
Contributions to the GNU
Compiler Collection

&

D. Edelsohn

W. Gellerich

M. Hagog

D. Naishlos

M. Namolaru

E. Pasch

H. Penner

U. Weigand

A. Zaks

The GCC (GNU Compiler Collection) project of the Free Software Foundation has

resulted in one of the most widespread compilers in use today that is capable of

generating code for a variety of platforms. Since 1987, many volunteers from

academia and the private sector have been working to continuously improve the

functionality and quality of GCC. Some of the compiler’s key components were, and

continue to be, developed at IBM Research laboratories. We review several of IBM’s

contributions to the compiler, including a code generator for the IBM zSeriest

processor and a front end for a PL/I-like language used for systems software

programming. We also cover many optimizations, including the interblock instruction

scheduler, software pipeliner, and vectorizer. These contributions help improve the

overall performance of code generated by GCC, and in particular, enhance the IBM

RISC (reduced instruction set computer) architecture and the zSeries processors. This

paper includes a report on our general experience with GCC in both open source and

proprietary software environments and reviews the quality and performance of GCC-

generated code.

The GNU Compiler Collection (GCC) is an optimiz-

ing compiler for the GNU project that is capable of

generating code for a variety of platforms and that

supports a number of languages, computer archi-

tectures, and operating systems.
1–3

It is one of the

most visible aspects of the Free Software Foundation

(FSF) GNU project. The goal of the GNU Project is to

create a UNIX**-style operating system composed of

free software.

The GCC compiler can be configured to generate

code for more than 30 different computer architec-

tures. Many architecture configurations are designed

to support multiple operating systems, including the

GNU system and GNU/Linux**. The primary set of

languages available with the compiler are C, Cþþ,

Fortran, Java**, Objective C, and Ada. Runtime

libraries for the languages are also included in the

compiler suite. Support for additional languages is

currently in various stages of development.

The GNU Project includes an assembler, linker, and

other object file tools, commonly called ‘‘binutils,’’

the GDB debugger, and glibc (GNU C library).

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 EDELSOHN ET AL. 259

Together, these components provide a software

development environment or ‘‘tool chain.’’

GCC structure

GCC was one of the first components of the GNU

Project. Richard Stallman initially tried to extend the

Pastel compiler, developed by the

& GCC evolved through
the efforts of a worldwide
group of developers, including
members of industry and
academia and independent
consultants &

Lawrence Livermore National Laboratory, but

needed to rewrite the compiler from scratch due to

technical limitations of the Pastel compiler.

The compiler was initially targeted at the common

microprocessors of the late 1980s, such as the

Motorola 68000, and was ported to other CISC

(complex instruction set computer) processors, such

as the Intel 80386. GCC initially parsed source code

one statement at a time, focusing on local optimi-

zations. One of the important optimizing phases

from the earliest versions of GCC is a phase called

combine that operates as a generalized peephole

optimizer, reducing multiple instructions into single,

more powerful instructions (see ‘‘GNU back end’’).

Recent improvements have expanded the compiler’s

view of the program to focus on one function at a

time, the translation unit, or the whole program.

These changes allow more aggressive optimizations,

including inter-procedural analysis. Other recent

enhancements include the addition of a Static Single

Assignment (SSA) design with basic SSA-based

scalar optimizations, high-level loop transforma-

tions, and vectorization.

The compiler phases for GCC 4.0 first parse the input

program into an intermediate representation called

GENERIC. GENERIC is expanded and lowered into

an SSA form called GIMPLE. The compiler optimizes

the SSA form and then removes the SSA names. The

program statements are translated to a different

intermediate language called register transfer lan-

guage (RTL), which directly corresponds to the

instruction set of the target processor (i.e., the

‘‘target instruction set’’). RTL optimizations that

require details about the target processor instruc-

tions are applied, such as instruction scheduling,

software pipelining, and register allocation.

RTL is designed to correspond to valid target

instructions. The RTL instruction codes themselves

are independent of the target, but the subset of codes

used for each target match the machine instructions

of the target. Other than missing register numbers and

memory offsets, RTL transformations are intended to

convert a valid instruction stream into another valid

instruction stream (i.e., sequence of instructions).

After all optimizations have been applied, the RTL

instruction stream is output as a file in assembly

language appropriate for the target system. GCC does

not have an integrated assembler and does not

generate an object file directly for any target. An

external assembler, possibly the GNU Assembler,

creates an object file, and an external linker, possibly

the GNU Linker, binds the executable or shared

object. The operating system may use the GNU C

Library to provide an interface to system services.

The GCC compiler is written in the C language, and

the source code is composed of files common to all

targets and files with specific information about the

target architecture, target system, and target file

format—the latter referenced as the machine

description. Some of the files in the machine

description affect the way the common parts of the

compiler behave (e.g., the size of data types, size of

registers, register allocation order, etc.). Other files

are used by programs within the GCC build process

to create machine-generated files that interface with

the common parts of GCC to describe the target

instructions and output format.

GCC development
GCC evolved through the efforts of a worldwide

group of developers, including members of industry,

academia, and independent consultants. As with

many other free-software and open-source projects,

the hierarchy of developers strives to achieve a

meritocracy. A core set of developers provides most

of the technical leadership, and a steering committee

provides the political leadership and interface to the

FSF.

EDELSOHN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005260

Developers collaborate in a decentralized fashion

with informal collaboration, setting design goals and

avoiding duplicated effort. The majority of commu-

nications and technical decisions occur in public

forums such as mailing lists and chat rooms. The

GCC source code is available in revision control

systems on publicly accessible servers.

All GCC developers are required to have copyright

assignments on file with the FSF. After that

documentation is on file, changes offered by a

developer for inclusion in GCC can be considered.

Patches are mailed to public mailing lists and

reviewed for coding style, design, and implementa-

tion correctness by senior developers with authority

to approve patches for various components. Doc-

umentation for the GCC project explains the devel-

opment plan and other criteria of the project. The

coding style follows the GNU coding conventions

and GCC extensions.

GCC includes an extensive and growing test suite to

help maintain the quality of the compiler. All patches

are supposed to be tested with the complete test suite,

and authors are expected to certify that a proposed

patch did not generate any new test suite failures.

To maintain the quality criteria for GCC, releases

should create no test suite regressions on important

target platforms. Because of the large number of

GCC targets (architectures, operating systems, file

formats, etc.), some regressions do occur. The lack

of complete coverage testing and unit testing in the

current design is one of the major limitations in the

GCC testing procedures.

GCC legal issues

Free software, a concept originated by Richard

Stallman to encompass the GNU Project, refers to

the freedom of users and developers to use, modify,

redistribute, and distribute modified versions of the

software.
4

Free software commonly refers to soft-

ware distributed under the terms of one of the GNU

General Public Licenses (GPL). Open-source soft-

ware refers to a broader set of possible licenses.

Although the GPL applies to the GCC and the GNU

tool chain, building an application using the GCC

does not affect the software license of the applica-

tion itself. Proprietary applications can be built

using GCC.

Use of GCC

Use of GCC has become pervasive throughout the

software industry because of its flexibility. It is able

to generate applications for many proprietary and

open-source UNIX** operating systems, as well as

OpenVMS**, z/OS,* Microsoft Windows**,

VxWorks**, and others.

