
of a markup document—most often HTML. Web
browser engines dynamically render the DOM as
they parse Web pages. DOM programming is the
dynamic creation or manipulation of the in-memory
tree, thereby controlling the rendering of the docu-
ment. DOM programming is also used for handling
user-interface events.

For our integration approach in Eclipse, we preserve
the design principle of the Standard Widget Toolkit
(SWT), the cross-platform widget toolkit of Eclipse.1
SWT implements a thin veneer over existing native
widget capabilities. This thin veneer varies with the
environment because it depends on the windowing
system and on the native widget toolkit. This
approach is well suited for embedding Web brows-
ers. Both Internet Explorer (IE) and Mozilla**
provide embeddable engines that can be exposed to
Java. We extend SWT to make use of these engines
for the parsing and rendering of HTML documents
as well as for providing full DOM application
programming interfaces (APIs). We provide brows-
er-specific DOM APIs, thus giving access to the full
capabilities of each browser when needed.

In addition, it is important to promote a portable
programming model for Web technologies, rather
than a browser-specific one. To achieve this goal,
we also provide the DOM 2 Core AP’ defined by the
World Wide Web Consortium (W3C**). By using
this API (W3C DOM2 for short), we ensure that
Eclipse developers have portability across Web
browsers and operating systems (Windows**, Li-
nux** and Mac OS**).

Our approach is technically an extension of the
approach for integrating native applications pio-
neered by SWT. SWT exposes a bridge in Java for
the Microsoft native component framework COM
(Component Object Model).4 Our approach also
supports the Mozilla component framework,
XPCOM (Cross Platform Component Object Model).5
With this foundation in place, it is relatively
straightforward to define a SWT widget for embed-
ding the different Web browsers, thus providing a
common API for navigating HTML pages. However,
providing a common DOM API across Web browsers
is more challenging because of the slight variations
between the existing DOM APIs in IE and Mozilla.
We approach this in two steps. First, we map the
native browser DOM APIs to Java. These straight-

280 PONZO AND GRUBER

forward but rather numerous mappings are auto-
matically generated from the corresponding
COM/XPCOM IDL (Interface Description Language)
by a COM/XPCOM-IDL-to-Java-Class generator that
we created. Second, we use these Java APIs to
implement the W3C DOM2 API.

Integrating Web technologies significantly enhances
the Eclipse platform. First, it enables the UI
embedding of Web pages. This provides in-place
integration of Web assets, such as Web applications
or Web-based tools. One typical example is the
integration of the HTML help system. Second, it
enables a choice of UI technologies for plug-in
developers. Eclipse views or perspectives may be
developed using either markup or widget technolo-
gies. Java logic can interact with either Java widgets
or HTML markup, providing a rich, seamless user
experience that combines the strengths of both
widget and markup paradigms. Our work opens up
Eclipse to Dynamic HTML (DHTML)6 for Java.

The rest of the paper is structured as follows. In the
next section we review the necessary background on
the Web browser technologies used by the IE and
Mozilla browsers. In the following section we
describe the design challenges we faced for inte-
grating Web technologies in Eclipse. We first
describe the bridging to the relevant foundation
technologies—COM and XPCOM. Then, building on
these bridges, we discuss our approach to the
embedding of UI artifacts and to supporting DOM
programming. In the section “Examples,” we
discuss several possible applications: online help
systems, integrating development or administrative
tools, and using Eclipse as an advanced application
platform. In the last two sections we cover related
work and conclusions.

WEB BROWSER BACKGROUND

Web browsers have evolved from stand-alone
markup viewers for hypermedia application plat-
forms to today’s desktop browsers—Mozilla and
IE—which offer embeddable engines and the bene-
fits of component frameworks.

