Contributions to the GNU
Compiler Collection

The GCC (GNU Compiler Collection) project of the Free Software Foundation has
resulted in one of the most widespread compilers in use today that is capable of
generating code for a variety of platforms. Since 1987, many volunteers from

D. Edelsohn
W. Gellerich
M. Hagog

D. Naishlos
M. Namolaru

academia and the private sector have been working to continuously improve the
functionality and quality of GCC. Some of the compiler's key components were, and
continue to be, developed at IBM Research laboratories. We review several of IBM's
contributions to the compiler, including a code generator for the IBM zSeries®
processor and a front end for a PL/I-like language used for systems software

E. Pasch

H. Penner
U. Weigand
A. Zaks

programming. We also cover many optimizations, including the interblock instruction
scheduler, software pipeliner, and vectorizer. These contributions help improve the
overall performance of code generated by GCC, and in particular, enhance the IBM
RISC (reduced instruction set computer) architecture and the zSeries processors. This
paper includes a report on our general experience with GCC in both open source and
proprietary software environments and reviews the quality and performance of GCC-

generated code.

The GNU Compiler Collection (GCC) is an optimiz-
ing compiler for the GNU project that is capable of
generating code for a variety of platforms and that
supports a number of languages, computer archi-
tectures, and operating systems.l_3 It is one of the
most visible aspects of the Free Software Foundation
(FSF) GNU project. The goal of the GNU Project is to
create a UNIX* *-style operating system composed of
free software.

The GCC compiler can be configured to generate

code for more than 30 different computer architec-
tures. Many architecture configurations are designed
to support multiple operating systems, including the
GNU system and GNU/Linux**. The primary set of

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

languages available with the compiler are C, C++,
Fortran, Java**, Objective C, and Ada. Runtime
libraries for the languages are also included in the
compiler suite. Support for additional languages is
currently in various stages of development.

The GNU Project includes an assembler, linker, and
other object file tools, commonly called “binutils,”
the GDB debugger, and glibc (GNU C library).

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

EDELSOHN ET AL

259

260

Together, these components provide a software
development environment or “tool chain.”

GCC structure

GCC was one of the first components of the GNU
Project. Richard Stallman initially tried to extend the
Pastel compiler, developed by the

m GCC evolved through

the efforts of a worldwide
group of developers, including
members of industry and
academia and independent
consultants m

Lawrence Livermore National Laboratory, but
needed to rewrite the compiler from scratch due to
technical limitations of the Pastel compiler.

The compiler was initially targeted at the common
microprocessors of the late 1980s, such as the
Motorola 68000, and was ported to other CISC
(complex instruction set computer) processors, such
as the Intel 80386. GCC initially parsed source code
one statement at a time, focusing on local optimi-
zations. One of the important optimizing phases
from the earliest versions of GCC is a phase called
combine that operates as a generalized peephole
optimizer, reducing multiple instructions into single,
more powerful instructions (see “GNU back end”).

Recent improvements have expanded the compiler’s
view of the program to focus on one function at a
time, the translation unit, or the whole program.
These changes allow more aggressive optimizations,
including inter-procedural analysis. Other recent
enhancements include the addition of a Static Single
Assignment (SSA) design with basic SSA-based
scalar optimizations, high-level loop transforma-
tions, and vectorization.

The compiler phases for GCC 4.0 first parse the input
program into an intermediate representation called
GENERIC. GENERIC is expanded and lowered into
an SSA form called GIMPLE. The compiler optimizes
the SSA form and then removes the SSA names. The
program statements are translated to a different
intermediate language called register transfer lan-

EDELSOHN ET AL.

guage (RTL), which directly corresponds to the
instruction set of the target processor (i.e., the
“target instruction set”). RTL optimizations that
require details about the target processor instruc-
tions are applied, such as instruction scheduling,
software pipelining, and register allocation.

RTL is designed to correspond to valid target
instructions. The RTL instruction codes themselves
are independent of the target, but the subset of codes
used for each target match the machine instructions
of the target. Other than missing register numbers and
memory offsets, RTL transformations are intended to
convert a valid instruction stream into another valid
instruction stream (i.e., sequence of instructions).

After all optimizations have been applied, the RTL
instruction stream is output as a file in assembly
language appropriate for the target system. GCC does
not have an integrated assembler and does not
generate an object file directly for any target. An
external assembler, possibly the GNU Assembler,
creates an object file, and an external linker, possibly
the GNU Linker, binds the executable or shared
object. The operating system may use the GNU C
Library to provide an interface to system services.

The GCC compiler is written in the C language, and
the source code is composed of files common to all
targets and files with specific information about the
target architecture, target system, and target file
format—the latter referenced as the machine
description. Some of the files in the machine
description affect the way the common parts of the
compiler behave (e.g., the size of data types, size of
registers, register allocation order, etc.). Other files
are used by programs within the GCC build process
to create machine-generated files that interface with
the common parts of GCC to describe the target
instructions and output format.

GCC development

GCC evolved through the efforts of a worldwide
group of developers, including members of industry,
academia, and independent consultants. As with
many other free-software and open-source projects,
the hierarchy of developers strives to achieve a
meritocracy. A core set of developers provides most
of the technical leadership, and a steering committee
provides the political leadership and interface to the
FSF.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

Developers collaborate in a decentralized fashion
with informal collaboration, setting design goals and
avoiding duplicated effort. The majority of commu-
nications and technical decisions occur in public
forums such as mailing lists and chat rooms. The
GCC source code is available in revision control
systems on publicly accessible servers.

All GCC developers are required to have copyright
assignments on file with the FSF. After that
documentation is on file, changes offered by a
developer for inclusion in GCC can be considered.
Patches are mailed to public mailing lists and
reviewed for coding style, design, and implementa-
tion correctness by senior developers with authority
to approve patches for various components. Doc-
umentation for the GCC project explains the devel-
opment plan and other criteria of the project. The
coding style follows the GNU coding conventions
and GCC extensions.

GCC includes an extensive and growing test suite to
help maintain the quality of the compiler. All patches
are supposed to be tested with the complete test suite,
and authors are expected to certify that a proposed
patch did not generate any new test suite failures.

To maintain the quality criteria for GCC, releases
should create no test suite regressions on important
target platforms. Because of the large number of
GCC targets (architectures, operating systems, file
formats, etc.), some regressions do occur. The lack
of complete coverage testing and unit testing in the
current design is one of the major limitations in the
GCC testing procedures.

GCC legal issues

Free software, a concept originated by Richard
Stallman to encompass the GNU Project, refers to
the freedom of users and developers to use, modify,
redistribute, and distribute modified versions of the
software.” Free software commonly refers to soft-
ware distributed under the terms of one of the GNU
General Public Licenses (GPL). Open-source soft-
ware refers to a broader set of possible licenses.

Although the GPL applies to the GCC and the GNU
tool chain, building an application using the GCC
does not affect the software license of the applica-
tion itself. Proprietary applications can be built
using GCC.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

Use of GCC

Use of GCC has become pervasive throughout the
software industry because of its flexibility. It is able
to generate applications for many proprietary and
open-source UNIX** operating systems, as well as
OpenVMS**, z/0S,* Microsoft Windows**,
VxWorks**, and others.

GCC has been available for AIX* on the POWER*
platform and MVS* on the S/390* platform for over
ten years. In addition to its use by IBM customers on
AIX and in software enablement for embedded
processors, GCC has also been used for many
research projects and prototypes; for example,
experimental work with the PowerPC* instruction
set and the 64-bit XCOFF file format.

Customers frequently use GCC instead of proprietary
compilers because of its portability. GCC itself
provides language extensions, but the extensions are
consistent across all systems; therefore, customers
do not have to worry that they will use a compiler
feature that locks them into a particular system. The
GPL ensures that the customer always has access to
the source code of the compiler and libraries to
perform any development or maintenance. A cus-
tomer’s decision to use GCC often depends on a few
primary factors, including performance, portability,
and service.

Overview

In this paper, we describe several of our contribu-
tions to GCC. IBM has made additions to GCC which
encompass all phases of the compiler—the front
end, optimizations in tree and RTL intermediate
representations, and the back end. The specific
details of each contribution are outside the scope of
this paper; the interested reader is referred to the
actual code and documentation, which is freely
available at http://gcc.gnu.org. This paper does not
cover all contributions to GCC made by IBM
developers, but rather describes some projects in an
attempt to focus on our experience with GCC and its
limitations and potential. In the following sections
we describe a new front end, some optimizations,
and a new back end.

PL8 FRONT END

This subsection describes the development of
firmware for the PL8 and IBM zSeries* systems, and
the technical issues arising from this effort.

EDELSOHN ET AL

261

262

PL8 and IBM zSeries firmware development
The term “firmware” refers to the software layer
between hardware and the operating system. Firm-
ware functionality includes I/O path management,

m GCC includes an
extensive and growing test
suite to help maintain the
quality of the compiler m

I/0 load balancing, recovery from hardware and
firmware errors, and some system management

functions, which, in other computer systems, are
typically implemented in operating-system layers.

