W. Harrison

Supporting aspect-oriented
software development with the
Concern Manipulation
Environment

In the past few years, the application of aspect-oriented software development
(AOSD) technologies has helped improve the development, integration, deployment,
evolution, and quality of object-oriented and other software for a growing community
of software developers. The Concern Manipulation Environment (CME) is an open-

H. Ossher
S. Sutton
P. Tarr

source Eclipse project that targets aspect-oriented technologies. The CME contains
task-oriented tools for usage approaches that apply aspect orientation in different

development and deployment scenarios. The CME also provides component- and
framework-level support for building aspect-oriented tools for a variety of types of

software artifacts.

In the past few years, the application of aspect-
oriented software development (AOSD) technolo-
gies has helped improve the development, integra-
tion, deployment, evolution, and quality of object-
oriented and other software for a growing com-
munity of software developers, but, as with any
new development approach, its adoption has been
limited by the availability of supporting technology.
AOSD still lacks tools to support a wide range of
software development tasks, and there are no
standard platforms or reusable and extensible
components designed to facilitate the development
of new AOSD approaches. The Concern Manipula-
tion Environment (CME)l is an open-source Eclipse
project that is intended to help the technology grow
beyond these limitations. As such, it plays two
roles. For developers applying aspect-oriented

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

technology, the CME contains task-oriented tools.
Such tools generally help a particular community of
developers to think about a problem they face and
provide a way of performing specific tasks. How-
ever, it is seldom possible to reduce a large problem
to a series of tasks without a usage approach to
guide thinking in more focused terms. For re-
searchers and developers of these tools, the CME
also provides component- and framework-level
support for building such tools in support of their
usage approaches.

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

HARRISON ET AL

309

A usage approach is a pattern for development. It
consists of (1) a characterization of a problem
domain for which the approach is suitable, (2) a
description of how a developer is expected to
structure solutions for problems in that domain, and
(3) tools or components that support problem
solving with that solution structure. Aspect-oriented
programming,2 for example, is a usage approach
that (1) applies to the problem domain of attaching
additional behavior to an existing software base, (2)
does so by defining aspects containing, for example,
advice that can be attached to the existing base at
join points, and (3) is supported by the program-
ming language AspectJ *> and its compiler and
runtime library, which together are designed for
expressing those constructs and their attachment.
Subject-oriented programming,4 multidimensional
separation of concerns,” composition ﬁlters,6 adap-
tive programming,7 and rnixin—layers8 also provide
approaches to AOSD that can be described in similar
terms, but address other parts of the problem space
in different ways.

Many AOSD approaches emphasize the process of
composition (discussed in more detail later in this
paper), but composition is simply one of the tasks
that make up a large-scale development activity.
Other development tasks require different tools. We
will introduce the notion of an extraction/composi-
tion cycle, during which software is separated and
reintegrated according to concerns, and discuss the
tools needed to support this cycle. (A concern is any
issue of interest in a software system. When a
concern is actualized as a development artifact, the
term concern is also used to refer collectively to the
various elements relating to an issue of interest. In
this context, the term artifact refers to any item of
material or information created or used in the
development of a software system.)

This paper provides an overview of the CME, as well
as references to more detailed material, and is
organized as follows. The next section introduces
aspect-oriented software technology, illustrating its
application to the problem of separating an open-
source base from additional, proprietary enhance-
ments. We then describe the extraction/composition
cycle and the role of the CME in supporting it. The
following section sketches the open architecture of
the CME, emphasizing the ways in which the
extensible characteristics of the components can
support a variety of AOSD approaches in an

310 HARRISON ET AL.

integrated manner. We then discuss experience with
the CME that illustrates how proprietary concerns
can be separated from openly shared concerns and
that shows how the open architecture of CME can be
used to enhance support for additional artifact
languages.

ASPECT-ORIENTED SOFTWARE TECHNOLOGY

In comparison to typical object-oriented software,
aspect-oriented software provides a number of
distinct advantages, which are embodied, in partic-
ular, in its use of aspects and concerns. In the
following subsections we describe these concepts in
more detail and provide an example of their
application.