XPCOM is the Mozilla binary framework for
components and services. The Mozilla embeddable
engine, Gecko,’ is an XPCOM component. XPCOM is
derived from Microsoft COM and runs on all
operating systems that Mozilla supports, including
Windows, Linux, and Mac OS. Mozilla as a whole is

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

designed as a collection of XPCOM components.
Only after the XPCOM layer is initialized can an
application load Gecko. Gecko’s primary function is
to provide markup rendering.

Gecko first parses markup documents into in-
memory tree structures, called the Document Object
Model (DOM). The rendering happens within a
native window, either a parent or child window, as
provided by the window manager of the platform on
which Gecko runs. Within Gecko, the tree is
manipulated through a DOM API, very similar to the
one defined by the W3C consortium. Gecko then
renders the DOM through its built-in support for
HTML and style sheets (see Figure 1). Through the
DOM API, an HTML document can be created or
incrementally modified. Whenever a DOM tree is
modified, Gecko dynamically and incrementally re-
renders that tree—this dynamic rendering is the
foundation of DHTML.

Gecko also supports plug-ins that can be used to
handle custom tags within HTML markup. These
plug-ins are XPCOM components themselves. For
example, when Gecko loads an HTML document, it
extracts the JavaScript tags and passes them to its
JavaScript interpreter, also an XPCOM component.
Gecko uses the <embed> tag to handle browser
plug-ins, triggering the loading of XPCOM compo-
nents.

Although the IE architecture is similar to Mozilla’s,
it is based on COM, the Microsoft component
framework from which XPCOM is derived. The
rendering component of IE, the Web Browser
Control, is a COM object that provides similar
functionality to Gecko. The DOM APIs are provided
as COM APIs. IE is as extensible as Gecko but uses
COM for its plug-in model.

COM is a binary standard for object interoperability,
based on virtual tables and calling conventions.
COM is very similar to the binary model adopted by
most C++ compilers. An interface maps to a virtual
table that is implemented as an array of function
pointers. All interfaces are subtypes of the root
interface, called IUnknown. The IUnknown interface
supports reference counting and casting from one
interface to another (casting is querying an object,
through one of its interfaces, to determine if it
supports another interface). COM defines the con-
cept of an object as supporting one or more

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

HTML Rendering | |, Rendered
Engine Web Page
HTML
Document ?
>— HTML DOM
HTML
Parser
Figure 1

Web browser component

interfaces, but all interfaces of an object would
return the same virtual table for the IUnknown
interface. The address of this virtual table is
considered the identity of the object.

COM objects are created by special kinds of objects
known as factory objects. Factory objects, which are
normal COM objects, declare themselves to the COM
runtime as factories and identify themselves using
globally unique identifiers. In fact, interfaces are
also identified through globally unique identifiers.
These unique identifiers are used when querying an
object for an interface or asking the COM runtime to
create an instance of a class. Best practices for COM
include the rule that interfaces are immutable (once
published, they will not be modified). After a
component is included in a released product, any
follow-on version of that component preserves the
old interfaces for compatibility, and new interfaces
are added as necessary.

DESIGN CHALLENGES

For the integration of Web technologies in Eclipse,
through either Mozilla or IE, we faced three
challenges. We first had to provide bridges from
Java to the underlying component frameworks,
COM and XPCOM. Then we had to use SWT for
embedding of HTML rendering within a widget-
based user interface. Finally, we had to provide Java
with a DOM API defined by the W3C consortium. In
the following subsections, we discuss each of these
challenges.

Java-COM and Java-XPCOM bridges

As part of SWT, Eclipse includes a primitive bridge
to COM for the Windows platform. It is a core
technology that allows OLE (Object Linking and
Embedding, Microsoft’s earlier object-based tech-

PONZO AND GRUBER 281

282

SWT Web Browser Widget
(Internet Explorer Version)

SWT Web Browser Widget
(Mozilla/Gecko Version)

Java COM Java XPCOM
Programming Programming

Java COM Bridge Java XPCOM Bridge

COMObject class ‘ Callback class XPCOMObject class ‘ Callback class

Java Native Interface Library

Java Native Interface Library

COM Internet
Explorer Embedding

Internet Explorer
Web Browser Control

XPCOM Mozilla
Gecko Embedding

Mozilla/Gecko
Web Browser Control

Figure 2

Embedding of Web browsers through COM/XPCOM programming in Java

nology) interoperability with SWT and thereby
supports the visual embedding of OLE-compliant
applications such as Microsoft Office.? However, the
design of this bridge takes an ad hoc approach.