Firmware development requires low-level program-
ming, as firmware has many interfaces to hardware
registers and to assembler-written routines. The
firmware implements low-level services that require
accessing specific addresses and dealing with
individual bits or words smaller than a byte. PLS,
which basically is a subset of PL/I, supports these
requirements by use of appropriate declarations,
which is considered a strength of the language.5 The
language has been used for firmware development
since the early 1980s with an old compiler that has
not been maintained for years. However, there have
been significant enhancements made to the zSeries
architecture, including additions to its instruction
set, improved pipeline structures, and an extension
to 64 bits. Some firmware internal structures were
strongly geared to 64-bit implementation, which the
original PL8 compiler could not provide. The
original compiler was also inherently tied to the
library and build environment on VM/CMS as its
only execution platform.

PL8-front-end technical issues

Given GCC’s modular structure and the fact that
GCC already had a back end generating S/390 code
(see “The zSeries back end” and Reference 6), an
obvious approach was to implement PL8 again as an
additional GCC front end. The language was
extended to support 64-bit data types, and its rules
concerning memory layout were adapted. The GCC
framework also suggested a few language modifi-
cations.

In contrast to most other GCC front ends, the PL8
front end is well-suited for two-pass compiling. This

EDELSOHN ET AL.

is because PL8 allows forward references to decla-
rations. The two-pass approach also simplifies
certain other translations. The first pass does lexical
and syntactic analysis, which is implemented using
the compiler-generating tools Flex and Bison,
respectively. Its output is a front-end internal
representation of the input program which is an
attributed syntax tree.” Tree nodes are implemented
as records with fields containing data or pointers to
other tree nodes. Whenever possible, the GCC
predefined tree nodes are used to represent PL8
constructs. For example, this is done for if,

do while, and do until statements. More elaborate
statements, such as select and PL8 counting loops,
have no direct correspondence to any existing
nodes; they are thus first translated into front-end
specific nodes, as are most of PL8’s declarations,
namely the attributes based, offset, and redefines.

In pass two the compiler starts working on the data
structures generated by pass one and does a few
semantic checks. In this pass the compiler also does
some optimizations. These include type compati-
bility checks to verify that variables are assignable.
Implicit type conversions are inserted where the PL8
language definition allows the assignment of varia-
bles with different types. Range checks are gen-
erated for array accesses, and for all accesses to
based variables through offsets. Pass two also carries
out some optimizations, such as constant folding8
and an elimination of range checks, which deletes a
check if it can determine at compile time that an
index will never be out of the valid range.

Finally, the PL8-specific nodes are translated into
GCC-defined tree nodes and are passed to the GCC
“middle end” (i.e., second phase).5 The PLS front
end is approximately 50 KLOCs (thousand lines of
code) in size.

Compiler validation

Validation for the new front end was performed in
several steps. First, a regression test package with
almost 3500 test cases was run automatically. It
consisted of test cases systematically developed by
experienced PL8 programmers, test cases used for
the original PL8 compiler, and test cases derived
from compiler problems. The second step was to run
all zSeries firmware test cases, using a stable
firmware version, with the new compiler. The front-
end sources were also subject to a formal code

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

review and were analyzed by a static code-checking
tool.

During final system test, only five compiler prob-
lems were found. So far, no field problems are
attributed to the PL8 compiler.

TREE OPTIMIZATIONS

The GCC uses different internal representations
(IRs) at different phases of compilation. The tree
representation is a language-independent and ma-
chine-independent IR that preserves high-level
language constructs, a property which makes it
suitable for a range of compiler optimizations. Until
recently, however, almost all optimizations in the
GCC took place at a lower level IR—the RTL. This
situation is gradually changing since the recent
introduction of the new tree-SSA framework.” This
framework includes further simplification of the tree
IR into a three-address language (GIMPLE), and an
implementation of SSA on top of it."°

The introduction of tree-SSA simplifies and encour-
ages the development of many optimizations and
analyses, thereby providing the required infrastruc-
ture for the development of a vectorizer in the GCC.
On January 1, 2004, we submitted the first
implementation of a basic vectorizer to the GCC,
based on tree-SSA utilities,11 and it is now part of
the GCC mainline version 4.0. Additional capabil-
ities are constantly being developed on the “loop-
nest-optimizations” branch.'* In this section, we
describe our work on the GCC vectorizer, and in
particular, the issues that arise due to the multi-
platform nature of the GCC.

Vectorization

To take advantage of vector hardware such as
AltiVec** and MMX** /SSE13’14 (multimedia or
streaming SIMD [single instruction, multiple data]
extensions to general-purpose instruction set archi-
tectures), programs can be written using explicit
vector operations (e.g., using Altivec intrinsics'® or
the Fortran90 operations on whole arrays). These
vector operations work on multiple elements in
parallel, in contrast to the standard scalar operations
that operate on individual elements, one after the
other. The transformation of these scalar operations
into an equivalent vector form is referred to as
vectorization ' and can be applied manually or
automatically by the compiler.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

Opportunities for applying vectorization are usually
found in loops, where operations from different
iterations can execute in parallel (exploiting data

m Use of GCC has become
pervasive throughout the
software industry due to its
flexibility m

parallelism across loop iterations). Applications in
many domains have an abundance of natural
parallelism in the computations they perform. If this
parallelism can be leveraged to exploit the vector
capabilities of the target architecture, the perfor-
mance of these applications can be considerably
improved. The level of parallelism that can be
implemented depends on the size of the vectors
supported by the target and the size of the data types
operated upon in the application. In AltiVec, the
vector size is 128 bits, which can accommodate four
floating-point numbers, four integers, eight
“shorts,” or 16 characters. We refer to the number of
elements that can be operated upon simultaneously
as the “vectorization factor.”

The importance of automatic vectorization has
increased in recent years, with the introduction of
SIMD extensions to general-purpose processors, and
with the growing significance of applications that
can benefit from it. SIMD introduced some new
difficulties for vectorizing compilers,” which are
especially challenging in the context of GCC, as
discussed next.

Vectorization components

Research into the area of vectorization is already
quite mature."*"®"” The main focus of classic
vectorization is the use of data dependencies and
loop analyses to: (1) detect statements that can be
executed in parallel without violating the semantics
of the program, and (2) increase such occurrences
by means of loop transformations.

While the analyses above deal with proving the
theoretical correctness of applying vectorization,
most other analyses and transformations employed
by the vectorizer are low level and deal with
machine-dependent cost and trade-off analysis,
rather than general properties of the code itself. This
is because the specific characteristics of the avail-

EDELSOHN ET AL

263

264

able architectural vector support can directly affect
the vectorization transformation, and even deter-
mine whether it should be applied at all.

The vectorizer starts with a set of loop-level
analyses, including analysis of data dependencies,
data-access patterns, data alignment, loop-exit con-
ditions, and analysis to determine if all the

m The natural parallelism of
many applications can be
leveraged to exploit the
capabilities of the target
architecture and enhance
performance m

operations in a loop have a vector form supported
on the target platform. This information is modeled
through the machine model files. For simple generic
operations, it is easy to query (even at the machine-
independent tree-level IR) whether the operation is
supported. However, this information is not so
easily accessible for operations that do not have an
equivalent scalar form (such as data permutations,
reduction, and unaligned accesses). In these cases,
we have to enhance the infrastructure to represent
this information to the vectorizer.

For loops that successfully pass the analysis stage,
the vectorizer applies the actual vector transforma-
tion. This consists of “strip mining” the loopzo by
the vectorization factor and then replacing each
scalar operation in the loop by its vector counterpart
(using the machine model files). In many cases
additional handling beyond the one-to-one substi-
tution of statements is required. Constants and loop
invariants require that vectors be initialized before
the loop; other computations, such as reduction,
require special “epilogue code” after the loop, and
some operations (unaligned accesses, type conver-
sion) require special data manipulation to take place
between vectors.

The machine-dependent components of the vector-
izer are mostly related to memory architecture
limitations of vector machines. The memory archi-
tecture usually restricts vector data accesses to
consecutive vector-size elements, aligned on vector-
size boundaries. Gathering data from nonconsecu-

EDELSOHN ET AL.

tive or unaligned locations requires special mecha-
nisms for data reorganization, which are costly and
hard to use. These issues are especially true for
SIMD systems because SIMD memory architectures
are typically weaker than those of traditional vector
machines. Moreover, SIMD architectures tend to be
very different from one another, a fact that can be
problematic for a vectorizer operating at a high-level
machine-independent IR in a multiplatform com-
piler such as GCC. Some of these problems are
elaborated next.

GCC implementation issues

The aspects of vectorization discussed earlier
demand that low-level architecture-specific factors
be considered throughout the process of vectoriza-
tion. However, at the tree-level IR, it is not trivial to
express low-level target-specific mechanisms, such
as those that are used to reorganize unaligned data
or pack or unpack data between vectors of different
data types. These mechanisms need to be intro-
duced into a high-level platform-independent tree
IR, while allowing low-level platform-specific details
to be hidden as much as possible, to be applicable to
any platform, and to be as efficient as possible on
each platform.

These properties are even more difficult to tackle in
a multiplatform compiler such as GCC, due to the
tendency of SIMD instruction-set architectures to be
much less general-purpose and less uniform than
traditional vector machines. Many specialized do-
main-specific operations are included, many oper-
ations are available only for specific data types but
not for others, and often a high-level understanding
of the computation is required in order to take
advantage of certain functionality. Furthermore,
these particular characteristics differ from one
architecture to another.

