
Integrating Web technologies in
Eclipse

&

J. Ponzo

O. Gruber

In this paper we describe an approach and an implementation for integrating Web

technologies in Eclipse, a Java- and component-based platform. First, we support

embedding of UI (user interface) artifacts that are developed using either widget or

markup technologies. Second, we provide support for DOM (Document Object Model)

programming. We implement this approach by bridging the relevant foundation

technologies—COM (Component Object Model) and XPCOM (Cross Platform

Component Object Model)—which allows us to embed the engines of the two major

browsers, Internet Explorer and Mozillat. We discuss several possible applications of

this work, such as seamless access to online help systems and Web-based

development of administrative tools.

The world of end-user applications has been divided

between Web applications and traditional applica-

tions. Whereas traditional applications use widget

technologies for their user interface (UI), Web

applications use markup rendering technologies,

such as HTML (Hypertext Markup Language), CSS

(Cascading Style Sheets), and scripting (e.g., Java-

Script**). The advantages of combining both tech-

nologies in a single application has recently been

demonstrated in products such as Lotus Notes*,

Quicken**, and Microsoft Money 2005. It is our goal

to offer these advantages in the Eclipse platform.
1

Eclipse, an open-source project that started as a

platform for developing IDEs (Integrated Develop-

ment Environments), is a platform for developing

applications based on software components.

Through components, Eclipse provides integration

frameworks such as the Eclipse Workbench for UI

integration and the Eclipse Workspace for data

integration. Recently, Eclipse has evolved toward

the concept of a Rich Client Platform, the integration

not only of tools but also of applications.
2
With this

goal in mind, we feel that it is particularly important

to appeal equally to Java** and Web developers.

To that end, we integrate Web technologies in

Eclipse. Here we use the term ‘‘integration’’ to imply

a tighter relationship than simple ‘‘embedding.’’ The

integration is performed in two steps: (1) embedding

of UI artifacts, and (2) support for Document Object

Model (DOM) programming. The UI artifacts that

can be embedded in the Eclipse Workbench are

developed by using either widget or markup

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 PONZO AND GRUBER 279

technologies. The DOM is the in-memory parsed tree

of a markup document—most often HTML. Web

browser engines dynamically render the DOM as

they parse Web pages. DOM programming is the

dynamic creation or manipulation of the in-memory

tree, thereby controlling the rendering of the docu-

ment. DOM programming is also used for handling

user-interface events.

For our integration approach in Eclipse, we preserve

the design principle of the Standard Widget Toolkit

(SWT), the cross-platform widget toolkit of Eclipse.
1

SWT implements a thin veneer over existing native

widget capabilities. This thin veneer varies with the

environment because it depends on the windowing

system and on the native widget toolkit. This

approach is well suited for embedding Web brows-

ers. Both Internet Explorer (IE) and Mozilla**

provide embeddable engines that can be exposed to

Java. We extend SWT to make use of these engines

for the parsing and rendering of HTML documents

as well as for providing full DOM application

programming interfaces (APIs). We provide brows-

er-specific DOM APIs, thus giving access to the full

capabilities of each browser when needed.

In addition, it is important to promote a portable

programming model for Web technologies, rather

than a browser-specific one. To achieve this goal,

we also provide the DOM 2 Core API
3
defined by the

World Wide Web Consortium (W3C**). By using

this API (W3C DOM2 for short), we ensure that

Eclipse developers have portability across Web

browsers and operating systems (Windows**, Li-

nux** and Mac OS**).

Our approach is technically an extension of the

approach for integrating native applications pio-

neered by SWT. SWT exposes a bridge in Java for

the Microsoft native component framework COM

(Component Object Model).
4
Our approach also

supports the Mozilla component framework,

XPCOM (Cross Platform Component Object Model).
5

With this foundation in place, it is relatively

straightforward to define a SWT widget for embed-

ding the different Web browsers, thus providing a

common API for navigating HTML pages. However,

providing a common DOM API across Web browsers

is more challenging because of the slight variations

between the existing DOM APIs in IE and Mozilla.