Specifically, Eclipse surfaces the COM framework
through a class named COM. Its design imposes a
single-thread execution limitation (which was kept
throughout our implementation). This class incor-
porates all the constants that characterize the COM
framework as well as the entry points to the COM
runtime. It also provides support for creating object
factories, which in turn create objects. Following the
C background of the COM framework, reference
counting is explicit, and it is the responsibility of the
Java programmers to correctly increment or decre-
ment the reference counts on COM objects. The COM
class also supports calling methods on created COM
objects through their virtual tables. The calls are
carried through a set of fixed signature functions
(function calls with a fixed set of parameters), with
the virtual table index as the first parameter.
Because this was not a general mechanism, it was
necessary for us to make some minor additions.
These included new fixed-signature function addi-
tions to the COM class, to accommodate calls to COM
interfaces with method signatures not supported by
the previous version of the COM class, and the
creation of a several new COM-framework classes.

PONZO AND GRUBER

Most COM APIs further require that calling appli-
cations also provide COM objects that implement
COM interfaces for callbacks. We therefore must be
able to implement COM objects in Java. This
requires the ability to create virtual tables at a binary
level and expose them to COM. This is done with
minimal C native code with most of the implemen-
tation in Java, specifically in the following two
Eclipse classes: Callback and COMObject (“native”
here means that we use Java Native Interface, or
JNI, to invoke C modules).

As Figure 2 illustrates, the Callback class provides
native code with function pointers back to Java. In
other words, it creates a C function stub that can
forward a function call to a specific Java method of a
specific object. The supported method signatures are
limited to either multiple parameters of type integer
or a single parameter of the type array of integers.
This Callback class is used to construct Java virtual
tables for COM objects.

The COMObject class is the superclass of all Java
classes exported to COM. It can allocate and fill a
native virtual table by using the Callback class and
dispatching a set of abstract methods to be over-
loaded by a subclass. These abstract methods follow
a simple naming pattern, method0 to methodn,
corresponding to the index in the virtual table. Each

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

instance of COMObject provides support for export-
ing one COM interface. One or more interfaces can
be used to construct more complex COM objects.

Garbage collection issues, that is, coordinating the
scopes of persistence between the explicit reference
counting in COM and automated garbage collection
in Java, are all of vital importance. In our case we
had to consider these issues in both directions: Java
proxies (the client) for native COM objects and Java
objects (the server) implementing exported COM
objects.

For Java proxies, Java programmers are expected to
count references correctly, adding or releasing
references. The Java proxy may then count Java
references. The reference count has to go to zero
before the proxy may actually become garbage from
the perspective of Java garbage collection. When the
Java reference count goes to zero, the actual
reference to the underlying native COM object may
be released. When the reference count is zero, the
Java proxy is then invalid and should refuse method
invocations.

For Java objects implementing exported COM
objects, the situation is reversed. The reference
count represents the number of native references
(uses) held by native COM objects. It is important
that the Java objects are not freed by the Java
garbage collector as long as that count is not zero.
Because of the way the COMObject class is imple-
mented, instances of COMObject cannot be freed by
the Java garbage collector until they have been
“disposed.” Therefore, the Java implementation of a
COM obiject is responsible for counting its references
accurately (across all its exported COM interfaces)
and should dispose of the corresponding COMObject
instance only after the count reaches zero.