Misalignment support is an excellent example of this
situation. Different machines display different be-
havior upon an access to an unaligned location and
offer different mechanisms for handling such ac-
cesses. For example, an efficient scheme that reuses
data across iterations can be used for targets that can
combine data elements from two vectors. AltiVec
has such a capability; other SIMD platforms usually
support this functionality only when the misalign-
ment is known at compilation time. If it cannot be
determined at that time, a less efficient scheme can
be employed, using a special unaligned move

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

instruction (as is available in SSE), or a sequence of
instructions (as in Alpha EV6,21 for example). In
order to accommodate different targets, we intro-
duced a set of new generic tree codes”” and target-
hooks®” that allow us to model and express the most
efficient scheme for each target. These extensions to
the tree IR are a result of close collaborations and
long discussions with the GCC community.

There are also machine-independent issues that
impact the effectiveness of the vectorizer, most
notably, the presence of pointers and the limitations
of aliasing analysis in GCC. Aliasing analysis in GCC
is expected to improve in the near future; in the
meantime, its limitations will be overcome by
performing loop versioning, however, at the cost of
a runtime dependency-test overhead.

Status and future work

We are in the early stages of developing vectoriza-
tion optimization in GCC. The basic infrastructure is
in place to support initial vectorization capabilities.
These capabilities are demonstrated by the vectori-
zation test cases, which are available as part of the
GCC test suite and are updated to reflect new
capabilities as they are added. Work is under way to
extend these capabilities and to introduce more
advanced vectorization features. The current devel-
opment status can be found in Reference 18.

The domain of vectorizable loops can be described
in terms of the forms, data references, and oper-
ations of the loops that can be supported. Currently,
vectorization support in GCC handles innermost,
single-basic-block loop forms and some cases of
loops that contain if-then-else constructs. The data
references must be consecutive and array-based or
pointer-based and must not overlap (usually this
means that pointers need to be annotated as
“restricted”). Preliminary misalignment support is
also available. Operations must not create a scalar
cycle (no reduction or induction24), must all operate
on the same data type, and must have a vector form
that is expressible with existing tree codes.

There are many future directions for enhancing the
vectorizer, including the addition of support for
more data reference forms, runtime aliasing tests,
multiple data types, reduction and induction oper-
ations, special idioms (such as saturation, mini-
mum/maximum, dot product, etc.). Among the
idioms that are of a particular interest are those

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

representing operations that work on a block (or
“chunk”) of elements in parallel and can be
optimized even when no vector support is available.
This can be done by calling a library function
(memset, for example) or using special string
operations (the S/390 TRANSLATE operation, for
example).

Longer term goals include vectorization of nested
loops, exploiting data reuse, support for additional
access patterns (e.g., strided, that is, a sequence of
memory addresses separated by a constant distance)
or permuted accesses (that is, accesses by the
alphabetic order of each of the constituents for
composite terms that require data manipulations),
straight-line code vectorization, loop parallelization
using threads, and more.

RTL SCHEDULING AND OPTIMIZATIONS

After performing optimizations at the high-level tree
IR, GCC expands the code into the RTL, which
directly corresponds to the target instruction set.
The RTL level contains the details required by
instruction scheduling, load and store operations,
and register-allocation optimizations.

In this section, we present several RTL optimiza-
tions that we contributed to GCC, including inter-
block scheduling, dispatch group scheduling for out-
of-order executing targets, modulo-scheduling of
loops, and optimizations for “load-hit-store” events.

Interblock instruction scheduling

Prior to 1997, the original GCC scheduler supported
scheduling only within basic blocks (intrablock
scheduling). To take advantage of the newer super-
scalar architectures, more advanced scheduling
techniques were required. This section describes the
work done to extend the GCC instruction scheduler
to support interblock scheduling, focusing on the
design of the new interblock scheduler. This project
was done in 1997, and the interblock scheduler has
become part of GCC’s standard distribution since
then. For a general description of instruction
scheduling, see References 25 and 26.

The design and implementation of the scheduler
were influenced by the desire to reuse existing code
and have the same code for intrablock and inter-
block scheduling. We also had to retain global
information (e.g., debug notes) throughout sched-
uling and preserve the GCC compiling speed. To

EDELSOHN ET AL

265

2606

achieve the goal of supporting interblock scheduling
. 26 . .

and code motion™ (i.e., movement relative to other

instructions), several design decisions were made:

1. Define the scope of interblock scheduling (the
“region”) to contain all blocks of innermost loops
or entire loop-free functions.

2. Support speculative27 and equivalent motions,
but not duplicative motions, because of associ-
ated high compilation and development costs and
questionable benefits.

3. Keep the scheme of activating the scheduler twice
(before and after register allocation), using the
interblock scope in the first invocation.

4. Reverse the scheduling order from a bottom-up
order to a top-down order (as used in Reference
24), a requirement for the support of interblock
moves (in particular, speculative moves).

5. Develop a visualization mechanism for step-by-
step tracking of the scheduler and relevant
modeling information.

At the time of this work, the GCC did not have the
infrastructure needed to support advanced optimi-
zations. The infrastructure had to be extended in the
following directions:

1. Building control-flow arcs’®—At the time, the
available control flow information contained only
the set of nodes (basic blocks).

2. Computing block dominator”” and reachabilityw
information—To identify and support possible
(equivalent and speculative) motion opportuni-
ties (see, e.g., Reference 25).

3. Identifying the regions, based on the control flow
graph—In particular, if all regions are set to
contain a single basic block, the case is simplified
to that of an intrablock scheduler (meeting the
second requirement above).

In addition, the data dependency graph was
extended to span multiple blocks, and the list-
scheduling algorithm (e.g., ready list, heuristics)
was extended to work with instructions from
different blocks.

To perform interblock movement, several analyses
were implemented that determine if a move is
possible and whether it is speculative or equivalent.
For speculative moves we determine the conditional
execution probability, where to check and update
life information,”" and if loads are exception free

EDELSOHN ET AL.

(i.e., executing the load will not cause an excep-
tion). The high-level design of the interblock
scheduler is shown in Figure 1. The steps of
computing flow-related information and data-de-
pendency information are independent and can be
executed either in order or in parallel. Similarly, the
steps of computing the probability and the update
blocks are independent.

Escape and update blocks

The scheduler may move an instruction from basic
block S to basic block T only if T dominates S, to
avoid code duplication. When considering a spec-
ulative motion from block S to block T of
instruction I that defines register R, we must
prevent I from interfering with another live range of
R. (This is in addition to the standard restrictions
imposed by data dependencies.) To do so, we first
examine paths from T that avoid S and identify the
first block in each such path from which S cannot
be reached. These blocks are called “escape
blocks.” To prevent I from interfering with another
live range of R, we check that R is not alive at the
beginning of each such escape block. If this is true,
we may move I speculatively, thereby extending the
live range of R along the path from S to T. We then
need to update the live information for all blocks on
this path that are siblings of escape blocks (these
blocks are called update blocks), to prevent
subsequent speculative moves from interfering with
this live range. Our computation of escape and
update blocks also helps determine if two blocks
are equivalent without requiring explicit post-
dominance computations.

Analyzing whether loads are exception free

When a load instruction is moved speculatively,
there is a risk of causing an “illegal memory access”
exception speculatively. We therefore only move
loads speculatively if they are known to be
exception free, or if we can prove that the moved
load causes an exception only after another load
causes a similar exception. We implemented a
mechanism that checks for certain types of excep-
tion-free and exception-related loads to support
speculative movement of such loads. For example,
loads of local variables from the stack or loads of
global variable addresses from the table of contents
could be considered exception free.

There is still room for improving the speculative
motion of load instructions. We believe that this is

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

Compute control-flow graph

+

Compute regions to schedule

Figure 1
High-level design of interblock scheduler

For each region:

v

y

! N

Compute flow-related-info

Compute data dependence info

+
For each block: <
v
Compute valid source blocks
‘
For each such source block S (dominated by T):
v
Compute escape_blocks(S,T)
v
If escape_blocks(S,T) is not YES
cheative, and additon) N
information is computed: NOJ Probability(S, T) Update_blocks(S,T)

—

v
Do list scheduling
v
Update region global data
v

very important because improved motion of loads
will often enable subsequent code motion and may
help hide memory latency. We therefore included a
flag that enables aggressive (that is, nonconserva-
tive) speculative motion of all loads to obtain
upper bounds on the potential improvement that
can be gained by further improving the initial
mechanism.

GCC is an evolving compiler. The infrastructure of
GCC improved after the interblock scheduler was
added, making the implementation of advanced
optimizations much easier. Regarding scheduling,
GCC now has a more general control-flow and loop-
identification support, as well as a more powerful
mechanism for describing the architecture” and a

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

modulo-scheduling pass (see the section “Software
pipelining and modulo scheduling”).

Dispatch group scheduling

Advanced processors such as Power4* and
PowerPC970 execute instructions out of order, while
dispatching and completing them as groups in order.
The compiler should consider the various hardware
constraints of dispatch-group formation in order to
maximize the instruction-level parallelism (ILP).

The GCC scheduler (described in the section
“Interblock instruction scheduling”) follows the
classic approach of instruction scheduling, which
models the delays and constraints of each instruc-
tion and schedule to avoid all stalls. This approach
can be suboptimal for out-of-order multiple-issue

EDELSOHN ET AL

267

268

processors, and specifically for the Power4 and
PowerPC970. The GCC scheduler has an option for
maximizing the number of instructions issued per
cycle,32 but this option increases compiling time and
did not suit our needs.