GCC has been available for AIX* on the POWER*

platform and MVS* on the S/390* platform for over

ten years. In addition to its use by IBM customers on

AIX and in software enablement for embedded

processors, GCC has also been used for many

research projects and prototypes; for example,

experimental work with the PowerPC* instruction

set and the 64-bit XCOFF file format.

Customers frequently use GCC instead of proprietary

compilers because of its portability. GCC itself

provides language extensions, but the extensions are

consistent across all systems; therefore, customers

do not have to worry that they will use a compiler

feature that locks them into a particular system. The

GPL ensures that the customer always has access to

the source code of the compiler and libraries to

perform any development or maintenance. A cus-

tomer’s decision to use GCC often depends on a few

primary factors, including performance, portability,

and service.

Overview

In this paper, we describe several of our contribu-

tions to GCC. IBM has made additions to GCC which

encompass all phases of the compiler—the front

end, optimizations in tree and RTL intermediate

representations, and the back end. The specific

details of each contribution are outside the scope of

this paper; the interested reader is referred to the

actual code and documentation, which is freely

available at http://gcc.gnu.org. This paper does not

cover all contributions to GCC made by IBM

developers, but rather describes some projects in an

attempt to focus on our experience with GCC and its

limitations and potential. In the following sections

we describe a new front end, some optimizations,

and a new back end.

PL8 FRONT END

This subsection describes the development of

firmware for the PL8 and IBM zSeries* systems, and

the technical issues arising from this effort.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 EDELSOHN ET AL. 261

PL8 and IBM zSeries firmware development
The term ‘‘firmware’’ refers to the software layer

between hardware and the operating system. Firm-

ware functionality includes I/O path management,

& GCC includes an
extensive and growing test
suite to help maintain the
quality of the compiler &

I/O load balancing, recovery from hardware and

firmware errors, and some system management

functions, which, in other computer systems, are

typically implemented in operating-system layers.

Firmware development requires low-level program-

ming, as firmware has many interfaces to hardware

registers and to assembler-written routines. The

firmware implements low-level services that require

accessing specific addresses and dealing with

individual bits or words smaller than a byte. PL8,

which basically is a subset of PL/I, supports these

requirements by use of appropriate declarations,

which is considered a strength of the language.
5

The

language has been used for firmware development

since the early 1980s with an old compiler that has

not been maintained for years. However, there have

been significant enhancements made to the zSeries

architecture, including additions to its instruction

set, improved pipeline structures, and an extension

to 64 bits. Some firmware internal structures were

strongly geared to 64-bit implementation, which the

original PL8 compiler could not provide. The

original compiler was also inherently tied to the

library and build environment on VM/CMS as its

only execution platform.

PL8-front-end technical issues
Given GCC’s modular structure and the fact that

GCC already had a back end generating S/390 code

(see ‘‘The zSeries back end’’ and Reference 6), an

obvious approach was to implement PL8 again as an

additional GCC front end. The language was

extended to support 64-bit data types, and its rules

concerning memory layout were adapted. The GCC

framework also suggested a few language modifi-

cations.

In contrast to most other GCC front ends, the PL8

front end is well-suited for two-pass compiling. This

is because PL8 allows forward references to decla-

rations. The two-pass approach also simplifies

certain other translations. The first pass does lexical

and syntactic analysis, which is implemented using

the compiler-generating tools Flex and Bison,

respectively. Its output is a front-end internal

representation of the input program which is an

attributed syntax tree.
7

Tree nodes are implemented

as records with fields containing data or pointers to

other tree nodes. Whenever possible, the GCC

predefined tree nodes are used to represent PL8

constructs. For example, this is done for if,

do while, and do until statements. More elaborate

statements, such as select and PL8 counting loops,

have no direct correspondence to any existing

nodes; they are thus first translated into front-end

specific nodes, as are most of PL8’s declarations,

namely the attributes based, offset, and redefines.

In pass two the compiler starts working on the data

structures generated by pass one and does a few

semantic checks. In this pass the compiler also does

some optimizations. These include type compati-

bility checks to verify that variables are assignable.

Implicit type conversions are inserted where the PL8

language definition allows the assignment of varia-

bles with different types. Range checks are gen-

erated for array accesses, and for all accesses to

based variables through offsets. Pass two also carries

out some optimizations, such as constant folding
8

and an elimination of range checks, which deletes a

check if it can determine at compile time that an

index will never be out of the valid range.

Finally, the PL8-specific nodes are translated into

GCC-defined tree nodes and are passed to the GCC

‘‘middle end’’ (i.e., second phase).
5

The PL8 front

end is approximately 50 KLOCs (thousand lines of

code) in size.

Compiler validation

Validation for the new front end was performed in

several steps. First, a regression test package with

almost 3500 test cases was run automatically. It

consisted of test cases systematically developed by

experienced PL8 programmers, test cases used for

the original PL8 compiler, and test cases derived

from compiler problems. The second step was to run

all zSeries firmware test cases, using a stable

firmware version, with the new compiler. The front-

end sources were also subject to a formal code

EDELSOHN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005262

review and were analyzed by a static code-checking

tool.

During final system test, only five compiler prob-

lems were found. So far, no field problems are

attributed to the PL8 compiler.

TREE OPTIMIZATIONS

The GCC uses different internal representations

(IRs) at different phases of compilation. The tree

representation is a language-independent and ma-

chine-independent IR that preserves high-level

language constructs, a property which makes it

suitable for a range of compiler optimizations. Until

recently, however, almost all optimizations in the

GCC took place at a lower level IR—the RTL. This

situation is gradually changing since the recent

introduction of the new tree-SSA framework.
9

This

framework includes further simplification of the tree

IR into a three-address language (GIMPLE), and an

implementation of SSA on top of it.
10

The introduction of tree-SSA simplifies and encour-

ages the development of many optimizations and

analyses, thereby providing the required infrastruc-

ture for the development of a vectorizer in the GCC.

On January 1, 2004, we submitted the first

implementation of a basic vectorizer to the GCC,

based on tree-SSA utilities,
11

and it is now part of

the GCC mainline version 4.0. Additional capabil-

ities are constantly being developed on the ‘‘loop-

nest-optimizations’’ branch.
12

In this section, we

describe our work on the GCC vectorizer, and in

particular, the issues that arise due to the multi-

platform nature of the GCC.

Vectorization

To take advantage of vector hardware such as

AltiVec** and MMX**/SSE
13,14

(multimedia or

streaming SIMD [single instruction, multiple data]

extensions to general-purpose instruction set archi-

tectures), programs can be written using explicit

vector operations (e.g., using Altivec intrinsics
15

or

the Fortran90 operations on whole arrays). These

vector operations work on multiple elements in

parallel, in contrast to the standard scalar operations

that operate on individual elements, one after the

other. The transformation of these scalar operations

into an equivalent vector form is referred to as

vectorization
16

and can be applied manually or

automatically by the compiler.