We approach this in two steps. First, we map the

native browser DOM APIs to Java. These straight-

forward but rather numerous mappings are auto-

matically generated from the corresponding

COM/XPCOM IDL (Interface Description Language)

by a COM/XPCOM-IDL-to-Java-Class generator that

we created. Second, we use these Java APIs to

implement the W3C DOM2 API.

Integrating Web technologies significantly enhances

the Eclipse platform. First, it enables the UI

embedding of Web pages. This provides in-place

integration of Web assets, such as Web applications

or Web-based tools. One typical example is the

integration of the HTML help system. Second, it

enables a choice of UI technologies for plug-in

developers. Eclipse views or perspectives may be

developed using either markup or widget technolo-

gies. Java logic can interact with either Java widgets

or HTML markup, providing a rich, seamless user

experience that combines the strengths of both

widget and markup paradigms. Our work opens up

Eclipse to Dynamic HTML (DHTML)
6
for Java.

The rest of the paper is structured as follows. In the

next section we review the necessary background on

the Web browser technologies used by the IE and

Mozilla browsers. In the following section we

describe the design challenges we faced for inte-

grating Web technologies in Eclipse. We first

describe the bridging to the relevant foundation

technologies—COM and XPCOM. Then, building on

these bridges, we discuss our approach to the

embedding of UI artifacts and to supporting DOM

programming. In the section ‘‘Examples,’’ we

discuss several possible applications: online help

systems, integrating development or administrative

tools, and using Eclipse as an advanced application

platform. In the last two sections we cover related

work and conclusions.

WEB BROWSER BACKGROUND

Web browsers have evolved from stand-alone

markup viewers for hypermedia application plat-

forms to today’s desktop browsers—Mozilla and

IE—which offer embeddable engines and the bene-

fits of component frameworks.

XPCOM is the Mozilla binary framework for

components and services. The Mozilla embeddable

engine, Gecko,
7
is an XPCOM component. XPCOM is

derived from Microsoft COM and runs on all

operating systems that Mozilla supports, including

Windows, Linux, and Mac OS. Mozilla as a whole is

PONZO AND GRUBER IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005280

designed as a collection of XPCOM components.

Only after the XPCOM layer is initialized can an

application load Gecko. Gecko’s primary function is

to provide markup rendering.

Gecko first parses markup documents into in-

memory tree structures, called the Document Object

Model (DOM). The rendering happens within a

native window, either a parent or child window, as

provided by the window manager of the platform on

which Gecko runs. Within Gecko, the tree is

manipulated through a DOM API, very similar to the

one defined by the W3C consortium. Gecko then

renders the DOM through its built-in support for

HTML and style sheets (see Figure 1). Through the

DOM API, an HTML document can be created or

incrementally modified. Whenever a DOM tree is

modified, Gecko dynamically and incrementally re-

renders that tree—this dynamic rendering is the

foundation of DHTML.

Gecko also supports plug-ins that can be used to

handle custom tags within HTML markup. These

plug-ins are XPCOM components themselves. For

example, when Gecko loads an HTML document, it

extracts the JavaScript tags and passes them to its

JavaScript interpreter, also an XPCOM component.

Gecko uses the ,embed. tag to handle browser

plug-ins, triggering the loading of XPCOM compo-

nents.

Although the IE architecture is similar to Mozilla’s,

it is based on COM, the Microsoft component

framework from which XPCOM is derived. The

rendering component of IE, the Web Browser

Control, is a COM object that provides similar

functionality to Gecko. The DOM APIs are provided

as COM APIs. IE is as extensible as Gecko but uses

COM for its plug-in model.

COM is a binary standard for object interoperability,

based on virtual tables and calling conventions.

COM is very similar to the binary model adopted by

most Cþþ compilers. An interface maps to a virtual

table that is implemented as an array of function

pointers. All interfaces are subtypes of the root

interface, called IUnknown. The IUnknown interface

supports reference counting and casting from one

interface to another (casting is querying an object,

through one of its interfaces, to determine if it

supports another interface). COM defines the con-

cept of an object as supporting one or more

interfaces, but all interfaces of an object would

return the same virtual table for the IUnknown

interface. The address of this virtual table is

considered the identity of the object.