Advantages of aspect-oriented software

Even the best-written object-oriented code usually
contains classes with fragments that address many
different requirements. As in point-of-sale software
that must also capture location-dependent tax
information, or customer-service software that must
produce service logs, the objects and classes created
for most applications generally tangle together the
handling of a wide variety of concerns. Conversely,
the code or design for logging is not local to one
class but is scattered across many. The scattering
and tangling of code fragments addressing various
concerns make it difficult to understand, maintain,
evolve, or reuse such software in different tasks or
contexts.’

Figure 1 illustrates the problems of scattering and
tangling in the context of a real-world Java** 2
Enterprise Edition (J2EE**) application server. The
application server originally included both basic
capabilities and functionality supporting EJB**
(Enterprise JavaBeans**) containers, as depicted on
the left side of the figure. The code relating to the
EJB container functionality was scattered through-
out the application server and tangled with the other
application server capabilities.

Aspect-oriented software is structured to emphasize
the local organization of code, design, and other
artifacts with respect to concerns of particular
interest, such as the EJB container feature and the
basic J2EE application server capabilities. Material
localized within the artifacts of a concern can be
logically or physically separated from related mate-
rial that applies to other concerns. A complete
application is produced by integrating separate

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

Tangled/Scattered EJB Container Concern in J2EE components

Figure 1

Untangled Base J2EE server classes

Untangled EJB Container Concern

N

=

Tangling and scattering of EJB container concerns in an application server

concerns, a process known as composition. Com-
position is performed according to explicit state-
ments about how the concerns should be put
together.

Aspects and Concerns

Concerns provide a principled and meaningful way
to organize software into manageable, comprehen-
sible, and potentially reusable pieces. This allows all
of the software relating to a given concern to be
treated together and also isolates it from the
software relating to other concerns. For example,
sometimes it is useful to separate the basic
functioning of an application, such as a portfolio-
management system, from its systemic concerns,
such as logging, recovery, transaction handling, and
security. Concerns like these that cut across the
concerns of the basic function are often called
aspects, or crosscutting concerns.” At other times it is
useful to develop software products by using a
common base with a suite of concerns, or features,
which the developers can choose to combine in
various ways to form different products in a product
line. The software for such features may not only cut
into the base software but also need to be integrated
with that of other features as well.” Explicit
separation of software into concerns can be espe-
cially helpful when software to be integrated later is
being developed by independent teams. Because
multi-team development is characteristic of open-
source software, we expect that the combination of
AOSD and open source will prove much more
powerful than either alone.

The concern structure of software is not static. Some

concerns can be identified early in the software’s
lifetime, perhaps from the statement of require-

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

ments, and can be encapsulated at that time. Other
concerns may emerge later. For example, a cus-
tomer may request a new feature (representing a
new concern), or an error may occur that highlights
the need to treat all of the pieces of software
pertaining to that error as a single concern. An
important capability of AOSD is that it promotes the
identification, encapsulation, and manipulation of
concerns on demand, to accommodate the ever-
changing set of concerns that are relevant to a given
software system and its spectrum of stakeholders.

Although AOSD can separate software according to
its concern structure, it cannot automatically resolve
intrinsic conflicts among concerns. However, AOSD
can allow decisions about the handling of conflicts
to be expressed at a higher level than the coding or
design of features. The CME Concern Manager,
discussed later in this paper, does so by addressing
relationships among concerns in a general way. The
application of composition technology, like a pre-
vious generation’s application of compiler technol-
ogy, allows the expression of intent at a high level
and employs software tools to carry out the detailed
software changes implied by those intents in a
mechanical, consistent, and complete manner.

Example: Using AOSD to separate proprietary
and open-source concerns

As a way of structuring software, AOSD holds
promise for simplifying the creation of software that
is partly open-source and partly proprietary. For
example, in the J2EE application server shown in
Figure 1, the basic capabilities might be offered as
open source; whereas, the EJB container support
might be a proprietary, value-added capability, as
shown on the right side of the figure. This

HARRISON ET AL

311

Base Document : .
Creation Application Document Manipulation
Representation Function

+ Team ‘

Development interaction

capture ‘mitia//'zat/'on

+ Crash

Recovery
interaction

marking

update
capture

Figure 2

A concern-based approach to separating core
functionality from proprietary team development and
crash recovery features

combination strengthens the technical and business-
case viability of open-source software. This is
because it allows developers and researchers to
share common frameworks and components but still
integrate proprietary support for additional concerns
into that software simply, and possibly at a later
time. Code-level support for AOSD is already
beginning to gain acceptance in practice, and

Extraction
4%%
al®
e W
& A
s Az
Composition
Figure 3

The extraction/composition cycle

312 HARRISON ET AL

component- and design-level support are currently
being explored.