Opportunities for applying vectorization are usually

found in loops, where operations from different

iterations can execute in parallel (exploiting data

& Use of GCC has become
pervasive throughout the
software industry due to its
flexibility &

parallelism across loop iterations). Applications in

many domains have an abundance of natural

parallelism in the computations they perform. If this

parallelism can be leveraged to exploit the vector

capabilities of the target architecture, the perfor-

mance of these applications can be considerably

improved. The level of parallelism that can be

implemented depends on the size of the vectors

supported by the target and the size of the data types

operated upon in the application. In AltiVec, the

vector size is 128 bits, which can accommodate four

floating-point numbers, four integers, eight

‘‘shorts,’’ or 16 characters. We refer to the number of

elements that can be operated upon simultaneously

as the ‘‘vectorization factor.’’

The importance of automatic vectorization has

increased in recent years, with the introduction of

SIMD extensions to general-purpose processors, and

with the growing significance of applications that

can benefit from it. SIMD introduced some new

difficulties for vectorizing compilers,
17

which are

especially challenging in the context of GCC, as

discussed next.

Vectorization components
Research into the area of vectorization is already

quite mature.
16,18,19

The main focus of classic

vectorization is the use of data dependencies and

loop analyses to: (1) detect statements that can be

executed in parallel without violating the semantics

of the program, and (2) increase such occurrences

by means of loop transformations.

While the analyses above deal with proving the

theoretical correctness of applying vectorization,

most other analyses and transformations employed

by the vectorizer are low level and deal with

machine-dependent cost and trade-off analysis,

rather than general properties of the code itself. This

is because the specific characteristics of the avail-

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 EDELSOHN ET AL. 263

able architectural vector support can directly affect

the vectorization transformation, and even deter-

mine whether it should be applied at all.

The vectorizer starts with a set of loop-level

analyses, including analysis of data dependencies,

data-access patterns, data alignment, loop-exit con-

ditions, and analysis to determine if all the

& The natural parallelism of
many applications can be
leveraged to exploit the
capabilities of the target
architecture and enhance
performance &

operations in a loop have a vector form supported

on the target platform. This information is modeled

through the machine model files. For simple generic

operations, it is easy to query (even at the machine-

independent tree-level IR) whether the operation is

supported. However, this information is not so

easily accessible for operations that do not have an

equivalent scalar form (such as data permutations,

reduction, and unaligned accesses). In these cases,

we have to enhance the infrastructure to represent

this information to the vectorizer.

For loops that successfully pass the analysis stage,

the vectorizer applies the actual vector transforma-

tion. This consists of ‘‘strip mining’’ the loop
20

by

the vectorization factor and then replacing each

scalar operation in the loop by its vector counterpart

(using the machine model files). In many cases

additional handling beyond the one-to-one substi-

tution of statements is required. Constants and loop

invariants require that vectors be initialized before

the loop; other computations, such as reduction,

require special ‘‘epilogue code’’ after the loop, and

some operations (unaligned accesses, type conver-

sion) require special data manipulation to take place

between vectors.

The machine-dependent components of the vector-

izer are mostly related to memory architecture

limitations of vector machines. The memory archi-

tecture usually restricts vector data accesses to

consecutive vector-size elements, aligned on vector-

size boundaries. Gathering data from nonconsecu-

tive or unaligned locations requires special mecha-

nisms for data reorganization, which are costly and

hard to use. These issues are especially true for

SIMD systems because SIMD memory architectures

are typically weaker than those of traditional vector

machines. Moreover, SIMD architectures tend to be

very different from one another, a fact that can be

problematic for a vectorizer operating at a high-level

machine-independent IR in a multiplatform com-

piler such as GCC. Some of these problems are

elaborated next.

GCC implementation issues

The aspects of vectorization discussed earlier

demand that low-level architecture-specific factors

be considered throughout the process of vectoriza-

tion. However, at the tree-level IR, it is not trivial to

express low-level target-specific mechanisms, such

as those that are used to reorganize unaligned data

or pack or unpack data between vectors of different

data types. These mechanisms need to be intro-

duced into a high-level platform-independent tree

IR, while allowing low-level platform-specific details

to be hidden as much as possible, to be applicable to

any platform, and to be as efficient as possible on

each platform.

These properties are even more difficult to tackle in

a multiplatform compiler such as GCC, due to the

tendency of SIMD instruction-set architectures to be

much less general-purpose and less uniform than

traditional vector machines. Many specialized do-

main-specific operations are included, many oper-

ations are available only for specific data types but

not for others, and often a high-level understanding

of the computation is required in order to take

advantage of certain functionality. Furthermore,

these particular characteristics differ from one

architecture to another.

Misalignment support is an excellent example of this

situation. Different machines display different be-

havior upon an access to an unaligned location and

offer different mechanisms for handling such ac-

cesses. For example, an efficient scheme that reuses

data across iterations can be used for targets that can

combine data elements from two vectors. AltiVec

has such a capability; other SIMD platforms usually

support this functionality only when the misalign-

ment is known at compilation time. If it cannot be

determined at that time, a less efficient scheme can

be employed, using a special unaligned move

EDELSOHN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005264

instruction (as is available in SSE), or a sequence of

instructions (as in Alpha EV6,
21

for example). In

order to accommodate different targets, we intro-

duced a set of new generic tree codes
22

and target-

hooks
23

that allow us to model and express the most

efficient scheme for each target. These extensions to

the tree IR are a result of close collaborations and

long discussions with the GCC community.

There are also machine-independent issues that

impact the effectiveness of the vectorizer, most

notably, the presence of pointers and the limitations

of aliasing analysis in GCC. Aliasing analysis in GCC

is expected to improve in the near future; in the

meantime, its limitations will be overcome by

performing loop versioning, however, at the cost of

a runtime dependency-test overhead.

Status and future work

We are in the early stages of developing vectoriza-

tion optimization in GCC. The basic infrastructure is

in place to support initial vectorization capabilities.

These capabilities are demonstrated by the vectori-

zation test cases, which are available as part of the

GCC test suite and are updated to reflect new

capabilities as they are added. Work is under way to

extend these capabilities and to introduce more

advanced vectorization features. The current devel-

opment status can be found in Reference 18.

The domain of vectorizable loops can be described

in terms of the forms, data references, and oper-

ations of the loops that can be supported. Currently,

vectorization support in GCC handles innermost,

single-basic-block loop forms and some cases of

loops that contain if-then-else constructs. The data

references must be consecutive and array-based or

pointer-based and must not overlap (usually this

means that pointers need to be annotated as

‘‘restricted’’). Preliminary misalignment support is

also available. Operations must not create a scalar

cycle (no reduction or induction
24

), must all operate

on the same data type, and must have a vector form

that is expressible with existing tree codes.

There are many future directions for enhancing the

vectorizer, including the addition of support for

more data reference forms, runtime aliasing tests,

multiple data types, reduction and induction oper-

ations, special idioms (such as saturation, mini-

mum/maximum, dot product, etc.). Among the

idioms that are of a particular interest are those

representing operations that work on a block (or

‘‘chunk’’) of elements in parallel and can be

optimized even when no vector support is available.

This can be done by calling a library function

(memset, for example) or using special string

operations (the S/390 TRANSLATE operation, for

example).