COM objects are created by special kinds of objects

known as factory objects. Factory objects, which are

normal COM objects, declare themselves to the COM

runtime as factories and identify themselves using

globally unique identifiers. In fact, interfaces are

also identified through globally unique identifiers.

These unique identifiers are used when querying an

object for an interface or asking the COM runtime to

create an instance of a class. Best practices for COM

include the rule that interfaces are immutable (once

published, they will not be modified). After a

component is included in a released product, any

follow-on version of that component preserves the

old interfaces for compatibility, and new interfaces

are added as necessary.

DESIGN CHALLENGES

For the integration of Web technologies in Eclipse,

through either Mozilla or IE, we faced three

challenges. We first had to provide bridges from

Java to the underlying component frameworks,

COM and XPCOM. Then we had to use SWT for

embedding of HTML rendering within a widget-

based user interface. Finally, we had to provide Java

with a DOM API defined by the W3C consortium. In

the following subsections, we discuss each of these

challenges.

Java-COM and Java-XPCOM bridges

As part of SWT, Eclipse includes a primitive bridge

to COM for the Windows platform. It is a core

technology that allows OLE (Object Linking and

Embedding, Microsoft’s earlier object-based tech-

Figure 1
Web browser component

HTML
Document

HTML
Parser

HTML Rendering
Engine

HTML DOM

Rendered
Web Page

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 PONZO AND GRUBER 281

nology) interoperability with SWT and thereby

supports the visual embedding of OLE-compliant

applications such as Microsoft Office.
8
However, the

design of this bridge takes an ad hoc approach.

Specifically, Eclipse surfaces the COM framework

through a class named COM. Its design imposes a

single-thread execution limitation (which was kept

throughout our implementation). This class incor-

porates all the constants that characterize the COM

framework as well as the entry points to the COM

runtime. It also provides support for creating object

factories, which in turn create objects. Following the

C background of the COM framework, reference

counting is explicit, and it is the responsibility of the

Java programmers to correctly increment or decre-

ment the reference counts on COM objects. The COM

class also supports calling methods on created COM

objects through their virtual tables. The calls are

carried through a set of fixed signature functions

(function calls with a fixed set of parameters), with

the virtual table index as the first parameter.

Because this was not a general mechanism, it was

necessary for us to make some minor additions.

These included new fixed-signature function addi-

tions to the COM class, to accommodate calls to COM

interfaces with method signatures not supported by

the previous version of the COM class, and the

creation of a several new COM-framework classes.

Most COM APIs further require that calling appli-

cations also provide COM objects that implement

COM interfaces for callbacks. We therefore must be

able to implement COM objects in Java. This

requires the ability to create virtual tables at a binary

level and expose them to COM. This is done with

minimal C native code with most of the implemen-

tation in Java, specifically in the following two

Eclipse classes: Callback and COMObject (‘‘native’’

here means that we use Java Native Interface, or

JNI, to invoke C modules).

As Figure 2 illustrates, the Callback class provides

native code with function pointers back to Java. In

other words, it creates a C function stub that can

forward a function call to a specific Java method of a

specific object. The supported method signatures are

limited to either multiple parameters of type integer

or a single parameter of the type array of integers.

This Callback class is used to construct Java virtual

tables for COM objects.

The COMObject class is the superclass of all Java

classes exported to COM. It can allocate and fill a

native virtual table by using the Callback class and

dispatching a set of abstract methods to be over-

loaded by a subclass. These abstract methods follow

a simple naming pattern, method
0
to method

n
,

corresponding to the index in the virtual table. Each

Figure 2
Embedding of Web browsers through COM/XPCOM programming in Java

Java XPCOM
Programming

Java COM
Programming

COM Internet
Explorer Embedding

SWT Web Browser Widget
(Mozilla/Gecko Version)

Java COM Bridge

Internet Explorer
Web Browser Control

XPCOM Mozilla
Gecko Embedding

Java XPCOM Bridge

Mozilla/Gecko
Web Browser Control

SWT Web Browser Widget
(Internet Explorer Version)

COMObject class Callback class

Java Native Interface Library

XPCOMObject class Callback class

Java Native Interface Library

PONZO AND GRUBER IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005282

instance of COMObject provides support for export-

ing one COM interface. One or more interfaces can

be used to construct more complex COM objects.