The major observations that guided our work on
instruction scheduling for dispatch groups were that
it is practically impossible to accurately model and
predict the delays that will occur at runtime (due to
out-of-order execution); that there is a better chance
of predicting the grouping that will be formed (due
to certain constraints); and that accurate emulation
of dispatch groups can be very important for
increasing the ILP.

In this section, we present three optimizations that
enhance the GCC scheduler to handle and optimize
dispatch group formation and out-of-order execu-
tion. We contributed the optimizations described in
this section to the FSF during October 2003, and
they are part of the GCC 3.4 release. See Reference
32 for specific implementation and performance

details of these optimizations.

Including dispatch group restrictions as a criterion
during scheduling

The Power4 processor dispatches a group of up to
four instructions (and a branch) in each cycle. Some
instructions can only be assigned to certain dispatch
slots. Specifically, there is a set of instructions that
can only be dispatched as the first instruction in a
dispatch group. When issued, such dispatch-slot-
restricted instructions always open a new group,
causing the termination of a previous dispatch

group.

When the instruction scheduler chooses an instruc-
tion and decides to schedule it in the currently
scheduled cycle, it is better to choose an instruction
that must be first (if available and) if a new dispatch
group is being opened. We used an existing target
hook, adjust_priority, to modify the priority of
instructions during scheduling according to these
dispatch-group considerations.

Allowing early scheduling of stalled instructions
The GCC scheduler uses two queues to manage the
instructions that are candidates for scheduling.
Those that are still waiting for other (already
scheduled) instructions to be completed are placed
in the “stalled queue,” and those that do not need to

EDELSOHN ET AL.

wait are placed in the “ready queue.” The instruc-
tions in both queues can be scheduled in the current
cycle, but instructions in the stalled queue will
(according to the model) wait for data or some
resource to become available.

The scheduler selects instructions for scheduling
only from the ready queue. With time, instructions
from the stalled queue become ready and move to
the ready queue. If the ready queue is empty, the
compiler closes the current dispatch group that it is
modeling, even if there are vacant dispatch slots
available, and proceeds to schedule instructions for
the next group and cycle.

This scheme does not do a good job of modeling for
processors where delays can occur between the
dispatch and the execution of instructions. Opti-
mizing the dispatch of instructions is important for
group-formation considerations, and optimizing
their execution is relevant for data-dependent
latency considerations. For such targets, the stalled
queue contains instructions that cannot be executed
in the current cycle (because of data or resource
delay), but they can and sometimes should be issued
in the current cycle.

In order to optimize for execution and dispatch
group utilization, we allow the scheduler to select
instructions directly from the stalled queue. We limit
this to cases where there are potentially vacant
dispatch slots to fill and there is nothing better to fill
them with (i.e., the ready queue is empty). This also
improves the emulation of dispatch group forma-
tion; the resulting schedule better matches the
groups that will be formed at runtime. Because some
dependencies (which keep instructions in the stalled
queue) may incur a high penalty if broken, we
prevent premature selection from the stalled queue
in such cases.

Null-operation insertion

The GCC scheduler models the formation of
dispatch groups, but does not insert NOPS (null
operations) to fill up vacant slots. In order to
improve the synchronization of group boundaries
between the compiler and hardware, we imple-
mented a post-scheduling pass that scans the
instruction stream and examines the dispatch group
boundaries that the scheduler had marked. Vacant
issue slots that are detected are padded with NOPS,

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

in order to force the scheduler’s grouping on the
processor dispatcher.

A naive implementation inserts too many NOPs,
which have a significant negative effect on per-
formance. Indeed, NOPs should be inserted very
sparingly, and only in cases in which the presence of
a dependency within a dispatch group (which NOPs
can prevent) is truly problematic. We therefore tried
to classify such costly dependencies and imple-
mented a new scheme. The scheme scans the
instruction stream right after scheduling, but this
time, inserts NOPs only between instructions that
have a costly dependency between them, in order to
force these instructions into separate groups. This
new scheme is much less intrusive and can be
viewed as a fine tuning of the group boundaries to
better match the processor behavior.

There are several parameters that tune the NOP-
insertion mechanism, such as the definition of costly
dependencies (we considered memory accesses true
dependencies; see the section “Handling load-hit-
store events”), and the number of NOPs to be
inserted (the minimum number based on group
emulation or regardless of this emulation).

Software pipelining and modulo scheduling
After we enhanced the instruction scheduler of the
GCC to handle interblock code motion, as described
in the section “Interblock instruction scheduling,”
the scheduler’s main limitation became its inability
to move instructions across loop-back arcs or
iterations. Modulo scheduling is an instruction-
scheduling technique focused on improving the
schedules of loops by enabling instructions to
transfer between iterations. We further enhanced the
GCC instruction scheduler by implementing a Swing
Modulo-Scheduler (SMS), which is an implementa-
tion of modulo scheduling designed to reduce
register pressure.36’37 SMS first orders the instruc-
tions according to the data dependencies in an
alternating up-and-down order (hence its name)—
first ordering instructions that are successors of
already ordered instructions, then instructions that
are predecessors of already ordered instructions, and
so on. The scheduling phase then traverses the
nodes in the given order, trying to schedule
dependent instructions as close as possible and thus
shorten live ranges of registers. This section
describes our implementation of SMS in GCC.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

SMS implementation in GCC

sMms> % is performed immediately before the first
interblock scheduling pass, and indeed, could be
combined into one pass if so desired in the future.

m The infrastructure of GCC
improved after the interblock
scheduler was added m

The modulo-scheduling pass traverses the loops and
generates a new schedule for each loop according to
the following steps. First, the modulo scheduler
builds a data dependency graph (DDG) that repre-
sents intra- and inter-loop dependencies. SMS then
determines a fixed ordering of the instructions based
on the DDG and uses it in repeated attempts to
schedule the kernel of the loop. Finally, after a
schedule for the kernel is constructed, SMS performs
modulo variable expansion, generates prologue and
epilogue code, and inserts a loop precondition if
needed. SMS also marks the loop after scheduling it,
to prevent subsequent rescheduling by the standard
instruction-scheduling passes. Only the kernel is
marked; the prologue and epilogue are subject to
subsequent scheduling.

The main infrastructure contributions to GCC
involved in our implementation of SMS were: (1) a
new DDG for loops, (2) the ability to perform list
scheduling in both directions, compared to top-
down or bottom-up cycle scheduling, and (3)
effective renaming of registers during scheduling as
needed, by performing modulo variable expansion.
We now elaborate on these contributions.

DDG generation

The existing representation of data dependencies in
GCC does not meet the requirements for imple-
menting modulo scheduling; it lacks support for
interloop dependencies, and it is not easy to use. We
decided to implement a DDG, which provides
additional capabilities (i.e., loop-carried depen-
dencies) and a modulo-scheduling-oriented API.

The DDG is built in several steps. We first construct
the intraloop dependencies using the standard
routines of the scheduler. Next, we calculate

. . . . 39
interloop register dependencies of distance one™ by
using the GCC flow analysis. Finally, we calculate
interloop memory dependencies in a conservative

EDELSOHN ET AL

269

270

way. This is currently being developed and im-
proved.

We provide several graph-theoretic utilities based
on the DDG to support the node-ordering algorithm
of SMS. These include finding strongly connected
components, finding all nodes that lie on directed
paths between two sets of nodes, and calculating the
longest cycle (in terms of total latency divided by
total distance) in a connected component.

List scheduling the kernel of the loop

SMS schedules the instructions (i.e., the nodes) for
the kernel of the loop according to a precomputed
order. For each node we calculate a scheduling
window, that is, a range of cycles in which we can
schedule the node similarly to already scheduled
nodes. Use of previously scheduled predecessors
(PSP) increases the lower bound of the scheduling
window, whereas use of previously scheduled
successors (PSS) decreases the upper bound of the
scheduling window. The scheduling windows are
related to instructions of the same iteration.

The scheduling window itself contains a range of a
number of cycles equal to the Initiation Interval (II),
at most. After computing the scheduling window,
we try to schedule the node during some cycle
within the window, while avoiding resource con-
flicts. If we succeed, we mark the node and its
(absolute) schedule time. If we do not succeed in
scheduling the given node within the scheduling
window, we increment the value for I and start over
again. If II reaches an upper bound, we quit and
leave the loop without transforming it.

During the process of scheduling the kernel, we
maintain a partial schedule that holds the scheduled
instructions in a number of rows equal to II. When
an instruction is scheduled in a cycle T (inside its
scheduling window), it is inserted into row T mod I
of the partial schedule. The instructions in the
partial schedule may belong to different iterations.
After all instructions are scheduled successfully, the
partial schedule supplies the order of generating the
instructions. Special care is needed when dealing
with the start and end cycles of the scheduling
window, as the order of instructions within these
rows has to be considered.’”

When modulo scheduling the kernel, we need to
repeatedly check whether given instructions will

EDELSOHN ET AL.

cause resource conflicts if scheduled at a given cycle
or slot of a partial schedule. The resource model
based on the DFA (deterministic finite automaton)
in GCC* works by checking a sequence of instruc-
tions, in their order. This approach is suitable for
cycle-scheduling algorithms in which instructions
are always appended at end of the current schedule.
In order for SMS to use this linear approach, we
generate a trace of the instructions, cycle by cycle,
centered at the candidate instruction, and feed it to
the DFA.* The major drawback of this mechanism
is the increase in compilation time; our future plans
include addressing this concern.