Longer term goals include vectorization of nested

loops, exploiting data reuse, support for additional

access patterns (e.g., strided, that is, a sequence of

memory addresses separated by a constant distance)

or permuted accesses (that is, accesses by the

alphabetic order of each of the constituents for

composite terms that require data manipulations),

straight-line code vectorization, loop parallelization

using threads, and more.

RTL SCHEDULING AND OPTIMIZATIONS

After performing optimizations at the high-level tree

IR, GCC expands the code into the RTL, which

directly corresponds to the target instruction set.

The RTL level contains the details required by

instruction scheduling, load and store operations,

and register-allocation optimizations.

In this section, we present several RTL optimiza-

tions that we contributed to GCC, including inter-

block scheduling, dispatch group scheduling for out-

of-order executing targets, modulo-scheduling of

loops, and optimizations for ‘‘load-hit-store’’ events.

Interblock instruction scheduling

Prior to 1997, the original GCC scheduler supported

scheduling only within basic blocks (intrablock

scheduling). To take advantage of the newer super-

scalar architectures, more advanced scheduling

techniques were required. This section describes the

work done to extend the GCC instruction scheduler

to support interblock scheduling, focusing on the

design of the new interblock scheduler. This project

was done in 1997, and the interblock scheduler has

become part of GCC’s standard distribution since

then. For a general description of instruction

scheduling, see References 25 and 26.

The design and implementation of the scheduler

were influenced by the desire to reuse existing code

and have the same code for intrablock and inter-

block scheduling. We also had to retain global

information (e.g., debug notes) throughout sched-

uling and preserve the GCC compiling speed. To

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 EDELSOHN ET AL. 265

achieve the goal of supporting interblock scheduling

and code motion
26

(i.e., movement relative to other

instructions), several design decisions were made:

1. Define the scope of interblock scheduling (the

‘‘region’’) to contain all blocks of innermost loops

or entire loop-free functions.

2. Support speculative
27

and equivalent motions,

but not duplicative motions, because of associ-

ated high compilation and development costs and

questionable benefits.

3. Keep the scheme of activating the scheduler twice

(before and after register allocation), using the

interblock scope in the first invocation.

4. Reverse the scheduling order from a bottom-up

order to a top-down order (as used in Reference

24), a requirement for the support of interblock

moves (in particular, speculative moves).

5. Develop a visualization mechanism for step-by-

step tracking of the scheduler and relevant

modeling information.

At the time of this work, the GCC did not have the

infrastructure needed to support advanced optimi-

zations. The infrastructure had to be extended in the

following directions:

1. Building control-flow arcs
28

—At the time, the

available control flow information contained only

the set of nodes (basic blocks).

2. Computing block dominator
29

and reachability
30

information—To identify and support possible

(equivalent and speculative) motion opportuni-

ties (see, e.g., Reference 25).

3. Identifying the regions, based on the control flow

graph—In particular, if all regions are set to

contain a single basic block, the case is simplified

to that of an intrablock scheduler (meeting the

second requirement above).

In addition, the data dependency graph was

extended to span multiple blocks, and the list-

scheduling algorithm (e.g., ready list, heuristics)

was extended to work with instructions from

different blocks.

To perform interblock movement, several analyses

were implemented that determine if a move is

possible and whether it is speculative or equivalent.

For speculative moves we determine the conditional

execution probability, where to check and update

life information,
31

and if loads are exception free

(i.e., executing the load will not cause an excep-

tion). The high-level design of the interblock

scheduler is shown in Figure 1. The steps of

computing flow-related information and data-de-

pendency information are independent and can be

executed either in order or in parallel. Similarly, the

steps of computing the probability and the update

blocks are independent.

Escape and update blocks

The scheduler may move an instruction from basic

block S to basic block T only if T dominates S, to

avoid code duplication. When considering a spec-

ulative motion from block S to block T of

instruction I that defines register R, we must

prevent I from interfering with another live range of

R. (This is in addition to the standard restrictions

imposed by data dependencies.) To do so, we first

examine paths from T that avoid S and identify the

first block in each such path from which S cannot

be reached. These blocks are called ‘‘escape

blocks.’’ To prevent I from interfering with another

live range of R, we check that R is not alive at the

beginning of each such escape block. If this is true,

we may move I speculatively, thereby extending the

live range of R along the path from S to T. We then

need to update the live information for all blocks on

this path that are siblings of escape blocks (these

blocks are called update blocks), to prevent

subsequent speculative moves from interfering with

this live range. Our computation of escape and

update blocks also helps determine if two blocks

are equivalent without requiring explicit post-

dominance computations.

Analyzing whether loads are exception free

When a load instruction is moved speculatively,

there is a risk of causing an ‘‘illegal memory access’’

exception speculatively. We therefore only move

loads speculatively if they are known to be

exception free, or if we can prove that the moved

load causes an exception only after another load

causes a similar exception. We implemented a

mechanism that checks for certain types of excep-

tion-free and exception-related loads to support

speculative movement of such loads. For example,

loads of local variables from the stack or loads of

global variable addresses from the table of contents

could be considered exception free.

There is still room for improving the speculative

motion of load instructions. We believe that this is

EDELSOHN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005266

very important because improved motion of loads

will often enable subsequent code motion and may

help hide memory latency. We therefore included a

flag that enables aggressive (that is, nonconserva-

tive) speculative motion of all loads to obtain

upper bounds on the potential improvement that

can be gained by further improving the initial

mechanism.

GCC is an evolving compiler. The infrastructure of

GCC improved after the interblock scheduler was

added, making the implementation of advanced

optimizations much easier. Regarding scheduling,

GCC now has a more general control-flow and loop-

identification support, as well as a more powerful

mechanism for describing the architecture
23

and a

modulo-scheduling pass (see the section ‘‘Software

pipelining and modulo scheduling’’).

Dispatch group scheduling

Advanced processors such as Power4* and

PowerPC970 execute instructions out of order, while

dispatching and completing them as groups in order.

The compiler should consider the various hardware

constraints of dispatch-group formation in order to

maximize the instruction-level parallelism (ILP).

The GCC scheduler (described in the section

‘‘Interblock instruction scheduling’’) follows the

classic approach of instruction scheduling, which

models the delays and constraints of each instruc-

tion and schedule to avoid all stalls. This approach

can be suboptimal for out-of-order multiple-issue

Figure 1
High-level design of interblock scheduler

YES

NO

If escape_blocks(S,T) is not
empty, then the motion is
speculative, and additional
information is computed:

Compute regions to schedule

Compute control-flow graph

For each region:

Compute data dependence info

Compute valid source blocks

For each block:

Compute flow-related-info

For each such source block S (dominated by T):

Compute escape_blocks(S,T)

Update region global data

Do list scheduling

Update_blocks(S,T)Probability(S,T)

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 EDELSOHN ET AL. 267

processors, and specifically for the Power4 and

PowerPC970. The GCC scheduler has an option for

maximizing the number of instructions issued per

cycle,
32

but this option increases compiling time and

did not suit our needs.

The major observations that guided our work on

instruction scheduling for dispatch groups were that

it is practically impossible to accurately model and

predict the delays that will occur at runtime (due to

out-of-order execution); that there is a better chance

of predicting the grouping that will be formed (due

to certain constraints); and that accurate emulation

of dispatch groups can be very important for

increasing the ILP.