Consider, for example, the challenge of providing a
common open source for the core functions of a
document-creation tool while maintaining the abil-
ity to provide proprietary extensions for team
development and crash recovery requirements. A
concern-based solution might look like the one
shown in Figure 2, wherein the open-source base
contains objects representing the document itself
and providing the document manipulation function.
Two proprietary concerns are then developed. The
concern for team development captures the devel-
opers’ interactions and passes them through its own
objects, providing connectivity and arbitration, to
other team members’ software, which injects them
into their interaction streams in an appropriate
manner. When the document creation application is
initialized, the links to other team members must be
established as well. The concern for the crash
recovery feature intercepts and logs updates to the
representation, providing logical recovery points at
these intercepted interactions. In both cases, the
proprietary features contain new classes as well as
material that must be integrated with existing
classes in the base application. Directions for how
the new material is to be integrated with the base are
provided by directives that contain both a query to
identify the corresponding points in the new
material and the base, and a model of how the new
material and base are to be attached. For example,
update capture may indicate that when any field in
an object of some particular class is updated, a
method is to be invoked that is defined for that class
in the crash recovery concern. That method can log
the old value of the field before doing the update.

SUPPORTING EXTRACTION AND COMPOSITION
OF SOFTWARE CONCERNS

In the following sections, we introduce the notion of
an extraction/composition cycle, shown schemati-
cally in Figure 3, during which software is separated
and reintegrated according to concerns. We then
introduce the CME and discuss its role in supporting
this cycle.

The extraction/composition cycle

Although much discussion of aspect-oriented tech-
nology begins with scenarios like the one described
previously, in which the different aspects or
concerns are composed, the availability of compo-

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

sition engines for concerns also significantly sup-
plements our ability to decompose software simul-
taneously according to many different kinds of
concerns. We are then able to effectively recompose
the separated concerns back into a variety of useful
applications. This enables us to bring even more
advanced capabilities to bear on the problem of
restructuring existing software bodies, such as the
J2EE application server (Figure 1), in which
scattered, tangled concerns such as the EJB-con-
tainer concern can be gathered together into a
single, encapsulated concern, noninvasively (i.e.,
logically rather than physically). The ability to
decompose existing software into concerns requires
the ability to identify concerns and the software
elements relating to those concerns in the existing
software. It also requires the ability to encapsulate
those elements, either physically or logically, within
an additional concern. In the case where encapsu-
lation is physical, identification and encapsulation
together are termed extraction. Encapsulated con-
cerns can themselves then be subject to further
software development activities, including extrac-
tion and composition. These complementary capa-
bilities of extraction and composition are the
fundamental processes that AOSD adds to the
software development repertoire. These activities
can and should be applied to artifacts at all stages of
the development process, including the require-
ments analysis, design, coding, and any other
relevant stages. Indeed, research into the application
of aspect-oriented concepts to requirements, design,
and testing has already begun.g’10

The Concern Manipulation Environment

The CME aims to support the extraction/composi-
tion cycle throughout the entire software life cycle
by providing both a suite of tools for developers and
a platform upon which tool builders and researchers
can create such tools.

Different AOSD approaches, such as those noted in
the introduction to this paper, have been applied to
part or all of the extraction/composition cycle, and
each has its advocates.”™® Unfortunately, the devel-
opment of tools to realize these different AOSD
approaches represents a huge investment of time
and effort, as each one must currently be built from
scratch or from low-level abstractions. Conse-
quently, the tools represent isolated point solutions
and rarely have any ability to interoperate or be
integrated. They fail, therefore, to provide devel-

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

opers and other stakeholders with appropriate and
effective ways of thinking about their software’s
structure and the overall process by which it is
developed, deployed, used, and evolved. This has
hindered the development of full-life-cycle AOSD. It
has also significantly hindered the use of existing
tools and paradigms by application developers, who
find themselves unable to use available tools and
paradigms together. Thus we have dual motivations
for developing the CME: to support economy of
development of AOSD tools and methods, and to
provide wide-spectrum accessibility through a
common idiom. These requirements strongly sug-
gest the need for a component-based environment
within which research and development can pro-
gress and significant development efforts using
aspect-oriented tools and methods can be under-
taken.

