
Supporting aspect-oriented
software development with the
Concern Manipulation
Environment

&

W. Harrison

H. Ossher

S. Sutton

P. Tarr

In the past few years, the application of aspect-oriented software development

(AOSD) technologies has helped improve the development, integration, deployment,

evolution, and quality of object-oriented and other software for a growing community

of software developers. The Concern Manipulation Environment (CME) is an open-

source Eclipse project that targets aspect-oriented technologies. The CME contains

task-oriented tools for usage approaches that apply aspect orientation in different

development and deployment scenarios. The CME also provides component- and

framework-level support for building aspect-oriented tools for a variety of types of

software artifacts.

In the past few years, the application of aspect-

oriented software development (AOSD) technolo-

gies has helped improve the development, integra-

tion, deployment, evolution, and quality of object-

oriented and other software for a growing com-

munity of software developers, but, as with any

new development approach, its adoption has been

limited by the availability of supporting technology.

AOSD still lacks tools to support a wide range of

software development tasks, and there are no

standard platforms or reusable and extensible

components designed to facilitate the development

of new AOSD approaches. The Concern Manipula-

tion Environment (CME)
1
is an open-source Eclipse

project that is intended to help the technology grow

beyond these limitations. As such, it plays two

roles. For developers applying aspect-oriented

technology, the CME contains task-oriented tools.

Such tools generally help a particular community of

developers to think about a problem they face and

provide a way of performing specific tasks. How-

ever, it is seldom possible to reduce a large problem

to a series of tasks without a usage approach to

guide thinking in more focused terms. For re-

searchers and developers of these tools, the CME

also provides component- and framework-level

support for building such tools in support of their

usage approaches.

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 HARRISON ET AL. 309

A usage approach is a pattern for development. It

consists of (1) a characterization of a problem

domain for which the approach is suitable, (2) a

description of how a developer is expected to

structure solutions for problems in that domain, and

(3) tools or components that support problem

solving with that solution structure. Aspect-oriented

programming,
2
for example, is a usage approach

that (1) applies to the problem domain of attaching

additional behavior to an existing software base, (2)

does so by defining aspects containing, for example,

advice that can be attached to the existing base at

join points, and (3) is supported by the program-

ming language AspectJ**
3
and its compiler and

runtime library, which together are designed for

expressing those constructs and their attachment.

Subject-oriented programming,
4
multidimensional

separation of concerns,
5
composition filters,

6
adap-

tive programming,
7
and mixin-layers

8
also provide

approaches to AOSD that can be described in similar

terms, but address other parts of the problem space

in different ways.

Many AOSD approaches emphasize the process of

composition (discussed in more detail later in this

paper), but composition is simply one of the tasks

that make up a large-scale development activity.

Other development tasks require different tools. We

will introduce the notion of an extraction/composi-

tion cycle, during which software is separated and

reintegrated according to concerns, and discuss the

tools needed to support this cycle. (A concern is any

issue of interest in a software system. When a

concern is actualized as a development artifact, the

term concern is also used to refer collectively to the

various elements relating to an issue of interest. In

this context, the term artifact refers to any item of

material or information created or used in the

development of a software system.)

This paper provides an overview of the CME, as well

as references to more detailed material, and is

organized as follows. The next section introduces

aspect-oriented software technology, illustrating its

application to the problem of separating an open-

source base from additional, proprietary enhance-

ments. We then describe the extraction/composition

cycle and the role of the CME in supporting it. The

following section sketches the open architecture of

the CME, emphasizing the ways in which the

extensible characteristics of the components can

support a variety of AOSD approaches in an

integrated manner. We then discuss experience with

the CME that illustrates how proprietary concerns

can be separated from openly shared concerns and

that shows how the open architecture of CME can be

used to enhance support for additional artifact

languages.

ASPECT-ORIENTED SOFTWARE TECHNOLOGY

In comparison to typical object-oriented software,

aspect-oriented software provides a number of

distinct advantages, which are embodied, in partic-

ular, in its use of aspects and concerns. In the

following subsections we describe these concepts in

more detail and provide an example of their

application.