In this section, we present three optimizations that

enhance the GCC scheduler to handle and optimize

dispatch group formation and out-of-order execu-

tion. We contributed the optimizations described in

this section to the FSF during October 2003,
33–35

and

they are part of the GCC 3.4 release. See Reference

32 for specific implementation and performance

details of these optimizations.

Including dispatch group restrictions as a criterion

during scheduling

The Power4 processor dispatches a group of up to

four instructions (and a branch) in each cycle. Some

instructions can only be assigned to certain dispatch

slots. Specifically, there is a set of instructions that

can only be dispatched as the first instruction in a

dispatch group. When issued, such dispatch-slot-

restricted instructions always open a new group,

causing the termination of a previous dispatch

group.

When the instruction scheduler chooses an instruc-

tion and decides to schedule it in the currently

scheduled cycle, it is better to choose an instruction

that must be first (if available and) if a new dispatch

group is being opened. We used an existing target

hook, adjust_priority, to modify the priority of

instructions during scheduling according to these

dispatch-group considerations.

Allowing early scheduling of stalled instructions

The GCC scheduler uses two queues to manage the

instructions that are candidates for scheduling.

Those that are still waiting for other (already

scheduled) instructions to be completed are placed

in the ‘‘stalled queue,’’ and those that do not need to

wait are placed in the ‘‘ready queue.’’ The instruc-

tions in both queues can be scheduled in the current

cycle, but instructions in the stalled queue will

(according to the model) wait for data or some

resource to become available.

The scheduler selects instructions for scheduling

only from the ready queue. With time, instructions

from the stalled queue become ready and move to

the ready queue. If the ready queue is empty, the

compiler closes the current dispatch group that it is

modeling, even if there are vacant dispatch slots

available, and proceeds to schedule instructions for

the next group and cycle.

This scheme does not do a good job of modeling for

processors where delays can occur between the

dispatch and the execution of instructions. Opti-

mizing the dispatch of instructions is important for

group-formation considerations, and optimizing

their execution is relevant for data-dependent

latency considerations. For such targets, the stalled

queue contains instructions that cannot be executed

in the current cycle (because of data or resource

delay), but they can and sometimes should be issued

in the current cycle.

In order to optimize for execution and dispatch

group utilization, we allow the scheduler to select

instructions directly from the stalled queue. We limit

this to cases where there are potentially vacant

dispatch slots to fill and there is nothing better to fill

them with (i.e., the ready queue is empty). This also

improves the emulation of dispatch group forma-

tion; the resulting schedule better matches the

groups that will be formed at runtime. Because some

dependencies (which keep instructions in the stalled

queue) may incur a high penalty if broken, we

prevent premature selection from the stalled queue

in such cases.

Null-operation insertion

The GCC scheduler models the formation of

dispatch groups, but does not insert NOPS (null

operations) to fill up vacant slots. In order to

improve the synchronization of group boundaries

between the compiler and hardware, we imple-

mented a post-scheduling pass that scans the

instruction stream and examines the dispatch group

boundaries that the scheduler had marked. Vacant

issue slots that are detected are padded with NOPS,

EDELSOHN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005268

in order to force the scheduler’s grouping on the

processor dispatcher.

A naive implementation inserts too many NOPs,

which have a significant negative effect on per-

formance. Indeed, NOPs should be inserted very

sparingly, and only in cases in which the presence of

a dependency within a dispatch group (which NOPs

can prevent) is truly problematic. We therefore tried

to classify such costly dependencies and imple-

mented a new scheme. The scheme scans the

instruction stream right after scheduling, but this

time, inserts NOPs only between instructions that

have a costly dependency between them, in order to

force these instructions into separate groups. This

new scheme is much less intrusive and can be

viewed as a fine tuning of the group boundaries to

better match the processor behavior.

There are several parameters that tune the NOP-

insertion mechanism, such as the definition of costly

dependencies (we considered memory accesses true

dependencies; see the section ‘‘Handling load-hit-

store events’’), and the number of NOPs to be

inserted (the minimum number based on group

emulation or regardless of this emulation).

Software pipelining and modulo scheduling

After we enhanced the instruction scheduler of the

GCC to handle interblock code motion, as described

in the section ‘‘Interblock instruction scheduling,’’

the scheduler’s main limitation became its inability

to move instructions across loop-back arcs or

iterations. Modulo scheduling is an instruction-

scheduling technique focused on improving the

schedules of loops by enabling instructions to

transfer between iterations. We further enhanced the

GCC instruction scheduler by implementing a Swing

Modulo-Scheduler (SMS), which is an implementa-

tion of modulo scheduling designed to reduce

register pressure.
36,37

SMS first orders the instruc-

tions according to the data dependencies in an

alternating up-and-down order (hence its name)—

first ordering instructions that are successors of

already ordered instructions, then instructions that

are predecessors of already ordered instructions, and

so on. The scheduling phase then traverses the

nodes in the given order, trying to schedule

dependent instructions as close as possible and thus

shorten live ranges of registers. This section

describes our implementation of SMS in GCC.

SMS implementation in GCC

SMS
37,38

is performed immediately before the first

interblock scheduling pass, and indeed, could be

combined into one pass if so desired in the future.

& The infrastructure of GCC
improved after the interblock
scheduler was added &

The modulo-scheduling pass traverses the loops and

generates a new schedule for each loop according to

the following steps. First, the modulo scheduler

builds a data dependency graph (DDG) that repre-

sents intra- and inter-loop dependencies. SMS then

determines a fixed ordering of the instructions based

on the DDG and uses it in repeated attempts to

schedule the kernel of the loop. Finally, after a

schedule for the kernel is constructed, SMS performs

modulo variable expansion, generates prologue and

epilogue code, and inserts a loop precondition if

needed. SMS also marks the loop after scheduling it,

to prevent subsequent rescheduling by the standard

instruction-scheduling passes. Only the kernel is

marked; the prologue and epilogue are subject to

subsequent scheduling.

The main infrastructure contributions to GCC

involved in our implementation of SMS were: (1) a

new DDG for loops, (2) the ability to perform list

scheduling in both directions, compared to top-

down or bottom-up cycle scheduling, and (3)

effective renaming of registers during scheduling as

needed, by performing modulo variable expansion.

We now elaborate on these contributions.

DDG generation

The existing representation of data dependencies in

GCC does not meet the requirements for imple-

menting modulo scheduling; it lacks support for

interloop dependencies, and it is not easy to use. We

decided to implement a DDG, which provides

additional capabilities (i.e., loop-carried depen-

dencies) and a modulo-scheduling-oriented API.

The DDG is built in several steps. We first construct

the intraloop dependencies using the standard

routines of the scheduler. Next, we calculate

interloop register dependencies of distance one
39

by

using the GCC flow analysis. Finally, we calculate

interloop memory dependencies in a conservative

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 EDELSOHN ET AL. 269

way. This is currently being developed and im-

proved.

We provide several graph-theoretic utilities based

on the DDG to support the node-ordering algorithm

of SMS. These include finding strongly connected

components, finding all nodes that lie on directed

paths between two sets of nodes, and calculating the

longest cycle (in terms of total latency divided by

total distance) in a connected component.