Garbage collection issues, that is, coordinating the

scopes of persistence between the explicit reference

counting in COM and automated garbage collection

in Java, are all of vital importance. In our case we

had to consider these issues in both directions: Java

proxies (the client) for native COM objects and Java

objects (the server) implementing exported COM

objects.

For Java proxies, Java programmers are expected to

count references correctly, adding or releasing

references. The Java proxy may then count Java

references. The reference count has to go to zero

before the proxy may actually become garbage from

the perspective of Java garbage collection. When the

Java reference count goes to zero, the actual

reference to the underlying native COM object may

be released. When the reference count is zero, the

Java proxy is then invalid and should refuse method

invocations.

For Java objects implementing exported COM

objects, the situation is reversed. The reference

count represents the number of native references

(uses) held by native COM objects. It is important

that the Java objects are not freed by the Java

garbage collector as long as that count is not zero.

Because of the way the COMObject class is imple-

mented, instances of COMObject cannot be freed by

the Java garbage collector until they have been

‘‘disposed.’’ Therefore, the Java implementation of a

COM object is responsible for counting its references

accurately (across all its exported COM interfaces)

and should dispose of the corresponding COMObject

instance only after the count reaches zero.

XPCOM is very similar to COM, but the Java-COM

bridge needed modifications. For practical reasons

and the overall acceptance of our work within the

Eclipse community, we decided to create a new

bridge for XPCOM rather than modify the existing

COM bridge. Because XPCOM was derived from

COM, it was very easy to model our XPCOM bridge

on the existing COM one. This new bridge allows us

to interact with the XPCOM framework, the foun-

dation of the Mozilla browser. With these two

bridges, we have the necessary foundation in place.

Embedding of UI artifacts

To embed markup-based UI artifacts in the Eclipse

user interface, we needed to embed the rendering of

Web pages within SWT. Our goal was to create a

Web-browser widget, eliminating the differences

among browsers and providing a simple and

intuitive interface for browsing hyperlinked markup

documents. As with most browsers, the widget has a

concept of a current document and a history of

visited URLs. The widget API provides support for

setting and getting the current URL, navigating back

and forth along the history, refreshing the current

document, and stopping any ongoing download.

Our widget, org.eclipse.swt.browser, derives

from the SWT Composite class. The implementation

of our widget is different for each platform although

the public interface remains the same. On Windows,

we use OLE support, a higher-level API than the

bare COM. First, we create a window (based on the

OleFrame class) as a child element of our composite

widget. Second, we create an instance of

OleControlSite, mapped to the COM component

named Shell.Explorer. This creates the embedded

IE Web browser, using the OleFrame window to

render the HTML documents ‘‘in place.’’ This has

the side effect of initializing OleAutomation, through

which we can control the embedded IE and thereby

implement our widget behavior.

For Mozilla, the steps are quite different because we

have to use XPCOM. There is no equivalent to OLE

in XPCOM. We need to initialize manually the

XPCOM bridge and get access to the XPCOM

Component Manager
9
in order to create a new

instance of the Mozilla Web browser, composed of

several XPCOM objects. However, the overall logic

is similar to the IE version. The Web browser

renders markup in a child window of our SWT

composite widget. The widget controls the embed-

ded Web browser through the Web browser’s own

API.

The embedded browser directly renders the HTML

documents in the child window without any

interaction with the surrounding SWT. This means

that performance is unaltered. This also means that

there is no dependency between the native toolkit

used to render SWT widgets and the native toolkit

used by the embedded browser. The use of a child

window provides enough isolation. This means that

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 PONZO AND GRUBER 283

any locally available Web browser could be used

without widget toolkit compatibility.

Support for DOM programming

DOM programming enables full control over the

manipulation of the tree of HTML elements as

well as the handling of DOM events. Our main goal

was to provide one unique DOM API across

platforms and browsers. We decided to implement

the W3C DOM2 API in order to promote the

standard as the common interface for programming

Web browsers.

Figure 3 illustrates the mapping from the SWT

widget to the Web-browser component. This map-

ping is implemented in a number of steps.