XPCOM is very similar to COM, but the Java-COM
bridge needed modifications. For practical reasons
and the overall acceptance of our work within the
Eclipse community, we decided to create a new
bridge for XPCOM rather than modify the existing
COM bridge. Because XPCOM was derived from
COM, it was very easy to model our XPCOM bridge
on the existing COM one. This new bridge allows us
to interact with the XPCOM framework, the foun-
dation of the Mozilla browser. With these two
bridges, we have the necessary foundation in place.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

Embedding of Ul artifacts

To embed markup-based UI artifacts in the Eclipse
user interface, we needed to embed the rendering of
Web pages within SWT. Our goal was to create a
Web-browser widget, eliminating the differences
among browsers and providing a simple and
intuitive interface for browsing hyperlinked markup
documents. As with most browsers, the widget has a
concept of a current document and a history of
visited URLs. The widget API provides support for
setting and getting the current URL, navigating back
and forth along the history, refreshing the current
document, and stopping any ongoing download.

Our widget, org.eclipse.swt.browser, derives
from the SWT Composite class. The implementation
of our widget is different for each platform although
the public interface remains the same. On Windows,
we use OLE support, a higher-level API than the
bare COM. First, we create a window (based on the
OleFrame class) as a child element of our composite
widget. Second, we create an instance of
0leControlSite, mapped to the COM component
named Shell.Explorer. This creates the embedded
IE Web browser, using the 01eFrame window to
render the HTML documents “in place.” This has
the side effect of initializing 01eAutomation, through
which we can control the embedded IE and thereby
implement our widget behavior.

For Mozilla, the steps are quite different because we
have to use XPCOM. There is no equivalent to OLE
in XPCOM. We need to initialize manually the
XPCOM bridge and get access to the XPCOM
Component Manager9 in order to create a new
instance of the Mozilla Web browser, composed of
several XPCOM objects. However, the overall logic
is similar to the IE version. The Web browser
renders markup in a child window of our SWT
composite widget. The widget controls the embed-
ded Web browser through the Web browser’s own
APIL

The embedded browser directly renders the HTML
documents in the child window without any
interaction with the surrounding SWT. This means
that performance is unaltered. This also means that
there is no dependency between the native toolkit
used to render SWT widgets and the native toolkit
used by the embedded browser. The use of a child
window provides enough isolation. This means that

PONZO AND GRUBER

283

SWT Web Browser Widget
with W3C DOM API
(Internet Explorer)

SWT Web Browser Widget
with W3C DOM AP
(Moxzilla/Gecko)

Native DOM to W3C DOM
Implementation Mapping

Native DOM to W3C DOM
Implementation Mapping

Java API Version of Native
DOM Interface

Java API Version of Native
DOM Interface

Java COM Bridge Java XPCOM Bridge

Internet Explorer
Web Browser Component

Mozilla/Gecko
Web Browser Component

Figure 3
Implementing support for W3C DOM2 programming

any locally available Web browser could be used
without widget toolkit compatibility.

Support for DOM programming

DOM programming enables full control over the
manipulation of the tree of HTML elements as

well as the handling of DOM events. Our main goal
was to provide one unique DOM API across
platforms and browsers. We decided to implement
the W3C DOM2 API in order to promote the
standard as the common interface for programming
Web browsers.

Figure 3 illustrates the mapping from the SWT
widget to the Web-browser component. This map-
ping is implemented in a number of steps.

Following SWT design philosophy, we decided to
first map the native browser-specific DOM APIs to
Java. This is illustrated in Figure 3 in the mapping
layer labeled “Java API Version of Native DOM
Interface.” We wrote generators that automatically
produce the Java proxies for the DOM APIs, defined
in COM type libraries for IE and defined in XPCOM
IDL for Mozilla. Given the large size of the HTML
DOM2 API, an automated approach was needed,
especially because the generated proxies are simple

284 PONZO AND GRUBER

pass-through proxies. The advantage of this ap-
proach is that the full browser-specific DOM APIs
are available, if needed.