List scheduling the kernel of the loop

SMS schedules the instructions (i.e., the nodes) for

the kernel of the loop according to a precomputed

order. For each node we calculate a scheduling

window, that is, a range of cycles in which we can

schedule the node similarly to already scheduled

nodes. Use of previously scheduled predecessors

(PSP) increases the lower bound of the scheduling

window, whereas use of previously scheduled

successors (PSS) decreases the upper bound of the

scheduling window. The scheduling windows are

related to instructions of the same iteration.

The scheduling window itself contains a range of a

number of cycles equal to the Initiation Interval (II),

at most. After computing the scheduling window,

we try to schedule the node during some cycle

within the window, while avoiding resource con-

flicts. If we succeed, we mark the node and its

(absolute) schedule time. If we do not succeed in

scheduling the given node within the scheduling

window, we increment the value for II and start over

again. If II reaches an upper bound, we quit and

leave the loop without transforming it.

During the process of scheduling the kernel, we

maintain a partial schedule that holds the scheduled

instructions in a number of rows equal to II. When

an instruction is scheduled in a cycle T (inside its

scheduling window), it is inserted into row T mod II

of the partial schedule. The instructions in the

partial schedule may belong to different iterations.

After all instructions are scheduled successfully, the

partial schedule supplies the order of generating the

instructions. Special care is needed when dealing

with the start and end cycles of the scheduling

window, as the order of instructions within these

rows has to be considered.
39

When modulo scheduling the kernel, we need to

repeatedly check whether given instructions will

cause resource conflicts if scheduled at a given cycle

or slot of a partial schedule. The resource model

based on the DFA (deterministic finite automaton)

in GCC
32

works by checking a sequence of instruc-

tions, in their order. This approach is suitable for

cycle-scheduling algorithms in which instructions

are always appended at end of the current schedule.

In order for SMS to use this linear approach, we

generate a trace of the instructions, cycle by cycle,

centered at the candidate instruction, and feed it to

the DFA.
32

The major drawback of this mechanism

is the increase in compilation time; our future plans

include addressing this concern.

Modulo variable expansion

After all instructions have been scheduled in the

kernel, some values defined in a given iteration and

used in some future iteration must be stored so that

they are not overwritten. Such values are over-

written when their life range exceeds a number of

cycles which equals II. The defining instruction will

execute more than once before the using instruction

accesses the value. Life ranges of registers can

exceed this number of cycles because register

antidependencies
41

are removed from the DDG.

The problem of overwriting these values is solved

by using modulo variable expansion, which we

implemented by generating register copy instruc-

tions as follows:

Rn Rn�1; Rn�1 Rn�2 ; . . . ; R1 Rdef

where R
def

is the register in the defining instruction,

and n is determined according to the number of

times the back edge of the newly scheduled kernel is

crossed between the defining instruction and its

appropriate use. Every register antidependency that

is broken by code motion is fixed by using this

register copying and renaming.

The SMS appears in Version 3.5 of GCC. We are

continuing to work on several enhancements to

improve its performance.

Handling "load-hit-store" events

In several cases, we observed that load instructions

that follow stores to the same memory location

cause delays and reduce performance. It is obvious

that this sequence, called a ‘‘load-hit-store’’ event,

could be avoided by simply copying the value from

the stored register instead of loading it from

memory, if such a register copy instruction were

EDELSOHN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005270

available. However, in many cases the compiler did

not recognize this possibility. There are two sources

to this problem: redundant accesses to memory in

the source code of the program and spill code
42

generated by the compiler to save and restore

registers. We addressed both cases.

The first case, where redundant loads appear before

register allocation, is handled by redundancy

elimination optimization. Redundancy elimination

removes redundant calculations of expressions by

reusing previously calculated values that are stored

in some register. The redundancy elimination pass

of GCC did consider loading a calculation of an

expression from memory, but did not consider store

operations as expressions. Thus, GCC did replace a

load following another load from the same memory

location by a register copy, but did not replace a

load following a store to the same location. We

enhanced the redundancy elimination pass so that it

would also consider stores as expressions, and

hence replace subsequent loads from the same

location with register copies.

The second case of load-hit-store events was due to

poor register spilling (i.e., the reload pass in GCC).
43

We handled this case in two ways. First, we added a

‘‘cleanup’’ pass after the reload that removed such

redundancies, similar to the first case. However, this

solution is limited because it works with hard (that

is, allocated) registers. We reused the existing

redundancy elimination infrastructure and added a

special consideration of register availability for the

register moves that we generate. We also took care

of partial redundancy elimination by adding loads

on basic blocks that are less critical (according to

profiling), provided we can replace loads from

critical blocks by register moves.

Our second method of handling load-hit-store events

after register allocation was to keep such loads away

from the stores. We changed the instruction

scheduler to add NOPs between a store and a

subsequent load from the same location; this served

to keep them in different dispatching groups (see

‘‘Dispatch group scheduling’’).

THE ZSERIES BACK END

The GCC back end for a particular processor

describes the architecture and its implementation in

a manner that allows the platform-independent

optimization passes to generate correct and efficient

code for the target. The framework provided for this

& It is practically impossible
to accurately model and
predict the delays that will
occur at runtime &

purpose is powerful and flexible enough to allow

GCC to currently support more than 30 major

processor architectures, including many different

types. The S/390 back end implements support for

the S/390 and zSeries mainframe processors.

History

In 1997, the S/390 firmware development group was

searching for an ANSI C compiler with specific

requirements, including link compatibility to the

PL8 compiler and the possibility to write embedded

assembler code. At this time, it was discovered that

the existing S/370* MVS port by Jan Stein and Dave

Pitts could be used as a starting point.

In 1998, when Linux for S/390 work was started,

this compiler (and its linkage) was used as a base.

Over time, the Linux development team had taken

over as the driving force behind the S/390 back end,

changing it to use the ELF (executable and linking

format) linkage format, exploiting the 64-bit archi-

tecture, and finally donating the port to the FSF.

Since then, two of the authors of this paper have

been maintaining this back end, providing all

necessary fixes and enhancements for the user

community.

The zSeries architecture

The zSeries architecture is a typical CISC (complex

instruction set computer) architecture. It provides

an extensive set of assembler instructions (over 700

opcodes for the current model), including a sophis-

ticated subsystem to perform I/O operations. These

complex instructions tend to be implemented by

internal firmware. The processor also provides

efficient support for logical partitioning and virtual

machines, for example by means of the SIE (START

INTERPRETIVE EXECUTION) instruction. For the

compiler back end, however, the simple instructions

are the most important; these provide the means to

move data between memory and registers, perform

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 EDELSOHN ET AL. 271

the standard arithmetical and logical operations, and

affect control flow via conditional and unconditional

branches as well as subroutine calls.