Following SWT design philosophy, we decided to

first map the native browser-specific DOM APIs to

Java. This is illustrated in Figure 3 in the mapping

layer labeled ‘‘Java API Version of Native DOM

Interface.’’ We wrote generators that automatically

produce the Java proxies for the DOM APIs, defined

in COM type libraries for IE and defined in XPCOM

IDL for Mozilla. Given the large size of the HTML

DOM2 API, an automated approach was needed,

especially because the generated proxies are simple

pass-through proxies. The advantage of this ap-

proach is that the full browser-specific DOM APIs

are available, if needed.

Because of the limited portability of the browser-

specific DOM APIs, we also provide the W3C DOM2

API that simplifies platform and browser migration.

This is depicted in Figure 3 in the mapping layer

labeled ‘‘Native DOM to W3C DOM Implementation

Mapping.’’ The mapping layer between the browser-

specific APIs and the W3C DOM2 Core API is a very

thin layer for both IE and Mozilla. Mozilla is very

close to being compliant with the W3C DOM2

standard, while IE is not, but both are close enough

so that the mapping is quite straightforward. Using

the W3C DOM2 API, applications are provided with

the following features:

� The ability to add, remove or modify any HTML

element (node in the DOM tree) in the

document
� Each element has its own methods and properties

that can be programmed
� Each element has events to which a listener can

hook.

The DOM API is exposed in a widget called

org.eclipse.swt.browser.DOMBrowser that is im-

plemented as a subclass of the basic browser widget

called org.eclipse.swt.browser. The org.

eclipse.swt.browser.DOMBrowser widget is shown

in Figure 3 in the top layer called ‘‘SWT Web

Browser Widget with W3C DOM API.’’

EXAMPLES

In this section we describe some integration

scenarios that use our technology to illustrate the

power of combining Java and Web technologies.

Example 1

Our first example is an online help system. As in

many application environments, Eclipse has a help

system, which is best provided through Web pages.

Advanced help topics are best supported through

dynamic pages, generated by Web applications

running on a Web application server. For that

purpose, Eclipse embeds the Apache Jakarta Tomcat

servlet container as a plug-in.
10

With Eclipse 3.0, the

help system creates an external help browser, with

no visual integration or any ability to integrate with

Java logic.

Figure 3
Implementing support for W3C DOM2 programming

SWT Web Browser Widget
with W3C DOM API
(Internet Explorer)

Native DOM to W3C DOM
Implementation Mapping

Java API Version of Native
DOM Interface

Java COM Bridge

Internet Explorer
Web Browser Component

SWT Web Browser Widget
with W3C DOM API
(Mozilla/Gecko)

Native DOM to W3C DOM
Implementation Mapping

Java API Version of Native
DOM Interface

Java XPCOM Bridge

Mozilla/Gecko
Web Browser Component

PONZO AND GRUBER IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005284

With our integration technology, a more unified

experience is possible. The Web-browser widget can

be used to embed help pages in a way that is fully

integrated in the Eclipse Workbench environment.

Any Web page with embedded JavaScript or CSS

will display correctly because it is directly rendered

by the embedded browser. Any limitation is due to

the embedded browser, either Mozilla or IE. Beyond

the visual integration, Java-based DHTML allows for

coordination between help pages and the rest of the

Eclipse platform. For example, HTML event han-

dlers can affect the layout of perspectives (an Eclipse

concept), integrate with the Workbench navigation

subsystem, or impact menus and toolbars.

Example 2

Our next example shows how our integration

technology expands the tool-integration capability of

Eclipse to include Web-based tools. Specifically, we

consider tools for developing Apache applications.

Central to such tools are WYSIWYG (what you see is

what you get) editors that enable page designers to

visually build HTML pages. With our integration

technology, such editors can embed an actual Web

browser to render the HTML pages. This avoids the

need to build page preview technologies in Java and

also provides an in-place rendering by the same

Web browser technology that will render the page

when it is deployed.