Advantages of aspect-oriented software

Even the best-written object-oriented code usually

contains classes with fragments that address many

different requirements. As in point-of-sale software

that must also capture location-dependent tax

information, or customer-service software that must

produce service logs, the objects and classes created

for most applications generally tangle together the

handling of a wide variety of concerns. Conversely,

the code or design for logging is not local to one

class but is scattered across many. The scattering

and tangling of code fragments addressing various

concerns make it difficult to understand, maintain,

evolve, or reuse such software in different tasks or

contexts.
5

Figure 1 illustrates the problems of scattering and

tangling in the context of a real-world Java** 2

Enterprise Edition (J2EE**) application server. The

application server originally included both basic

capabilities and functionality supporting EJB**

(Enterprise JavaBeans**) containers, as depicted on

the left side of the figure. The code relating to the

EJB container functionality was scattered through-

out the application server and tangled with the other

application server capabilities.

Aspect-oriented software is structured to emphasize

the local organization of code, design, and other

artifacts with respect to concerns of particular

interest, such as the EJB container feature and the

basic J2EE application server capabilities. Material

localized within the artifacts of a concern can be

logically or physically separated from related mate-

rial that applies to other concerns. A complete

application is produced by integrating separate

HARRISON ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005310

concerns, a process known as composition. Com-

position is performed according to explicit state-

ments about how the concerns should be put

together.

Aspects and Concerns

Concerns provide a principled and meaningful way

to organize software into manageable, comprehen-

sible, and potentially reusable pieces. This allows all

of the software relating to a given concern to be

treated together and also isolates it from the

software relating to other concerns. For example,

sometimes it is useful to separate the basic

functioning of an application, such as a portfolio-

management system, from its systemic concerns,

such as logging, recovery, transaction handling, and

security. Concerns like these that cut across the

concerns of the basic function are often called

aspects, or crosscutting concerns.
3
At other times it is

useful to develop software products by using a

common base with a suite of concerns, or features,

which the developers can choose to combine in

various ways to form different products in a product

line. The software for such features may not only cut

into the base software but also need to be integrated

with that of other features as well.
5
Explicit

separation of software into concerns can be espe-

cially helpful when software to be integrated later is

being developed by independent teams. Because

multi-team development is characteristic of open-

source software, we expect that the combination of

AOSD and open source will prove much more

powerful than either alone.

The concern structure of software is not static. Some

concerns can be identified early in the software’s

lifetime, perhaps from the statement of require-

ments, and can be encapsulated at that time. Other

concerns may emerge later. For example, a cus-

tomer may request a new feature (representing a

new concern), or an error may occur that highlights

the need to treat all of the pieces of software

pertaining to that error as a single concern. An

important capability of AOSD is that it promotes the

identification, encapsulation, and manipulation of

concerns on demand, to accommodate the ever-

changing set of concerns that are relevant to a given

software system and its spectrum of stakeholders.

Although AOSD can separate software according to

its concern structure, it cannot automatically resolve

intrinsic conflicts among concerns. However, AOSD

can allow decisions about the handling of conflicts

to be expressed at a higher level than the coding or

design of features. The CME Concern Manager,

discussed later in this paper, does so by addressing

relationships among concerns in a general way. The

application of composition technology, like a pre-

vious generation’s application of compiler technol-

ogy, allows the expression of intent at a high level

and employs software tools to carry out the detailed

software changes implied by those intents in a

mechanical, consistent, and complete manner.

Example: Using AOSD to separate proprietary

and open-source concerns

As a way of structuring software, AOSD holds

promise for simplifying the creation of software that

is partly open-source and partly proprietary. For

example, in the J2EE application server shown in

Figure 1, the basic capabilities might be offered as

open source; whereas, the EJB container support

might be a proprietary, value-added capability, as

shown on the right side of the figure. This

Untangled Base J2EE server classes

Figure 1
Tangling and scattering of EJB container concerns in an application server

Tangled/Scattered EJB Container Concern in J2EE components

Untangled EJB Container Concern

+

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 HARRISON ET AL. 311

combination strengthens the technical and business-

case viability of open-source software. This is

because it allows developers and researchers to

share common frameworks and components but still

integrate proprietary support for additional concerns

into that software simply, and possibly at a later

time. Code-level support for AOSD is already

beginning to gain acceptance in practice, and

component- and design-level support are currently

being explored.

Consider, for example, the challenge of providing a

common open source for the core functions of a

document-creation tool while maintaining the abil-

ity to provide proprietary extensions for team

development and crash recovery requirements. A

concern-based solution might look like the one

shown in Figure 2, wherein the open-source base

contains objects representing the document itself

and providing the document manipulation function.