Because of the limited portability of the browser-
specific DOM APIs, we also provide the W3C DOM2
API that simplifies platform and browser migration.
This is depicted in Figure 3 in the mapping layer
labeled “Native DOM to W3C DOM Implementation
Mapping.” The mapping layer between the browser-
specific APIs and the W3C DOM2 Core API is a very
thin layer for both IE and Mozilla. Mozilla is very
close to being compliant with the W3C DOM2
standard, while IE is not, but both are close enough
so that the mapping is quite straightforward. Using
the W3C DOM2 API, applications are provided with
the following features:

¢ The ability to add, remove or modify any HTML
element (node in the DOM tree) in the
document

e Each element has its own methods and properties
that can be programmed

e Each element has events to which a listener can
hook.

The DOM API is exposed in a widget called
org.eclipse.swt.browser.DOMBrowser that is im-
plemented as a subclass of the basic browser widget
called org.eclipse.swt.browser. The org.
eclipse.swt.browser.DOMBrowser widget is shown
in Figure 3 in the top layer called “SWT Web
Browser Widget with W3C DOM APL.”

EXAMPLES

In this section we describe some integration
scenarios that use our technology to illustrate the
power of combining Java and Web technologies.

Example 1

Our first example is an online help system. As in
many application environments, Eclipse has a help
system, which is best provided through Web pages.
Advanced help topics are best supported through
dynamic pages, generated by Web applications
running on a Web application server. For that
purpose, Eclipse embeds the Apache Jakarta Tomcat
servlet container as a plug—in.10 With Eclipse 3.0, the
help system creates an external help browser, with
no visual integration or any ability to integrate with
Java logic.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

With our integration technology, a more unified
experience is possible. The Web-browser widget can
be used to embed help pages in a way that is fully
integrated in the Eclipse Workbench environment.
Any Web page with embedded JavaScript or CSS
will display correctly because it is directly rendered
by the embedded browser. Any limitation is due to
the embedded browser, either Mozilla or IE. Beyond
the visual integration, Java-based DHTML allows for
coordination between help pages and the rest of the
Eclipse platform. For example, HTML event han-
dlers can affect the layout of perspectives (an Eclipse
concept), integrate with the Workbench navigation
subsystem, or impact menus and toolbars.

Example 2

Our next example shows how our integration
technology expands the tool-integration capability of
Eclipse to include Web-based tools. Specifically, we
consider tools for developing Apache applications.
Central to such tools are WYSIWYG (what you see is
what you get) editors that enable page designers to
visually build HTML pages. With our integration
technology, such editors can embed an actual Web
browser to render the HTML pages. This avoids the
need to build page preview technologies in Java and
also provides an in-place rendering by the same
Web browser technology that will render the page
when it is deployed.

We are now able to simplify the deployment of Web-
based applications, such as Web-based administra-
tive tools for Apache. This can start with integrating
the UI of Web tools in the Eclipse Workbench for a
seamless experience. But our technology enables a
much more powerful integration because the Web
pages can be programmatically tied to the rest of the
Eclipse platform. For instance, the Web pages
showing the installed applications on the server can
be linked with the Eclipse environment. Typically, if
an application on the server is also a project in the
Workspace, right-clicking the application on the
Web page may provide a navigation menu to the
local project, such as being able to open the
application meta-data (e.g., web.xm1 in J2EE**).
This would be done by hooking a Java listener to the
DOM of the Web page on the particular nodes
representing server-side applications. This requires
an intimate knowledge of the HTML structure of the
Web pages. This approach can be used to adapt
existing Web applications to the surrounding Eclipse
environment.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

Example 3

In another scenario new Web applications can be
designed for the Eclipse platform as a Web-enabled
client platform. The Web application developer
would create an Eclipse plug-in as the front-end
view of the application. For instance, an application
can develop an Eclipse perspective, but the editors
or views would be Web pages. Some pages may be
static and local, whereas others may be dynamic
and generated on the server. As explained above,
those Web pages could be hooked with listeners for
tighter integration to the Eclipse platform. But we
can enhance this further by incorporating other
features such as a pub-sub (publish-subscribe)
mechanism between Web pages and shared data in
the Eclipse environment.