Modulo variable expansion

After all instructions have been scheduled in the
kernel, some values defined in a given iteration and
used in some future iteration must be stored so that
they are not overwritten. Such values are over-
written when their life range exceeds a number of
cycles which equals II. The defining instruction will
execute more than once before the using instruction
accesses the value. Life ranges of registers can
exceed this number of cycles because register
antidependencies41 are removed from the DDG.

The problem of overwriting these values is solved
by using modulo variable expansion, which we
implemented by generating register copy instruc-
tions as follows:

Rn = Rno1; Rpc1 = Rpz 5005 Ry <= Ryer

where R . is the register in the defining instruction,
and n is determined according to the number of
times the back edge of the newly scheduled kernel is
crossed between the defining instruction and its
appropriate use. Every register antidependency that
is broken by code motion is fixed by using this
register copying and renaming.

The SMS appears in Version 3.5 of GCC. We are
continuing to work on several enhancements to
improve its performance.

Handling "load-hit-store" events

In several cases, we observed that load instructions
that follow stores to the same memory location
cause delays and reduce performance. It is obvious
that this sequence, called a “load-hit-store” event,
could be avoided by simply copying the value from
the stored register instead of loading it from
memory, if such a register copy instruction were

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

available. However, in many cases the compiler did
not recognize this possibility. There are two sources
to this problem: redundant accesses to memory in
the source code of the program and spill code™
generated by the compiler to save and restore
registers. We addressed both cases.

The first case, where redundant loads appear before
register allocation, is handled by redundancy
elimination optimization. Redundancy elimination
removes redundant calculations of expressions by
reusing previously calculated values that are stored
in some register. The redundancy elimination pass
of GCC did consider loading a calculation of an
expression from memory, but did not consider store
operations as expressions. Thus, GCC did replace a
load following another load from the same memory
location by a register copy, but did not replace a
load following a store to the same location. We
enhanced the redundancy elimination pass so that it
would also consider stores as expressions, and
hence replace subsequent loads from the same
location with register copies.

The second case of load-hit-store events was due to
poor register spilling (i.e., the reload pass in GCC) >
We handled this case in two ways. First, we added a
“cleanup” pass after the reload that removed such
redundancies, similar to the first case. However, this
solution is limited because it works with hard (that
is, allocated) registers. We reused the existing
redundancy elimination infrastructure and added a
special consideration of register availability for the
register moves that we generate. We also took care
of partial redundancy elimination by adding loads
on basic blocks that are less critical (according to
profiling), provided we can replace loads from
critical blocks by register moves.

Our second method of handling load-hit-store events
after register allocation was to keep such loads away
from the stores. We changed the instruction
scheduler to add NOPs between a store and a
subsequent load from the same location; this served
to keep them in different dispatching groups (see
“Dispatch group scheduling”).

THE ZSERIES BACK END

The GCC back end for a particular processor
describes the architecture and its implementation in
a manner that allows the platform-independent

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

optimization passes to generate correct and efficient
code for the target. The framework provided for this

m It is practically impossible
to accurately model and
predict the delays that will
occur at runtime m

purpose is powerful and flexible enough to allow
GCC to currently support more than 30 major
processor architectures, including many different
types. The S/390 back end implements support for
the S/390 and zSeries mainframe processors.

History

In 1997, the S/390 firmware development group was
searching for an ANSI C compiler with specific
requirements, including link compatibility to the
PL8 compiler and the possibility to write embedded
assembler code. At this time, it was discovered that
the existing S/370* MVS port by Jan Stein and Dave
Pitts could be used as a starting point.

In 1998, when Linux for S/390 work was started,
this compiler (and its linkage) was used as a base.
Over time, the Linux development team had taken
over as the driving force behind the S/390 back end,
changing it to use the ELF (executable and linking
format) linkage format, exploiting the 64-bit archi-
tecture, and finally donating the port to the FSF.
Since then, two of the authors of this paper have
been maintaining this back end, providing all
necessary fixes and enhancements for the user
community.

The zSeries architecture

The zSeries architecture is a typical CISC (complex
instruction set computer) architecture. It provides
an extensive set of assembler instructions (over 700
opcodes for the current model), including a sophis-
ticated subsystem to perform I/O operations. These
complex instructions tend to be implemented by
internal firmware. The processor also provides
efficient support for logical partitioning and virtual
machines, for example by means of the SIE (START
INTERPRETIVE EXECUTION) instruction. For the
compiler back end, however, the simple instructions
are the most important; these provide the means to
move data between memory and registers, perform

EDELSOHN ET AL

271

272

the standard arithmetical and logical operations, and
affect control flow via conditional and unconditional
branches as well as subroutine calls.

Recent zSeries processors can be operated in two
different modes of operation, Enterprise Systems
Architecture (ESA/390) mode and z/Architecture
mode.**** The latter provides 64-bit general purpose
registers and a complete set of instructions operating
on them; otherwise, it is compatible with the later
ESA/390 mode. The processor provides 16 general-
purpose registers which are 32 or 64 bits wide,
depending on the architecture mode, as well as 16
floating-point registers, which are 64 bits wide. Most
instructions allow two operands, with the first source
operand being used as the destination as well. As
opposed to typical RISC architectures, zSeries allows
memory operands to be used directly with nearly all
operations; all arithmetic and logical instructions
provide both a register-to-register (RR) and a
memory-to-register (RX) form. Logical and move
instructions are also available as memory-to-memo-
ry (SS) or immediate-to-memory (SI) operations. One
important design goal of the zSeries processor
microarchitecture is that RX and RR instructions
execute with the same speed, as long the memory is
already available in the level one (L1) cache.

The System/360* architecture originally provided a
24-bit address space, in which the high eight bits of
32-bit registers used in address generation were
ignored. As 16MB of address space proved too
small, the address space needed to be extended. For
compatibility reasons, the 24-bit addressing mode
still exists, and a new 31-bit addressing mode was
introduced with the S/370 architecture. Certain
instructions now use the top bit of a 32-bit value to
decide whether to operate in 24- or 31-bit addressing
mode. Even though Linux on zSeries never uses 24-
bit addressing, we still have to handle some
complications that come with 31-bit addressing as
opposed to the 32-bit addressing that is common on
many other platforms. The zSeries processors finally
introduced 64-bit addressing as a third mode,
extending the address space up to 16 exabytes. The
GCC back end supports generating code for either
31-bit or 64-bit addressing modes. It can also be
tuned to a specific operating environment, for
example, to generate optimal code for the 31-bit ABI
(application binary interface) when running on a
7990 processor in z/Architecture mode. The target
ABI, architecture mode, processor instruction set

EDELSOHN ET AL.

level, and target processor for tuning purposes can
all be selected independently.

The Linux on zSeries ABI

The GCC back end must take care to generate code
that is not only appropriate for the processor
architecture but also interoperable by means of
subroutine calls with other programs running on the
target platform. The ABI defines all aspects of code
generation that are required for interoperability. The
GCC back end currently supports two ABIs, those
used by Linux for S/39046 and those used by Linux
for zSeries.”” Note that these ABIs differ significantly
from the interfaces used with other operating
systems on the mainframe, namely the traditional
operating-system linkage and the high-performance
XPLINK. The calling convention used on Linux
passes arguments in up to five general-purpose
registers and up to four floating-point registers;
excess arguments or those with data types prevent-
ing register use are passed on the stack. As the
processor architecture does not actually define the
concept of a stack at the hardware level, the Linux
ABI uses register r15 as a stack pointer by
convention. Function prologue and epilogue code
handles setting up the registers and stack frame as
defined by the ABI.

The ABI details can have a significant impact on
performance. For example, early releases of GCC on
zSeries generated code in the function prologue that
would explicitly maintain a stack back chain, that is,
a pointer stored at the start of a function’s stack
frame that would give the address of the caller’s
frame. This results in a linked list of stack frames
being maintained at runtime that can be used to
generate a back trace listing for debugging purposes.
In recent releases, however, we have eliminated this
overhead by using DWARF-2*° call frame informa-
tion records to store details of the stack frame layout
for each function in an extra data section of the
executable image. Debugging tools can use this data
to generate stack back traces without any runtime
support by generated code. With GCC 4.0, we have
also reduced the amount of stack space required per
function call; this is helpful in environments like the
Linux kernel code where stack size is restricted.

GCC back end

We now describe in detail some of the issues we
encountered when implementing the zSeries back
end. This discussion will approximately follow the

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

flow of the middle end optimization passes from
RTL expansion to final assembler code generation,
and describe the contributions of the zSeries back
end to each stage. For more implementation details
see Reference 6.

The initial transformation of the program into the
lower-level RTL representation is performed with
expanders49 that encapsulate the representation of a
predefined set of standard arithmetical, logical, and
move operations. For example, the addsi3 expander
generates RTL to add two 32-bit integer source
operands and store the result in a destination
operand. The sequence of RTL thus generated is
then processed by several generic optimization
passes, including passes for common subexpression
elimination, jump threading and bypassing, dead-
code elimination, and low-level loop optimizations.
Note that while similar optimizations are already
performed on the higher-level tree representation in
GCC 4.0, these are still not completely redundant, as
RTL expansion may have introduced new optimi-
zation opportunities. Cost functions defined by the
back end are used to guide these algorithms towards
instruction sequences that are particularly well
suited to the target platform.