Two proprietary concerns are then developed. The

concern for team development captures the devel-

opers’ interactions and passes them through its own

objects, providing connectivity and arbitration, to

other team members’ software, which injects them

into their interaction streams in an appropriate

manner. When the document creation application is

initialized, the links to other team members must be

established as well. The concern for the crash

recovery feature intercepts and logs updates to the

representation, providing logical recovery points at

these intercepted interactions. In both cases, the

proprietary features contain new classes as well as

material that must be integrated with existing

classes in the base application. Directions for how

the new material is to be integrated with the base are

provided by directives that contain both a query to

identify the corresponding points in the new

material and the base, and a model of how the new

material and base are to be attached. For example,

update capture may indicate that when any field in

an object of some particular class is updated, a

method is to be invoked that is defined for that class

in the crash recovery concern. That method can log

the old value of the field before doing the update.

SUPPORTING EXTRACTION AND COMPOSITION
OF SOFTWARE CONCERNS

In the following sections, we introduce the notion of

an extraction/composition cycle, shown schemati-

cally in Figure 3, during which software is separated

and reintegrated according to concerns. We then

introduce the CME and discuss its role in supporting

this cycle.

The extraction/composition cycle
Although much discussion of aspect-oriented tech-

nology begins with scenarios like the one described

previously, in which the different aspects or

concerns are composed, the availability of compo-

Figure 2
A concern-based approach to separating core
functionality from proprietary team development and
crash recovery features

Figure 3
The extraction/composition cycle

Artifacts

Artifa
cts

ArtifactsArtifa
cts

Composition

Extraction

HARRISON ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005312

sition engines for concerns also significantly sup-

plements our ability to decompose software simul-

taneously according to many different kinds of

concerns. We are then able to effectively recompose

the separated concerns back into a variety of useful

applications. This enables us to bring even more

advanced capabilities to bear on the problem of

restructuring existing software bodies, such as the

J2EE application server (Figure 1), in which

scattered, tangled concerns such as the EJB-con-

tainer concern can be gathered together into a

single, encapsulated concern, noninvasively (i.e.,

logically rather than physically). The ability to

decompose existing software into concerns requires

the ability to identify concerns and the software

elements relating to those concerns in the existing

software. It also requires the ability to encapsulate

those elements, either physically or logically, within

an additional concern. In the case where encapsu-

lation is physical, identification and encapsulation

together are termed extraction. Encapsulated con-

cerns can themselves then be subject to further

software development activities, including extrac-

tion and composition. These complementary capa-

bilities of extraction and composition are the

fundamental processes that AOSD adds to the

software development repertoire. These activities

can and should be applied to artifacts at all stages of

the development process, including the require-

ments analysis, design, coding, and any other

relevant stages. Indeed, research into the application

of aspect-oriented concepts to requirements, design,

and testing has already begun.
9,10

The Concern Manipulation Environment

The CME aims to support the extraction/composi-

tion cycle throughout the entire software life cycle

by providing both a suite of tools for developers and

a platform upon which tool builders and researchers

can create such tools.

Different AOSD approaches, such as those noted in

the introduction to this paper, have been applied to

part or all of the extraction/composition cycle, and

each has its advocates.
3–8

Unfortunately, the devel-

opment of tools to realize these different AOSD

approaches represents a huge investment of time

and effort, as each one must currently be built from

scratch or from low-level abstractions. Conse-

quently, the tools represent isolated point solutions

and rarely have any ability to interoperate or be

integrated. They fail, therefore, to provide devel-

opers and other stakeholders with appropriate and

effective ways of thinking about their software’s

structure and the overall process by which it is

developed, deployed, used, and evolved. This has

hindered the development of full-life-cycle AOSD. It

has also significantly hindered the use of existing

tools and paradigms by application developers, who

find themselves unable to use available tools and

paradigms together. Thus we have dual motivations

for developing the CME: to support economy of

development of AOSD tools and methods, and to

provide wide-spectrum accessibility through a

common idiom. These requirements strongly sug-

gest the need for a component-based environment

within which research and development can pro-

gress and significant development efforts using

aspect-oriented tools and methods can be under-

taken.