In a previous paper, we discussed how to improve
Web application performance and responsiveness
by generating Web pages that contain a shared data
model."! Using our technology, Web pages can be
further enhanced by extending the range of data
services with which a Web page can be integrated.
The Eclipse plug-in in the preceding scenario can
replicate the shared data using different replication
protocols such as SyncML (an open-standard pro-
tocol for synchronizing data among machines, from
handheld devices to corporate servers). Then, the
plug-in may actually download the HTML pages,
populating them locally through DOM manipula-
tions with the relevant data from the shared data
source. Data filtering and sorting can be easily
applied to enhance the user experience. Addition-
ally, if the data is modified through one view, the
changes can be easily propagated to other views,
providing a de facto local MVC (Model-View-
Controller) paradigm among multiple views sharing
one data model.

This type of integration takes the Web experience a
step further. The user experiences not only a richer
interface but also a more responsive system.
Through DOM manipulations, round trips to the
server are avoided, and rich and responsive
interfaces that are seamlessly integrated into the
Eclipse environment are provided. A front-end
application can work in a disconnected mode,
caching not only the data but also the Web pages.
When connected, the front-end plug-in can com-
municate with server-side logic to manage data and
Web-page updates.

PONZO AND GRUBER

285

RELATED WORK

Our approach extends Eclipse’s Rich Client Platform
properties by integrating Web technologies in a way
that is consistent with the SWT design philosophy,
which promotes direct access to the underlying
native widget toolkit and windowing system.

The integration of widget and Web technologies has
been previously attempted. It was tried in Java with
Swing.12 Swing introduced the idea of HTML
rendering as part of the Swing toolkit, but the
rendering was done in Java—respecting Swing’s all-
Java philosophy. The Mozilla Blackwood project13
was another attempt.

The Blackwood project is a collection of technolo-
gies that promote Java access to the Mozilla/Gecko
Web browser component. One of the main features
of Blackwood is BlackConnect, an object request
broker (ORB) that provides first-class support for
XPCOM in Java. Although BlackConnect goes
beyond the SWT-style integration with XPCOM that
we describe here, it interposes a layer of abstraction
that masks the direct access to the native program-
ming model. For example, it deals with threading
issues and supports out-of-process invocation. The
Blackwood project also provides programming
access to the Gecko Web Browser Component via a
scaled-down version of the DOM 2 API called
JavaDOM.

The Blackwood project is probably the closest
attempt to ours, regarding an integration of the Java
and Web technologies. However, our goals and
design points are different. (For example, we have a
legacy to contend with, that is, the SWT design and
especially its approach to integration with COM.)
Our approach is one of a straightforward and direct
mapping of native interfaces of the underlying
platform. This approach helps with cross-platform
compatibility, limiting non-Java code to a bare
minimum. The Eclipse bridge to XPCOM corre-
sponds to the lowest layer of the BlackConnect
bridge, that which provides direct access to the
binary standard of XPCOM—the virtual table layout.
BlackConnect adds the creation and management of
the stubs and proxies. In contrast, the COM and
XPCOM programming in Eclipse is identical to the
programming done in C/C++. This means that
Eclipse programmers are responsible for reference
counting and multithreading issues.

286 PONZO AND GRUBER

Aside from design issues at the XPCOM level, our
overall goal was different. Following the Eclipse goal
of portable frameworks, we wanted to promote a
portable framework for Web technologies across
Web browsers and operating systems. Hence, our
approach handles both IE and Mozilla. It provides a
common DOM programming framework based on
W3C DOM Level 2 that is mapped to the browser-
specific DOM APIs of IE or Mozilla. However, we
also provide direct access to these browser-specific
DOM APIs, allowing the possibility of leveraging
specific capabilities when necessary.