We are now able to simplify the deployment of Web-

based applications, such as Web-based administra-

tive tools for Apache. This can start with integrating

the UI of Web tools in the Eclipse Workbench for a

seamless experience. But our technology enables a

much more powerful integration because the Web

pages can be programmatically tied to the rest of the

Eclipse platform. For instance, the Web pages

showing the installed applications on the server can

be linked with the Eclipse environment. Typically, if

an application on the server is also a project in the

Workspace, right-clicking the application on the

Web page may provide a navigation menu to the

local project, such as being able to open the

application meta-data (e.g., web.xml in J2EE**).

This would be done by hooking a Java listener to the

DOM of the Web page on the particular nodes

representing server-side applications. This requires

an intimate knowledge of the HTML structure of the

Web pages. This approach can be used to adapt

existing Web applications to the surrounding Eclipse

environment.

Example 3

In another scenario new Web applications can be

designed for the Eclipse platform as a Web-enabled

client platform. The Web application developer

would create an Eclipse plug-in as the front-end

view of the application. For instance, an application

can develop an Eclipse perspective, but the editors

or views would be Web pages. Some pages may be

static and local, whereas others may be dynamic

and generated on the server. As explained above,

those Web pages could be hooked with listeners for

tighter integration to the Eclipse platform. But we

can enhance this further by incorporating other

features such as a pub-sub (publish-subscribe)

mechanism between Web pages and shared data in

the Eclipse environment.

In a previous paper, we discussed how to improve

Web application performance and responsiveness

by generating Web pages that contain a shared data

model.
11

Using our technology, Web pages can be

further enhanced by extending the range of data

services with which a Web page can be integrated.

The Eclipse plug-in in the preceding scenario can

replicate the shared data using different replication

protocols such as SyncML (an open-standard pro-

tocol for synchronizing data among machines, from

handheld devices to corporate servers). Then, the

plug-in may actually download the HTML pages,

populating them locally through DOM manipula-

tions with the relevant data from the shared data

source. Data filtering and sorting can be easily

applied to enhance the user experience. Addition-

ally, if the data is modified through one view, the

changes can be easily propagated to other views,

providing a de facto local MVC (Model-View-

Controller) paradigm among multiple views sharing

one data model.

This type of integration takes the Web experience a

step further. The user experiences not only a richer

interface but also a more responsive system.

Through DOM manipulations, round trips to the

server are avoided, and rich and responsive

interfaces that are seamlessly integrated into the

Eclipse environment are provided. A front-end

application can work in a disconnected mode,

caching not only the data but also the Web pages.

When connected, the front-end plug-in can com-

municate with server-side logic to manage data and

Web-page updates.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 PONZO AND GRUBER 285

RELATED WORK

Our approach extends Eclipse’s Rich Client Platform

properties by integrating Web technologies in a way

that is consistent with the SWT design philosophy,

which promotes direct access to the underlying

native widget toolkit and windowing system.

The integration of widget and Web technologies has

been previously attempted. It was tried in Java with

Swing.
12

Swing introduced the idea of HTML

rendering as part of the Swing toolkit, but the

rendering was done in Java—respecting Swing’s all-

Java philosophy. The Mozilla Blackwood project
13

was another attempt.

The Blackwood project is a collection of technolo-

gies that promote Java access to the Mozilla/Gecko

Web browser component. One of the main features

of Blackwood is BlackConnect, an object request

broker (ORB) that provides first-class support for

XPCOM in Java. Although BlackConnect goes

beyond the SWT-style integration with XPCOM that

we describe here, it interposes a layer of abstraction

that masks the direct access to the native program-

ming model. For example, it deals with threading

issues and supports out-of-process invocation. The

Blackwood project also provides programming

access to the Gecko Web Browser Component via a

scaled-down version of the DOM 2 API called

JavaDOM.

The Blackwood project is probably the closest

attempt to ours, regarding an integration of the Java

and Web technologies. However, our goals and

design points are different. (For example, we have a

legacy to contend with, that is, the SWT design and

especially its approach to integration with COM.)

Our approach is one of a straightforward and direct

mapping of native interfaces of the underlying

platform. This approach helps with cross-platform

compatibility, limiting non-Java code to a bare

minimum. The Eclipse bridge to XPCOM corre-

sponds to the lowest layer of the BlackConnect

bridge, that which provides direct access to the

binary standard of XPCOM—the virtual table layout.