The CME was first demonstrated at the Third

International Conference on Aspect-Oriented Soft-

ware Development (AOSD 2004). The initial soft-

ware base was developed jointly by teams at the

IBM Hursley Development Laboratory and the IBM

Thomas J. Watson Research Center. Tools currently

available include support for querying software,

defining concerns based on queries, modeling

concerns, browsing and visualizing software from

multiple points of view based on concerns and

relationships, and composing aspects and other

concerns. The tools apply uniformly to different

kinds of artifacts, allowing, for example, relation-

ships across artifacts to be shown and navigated.

Most have Eclipse user interfaces, although some

(and in particular all the underlying components)

can be used outside the context of Eclipse if desired.

A COMPONENT SUITE FOR BUILDING ASPECT-

ORIENTED TOOLS

For tool builders and researchers, the CME provides

a suite of open-source components upon which they

can build AOSD tools. The term ‘‘open source’’ can

simply mean making software source code available

for open development. However, structuring open-

source software as an open-component suite has the

additional advantage of allowing individual con-

tributors to focus efforts on enhancing smaller

software elements while preserving the ability to

connect and share these elements. Being able to

leverage one another’s work allows the community

to avoid building from scratch. Instead, developers

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 HARRISON ET AL. 313

can share solutions to parts of the overall problem in

order to realize larger solutions.

The CME exploits this open-source/open-architec-

ture theme. For maximum flexibility, the initial CME

implementation employs open-points at several

levels of granularity, including both larger abstract

components with supporting frameworks and

smaller strategies and plug-ins. An open-point in a

software system is a place where additional, op-

tional, or externally provided software is expected to

be incorporated, presumably in some planned-for

manner. Although additions may be made at any

point in open-source development, open-points

generally provide locations at which the manner of

extension is made simpler, clearer, and more robust.

Abstract components
The CME architecture is illustrated in Figure 4.

Abstract components, introduced in bold italics in

the text, are the first-order open-points of the CME

architecture. Each plays a distinct role in realizing

the extraction/composition cycle. These compo-

nents are described by their APIs (application

programming interfaces), and their implementations

depend only on the APIs of the other components.

Abstract factories are used to shield clients and other

components from knowledge of the implementation

class structure within a component. The CME also

includes concrete instances of these components to

provide both basic functionality and examples of

implementation. The initial set of concrete compo-

nents in the Eclipse project are themselves generally

designed to be extended with strategies and plug-

ins, giving rise to a second-order set of open-points.

This paper can describe neither the concrete

components nor the strategies and plug-in oppor-

tunities they present in great detail. However, such

details can be found in the collection of research

reports comprising References 11–14.

Support for manipulation of concern-structured

software in the CME corresponds to the extraction/

composition cycle discussed previously. The Con-

cern Manager component, shown in Figure 4,

provides a starting point for discussion. The Con-

cern Manager is the (abstract) component used to

hold and manipulate a model that identifies con-

cerns and describes both the units of software they

contain and their relationships. Units represent

software artifacts, like classes, methods, or UML**

(Unified Modeling Language) diagrams. Concerns

here are groups of concern model elements, listed

explicitly (extensionally) or specified as queries

(intensionally). Relationships can be derived from

software artifacts, such as references or depen-

dencies, or inserted by tools, for example, in cases

Figure 4
Partial CME component architecture

Specialized Loaders

AspectJ

CIT/CAT API

Artifacts

.aj

.class

.xml

.java

AspectJ Source
informant

assembler

Java Class File
informant

assembler

UML/XMI
informant

assembler

Java Source
informant

assembler

nn

CIT Loader

CCC
(Composition)

nnExCon
(Extraction)

CCC
Builder

ExCon
Builder

AspectJ
Builder

Panther/PUMA
(Query Language/
Engine)

ConMan
(Concern
Manager)

Builder
API

Loader
API

Query
API

Concern
Manipulation
API

HARRISON ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005314

where relationships have been asserted by the

developer. ConMan
11

is a concrete component

fulfilling the Concern Manager API.

In order to work with a body of software, the

concern model must first be populated with units,

concerns, and relationships modeling the artifacts

themselves (blue) and their structure, according to

the AOSD approach being used. This is done by

means of abstract components called Loaders

(yellow). One concrete implementation provided for

the Loader API is a generic loader. Generic CME

components obtain specific information about arti-

facts using other components called Concern In-

formants (orange) that are specific to particular

kinds of artifacts. The Concern Informant Toolkit

(CIT) API is similar in content to the Java Reflection

API,
15

but expressed as interfaces instead of abstract

classes to permit greater breadth of implementation.