The CME was first demonstrated at the Third
International Conference on Aspect-Oriented Soft-
ware Development (AOSD 2004). The initial soft-
ware base was developed jointly by teams at the
IBM Hursley Development Laboratory and the IBM
Thomas J. Watson Research Center. Tools currently
available include support for querying software,
defining concerns based on queries, modeling
concerns, browsing and visualizing software from
multiple points of view based on concerns and
relationships, and composing aspects and other
concerns. The tools apply uniformly to different
kinds of artifacts, allowing, for example, relation-
ships across artifacts to be shown and navigated.
Most have Eclipse user interfaces, although some
(and in particular all the underlying components)
can be used outside the context of Eclipse if desired.

A COMPONENT SUITE FOR BUILDING ASPECT-
ORIENTED TOOLS

For tool builders and researchers, the CME provides
a suite of open-source components upon which they
can build AOSD tools. The term “open source” can
simply mean making software source code available
for open development. However, structuring open-
source software as an open-component suite has the
additional advantage of allowing individual con-
tributors to focus efforts on enhancing smaller
software elements while preserving the ability to
connect and share these elements. Being able to
leverage one another’s work allows the community
to avoid building from scratch. Instead, developers

HARRISON ET AL

313

Specialized Loaders

assembler

assembler

assembler

assembler

Figure 4
Partial CME component architecture

CIT Loader

Concern
Manipulation
API

can share solutions to parts of the overall problem in
order to realize larger solutions.

The CME exploits this open-source/open-architec-
ture theme. For maximum flexibility, the initial CME
implementation employs open-points at several
levels of granularity, including both larger abstract
components with supporting frameworks and
smaller strategies and plug-ins. An open-point in a
software system is a place where additional, op-
tional, or externally provided software is expected to
be incorporated, presumably in some planned-for
manner. Although additions may be made at any
point in open-source development, open-points
generally provide locations at which the manner of
extension is made simpler, clearer, and more robust.

Abstract components

The CME architecture is illustrated in Figure 4.
Abstract components, introduced in bold italics in
the text, are the first-order open-points of the CME
architecture. Each plays a distinct role in realizing
the extraction/composition cycle. These compo-
nents are described by their APIs (application
programming interfaces), and their implementations
depend only on the APIs of the other components.
Abstract factories are used to shield clients and other
components from knowledge of the implementation
class structure within a component. The CME also

314 HARRISON ET AL

includes concrete instances of these components to
provide both basic functionality and examples of
implementation. The initial set of concrete compo-
nents in the Eclipse project are themselves generally
designed to be extended with strategies and plug-
ins, giving rise to a second-order set of open-points.

This paper can describe neither the concrete
components nor the strategies and plug-in oppor-
tunities they present in great detail. However, such
details can be found in the collection of research
reports comprising References 11-14.

Support for manipulation of concern-structured
software in the CME corresponds to the extraction/
composition cycle discussed previously. The Con-
cern Manager component, shown in Figure 4,
provides a starting point for discussion. The Con-
cern Manager is the (abstract) component used to
hold and manipulate a model that identifies con-
cerns and describes both the units of software they
contain and their relationships. Units represent
software artifacts, like classes, methods, or UML**
(Unified Modeling Language) diagrams. Concerns
here are groups of concern model elements, listed
explicitly (extensionally) or specified as queries
(intensionally). Relationships can be derived from
software artifacts, such as references or depen-
dencies, or inserted by tools, for example, in cases

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

where relationships have been asserted by the
developer. ConMan'' is a concrete component
fulfilling the Concern Manager API.