BlackConnect adds the creation and management of

the stubs and proxies. In contrast, the COM and

XPCOM programming in Eclipse is identical to the

programming done in C/Cþþ. This means that

Eclipse programmers are responsible for reference

counting and multithreading issues.

Aside from design issues at the XPCOM level, our

overall goal was different. Following the Eclipse goal

of portable frameworks, we wanted to promote a

portable framework for Web technologies across

Web browsers and operating systems. Hence, our

approach handles both IE and Mozilla. It provides a

common DOM programming framework based on

W3C DOM Level 2 that is mapped to the browser-

specific DOM APIs of IE or Mozilla. However, we

also provide direct access to these browser-specific

DOM APIs, allowing the possibility of leveraging

specific capabilities when necessary.

Microsoft has pioneered some of the same concepts

with COM and IE. Microsoft platform APIs provide

complete integration between the COM component

framework, the native widget toolkit, and the

DHTML support in IE. But most of this support was

previously unavailable to Java developers. Our work

now brings Eclipse up to a similar level of

functionality.

CONCLUSION

In this paper, we describe an approach to integrating

Web technologies in Eclipse. The core of our

implementation, the native bridges and the UI

embedding (Web-browser widget), has been incor-

porated into Release 3.0 of Eclipse. We are currently

working with the Eclipse Foundation to include our

support for DOM programming. This work is already

in use today as a foundation technology within the

IBM Workplace Client Technology.
14

In general terms, our work opens Eclipse to DHTML-

style programming in Java. Prior to this integration,

DHTML was restricted to HTML page authoring.

Eclipse applications now have the same level of

functionality and integration as native Windows

applications using IE and COM. Our approach has

several advantages. The use of Java for program-

ming logic avoids the performance issues of

embedded JavaScript in HTML. The tight integration

with the rest of the Eclipse environment enables

applications that are richer in UI and functionality.

Additionally, Eclipse applications are also portable

across operating systems and Web browsers.

As our scenarios illustrate, this integration technol-

ogy is a breakthrough for the Eclipse community. It

enables the integration of Web-based tools and

applications, thus expanding the integration role of

Eclipse. It provides freedom of choice for plug-in

PONZO AND GRUBER IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005286

developers regarding UI technologies. Looking for-

ward, it brings Java and Web technologies together

as a solid foundation for the next generation of the

Web. It opens the path for the Eclipse Rich Client

Platform to be a first-class Web client, fronting Web

application servers. The path leads to dynamic

provisioning of Web application front ends that

support a richer and more responsive user experi-

ence as well as a disconnected mode of operation.

Our approach keeps down the total cost of owner-

ship because it allows us to use existing Web

applications while leveraging the power of the Rich

Client Platform.

This work relates to two browsers, Mozilla and IE.

However, our approach could be extended to other

Web browsers—especially in the pervasive-com-

puting world. Any browser that provides an

embeddable engine can be quite easily integrated if

the engine follows either COM or XPCOM conven-

tions. Our approach requires that a browser provide

support for UI embedding and DOM programming.

If the DOM programming that a browser supports

greatly deviates from the DOM2 API, such as

browsers based on WAP (Wireless Application

Protocol), we can extend our approach and expose

only those DOM APIs that are available. For

browsers that do not provide COM or XPCOM

compliance, we can implement a direct JNI binding

to whatever browser interfaces are available.

Our Web browser middleware built on DOM

programming bridges the divide between the widget

toolkit technology, used by traditional client-based

applications, and the Web browser technology. The

ability to use both widget and browser technologies

in an integrated fashion provides application devel-

opers with a wider range of application integration

possibilities. Using our technology, a legacy Web

application can be integrated within any tool

framework or Rich Client Platform application built

with Eclipse. Similarly, existing Web pages can be

dynamically modified to integrate with other Eclipse

platform features, including presentation and data

services. Our Web browser middleware also pro-

vides a rich palette of UI functionality to developers

building new applications that require a dynamic UI

layout engine beyond that found in the rest of the

Eclipse SWT. Our support promotes W3C Web

standards as the primary interface to program

browser middleware and thus eliminates Web-

specific dependencies and provides portability. Our

technology accelerates the seamless integration of

Web technologies in Eclipse, which will lead to new

applications that share the benefits of these two

worlds.