In addition, the CIT API applies to a wider variety of

software structures than just Java, including simpler

artifacts having only a nested container model with

interpretable material at the leaves. The CIT API can

also express information like weaving directives that

are unique to aspect-oriented software.

Once loaded, the concern model can be manipulated

by the developer, who can form queries about the

material in the various artifacts (evaluated by the

Query component), and further structure the mate-

rial into other concerns appropriate for the task at

hand. Information in a concern model or accessible

through the CIT API can in turn be accessed through

the Query API, implemented by concrete compo-

nents called Panther and Puma.
12

Panther is the

query-language processor, and Puma is the query

engine. These permit plug-in extension to address

the need to add additional relationship types, entity

types, data organizations, and query language

constructs for various AOSD approaches.

The structuring of software elements into concerns

represents a logical (non-invasive) encapsulation of

those concerns. When a developer has a software

model expressed as concerns, those concerns can be

used to produce new artifacts, by extraction (physi-

cally separating concerns into new, disentangled

artifacts) and composition (physically integrating

concerns into new, composed artifacts). Contribut-

ing to CME’s flexibility in integrating different AOSD

approaches, Builders (tan) perform this role, often

aided by other components. Some of these operate

on specific kinds of artifacts, as does AspectJ.
3

Others, like CCC (the Concern Composition Com-

ponent),
13

provide more generic capabilities tailored

by strategies to meet specific semantic requirements,

as discussed later in this paper. Just as the creation

of generic loaders is enabled by the existence of the

concern informants, creation of generic builders is

enabled by using specific, artifact-format-dependent

components called Concern Assemblers (orange).

The Concern Assembler Toolkit (CAT) API
14

defines

a low-level API for creating artifacts that result from

the composition of other artifacts. Its interfaces

support the copying of source artifacts, the remap-

ping of references they may contain to other

artifacts, and the creation of sequences to control

the order of execution of appropriate material.

Frameworks for abstract components
It is common for some abstract components to have

many implementations, in which case the imple-

mentations to be used are provided as plug-ins.

Examples in CME include loaders, builders, concern

informants, and concern assemblers, which provide

access to artifacts across the whole software life

cycle. In this context, artifacts are expected to

include requirements, use cases, Cosmos concern

models,
16

UML designs, source and executable code,

test suites, documentation, images, build scripts

such as Ant
17

files or make files, packaging

constructs such as JAR (Java archive) files, deploy-

ment descriptors, and the like. CME contains

frameworks to assist in creating concrete compo-

nents for manipulating such artifacts.

Extension points for concrete components
Many of the CME concrete components contain

extension points. This often allows new approaches

to be developed as variants of existing approaches, a

more economical process than the writing of entirely

new concrete components. Thus, CCC provides

generic composition capabilities, not based on the

details of any specific kind of artifact. However,

many artifacts have special composition semantics.

For example, composing Java involves simple issues

such as handling its particular set of modifiers

(public, static, etc.), and much more complex issues

such as ensuring that the composed class hierarchy

has no multiple inheritance and handling the

construction protocol correctly for composed con-

structors. These artifact-specific issues are handled

by a rectification strategy. Other languages can also

be composed by CCC, provided suitable rectification

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 HARRISON ET AL. 315

strategies are supplied for them. Similarly, Puma

accepts plug-ins that implement artifact-specific

query operations, and ConMan accepts loaders and

builders as plug-ins.

Supporting new kinds of artifacts on the CME

Assuming the existence of a base of software for

manipulating a new kind of artifact, such as a Java

bytecode toolkit or an XML (Extensible Markup

Language) parser, a few ‘‘person weeks’’ of devel-

opment are generally needed to implement a CIT

API, producing a concern informant for this artifact

and enabling the artifact to be loaded using the

generic CIT loader. If new kinds of relationships or

new attributes are needed to enhance the concern

model and query capabilities, a few more person

weeks are needed to create additional loader plug-

ins and query extensions. If it is desired to compose

new kinds of artifacts, either an existing composi-

tion engine can be introduced, as was done for

AspectJ, or the CCC composition engine can be used

by supplying an implementation of the CAT API.