In order to work with a body of software, the
concern model must first be populated with units,
concerns, and relationships modeling the artifacts
themselves (blue) and their structure, according to
the AOSD approach being used. This is done by
means of abstract components called Loaders
(yellow). One concrete implementation provided for
the Loader API is a generic loader. Generic CME
components obtain specific information about arti-
facts using other components called Concern In-
formants (orange) that are specific to particular
kinds of artifacts. The Concern Informant Toolkit
(CIT) API is similar in content to the Java Reflection
API,15 but expressed as interfaces instead of abstract
classes to permit greater breadth of implementation.
In addition, the CIT API applies to a wider variety of
software structures than just Java, including simpler
artifacts having only a nested container model with
interpretable material at the leaves. The CIT API can
also express information like weaving directives that
are unique to aspect-oriented software.

Once loaded, the concern model can be manipulated
by the developer, who can form queries about the
material in the various artifacts (evaluated by the
Query component), and further structure the mate-
rial into other concerns appropriate for the task at
hand. Information in a concern model or accessible
through the CIT API can in turn be accessed through
the Query API, implemented by concrete compo-
nents called Panther and Puma.'” Panther is the
query-language processor, and Puma is the query
engine. These permit plug-in extension to address
the need to add additional relationship types, entity
types, data organizations, and query language
constructs for various AOSD approaches.

The structuring of software elements into concerns
represents a logical (non-invasive) encapsulation of
those concerns. When a developer has a software
model expressed as concerns, those concerns can be
used to produce new artifacts, by extraction (physi-
cally separating concerns into new, disentangled
artifacts) and composition (physically integrating
concerns into new, composed artifacts). Contribut-
ing to CME’s flexibility in integrating different AOSD
approaches, Builders (tan) perform this role, often
aided by other components. Some of these operate

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

on specific kinds of artifacts, as does Aspect] 2
Others, like CCC (the Concern Composition Com-
ponent),13 provide more generic capabilities tailored
by strategies to meet specific semantic requirements,
as discussed later in this paper. Just as the creation
of generic loaders is enabled by the existence of the
concern informants, creation of generic builders is
enabled by using specific, artifact-format-dependent
components called Concern Assemblers (orange).
The Concern Assembler Toolkit (CAT) API' defines
a low-level API for creating artifacts that result from
the composition of other artifacts. Its interfaces
support the copying of source artifacts, the remap-
ping of references they may contain to other
artifacts, and the creation of sequences to control
the order of execution of appropriate material.

Frameworks for abstract components

It is common for some abstract components to have
many implementations, in which case the imple-
mentations to be used are provided as plug-ins.
Examples in CME include loaders, builders, concern
informants, and concern assemblers, which provide
access to artifacts across the whole software life
cycle. In this context, artifacts are expected to
include requirements, use cases, Cosmos concern
models,'® UML designs, source and executable code,
test suites, documentation, images, build scripts
such as Ant'’ files or make files, packaging
constructs such as JAR (Java archive) files, deploy-
ment descriptors, and the like. CME contains
frameworks to assist in creating concrete compo-
nents for manipulating such artifacts.

Extension points for concrete components
Many of the CME concrete components contain
extension points. This often allows new approaches
to be developed as variants of existing approaches, a
more economical process than the writing of entirely
new concrete components. Thus, CCC provides
generic composition capabilities, not based on the
details of any specific kind of artifact. However,
many artifacts have special composition semantics.
For example, composing Java involves simple issues
such as handling its particular set of modifiers
(public, static, etc.), and much more complex issues
such as ensuring that the composed class hierarchy
has no multiple inheritance and handling the
construction protocol correctly for composed con-
structors. These artifact-specific issues are handled
by a rectification strategy. Other languages can also
be composed by CCC, provided suitable rectification

HARRISON ET AL

315

strategies are supplied for them. Similarly, Puma
accepts plug-ins that implement artifact-specific
query operations, and ConMan accepts loaders and
builders as plug-ins.

Supporting new kinds of artifacts on the CME
Assuming the existence of a base of software for
manipulating a new kind of artifact, such as a Java
bytecode toolkit or an XML (Extensible Markup
Language) parser, a few “person weeks” of devel-
opment are generally needed to implement a CIT
API, producing a concern informant for this artifact
and enabling the artifact to be loaded using the
generic CIT loader. If new kinds of relationships or
new attributes are needed to enhance the concern
model and query capabilities, a few more person
weeks are needed to create additional loader plug-
ins and query extensions. If it is desired to compose
new kinds of artifacts, either an existing composi-
tion engine can be introduced, as was done for
Aspect]J, or the CCC composition engine can be used
by supplying an implementation of the CAT API.
Using the existing frameworks, this task generally
takes a few person months of effort and results in a
new concern assembler. However, if the new kinds
of artifacts have particular constraints that are not
accommodated by general composition, a new
rectification strategy must be implemented for CCC,
as discussed previously. Depending on the com-
plexity of the semantics, this can require develop-
ment time ranging from one or two person weeks to
a much more significant effort.