Microsoft has pioneered some of the same concepts
with COM and IE. Microsoft platform APIs provide
complete integration between the COM component
framework, the native widget toolkit, and the
DHTML support in IE. But most of this support was
previously unavailable to Java developers. Our work
now brings Eclipse up to a similar level of
functionality.

CONCLUSION

In this paper, we describe an approach to integrating
Web technologies in Eclipse. The core of our
implementation, the native bridges and the UI
embedding (Web-browser widget), has been incor-
porated into Release 3.0 of Eclipse. We are currently
working with the Eclipse Foundation to include our
support for DOM programming. This work is already
in use today as a foundation technology within the
IBM Workplace Client Technology.14

In general terms, our work opens Eclipse to DHTML-
style programming in Java. Prior to this integration,
DHTML was restricted to HTML page authoring.
Eclipse applications now have the same level of
functionality and integration as native Windows
applications using IE and COM. Our approach has
several advantages. The use of Java for program-
ming logic avoids the performance issues of
embedded JavaScript in HTML. The tight integration
with the rest of the Eclipse environment enables
applications that are richer in UI and functionality.
Additionally, Eclipse applications are also portable
across operating systems and Web browsers.

As our scenarios illustrate, this integration technol-
ogy is a breakthrough for the Eclipse community. It
enables the integration of Web-based tools and
applications, thus expanding the integration role of
Eclipse. It provides freedom of choice for plug-in

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

developers regarding Ul technologies. Looking for-
ward, it brings Java and Web technologies together
as a solid foundation for the next generation of the
Web. It opens the path for the Eclipse Rich Client
Platform to be a first-class Web client, fronting Web
application servers. The path leads to dynamic
provisioning of Web application front ends that
support a richer and more responsive user experi-
ence as well as a disconnected mode of operation.
Our approach keeps down the total cost of owner-
ship because it allows us to use existing Web
applications while leveraging the power of the Rich
Client Platform.

This work relates to two browsers, Mozilla and IE.
However, our approach could be extended to other
Web browsers—especially in the pervasive-com-
puting world. Any browser that provides an
embeddable engine can be quite easily integrated if
the engine follows either COM or XPCOM conven-
tions. Our approach requires that a browser provide
support for Ul embedding and DOM programming.
If the DOM programming that a browser supports
greatly deviates from the DOM2 API, such as
browsers based on WAP (Wireless Application
Protocol), we can extend our approach and expose
only those DOM APIs that are available. For
browsers that do not provide COM or XPCOM
compliance, we can implement a direct JNI binding
to whatever browser interfaces are available.

Our Web browser middleware built on DOM
programming bridges the divide between the widget
toolkit technology, used by traditional client-based
applications, and the Web browser technology. The
ability to use both widget and browser technologies
in an integrated fashion provides application devel-
opers with a wider range of application integration
possibilities. Using our technology, a legacy Web
application can be integrated within any tool
framework or Rich Client Platform application built
with Eclipse. Similarly, existing Web pages can be
dynamically modified to integrate with other Eclipse
platform features, including presentation and data
services. Our Web browser middleware also pro-
vides a rich palette of UI functionality to developers
building new applications that require a dynamic Ul
layout engine beyond that found in the rest of the
Eclipse SWT. Our support promotes W3C Web
standards as the primary interface to program
browser middleware and thus eliminates Web-
specific dependencies and provides portability. Our

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

technology accelerates the seamless integration of
Web technologies in Eclipse, which will lead to new
applications that share the benefits of these two
worlds.

* Trademark or registered trademark of International Business
Machines Corporation.