One optimization of special importance for the back
end is the combine pass, which allows the use of
assembler instructions that implement more com-
plex operations than those directly available as
expanders. The middle end tries various ways of
combining multiple logically dependent RTL in-
structions into a single one; if the resulting RTL is
accepted by a back-end insn’° pattern, the replace-
ment is performed. This is used to match zSeries
fused multiply-and-add instructions, for example.
The combine facility is also employed to make
efficient use of the zSeries condition code, a two-bit
value stored in the program status word that is set
by comparison instructions; conditional branches
depend on it to decide whether to take the branch.
However, many arithmetical, logical, and other
operations also set the condition code in addition to
computing their results, which makes explicit use of
comparison instructions superfluous in many cases.
The zSeries instruction set also provides operations
like TEST UNDER MASK that employ the condition
code to implement frequently used bit-test opera-
tions very efficiently; by defining appropriate insn
patterns, the zSeries back end is able to make full
use of these platform features.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

The ADD LOGICAL WITH CARRY and SUBTRACT
LOGICAL WITH BORROW instructions introduced with
7900 also allow using the condition code in a non-
branch instruction. They are primarily intended to

m Instruction scheduling is a
crucial optimization pass
required to prevent expensive
pipeline stalls m

implement multiword addition and subtraction by
allowing a carry or borrow from a low-order word to
be automatically considered when operating on the
next higher word. However, it is also possible to use
these instructions to perform a restricted form of
conditional execution; for example, the statement

if (@ < b) x++; can be implemented without using any
conditional branch instruction, thus avoiding po-
tentially expensive erroneously predicted branches.
This transformation is performed by a platform-
independent “if-conversion” pass that calls into a
back-end conditional add expander to implement
the details.

Up to this point, the program was kept in a high-
level variant of RTL that makes some simplifying
assumptions, most notably that the processor
provides an unlimited supply of registers. At some
point, it is necessary to transform the program into a
stricter representation that respects actual machine
constraints. This happens during the register allo-
cation and reload passes, using register information
and per-instruction constraints provided by the back
end. This phase also ensures that all memory
operands are accessed using proper address
formats.

On zSeries, effective addresses may be formed, in
general, by adding the contents of a base register, an
index register, and an immediate 12-bit unsigned
displacement. However, some instructions do not
allow the use of an index register. Alternatively, the
7990 processor introduced the long displacement
facility, which allows use of a 20-bit signed
displacement for selected instructions. This is one of
the few areas where it proved necessary to enhance
GCC platform-independent code in order to fully
support zSeries, because the reload pass was unable
to handle so many different address formats.

EDELSOHN ET AL

273

274

At this point, the back end inserts all function
prologue and epilogue code as required by the ABI
(see “The Linux on zSeries ABI”"). The back end can
cause further optimizations to be performed on the
RTL sequence at this point by defining “splitters”
and “peepholes.” Splitters are used to break up one
RTL instruction into a sequence of patterns. They
may be used by the back end to delay exposing
details of the processor until a later stage of the
compilation, for instance to present a doubleword
addition as a single pattern to early optimization
passes, while splitting it up later into single word
additions with carry. Splitters may also be required
to ensure correct code is generated in some cases,
for example, to handle instructions with restricted
addressing modes like LOAD MULTIPLE on zSeries.
Peepholes, on the other hand, allow the back end to
merge a sequence of RTL instructions into a single
pattern or a different sequence, possibly using
additional scratch registers.

Instruction scheduling (see “RTL scheduling and
optimizations™) is a crucial optimization pass
required to prevent expensive pipeline stalls, in
particular as zSeries processors operate in order.
This means that whenever some stage of the
pipelined execution of an instruction depends on
data resulting from a preceding instruction that has
not yet been completed, the processor will stall until
the data becomes available. The platform-
independent scheduling algorithms use a detailed
description of such pipeline dependency hazards of
the particular target-processor microarchitecture;
this is provided in the form of a finite-state machine
by the back end. For zSeries, we currently define
two such pipeline descriptions.

For the z900 processor, the central pipeline hazard
is address generation interlock (AGI), triggered
when the result of an operation is used as a base or
index register to form an effective address of a
subsequent instruction. As operand addresses are
required early in the instruction pipeline, at least
four other instructions need to be scheduled
between the two to avoid an AGI stall. However, for
some simple operations like load, the hardware
provides an AGI bypass such that their results are
available for address generation after only one or
two cycles. The z990 is more complex: its super-
scalar microarchitecture’’ is able to execute up to
three instructions in parallel. This adds new
requirements to instruction scheduling, as an

EDELSOHN ET AL.

instruction that uses the results of a preceding one
cannot run in parallel with it. Finally, the much
improved floating-point unit™ of the z990 features a
pipelined execution that introduces another complex
set of data dependencies for floating-point instruc-
tions.

After the final scheduling pass, the back end cleans
up all remaining target-specific issues. For zSeries,
this includes handling the limited ranges of branch
instructions as well as a possible overflow of the
pool holding literal constants. In ESA/390 mode,
relative branch instructions can reach only a range
of 64KB relative to the current instruction address;
more distant targets can only be reached by register-
indirect branches. As zSeries does not provide
instructions to load arbitrary literal values as
immediate operands, these need to be stored in a
literal pool in memory. If that pool exceeds 4KB in
size for any particular function (a condition that
fortunately rarely ever occurs, but still needs to be
handled), we need to split up the pool into multiple
smaller ones and reload the register pointing to the
pool base as required. After this is completed, the
sequence of RTL instructions is translated into
assembler source code as defined in the back-end
instruction patterns.

PERFORMANCE
This section examines the performance of GCC by
use of various benchmarks.

GCC improvements on zSeries

In this section we take a closer look at the perfor-
mance improvements that have been observed for
GCC on zSeries during the last five years. The
following comparison is based on estimated
SPECint2000* * results. For details on SPEC**, see
Reference 53, and for details on SPECint2000, see
Reference 54. All runs have been compliant base runs
according to the SPECInt2000 rules. As it is the
purpose to present the development over time, all
results have been normalized. The measurements for
the 1999, 2000, 2001, and 2002 results have been
executed on a z900, and the measurements for 2001,
2002, 2003, and 2004 on a z990. The overlapping
measurements (2001, 2002) have been used to scale
the 1999 and 2000 measurements to a z990. All
measurements have been run in a LPAR environment
(the zSeries version of logical partitioning—see
Reference 55 for more details) with the respective
Linux operating system of that time.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

Figure 2 shows the relative performance develop-
ment for the GCC compiler on zSeries. The 1999
result was obtained using the first published version
of the GCC version 2.95.1 for S/390 using an IBM
internal driver. As the development focus was on
functionality only, there was a large potential for
performance improvement. The 2000 result was
measured on a SLES 1 (SUSE LINUX Enterprise
Server 1) distribution using the compiler included
(GCC 2.95.2). As shown in the figure, some
performance improvements were made, and they
were in the back end of the compiler exclusively.
The 2001 result has been obtained using the SLES 7
distribution and the included system compiler (GCC
2.95.3). Again, the improvements have been imple-
mented in the GCC back end.

After those improvements, the transition to the new
GCC 3.x family occurred. Initially, this resulted in
slight performance degradation, as can be seen in
the 2002 results. This was measured on a SLES 8
with the GCC 3.2 compiler included. However, with
SLES 8 SP3, an optional GCC 3.3 compiler was
shipped at the end of 2003. Using this compiler, the
performance improved again. Here the main con-
tributor was the improved scheduling for the z990
engine described in the section “The zSeries back
end.”

The final measurement was done on a GCC 3.4
compiler with an IBM internal driver from develop-
ment. At this point, the profile-directed feedback
was working on all SPECint** cases for zSeries, and
so could be used for this run. This compiler will
most likely be available in the next Red Hat
distribution.

Overall, we have seen an improvement of 49 percent
over the first results. The first steps towards better
performance have been easy ones. We believe most
of the back-end work has been completed, and more
work is required in the middle end of the compiler.
The inclusion of the tree-SSA” is a promising step in
this direction.

Published results for SPECint benchmark using
GCC

Not many results have been published on the SPEC
CPU2000 Web site. This can be attributed to the fact
that other compilers are producing better code for
this benchmark than GCC. Generally speaking, the
compilers provided by the processor vendors are

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

PERCENTAGE
o
S
|
\
\
\
\
\
\

60 _ | | | | | | | |
50 1999 2000 2001 2002 2003 2004

Figure 2
Relative performance of some GCC versions on the
IBM zSeries platform

still one step ahead of GCC. In fact, the only results
available are those using the AMD Opteron and
Athlon processors. We make three different com-
parisons with these compilers.

For the early Opteron results’® in 2003, AMD used
the same hardware with the Intel 7.0 compiler and
the GCC 3.3 coming with SLES 8. Here GCC achieves
90 percent of the performance of the Intel compiler
for base runs. In one case GCC outperforms the Intel
compiler.