EXPERIENCE

Although the CME is an ongoing open-source effort,
there have already been two specific efforts that
indicate its value both for development of aspect-
oriented software and for development and inte-
gration of tools and technologies that support AOSD.
The first of these projects involved an application of
some of the CME components to a large-scale
application server, and the second involved addi-
tional tool and component software that has been
added to CME since that time.

Separating EJB support from a J2EE application
server

Although our Hursley partners have reported on this
work in detail elsewhere,18 we briefly summarize
the experience here to illustrate the claim made
earlier about separation of open-source and propri-
etary software.

316 HARRISON ET AL

We and others'”*° believe that the application of
AOSD technologies to middleware technology is an
area of great importance. Thus, an experiment was
conducted to separate the deeply tangled support for
EJBs from the remainder of the application server
shown earlier in Figure 1, a system comprising some
15,000 classes, so that

1. a properly functioning base application server
without EJB support could be built that would fail
gracefully if EJB capabilities were used, and

2. using tools that could be applied to software in
binary form, the EJB support could be added to
this base application to build a properly func-
tioning application server with EJB support.

The experiment was completed successfully using a
combination of the AspectJ compiler and the loader,
concern manager, and query component prototypes
from the CME concrete component suite. CME
concern modeling was used to model the EJB
concern (which evolved as the experiment pro-
gressed) and the other components and their
relationships. The query capability was used to
determine where other components were dependent
on the EJB concern, and proved much more efficient
than tools tried previously. Those dependencies
were then removed, sometimes by object-oriented
refactoring and sometimes by refactoring into
Aspect] aspects. A side experiment used pure Java
and the CCC composition engine (Figure 4) to
achieve similar results on a small subset of the cases
in which aspects were created.

This experiment illustrates the fact that, should it
prove desirable, it is possible to construct software
composed of an open-source component as complex
as an application server, and then later add
proprietary support for additional concerns as
complex as the support of EJBs to the binary form of
this software.

Extending the CME concrete component suite
Since the conclusion of the EJB-extraction experi-
ment, the set of languages supported by CME has
been extended from its pure Java base through the
addition of Ant'~ and Aspect] support. Ant is a
language similar to that in the UNIX** make utility
but intended for describing software builds in XML.
Because Ant artifacts are an integral part of a body
of software, it is desirable to include them in the
concern model along with Java artifacts. This was

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

accomplished simply by building a small Ant loader
component using the CME extensible loader archi-
tecture, a task which required two person weeks of
development. This loader added the units, concerns,
and relationships needed to represent Ant to the
concern model. It was then immediately possible to
use the CME tools mentioned previously to work
with Ant artifacts, including navigating from Ant
artifacts to the Java artifacts to which they referred.

Support for the Aspect]J programming language was
also added to the CME. Unlike the Ant loader, the
AspectJ loader was implemented by providing a
concern informant component for AspectJ thatis used
by the generic CIT loader and by other components
needing information about the AspectJ programs.

CONCLUSIONS

In this paper we have demonstrated the fact that
aspect-oriented software technology has a synergis-
tic relationship with open-source development. Not
only does AOSD simplify the loosely coordinated
development of elements that fit within a broader
architecture, but it also promotes the unbundling of
software into open and proprietary components. We
have highlighted the fact that the CME can
materially assist with the separation and reintegra-
tion of concerns in software in general and is
therefore of interest to anyone needing support for
using AOSD in open-source development. Finally,
we have outlined the open architecture of the CME
and described and illustrated how it reinforces its
own use of open source when providing new
support for developers using AOSD approaches.

ACKNOWLEDGMENTS

We thank our Hursley partners, Matt Chapman, Andy
Clement, Adrian Colyer, Helen Hawkins, and Sian
January, for the important roles they have played in
this joint development effort. This research was
supported in part by the Defense Advanced Research
Projects Agency under grant NBCHC020056.