** Trademark or registered trademark of Apple Computer,
Inc., Intuit Inc., Linus Torvalds, Massachusetts Institute of
Technology, Microsoft Corporation, Netscape Communica-
tions Corporation, or Sun Microsystems, Inc.

CITED REFERENCES
1. Eclipse.org, Eclipse Foundation, http://
www.eclipse.org/.

2. Eclipse Rich Client Platform, Eclipse Foundation,
http://www.eclipse.org/rcp/.

3. W3C Document Object Model (DOM) Level 2 Specifica-
tion, World Wide Web Consortium, http://www.w3.org/
DOM/DOMTR#dom2.

4. D. Box, Essential COM, Addison Wesley, Boston, MA
(1997).

5. D. Turner and I. Oeschger, Creating XPCOM Componernts,
The Mozilla Organization (2003), http://
www.mozilla.org/projects/xpcom/book/cxc/.

6. HTML and Dynamic HTML, Microsoft Corporation,
http://msdn.microsoft.com/workshop/author/dhtml/
dhtml_node_entry.asp.

7. Embedding Mozilla, The Mozilla Organization, http://
www.mozilla.org/projects/embedding/.

8. K. Brockschmidt, Inside OLE, Microsoft Press (1995).

9. R. Parrish, XPCOM Part 1: An Introduction to XPCOM,
developerWorks, IBM Corporation, http://www.ibm.
com/developerworks/webservices/library/
co-xpcom.html.

10. Apache Jakarta Tomcat, The Apache Foundation, http://
jakarta.apache.org/tomcat/index.html.

11. J. Ponzo, et al.“On Demand Web-Client Technologies,”
IBM Systems Journal 43, No. 2, 297-315 (2004).

12. Java Foundation Classes (JFC/Swing), Sun Microsys-
tems, Inc., http://java.sun.com/products/jfc/index.jsp.

13. Blackwood Project: Java-to-Mozilla Bridge, The Mozilla
Organization, http://www.mozilla.org/projects/
blackwood/.

14. IBM Workplace Client Technology, Rich Edition, IBM
Corporation, http://www.lotus.com/products/
product5.nsf/wdocs/workplaceclienttech.

Accepted for publication February 11, 2005.
Published online April 26, 2005.

John Ponzo

IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598
(jponzo@us.ibm.com). Mr. Ponzo, an IBM Distinguished
Engineer, has a B.S. degree in computer science from
Manhattan College and an M.S. degree in computer science
from Polytechnic University. His major areas of interest are
the Web and its evolution, server-side and client-side

PONZO AND GRUBER

287

programming models, runtime architecture and design, and
Web development tools. He is also interested in “rich client”
applications, which provide a richer user experience and
portal-like client-side aggregation. He made key contributions
to several strategic IBM products, such as WebSphere® Studio
and WebSphere Application Server. His research helped seed
the Lotus Workplace vision, and he was closely involved with
the making of the Lotus Workplace product, which is based on
the Eclipse Rich Client Platform effort.

Olivier Gruber

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, New York, 10532
(orgruber@us.ibm.com). Dr. Gruber received his Ph.D. in the
field of object systems from the University Pierre et Marie
Curie in Paris, France, in 1992. For two years he was with the
French national research institute for computer science
(INRIA) where he led a European project on large-scale
persistent object systems. He joined the IBM Research
Division in 1995. During 1996-97, he led the core team of the
first research prototype of an e-business Web server. That
work, which demonstrated the importance and usability of
Java, dynamic Web pages, personalization, and enterprise
software components, opened the way for the development of
WebSphere® Application Server. In the period 1998-2002, Dr.
Gruber experimented with object technologies in support of
ubiquitous access to information and applications by mobile
users through pervasive devices. He also participated in the
initiation of the Equinox project, which helped reshape Eclipse
into a Rich Client Platform and led to the adoption of the
0OSGi™ technology. W

288 PONZO AND GRUBER IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