In 2004, AMD”’ used identical hardware with the
Intel 8.0 compiler and GCC. One important differ-
ence this time was that for the base runs GCC
produced 64-bit code; whereas, the Intel compiler
produced 32-bit code. Generally, the 64-bit code is
expected to be slower because it has a larger
memory footprint. With that difference, GCC
achieved 87 percent of the score of the Intel compiler
for base runs and 90 percent for peak runs.
However, there are now three base and two peak
workloads where GCC is ahead.

SUN®® used the PathScale EKO (Every Known
Optimization) compiler suite11 on hardware com-
parable to that used by AMD.”’ Here, GCC achieves
95 and 94 percent of the PathScale result for base
and peak runs respectively. For this comparison,
GCC is ahead on 4 cases for base (or 3 for peak)
measurements.

EDELSOHN ET AL

275

276

PL8 compiler

Before the GCC PL8 code was allowed to generate the
firmware code on the z990, it had to match the
performance of the original PL8 compiler. That meant
that the generated code had to perform at least as well
as the code produced by the competitive compiler. Itis
reported in Reference 5 that this goal was achieved.

Again, this is an indication that the GCC compiler
suite is capable of generating competitive code if the
appropriate focus is put into development. Note also
that the good performance of the PL8 code is also
due to the fact that it inherited the performance
gains of the GCC back end described in the section
“The zSeries back end.”

CONCLUSIONS

There are many benefits to our work on optimiza-
tions for GCC. Many existing and potential users of
IBM platforms are using GCC, and this is an effective
means to provide them with additional value and
improve support for our platforms. The vibrant
collaboration and synergy among compiler writers
contributing to GCC from various affiliations is very
helpful and supportive. The infrastructure of GCC
can pose challenges for advanced optimizations, but
it is being improved. The widespread usage of GCC
across platforms and environments also helps in
testing and debugging the compiler. Another benefit
of GCC is its availability for research in academia
and industry, an advantage we seek to exploit to
continue providing state-of-the-art and innovative
optimizations in GCC in the future.

The open-source approach and GCC’s modular
structure turned out to be of great value. Writing a
zSeries back end immediately made all languages
implemented by the GNU Compiler Collection avail-
able on that new platform. Writing a PL8 front end
made that language available on all platforms
supported by GCC. In both cases, existing code could
be reused. Most of the contributions described in this
paper have already been released as open-source
software.

ACKNOWLEDGMENTS

The authors would like to thank many people from IBM
and the GCC development community who were
involved in the GCC efforts covered in the paper,
including (in alphabetical order): Daniel Berlin, Doron
Cohen, Zdenek Dvorak, Olga Golovanevsky, Mario
Held, Richard Henderson, Vladimir Makarov, Devang
Patel, and Sebastian Pop. We would also like to thank

EDELSOHN ET AL.

the many additional people from IBM who have
contributed to GCC in areas not covered by this paper.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of The Open Group,
Compaq Computer Corporation, Freescale Semiconductor,
Inc., Intel Corporation, Standard Performance Evaluation
Corporation, Linus Torvalds, Microsoft Corporation, or Wind
River Systems, Incorporated.

CITED REFERENCES AND NOTES
1. GCC Home Page—GNU Project—Free Software Founda-
tion (FSF), http://gcc.gnu.org.

2. R. M. Stallmann, Using and Porting the GNU Compiler
Collection, Free Software Foundation, Boston, MA (1999).

3. “GNU Compiler Collection Internals,” Free Software
Foundation, Boston, MA (2004), http://gcc.gnu.org/
onlinedocs/gccint/index.html#Top.

4. The Free Software Definition, Free Software Foundation,
http://www.gnu.org/philosophy/free-sw.html.

5. W. Gellerich, T. Hendel, R. Land, H. Lehmann, M.
Mueller, P. H. Oden, and H. Penner, “The GNU 64-bit PL8
Compiler: Toward an Open Standard Environment for
Firmware Development,” IBM Journal of Research and
Development 48, No. 3/4, 543-556 (July 2004), http://
www.research.ibm.com/journal/rd/483/gellerich.pdf.

6. H. Penner and U. Weigand, “Porting GCC to the IBM
S/390 Platform,” Proceedings of the GCC Developer’s
Summit (2003), pp. 195-213, http://zenii.linux.org.uk/
~ajh/gcc/gecsummit-2003-proceedings.pdf/.

7. An “attributed syntax tree” is a syntax tree with
additional attributes associated with its nodes.

8. “Constant folding” is an optimization technique to execute
an operation at compilation time rather than at execution
time if all operands are constant. For example, an
assignment i =2+3 would be replaced by i =5 rather than
actually generating an ADD machine instruction.

9. SSA for Trees—GNU Project, Free Software Foundation
(FSF), http://gcc.gnu.org/projects/tree-ssa/.

10. R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K.
Zadeck, “Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph,” ACM Trans-
actions on Programming Languages and Systems 13, No.
4, 451-490 (October 1991).

11. D. Naishlos, “Autovectorization in GCC,” Proceedings of
the GCC Developer’s Summit (2004), pp. 105-118,
http://www.gccsummit.org/2004/
2004-GCC-Summit-Proceedings.pdf.

12. Loop Nest Optimizer—GNU Project, Free Software Foun-
dation (FSF), http://gcc.gnu.org/projects/tree-ssa/
Ino.html.

13. K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scales,
“Altivec Extension to PowerPC Accelerates Media Pro-
cessing,” [EEE Micro 20, No. 2, 85-95 (March-April 2000).

14. A. Peleg and U. Weiser, “MMX Technology Extension to
the Intel Architecture,” IEEE Micro 16, No. 4, 43-45
(August 1996).

15. AltiVec intrinsics constitute a set of C functions which the
GCC compiler maps onto single AltiVec instructions. For

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

20.

27.

28.

29.

30.

31.

a listing of this set see: http://developer.apple.com/
hardware/ve/instruction_crossref.html.

R. Allen and K. Kennedy, Optimizing Compilers for
Modern Architectures—A Dependence-Based Approach,
Morgan Kaufmann, San Francisco, CA (2001).

G. Ren, P. Wu, and D. Padua, “A Preliminary Study on
the Vectorization of Multimedia Applications for Multi-
media Extensions,” Proceedings of the 16th International
Workshop of Languages and Compilers for Parallel
Computing (LCPC2003), Lecture Notes in Computer
Science 2958, pp. 420-435 (October 2003).

R. Allen and K. Kennedy, “Automatic Translation of
FORTRAN Programs to Vector Form,” ACM Transactions
on Programming Languages and Systems 9, No. 4, 491-
542 (October 1987).

M. Wolfe, High Performance Compilers for Parallel
Computing, Addison Wesley, Reading, MA (1996).

“Strip mining” is a term used for an optimization
technique to (partly) parallelize the execution of a loop. If
a loop ranges from i=1 to 1000, and the hardware is able
to execute eight instances of the loop body at the same
time, then strip mining would involve first executing the
loop instances for i=1 to i=48 at the same time; next, the
instances for i=9 to i=16; and so on.

Exploring Alpha Power for Technical Computing, Compaq
Technology Brief, High Performance Technical Comput-
ing Group, Compaq Computer Corporation (2000),
http://h18002.www1.hp.com/alphaserver/download/
wp_alpha_tech_apr00.pdf

In the GCC’s intermediate representation of trees, each
tree has a code which indicates what type of tree it is.

A “target hook” is a mechanism within GCC that enables
a target-independent pass to execute target-dependent
operations or preferences.

“Reduction” refers to an operation that produces a scalar
output from a vector input, for example, computing the
sum or maximum value of vector elements. “Induction”
refers to an operation that updates a scalar variable inside
a loop, based on its values from previous iterations,
incrementing or decrementing by a loop-invariant
amount.

H.S. Warren, Jr., “Instruction Scheduling for the IBM RISC
System/6000 Processor,” IBM Journal of Research and
Development 34, No. 1, 85-92 (January 1990), http://
www.research.ibm.com/journal/rd/341/imbrd3401J.pdf.

D. Bernstein and M. Rodeh, “Global Instruction Sched-
uling for Superscalar Machines,” Proceedings of the ACM
SIGPLAN 91 Conference on Programming Language
Design and Implementation, SIGPLAN Notices 26, No. 6,
241-255 (June 1991).

A move of an instruction from position P1 to position P2
is speculative if there exist executions that pass through
P2 but not P1. In such a case, the instruction will be
executed because of its position at P2 but would not have
been executed if it remained at P1.

A “control-flow arc” is an arc in a control-flow graph. This
graph has a node for each basic block. Two nodes are
connected by an arc if during any execution, the second
block can be executed immediately after the first block.

Block B1 is a dominator of block B2 if any execution that
reaches B2 must go through B1.

Block B2 is reachable from block B1 if there exists an
execution that reaches B2 after B1.

A variable is “live” at every position between its
definition and its use, also known as its “live range.”

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

32.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

V. N. Makarov, “The Finite State Automaton Based
Pipeline Hazard Recognizer and Instruction Scheduler in
GCC,” Proceedings of the GCC Developer’s Summit (2003),
pp. 135-150, http://zenii.linux.org.uk/ ~ ajh/gcc/
gccsummit-2003-proceedings.pdf.

D. Naishlos, insn Priority Adjustments in Scheduler and
RS6000 Port, http://gcc.gnu.org/ml/gcc-patches/
2003-10/msg00485.html.