** Trademark or registered trademark of Object Management
Group, the Palo Alto Research Center, Inc., Sun Microsystems,
Inc., or The Open Group.

CITED REFERENCES
1. Concern Manipulation Environment, Eclipse Foundation,
http://www.eclipse.org/cme/.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

10.

11.

12.

13.

14.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Videira Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-
Oriented Programming,” Proceedings of the 11th Euro-
pean Conference on Object-Oriented Computing
(ECOOP’97), Jyvdaskyld, Finland, June 9-13, 1997,
Lecture Notes on Computer Science, Vol. 1241, Springer-
Verlag, New York (1997), pp. 200-242.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold, “An Overview of Aspect]J,”
Proceedings of the 15th European Conference on Object-
Oriented Programming (ECOOP 2001), Budapest, Hun-
gary, June 18-22, 2001, Lecture Notes on Computer
Science, Vol. 2072, Springer-Verlag, New York (2001), pp.
327-353.

W. Harrison and H. Ossher, “Subject-Oriented Program-
ming: A Critique of Pure Objects,” Proceedings, of the 8th
Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’93),
Washington, DC, September 26-October 1, 1993, ACM,
New York (1993), pp. 411-428.

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr., “N
Degrees of Separation: Multi-Dimensional Separation of
Concerns,” Proceedings of the 21st International Confer-
ence on Software Engineering (ICSE’99), Los Angeles, CA,
May 16-22, 1999, ACM, New York (1999), pp. 107-119.

M. Aksit, L. Bergmans, and S. Vural, “An Object-Oriented
Language-Database Integration Model: The Composition-
Filters Approach,” Proceedings of the 6th European
Conference on Object-Oriented Programming (ECOOP
1992), Utrecht, The Netherlands, June 29-July 3, 1992,
Lecture Notes on Computer Science, Vol. 615, Springer-
Verlag, New York (1992), pp. 372-395.

K. Lieberherr, D. Orleans, and J. Ovlinger, “Aspect-
Oriented Programming with Adaptive Methods,” Com-
munications of the ACM 44, No. 10, 39-41 (2001).

D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling Step-
Wise Refinement,” Proceedings of the 25th International
Conference on Software Engineering (ICSE’03), Portland,
OR, May 3-10, 2003, ACM, New York (2003), pp. 187-

197.

S. Clarke, W. Harrison, H. Ossher, and P. Tarr, “Subject-
Oriented Design: Towards Improved Alignment of Re-
quirements, Design, and Code,” Proceedings of the
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’99), Denver, CO,
November 1-5, 1999, ACM, New York (1999), pp. 325-
339.

S. Clarke and R. Walker, “Towards a Standard Design
Language for AOSD,” Proceedings of the 1st International
Conference on Aspect-Oriented Software Development
(AOSD 2002), Enschede, The Netherlands, April 22-26,
2002, ACM, New York (2002), pp. 113-119.

W. Harrison, H. Ossher, S. Sutton, and P. Tarr, Concern
Modeling in the Concern Manipulation Environment,
Research Report RC-23344, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY (October 2004).

P. Tarr, W. Harrison, and H. Ossher, Pervasive Query
Support in The Concern Manipulation Environment,
Research Report RC-23343, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY (October 2004).

W. Harrison, H. Ossher, and P. Tarr, Concepts for
Describing Composition of Software Artifacts, Research
Report RC-23345, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY (October 2004).

W. Harrison, H. Ossher, P. Tarr, V. Kruskal, and F. Tip,
CAT: A Toolkit for Assembling Concerns, Research Report

HARRISON ET AL

317

RC-23345, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY (April 2002).

15. D. Green, Trail: The Refelection API, Sun Microsystems,
Inc., http://java.sun.com/docs/books/tutorial/reflect/.

16. S. Sutton Jr. and I. Rouvellou, “Modeling of Software
Concerns in Cosmos,” Proceedings of the 1st International
Conference on Aspect-Oriented Software Development
(AOSD 2002), Enschede, The Netherlands, April 22-26,
2002, ACM, New York (2002), pp. 127-133.