Using the existing frameworks, this task generally

takes a few person months of effort and results in a

new concern assembler. However, if the new kinds

of artifacts have particular constraints that are not

accommodated by general composition, a new

rectification strategy must be implemented for CCC,

as discussed previously. Depending on the com-

plexity of the semantics, this can require develop-

ment time ranging from one or two person weeks to

a much more significant effort.

EXPERIENCE

Although the CME is an ongoing open-source effort,

there have already been two specific efforts that

indicate its value both for development of aspect-

oriented software and for development and inte-

gration of tools and technologies that support AOSD.

The first of these projects involved an application of

some of the CME components to a large-scale

application server, and the second involved addi-

tional tool and component software that has been

added to CME since that time.

Separating EJB support from a J2EE application

server

Although our Hursley partners have reported on this

work in detail elsewhere,
18

we briefly summarize

the experience here to illustrate the claim made

earlier about separation of open-source and propri-

etary software.

We and others
19,20

believe that the application of

AOSD technologies to middleware technology is an

area of great importance. Thus, an experiment was

conducted to separate the deeply tangled support for

EJBs from the remainder of the application server

shown earlier in Figure 1, a system comprising some

15,000 classes, so that

1. a properly functioning base application server

without EJB support could be built that would fail

gracefully if EJB capabilities were used, and

2. using tools that could be applied to software in

binary form, the EJB support could be added to

this base application to build a properly func-

tioning application server with EJB support.

The experiment was completed successfully using a

combination of the AspectJ compiler and the loader,

concern manager, and query component prototypes

from the CME concrete component suite. CME

concern modeling was used to model the EJB

concern (which evolved as the experiment pro-

gressed) and the other components and their

relationships. The query capability was used to

determine where other components were dependent

on the EJB concern, and proved much more efficient

than tools tried previously. Those dependencies

were then removed, sometimes by object-oriented

refactoring and sometimes by refactoring into

AspectJ aspects. A side experiment used pure Java

and the CCC composition engine (Figure 4) to

achieve similar results on a small subset of the cases

in which aspects were created.

This experiment illustrates the fact that, should it

prove desirable, it is possible to construct software

composed of an open-source component as complex

as an application server, and then later add

proprietary support for additional concerns as

complex as the support of EJBs to the binary form of

this software.

Extending the CME concrete component suite

Since the conclusion of the EJB-extraction experi-

ment, the set of languages supported by CME has

been extended from its pure Java base through the

addition of Ant
17

and AspectJ support. Ant is a

language similar to that in the UNIX** make utility

but intended for describing software builds in XML.

Because Ant artifacts are an integral part of a body

of software, it is desirable to include them in the

concern model along with Java artifacts. This was

HARRISON ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005316

accomplished simply by building a small Ant loader

component using the CME extensible loader archi-

tecture, a task which required two person weeks of

development. This loader added the units, concerns,

and relationships needed to represent Ant to the

concern model. It was then immediately possible to

use the CME tools mentioned previously to work

with Ant artifacts, including navigating from Ant

artifacts to the Java artifacts to which they referred.

Support for the AspectJ programming language was

also added to the CME. Unlike the Ant loader, the

AspectJ loader was implemented by providing a

concern informant component forAspectJ that is used

by the generic CIT loader and by other components

needing information about the AspectJ programs.

CONCLUSIONS

In this paper we have demonstrated the fact that

aspect-oriented software technology has a synergis-

tic relationship with open-source development. Not

only does AOSD simplify the loosely coordinated

development of elements that fit within a broader

architecture, but it also promotes the unbundling of

software into open and proprietary components. We

have highlighted the fact that the CME can

materially assist with the separation and reintegra-

tion of concerns in software in general and is

therefore of interest to anyone needing support for

using AOSD in open-source development. Finally,

we have outlined the open architecture of the CME

and described and illustrated how it reinforces its

own use of open source when providing new

support for developers using AOSD approaches.

ACKNOWLEDGMENTS
We thank our Hursley partners, Matt Chapman, Andy

Clement, Adrian Colyer, Helen Hawkins, and Sian

January, for the important roles they have played in

this joint development effort. This research was

supported in part by the Defense Advanced Research

Projects Agency under grant NBCHC020056.

** Trademark or registered trademark of Object Management
Group, the Palo Alto Research Center, Inc., Sun Microsystems,
Inc., or The Open Group.