* Trademark or registered trademark of International Business
Machines Corporation.

** Trademark or registered trademark of Apple Computer,
Inc., Intuit Inc., Linus Torvalds, Massachusetts Institute of
Technology, Microsoft Corporation, Netscape Communica-
tions Corporation, or Sun Microsystems, Inc.

CITED REFERENCES
1. Eclipse.org, Eclipse Foundation, http://

www.eclipse.org/.

2. Eclipse Rich Client Platform, Eclipse Foundation,
http://www.eclipse.org/rcp/.

3. W3C Document Object Model (DOM) Level 2 Specifica-
tion, World Wide Web Consortium, http://www.w3.org/
DOM/DOMTR#dom2.

4. D. Box, Essential COM, Addison Wesley, Boston, MA
(1997).

5. D. Turner and I. Oeschger, Creating XPCOM Components,
The Mozilla Organization (2003), http://
www.mozilla.org/projects/xpcom/book/cxc/.

6. HTML and Dynamic HTML, Microsoft Corporation,
http://msdn.microsoft.com/workshop/author/dhtml/
dhtml_node_entry.asp.

7. Embedding Mozilla, The Mozilla Organization, http://
www.mozilla.org/projects/embedding/.

8. K. Brockschmidt, Inside OLE, Microsoft Press (1995).

9. R. Parrish, XPCOM Part 1: An Introduction to XPCOM,
developerWorks, IBM Corporation, http://www.ibm.
com/developerworks/webservices/library/
co-xpcom.html.

10. Apache Jakarta Tomcat, The Apache Foundation, http://
jakarta.apache.org/tomcat/index.html.

11. J. Ponzo, et al.‘‘On Demand Web-Client Technologies,’’
IBM Systems Journal 43, No. 2, 297–315 (2004).

12. Java Foundation Classes (JFC/Swing), Sun Microsys-
tems, Inc., http://java.sun.com/products/jfc/index.jsp.

13. Blackwood Project: Java-to-Mozilla Bridge, The Mozilla
Organization, http://www.mozilla.org/projects/
blackwood/.

14. IBM Workplace Client Technology, Rich Edition, IBM
Corporation, http://www.lotus.com/products/
product5.nsf/wdocs/workplaceclienttech.

Accepted for publication February 11, 2005.

John Ponzo
IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598
(jponzo@us.ibm.com). Mr. Ponzo, an IBM Distinguished
Engineer, has a B.S. degree in computer science from
Manhattan College and an M.S. degree in computer science
from Polytechnic University. His major areas of interest are
the Web and its evolution, server-side and client-side

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 PONZO AND GRUBER 287

Published online April 26, 2005.

programming models, runtime architecture and design, and
Web development tools. He is also interested in ‘‘rich client’’
applications, which provide a richer user experience and
portal-like client-side aggregation. He made key contributions
to several strategic IBM products, such as WebSpheret Studio
and WebSphere Application Server. His research helped seed
the Lotus Workplace vision, and he was closely involved with
the making of the Lotus Workplace product, which is based on
the Eclipse Rich Client Platform effort.

Olivier Gruber
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, New York, 10532
(orgruber@us.ibm.com). Dr. Gruber received his Ph.D. in the
field of object systems from the University Pierre et Marie
Curie in Paris, France, in 1992. For two years he was with the
French national research institute for computer science
(INRIA) where he led a European project on large-scale
persistent object systems. He joined the IBM Research
Division in 1995. During 1996–97, he led the core team of the
first research prototype of an e-business Web server. That
work, which demonstrated the importance and usability of
Java, dynamic Web pages, personalization, and enterprise
software components, opened the way for the development of
WebSpheret Application Server. In the period 1998–2002, Dr.
Gruber experimented with object technologies in support of
ubiquitous access to information and applications by mobile
users through pervasive devices. He also participated in the
initiation of the Equinox project, which helped reshape Eclipse
into a Rich Client Platform and led to the adoption of the
OSGie technology. &

PONZO AND GRUBER IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005288