D. Naishlos, Scheduling of Queued insns, http://
gcc.gnu.org/ml/gcc-patches/2003-10/msg00698.html.

D. Naishlos, Scheduling Tuning in RS6000 Port, http://
gcc.gnu.org/ml/gcc-patches/2003-10/msg01702.html.

Register pressure refers to the number of registers that are
needed at certain positions in the code because their live
ranges intersect.

E. Ayguade, M. Valero, J. Llosa, and A. Gonzalez, “Swing
Modulo Scheduling: A Lifetime Sensitive Approach,”
Proceedings of the 1996 Conference on Parallel Architec-
tures and Compilation Techniques (PACT ’96) (1996), pp.
80-87.

E. Ayguade, M. Valero, J. Llosa, A. Gonzalez, and J.
Eckhardt, “Lifetime-sensitive Modulo Scheduling in a
Production Environment,” IEEE Transactions on Com-
puters 50, No. 3, 234-249 (2001).

This refers to a register dependency between an
instruction in one iteration and an instruction (possibly
the same one) in the next iteration. For example, the
instruction r5 = 15 + 1 inside a loop creates an interloop
register dependency of distance one.

M. Hagog and A. Zaks, “Swing Modulo Scheduling in
GCC,” Proceedings of the GCC Developer’s Summit (2004),
http://www.gccsummit.org/2004/
2004-GCC-Summit-Proceedings.pdf.

This is also known as a “write-after-read” dependency. It
is the dependency of an instruction that writes to a variable
on a previous instruction that read from the variable.

“Spill code” is a set of instructions that store and load a
variable into memory. This is needed in situations where
there is no available register.

Because of the limited number of registers, values
previously held in registers must at times be stored in
memory, if the value is needed, and this process is
referred to as “register spilling.”

ESA/390 Principles of Operation, IBM Document Number
SA22-7201-07 (2000), http://publibfp.boulder.ibm.com/
cgi-bin/bookmgr/BOOKS/dz9ar007.

z/Architecture Principles of Operation, IBM Document
Number SA22-7832-01 (2000), http://publibfp.boulder.
ibm.com/cgi-bin/bookmgr/BOOKS/dz9zr001.

LINUX for S/390 ELF Application Binary Interface
Supplement, IBM Document Number LNUX-1107-00
(2001), http://oss.software.ibm.com/linux390/docu/
1390abi0.pdf.

LINUX for zSeries ELF Application Binary Interface
Supplement, IBM Document Number LNUX-1107-00
(2001), http://oss.software.ibm.com/linux390/docu/
1zsabi0.pdf.

DWAREF is a format for debugging information in which
additional information is inserted into the binary file
produced by the compiler.

“Expanders” are operations that make modifications to
GCC’s intermediate RTL representation.

An “insn” is a pattern used internally by GCC and
constitutes a formal description of a machine instruction.

EDELSOHN ET AL

277

278

The description is used to translate the program being
compiled from a (more or less) target-independent form
into real binary code.

51. T.J.Slegel, E. Pfeffer, and J. A. Magee, “The IBM eServer
2990 Microprocessor,” IBM Journal of Research and
Development 48, No. 3/4, 295-310 (July 2004), http://
www.research.ibm.com/journal/rd/483/slegel.pdf.

52. G. Gerwig, H. Wetter, E. M. Schwarz, J. Haess, C. A.
Krygowski, B. M. Fleischer, and M. Kroener, “The IBM
eServer z990 Floating-Point Unit,” IBM Journal of
Research and Development 48, No. 3/4, 311-322 (July
2004), http://www.research.ibm.com/journal/rd/483/
gerwig.pdf.

53. SPEC—Standard Performance Evaluation Corporation,
http://www.spec.org.

54. SPEC CPU2000 V1.2, http://www.spec.org/cpu2000.

55. 1. G. Siegel, B. A. Glendening, and J. P. Kubala, “Logical
Partition Mode Physical Resource Management on the
IBM eServer z990,” IBM Journal of Research and
Development 48, No. 3/4, 535-541 (July 2004), http://
www.research.ibm.com/journal/rd/483/siegel.pdf.

56. Pathscale—Compiler Suite, http://www.pathscale.com/
products1.html.

57. CINT2000 Result: Advanced Micro Devices ASUS SK8V
Motherboard, AMD Opteron 150, http://www.spec.org/
0sg/cpu2000/results/res2004q2/
cpu2000-20040503-02999.html, http://www.spec.org/
0sg/cpu2000/results/res2004q2/
cpu2000-20040503-03003.html.

58. CINT2000 Result: Sun Microsystems Sun Java Work-
station W2100z, http://www.spec.org/osg/cpu2000/
results/res2004q3/cpu2000-20040628-03192.html.

Accepted for publication November 9, 2004.
Published online April 12, 2005.

David Edelsohn

IBM T.J. Watson Research Center, 1101 Kitchawan Road,
Yorktown Heights, New York (edelsohn@us.ibm.com). Dr.
Edelsohn received an A.B. degree in astronomy and physics
from the University of California at Berkeley in 1988, an M.Sc.
degree in astronomy from the California Institute of
Technology in 1990, and a Ph.D. degree in physics from
Syracuse University in 1996. He joined IBM Research in 1995
and developed the PowerPC port of the GCC. He is a member
of the GCC Steering Committee.

Wolfgang Gellerich

IBM Deutschland Entwicklung GmbH, Schoenaicher Strasse
220, 71032 Boeblingen, Germany (gellerich@de.ibm.com). Dr.
Gellerich studied computer science and chemistry at the
University of Erlangen-Nuernberg and graduated in 1993 with
a Master’s degree in computer science. Until 1999, he was
with the programming languages group of Stuttgart University
where he received a Ph.D. degree. Dr. Gellerich joined the IBM
development laboratories in Boeblingen in 2000. He was with
the firmware development group, where his main
responsibility was the development of GNU PL8, and he
recently joined the compiler team focusing on code
optimization for the IBM zSeries.

Mostafa Hagog

IBM Research Division, Haifa Research Laboratory, University
Campus, Haifa, Israel 31905 (mustafa@il.ibm.com). Mr.
Hagog received a B.Sc. degree in computer engineering in

EDELSOHN ET AL.

1998 and an M.Sc. degree in electrical engineering in 2001
from the Technion-Israel Institute of Technology. He has been
with the IBM Research Lab in Haifa since 2000. His fields of
interest include compilers and code optimization
technologies.

Dorit Naishlos

IBM Research Division, Haifa Research Laboratory, University
Campus, Haifa, Israel 31905 (dorit@il.ibm.com). Ms. Naishlos
received a B.Sc. degree in computer science from the
Technion-Israel Institute of Technology in 1998 and an M.Sc.
degree in computer science from the University of Maryland in
2000. Since 2001, she has been with the code optimization
technologies group at the IBM Research Lab in Haifa.

Mircea Namolaru

IBM Research Division, Haifa Research Laboratory, University
Campus, Haifa, Israel 31905 (namolaru@il.ibm.com). Mr.
Namolaru received an M.Sc. degree in mathematics from the
University of Bucharest in 1985, and an M.Sc. degree in
computer science from the Technion-Israel Institute of
Technology in 1992. Since 1992, he has been with the code
optimization technologies group at the IBM Research Lab in
Haifa.

Eberhard Pasch

IBM Systems and Technology Group, IBM Deutschland
Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (epasch@de.ibm.com). Dr. Pasch
studied mathematics at the universities of Tuebingen and
Massachusetts. He received a Master’s degree in 1995 and a
Ph.D. degree in 1998 from the University of Tuebingen. After
joining IBM in 1999, he worked in Linux development,
specializing on a variety of performance problems. He is now
a Senior Technical Staff Member responsible for Linux
architecture and performance.

Hartmut Penner

IBM Deutschland Entwicklung GmbH, Schoenaicher Strasse
220, 71032 Boeblingen, Germany (hpenner@de.ibm.com). Mr.
Penner studied computer science at the University of
Kaiserslautern and graduated in 1996 with an M.A. degree. In
1996, he joined IBM and worked in firmware development,
commencing shortly after the development of the zSeries back
end for GCC and working on the Linux port for zSeries.

Ulrich Weigand

IBM Deutschland Entwicklung GmbH, Schoenaicher Strasse
220, 71032 Boeblingen, Germany (uweigand@de.ibm.com).
Dr. Weigand studied computer science at the University of
Erlangen-Nuernberg and graduated in 1994 with a Master’s
degree. Subsequently, he was with the department of
theoretical computer science at the University of Erlangen-
Nuernberg, where he received a Ph.D. degree. Since 2000, he
has been a member of IBM’s Linux on zSeries development
group, focusing on improving the zSeries back end in GCC. He
is currently one of the official code maintainers of that back
end.

Ayal Zaks

IBM Research Division, Haifa Research Laboratory, University
Campus, Haifa, Israel 31905 (zaks@il.ibm.com). Dr. Zaks is a
manager in the Code Optimization Technologies group. He
received B.Sc., M.Sc., and Ph.D. degrees in mathematics and
operations research from Tel Aviv University. He joined the
IBM Haifa Research Lab in 1997 and initially worked on
compiler back-end optimizations for the AS/400. Later he
worked on developing an optimizing compiler for the eLite
DSP, spending one year at the IBM Thomas J. Watson
Research Center in Yorktown Heights, New York. M

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