CITED REFERENCES
1. Concern Manipulation Environment, Eclipse Foundation,

http://www.eclipse.org/cme/.

2. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Videira Lopes, J.-M. Loingtier, and J. Irwin, ‘‘Aspect-
Oriented Programming,’’ Proceedings of the 11th Euro-
pean Conference on Object-Oriented Computing
(ECOOP’97), Jyväskylä, Finland, June 9–13, 1997,
Lecture Notes on Computer Science, Vol. 1241, Springer-
Verlag, New York (1997), pp. 200–242.

3. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold, ‘‘An Overview of AspectJ,’’
Proceedings of the 15th European Conference on Object-
Oriented Programming (ECOOP 2001), Budapest, Hun-
gary, June 18–22, 2001, Lecture Notes on Computer
Science, Vol. 2072, Springer-Verlag, New York (2001), pp.
327–353.

4. W. Harrison and H. Ossher, ‘‘Subject-Oriented Program-
ming: A Critique of Pure Objects,’’ Proceedings, of the 8th
Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’93),
Washington, DC, September 26–October 1, 1993, ACM,
New York (1993), pp. 411–428.

5. P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr., ‘‘N
Degrees of Separation: Multi-Dimensional Separation of
Concerns,’’ Proceedings of the 21st International Confer-
ence on Software Engineering (ICSE’99), Los Angeles, CA,
May 16–22, 1999, ACM, New York (1999), pp. 107–119.

6. M. Aksit, L. Bergmans, and S. Vural, ‘‘An Object-Oriented
Language-Database Integration Model: The Composition-
Filters Approach,’’ Proceedings of the 6th European
Conference on Object-Oriented Programming (ECOOP
1992), Utrecht, The Netherlands, June 29–July 3, 1992,
Lecture Notes on Computer Science, Vol. 615, Springer-
Verlag, New York (1992), pp. 372–395.

7. K. Lieberherr, D. Orleans, and J. Ovlinger, ‘‘Aspect-
Oriented Programming with Adaptive Methods,’’ Com-
munications of the ACM 44, No. 10, 39–41 (2001).

8. D. Batory, J. Sarvela, and A. Rauschmayer, ‘‘Scaling Step-
Wise Refinement,’’ Proceedings of the 25th International
Conference on Software Engineering (ICSE’03), Portland,
OR, May 3–10, 2003, ACM, New York (2003), pp. 187–
197.

9. S. Clarke, W. Harrison, H. Ossher, and P. Tarr, ‘‘Subject-
Oriented Design: Towards Improved Alignment of Re-
quirements, Design, and Code,’’ Proceedings of the
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’99), Denver, CO,
November 1–5, 1999, ACM, New York (1999), pp. 325–
339.

10. S. Clarke and R. Walker, ‘‘Towards a Standard Design
Language for AOSD,’’ Proceedings of the 1st International
Conference on Aspect-Oriented Software Development
(AOSD 2002), Enschede, The Netherlands, April 22–26,
2002, ACM, New York (2002), pp. 113–119.

11. W. Harrison, H. Ossher, S. Sutton, and P. Tarr, Concern
Modeling in the Concern Manipulation Environment,
Research Report RC-23344, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY (October 2004).

12. P. Tarr, W. Harrison, and H. Ossher, Pervasive Query
Support in The Concern Manipulation Environment,
Research Report RC-23343, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY (October 2004).

13. W. Harrison, H. Ossher, and P. Tarr, Concepts for
Describing Composition of Software Artifacts, Research
Report RC-23345, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY (October 2004).

14. W. Harrison, H. Ossher, P. Tarr, V. Kruskal, and F. Tip,
CAT: A Toolkit for Assembling Concerns, Research Report

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 HARRISON ET AL. 317

RC-23345, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY (April 2002).

15. D. Green, Trail: The Refelection API, Sun Microsystems,
Inc., http://java.sun.com/docs/books/tutorial/reflect/.

16. S. Sutton Jr. and I. Rouvellou, ‘‘Modeling of Software
Concerns in Cosmos,’’ Proceedings of the 1st International
Conference on Aspect-Oriented Software Development
(AOSD 2002), Enschede, The Netherlands, April 22–26,
2002, ACM, New York (2002), pp. 127–133.