17. The Apache Ant Project, The Apache Software Founda-
tion, http://ant.apache.org/.

18. A. Colyer and A. Clement, “Large-Scale AOSD for
Middleware,” Proceedings of the 3rd International Con-
ference on Aspect-Oriented Software Development (AOSD
2004), Lancaster, UK, March 22-26, 2004, ACM, New
York (2004), pp. 56-65.

19. E. Wohlstadter, S. Jackson, and P. Devanbu, “DADO:
Enhancing Middleware to Support Crosscutting Features
in Distributed, Heterogeneous Systems,” Proceedings of
the 25th International Conference on Software Engineer-
ing (ICSE’03), Portland, OR, May 3-10, 2003, ACM, New
York (2003), pp. 174-186.

20. T. Cohen and J. Gil, “AspectJ2EE = AOP + J2EE:
Towards an Aspect Based, Programmable and Extensible
Middleware Framework,” Proceedings of the 18th Euro-
pean Conference on Object-Oriented Programming
(ECOOP 2004), Oslo, Norway, June 14-18, 2004, Lecture
Notes on Computer Science, Vol. 3086, Springer-Verlag,
New York (2004), pp. 221-245.

Accepted for publication November 1, 2004.
Published online April 7, 200S.

William Harrison

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (harrisn@us.ibm.com).
Mr. Harrison has been with IBM since 1966, and has been
associated with the IBM Thomas J. Watson Research Center
since 1970. In development, he worked on the design and
implementation of IBM operating systems. He has been active
first in research on and the design of languages, compilers,
and optimization, and subsequently in the design of advanced
integrated software development environments. He has been
recognized with several Outstanding Contribution and
Innovation Awards, the most recent of which was for the
innovation and development of subject-oriented programming,
an early formulation of what has come to be called aspect-
oriented software development. He has been a member of the
IBM Academy of Technology since 1995.

Harold Ossher

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (ossher@us.ibm.com).
Mr. Ossher has been a researcher at the IBM Thomas J.
Watson Research Center since 1986. His efforts on software
environments and tool integration led in 1992 to early work in
the area that has come to be called aspect-oriented software
development. He is one of the originators of subject-oriented
programming, multi-dimensional separation of concerns and
Hyper/J, and the Concern Manipulation Environment. A spin-
off of this latter research included a framework for performing
matching and reconciliation of information models that
evolved into EMF Edit and Mapping Frameworks, which has
been released as open-source software by IBM. He was
General Chair of the First International Conference on Aspect-
Oriented Software Development in 2002 and is a member of
the AOSD Steering Committee that oversees the conference
series.

318 HARRISON ET AL

Stanley Sutton

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (suttons@us.ibm.com).
Dr. Sutton received his Ph.D. in computer science from the
University of Colorado in 1990. He has worked in both
academia and industry in the areas of middleware, software
quality, software process, and aspect-oriented software
development. He has been a visiting scientist and a consultant
at the IBM Thomas J. Watson Research Center, where he
currently works as a software engineer on the Concern
Manipulation Environment project. He has served on program
committees for the International Conference on Aspect-
Oriented Software Development and numerous workshops
relating to AOSD. He is one of the originators of the multi-
dimensional separation of concerns approach to AOSD and is
the principal author of the Cosmos concern-modeling schema.

Peri Tarr

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (tarr@us.ibm.com). Dr.
Tarr received her Ph.D. from the University of Massachusetts
in 1996 and has been a researcher at the Thomas J. Watson
Research Center since that time. She is the technical co-lead of
the Concern Manipulation Environment open-source project,
of which she was one of the inventors. Throughout her career,
she has worked on many aspects (no pun intended) of the
problem of reducing and managing software complexity. She
has worked in the areas of software engineering
environments, software consistency and inconsistency
management, integration, interoperability, and AOSD. She
was one of the originators of the multi-dimensional separation
of concerns approach to AOSD—one of the seminal pieces of
work in this area—and its first realization in the Hyper/J tool,
which was later used in various forms in a number of research
and industrial efforts. Her research focuses on AOSD
throughout the software life cycle and on morphogenic
software (software that remains malleable throughout its
lifetime). She has served on numerous organizing and
program committees for all of the major conferences in
software engineering, and she is currently serving as Program
Chair for AOSD 2005. W

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