Recent zSeries processors can be operated in two

different modes of operation, Enterprise Systems

Architecture (ESA/390) mode and z/Architecture

mode.
44,45

The latter provides 64-bit general purpose

registers and a complete set of instructions operating

on them; otherwise, it is compatible with the later

ESA/390 mode. The processor provides 16 general-

purpose registers which are 32 or 64 bits wide,

depending on the architecture mode, as well as 16

floating-point registers, which are 64 bits wide. Most

instructions allow two operands, with the first source

operand being used as the destination as well. As

opposed to typical RISC architectures, zSeries allows

memory operands to be used directly with nearly all

operations; all arithmetic and logical instructions

provide both a register-to-register (RR) and a

memory-to-register (RX) form. Logical and move

instructions are also available as memory-to-memo-

ry (SS) or immediate-to-memory (SI) operations. One

important design goal of the zSeries processor

microarchitecture is that RX and RR instructions

execute with the same speed, as long the memory is

already available in the level one (L1) cache.

The System/360* architecture originally provided a

24-bit address space, in which the high eight bits of

32-bit registers used in address generation were

ignored. As 16MB of address space proved too

small, the address space needed to be extended. For

compatibility reasons, the 24-bit addressing mode

still exists, and a new 31-bit addressing mode was

introduced with the S/370 architecture. Certain

instructions now use the top bit of a 32-bit value to

decide whether to operate in 24- or 31-bit addressing

mode. Even though Linux on zSeries never uses 24-

bit addressing, we still have to handle some

complications that come with 31-bit addressing as

opposed to the 32-bit addressing that is common on

many other platforms. The zSeries processors finally

introduced 64-bit addressing as a third mode,

extending the address space up to 16 exabytes. The

GCC back end supports generating code for either

31-bit or 64-bit addressing modes. It can also be

tuned to a specific operating environment, for

example, to generate optimal code for the 31-bit ABI

(application binary interface) when running on a

z990 processor in z/Architecture mode. The target

ABI, architecture mode, processor instruction set

level, and target processor for tuning purposes can

all be selected independently.

The Linux on zSeries ABI
The GCC back end must take care to generate code

that is not only appropriate for the processor

architecture but also interoperable by means of

subroutine calls with other programs running on the

target platform. The ABI defines all aspects of code

generation that are required for interoperability. The

GCC back end currently supports two ABIs, those

used by Linux for S/390
46

and those used by Linux

for zSeries.
47

Note that these ABIs differ significantly

from the interfaces used with other operating

systems on the mainframe, namely the traditional

operating-system linkage and the high-performance

XPLINK. The calling convention used on Linux

passes arguments in up to five general-purpose

registers and up to four floating-point registers;

excess arguments or those with data types prevent-

ing register use are passed on the stack. As the

processor architecture does not actually define the

concept of a stack at the hardware level, the Linux

ABI uses register r15 as a stack pointer by

convention. Function prologue and epilogue code

handles setting up the registers and stack frame as

defined by the ABI.

The ABI details can have a significant impact on

performance. For example, early releases of GCC on

zSeries generated code in the function prologue that

would explicitly maintain a stack back chain, that is,

a pointer stored at the start of a function’s stack

frame that would give the address of the caller’s

frame. This results in a linked list of stack frames

being maintained at runtime that can be used to

generate a back trace listing for debugging purposes.

In recent releases, however, we have eliminated this

overhead by using DWARF-2
48

call frame informa-

tion records to store details of the stack frame layout

for each function in an extra data section of the

executable image. Debugging tools can use this data

to generate stack back traces without any runtime

support by generated code. With GCC 4.0, we have

also reduced the amount of stack space required per

function call; this is helpful in environments like the

Linux kernel code where stack size is restricted.

GCC back end
We now describe in detail some of the issues we

encountered when implementing the zSeries back

end. This discussion will approximately follow the

EDELSOHN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005272

flow of the middle end optimization passes from

RTL expansion to final assembler code generation,

and describe the contributions of the zSeries back

end to each stage. For more implementation details

see Reference 6.

The initial transformation of the program into the

lower-level RTL representation is performed with

expanders
49

that encapsulate the representation of a

predefined set of standard arithmetical, logical, and

move operations. For example, the addsi3 expander

generates RTL to add two 32-bit integer source

operands and store the result in a destination

operand. The sequence of RTL thus generated is

then processed by several generic optimization

passes, including passes for common subexpression

elimination, jump threading and bypassing, dead-

code elimination, and low-level loop optimizations.

Note that while similar optimizations are already

performed on the higher-level tree representation in

GCC 4.0, these are still not completely redundant, as

RTL expansion may have introduced new optimi-

zation opportunities. Cost functions defined by the

back end are used to guide these algorithms towards

instruction sequences that are particularly well

suited to the target platform.

One optimization of special importance for the back

end is the combine pass, which allows the use of

assembler instructions that implement more com-

plex operations than those directly available as

expanders. The middle end tries various ways of

combining multiple logically dependent RTL in-

structions into a single one; if the resulting RTL is

accepted by a back-end insn
50

pattern, the replace-

ment is performed. This is used to match zSeries

fused multiply-and-add instructions, for example.

The combine facility is also employed to make

efficient use of the zSeries condition code, a two-bit

value stored in the program status word that is set

by comparison instructions; conditional branches

depend on it to decide whether to take the branch.

However, many arithmetical, logical, and other

operations also set the condition code in addition to

computing their results, which makes explicit use of

comparison instructions superfluous in many cases.

The zSeries instruction set also provides operations

like TEST UNDER MASK that employ the condition

code to implement frequently used bit-test opera-

tions very efficiently; by defining appropriate insn

patterns, the zSeries back end is able to make full

use of these platform features.

The ADD LOGICAL WITH CARRY and SUBTRACT

LOGICAL WITH BORROW instructions introduced with

z900 also allow using the condition code in a non-

branch instruction. They are primarily intended to

& Instruction scheduling is a
crucial optimization pass
required to prevent expensive
pipeline stalls &

implement multiword addition and subtraction by

allowing a carry or borrow from a low-order word to

be automatically considered when operating on the

next higher word. However, it is also possible to use

these instructions to perform a restricted form of

conditional execution; for example, the statement

if (a , b) xþþ; can be implemented without using any

conditional branch instruction, thus avoiding po-

tentially expensive erroneously predicted branches.

This transformation is performed by a platform-

independent ‘‘if-conversion’’ pass that calls into a

back-end conditional add expander to implement

the details.

Up to this point, the program was kept in a high-

level variant of RTL that makes some simplifying

assumptions, most notably that the processor

provides an unlimited supply of registers. At some

point, it is necessary to transform the program into a

stricter representation that respects actual machine

constraints. This happens during the register allo-

cation and reload passes, using register information

and per-instruction constraints provided by the back

end. This phase also ensures that all memory

operands are accessed using proper address

formats.

On zSeries, effective addresses may be formed, in

general, by adding the contents of a base register, an

index register, and an immediate 12-bit unsigned

displacement. However, some instructions do not

allow the use of an index register. Alternatively, the

z990 processor introduced the long displacement

facility, which allows use of a 20-bit signed

displacement for selected instructions. This is one of

the few areas where it proved necessary to enhance

GCC platform-independent code in order to fully

support zSeries, because the reload pass was unable

to handle so many different address formats.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 EDELSOHN ET AL. 273

At this point, the back end inserts all function

prologue and epilogue code as required by the ABI

(see ‘‘The Linux on zSeries ABI’’). The back end can

cause further optimizations to be performed on the

RTL sequence at this point by defining ‘‘splitters’’

and ‘‘peepholes.’’ Splitters are used to break up one

RTL instruction into a sequence of patterns. They

may be used by the back end to delay exposing

details of the processor until a later stage of the

compilation, for instance to present a doubleword

addition as a single pattern to early optimization

passes, while splitting it up later into single word

additions with carry. Splitters may also be required

to ensure correct code is generated in some cases,

for example, to handle instructions with restricted

addressing modes like LOAD MULTIPLE on zSeries.