17. The Apache Ant Project, The Apache Software Founda-
tion, http://ant.apache.org/.

18. A. Colyer and A. Clement, ‘‘Large-Scale AOSD for
Middleware,’’ Proceedings of the 3rd International Con-
ference on Aspect-Oriented Software Development (AOSD
2004), Lancaster, UK, March 22–26, 2004, ACM, New
York (2004), pp. 56–65.

19. E. Wohlstadter, S. Jackson, and P. Devanbu, ‘‘DADO:
Enhancing Middleware to Support Crosscutting Features
in Distributed, Heterogeneous Systems,’’ Proceedings of
the 25th International Conference on Software Engineer-
ing (ICSE’03), Portland, OR, May 3–10, 2003, ACM, New
York (2003), pp. 174–186.

20. T. Cohen and J. Gil, ‘‘AspectJ2EE = AOP þ J2EE:
Towards an Aspect Based, Programmable and Extensible
Middleware Framework,’’ Proceedings of the 18th Euro-
pean Conference on Object-Oriented Programming
(ECOOP 2004), Oslo, Norway, June 14–18, 2004, Lecture
Notes on Computer Science, Vol. 3086, Springer-Verlag,
New York (2004), pp. 221–245.

Accepted for publication November 1, 2004.

William Harrison
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (harrisn@us.ibm.com).
Mr. Harrison has been with IBM since 1966, and has been
associated with the IBM Thomas J. Watson Research Center
since 1970. In development, he worked on the design and
implementation of IBM operating systems. He has been active
first in research on and the design of languages, compilers,
and optimization, and subsequently in the design of advanced
integrated software development environments. He has been
recognized with several Outstanding Contribution and
Innovation Awards, the most recent of which was for the
innovation and development of subject-oriented programming,
an early formulation of what has come to be called aspect-
oriented software development. He has been a member of the
IBM Academy of Technology since 1995.

Harold Ossher
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (ossher@us.ibm.com).
Mr. Ossher has been a researcher at the IBM Thomas J.
Watson Research Center since 1986. His efforts on software
environments and tool integration led in 1992 to early work in
the area that has come to be called aspect-oriented software
development. He is one of the originators of subject-oriented
programming, multi-dimensional separation of concerns and
Hyper/J, and the Concern Manipulation Environment. A spin-
off of this latter research included a framework for performing
matching and reconciliation of information models that
evolved into EMF Edit and Mapping Frameworks, which has
been released as open-source software by IBM. He was
General Chair of the First International Conference on Aspect-
Oriented Software Development in 2002 and is a member of
the AOSD Steering Committee that oversees the conference
series.

Stanley Sutton
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (suttons@us.ibm.com).
Dr. Sutton received his Ph.D. in computer science from the
University of Colorado in 1990. He has worked in both
academia and industry in the areas of middleware, software
quality, software process, and aspect-oriented software
development. He has been a visiting scientist and a consultant
at the IBM Thomas J. Watson Research Center, where he
currently works as a software engineer on the Concern
Manipulation Environment project. He has served on program
committees for the International Conference on Aspect-
Oriented Software Development and numerous workshops
relating to AOSD. He is one of the originators of the multi-
dimensional separation of concerns approach to AOSD and is
the principal author of the Cosmos concern-modeling schema.

Peri Tarr
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (tarr@us.ibm.com). Dr.
Tarr received her Ph.D. from the University of Massachusetts
in 1996 and has been a researcher at the Thomas J. Watson
Research Center since that time. She is the technical co-lead of
the Concern Manipulation Environment open-source project,
of which she was one of the inventors. Throughout her career,
she has worked on many aspects (no pun intended) of the
problem of reducing and managing software complexity. She
has worked in the areas of software engineering
environments, software consistency and inconsistency
management, integration, interoperability, and AOSD. She
was one of the originators of the multi-dimensional separation
of concerns approach to AOSD—one of the seminal pieces of
work in this area—and its first realization in the Hyper/J tool,
which was later used in various forms in a number of research
and industrial efforts. Her research focuses on AOSD
throughout the software life cycle and on morphogenic
software (software that remains malleable throughout its
lifetime). She has served on numerous organizing and
program committees for all of the major conferences in
software engineering, and she is currently serving as Program
Chair for AOSD 2005. &

HARRISON ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005318

Published online April 7, 2005.