Peepholes, on the other hand, allow the back end to

merge a sequence of RTL instructions into a single

pattern or a different sequence, possibly using

additional scratch registers.

Instruction scheduling (see ‘‘RTL scheduling and

optimizations’’) is a crucial optimization pass

required to prevent expensive pipeline stalls, in

particular as zSeries processors operate in order.

This means that whenever some stage of the

pipelined execution of an instruction depends on

data resulting from a preceding instruction that has

not yet been completed, the processor will stall until

the data becomes available. The platform-

independent scheduling algorithms use a detailed

description of such pipeline dependency hazards of

the particular target-processor microarchitecture;

this is provided in the form of a finite-state machine

by the back end. For zSeries, we currently define

two such pipeline descriptions.

For the z900 processor, the central pipeline hazard

is address generation interlock (AGI), triggered

when the result of an operation is used as a base or

index register to form an effective address of a

subsequent instruction. As operand addresses are

required early in the instruction pipeline, at least

four other instructions need to be scheduled

between the two to avoid an AGI stall. However, for

some simple operations like load, the hardware

provides an AGI bypass such that their results are

available for address generation after only one or

two cycles. The z990 is more complex: its super-

scalar microarchitecture
51

is able to execute up to

three instructions in parallel. This adds new

requirements to instruction scheduling, as an

instruction that uses the results of a preceding one

cannot run in parallel with it. Finally, the much

improved floating-point unit
52

of the z990 features a

pipelined execution that introduces another complex

set of data dependencies for floating-point instruc-

tions.

After the final scheduling pass, the back end cleans

up all remaining target-specific issues. For zSeries,

this includes handling the limited ranges of branch

instructions as well as a possible overflow of the

pool holding literal constants. In ESA/390 mode,

relative branch instructions can reach only a range

of 64KB relative to the current instruction address;

more distant targets can only be reached by register-

indirect branches. As zSeries does not provide

instructions to load arbitrary literal values as

immediate operands, these need to be stored in a

literal pool in memory. If that pool exceeds 4KB in

size for any particular function (a condition that

fortunately rarely ever occurs, but still needs to be

handled), we need to split up the pool into multiple

smaller ones and reload the register pointing to the

pool base as required. After this is completed, the

sequence of RTL instructions is translated into

assembler source code as defined in the back-end

instruction patterns.

PERFORMANCE

This section examines the performance of GCC by

use of various benchmarks.

GCC improvements on zSeries

In this section we take a closer look at the perfor-

mance improvements that have been observed for

GCC on zSeries during the last five years. The

following comparison is based on estimated

SPECint2000** results. For details on SPEC**, see

Reference 53, and for details on SPECint2000, see

Reference 54. All runs have been compliant base runs

according to the SPECInt2000 rules. As it is the

purpose to present the development over time, all

results have been normalized. The measurements for

the 1999, 2000, 2001, and 2002 results have been

executed on a z900, and the measurements for 2001,

2002, 2003, and 2004 on a z990. The overlapping

measurements (2001, 2002) have been used to scale

the 1999 and 2000 measurements to a z990. All

measurements have been run in a LPAR environment

(the zSeries version of logical partitioning—see

Reference 55 for more details) with the respective

Linux operating system of that time.

EDELSOHN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005274

Figure 2 shows the relative performance develop-

ment for the GCC compiler on zSeries. The 1999

result was obtained using the first published version

of the GCC version 2.95.1 for S/390 using an IBM

internal driver. As the development focus was on

functionality only, there was a large potential for

performance improvement. The 2000 result was

measured on a SLES 1 (SUSE LINUX Enterprise

Server 1) distribution using the compiler included

(GCC 2.95.2). As shown in the figure, some

performance improvements were made, and they

were in the back end of the compiler exclusively.

The 2001 result has been obtained using the SLES 7

distribution and the included system compiler (GCC

2.95.3). Again, the improvements have been imple-

mented in the GCC back end.

After those improvements, the transition to the new

GCC 3.x family occurred. Initially, this resulted in

slight performance degradation, as can be seen in

the 2002 results. This was measured on a SLES 8

with the GCC 3.2 compiler included. However, with

SLES 8 SP3, an optional GCC 3.3 compiler was

shipped at the end of 2003. Using this compiler, the

performance improved again. Here the main con-

tributor was the improved scheduling for the z990

engine described in the section ‘‘The zSeries back

end.’’

The final measurement was done on a GCC 3.4

compiler with an IBM internal driver from develop-

ment. At this point, the profile-directed feedback

was working on all SPECint** cases for zSeries, and

so could be used for this run. This compiler will

most likely be available in the next Red Hat

distribution.

Overall, we have seen an improvement of 49 percent

over the first results. The first steps towards better

performance have been easy ones. We believe most

of the back-end work has been completed, and more

work is required in the middle end of the compiler.

The inclusion of the tree-SSA
9

is a promising step in

this direction.

Published results for SPECint benchmark using
GCC
Not many results have been published on the SPEC

CPU2000 Web site. This can be attributed to the fact

that other compilers are producing better code for

this benchmark than GCC. Generally speaking, the

compilers provided by the processor vendors are

still one step ahead of GCC. In fact, the only results

available are those using the AMD Opteron and

Athlon processors. We make three different com-

parisons with these compilers.

For the early Opteron results
56

in 2003, AMD used

the same hardware with the Intel 7.0 compiler and

the GCC 3.3 coming with SLES 8. Here GCC achieves

90 percent of the performance of the Intel compiler

for base runs. In one case GCC outperforms the Intel

compiler.

In 2004, AMD
57

used identical hardware with the

Intel 8.0 compiler and GCC. One important differ-

ence this time was that for the base runs GCC

produced 64-bit code; whereas, the Intel compiler

produced 32-bit code. Generally, the 64-bit code is

expected to be slower because it has a larger

memory footprint. With that difference, GCC

achieved 87 percent of the score of the Intel compiler

for base runs and 90 percent for peak runs.

However, there are now three base and two peak

workloads where GCC is ahead.

SUN
58

used the PathScale EKO (Every Known

Optimization) compiler suite
11

on hardware com-

parable to that used by AMD.
57

Here, GCC achieves

95 and 94 percent of the PathScale result for base

and peak runs respectively. For this comparison,

GCC is ahead on 4 cases for base (or 3 for peak)

measurements.

Figure 2
Relative performance of some GCC versions on the
IBM zSeries platform

150

140

130

120

110

100

90

80

70

60

50 1999 20022001 200420032000

PE
RC

EN
TA

G
E

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 EDELSOHN ET AL. 275

PL8 compiler
Before the GCC PL8 code was allowed to generate the

firmware code on the z990, it had to match the

performance of the original PL8 compiler. That meant

that the generated code had to perform at least as well

as the code produced by the competitive compiler. It is

reported in Reference 5 that this goal was achieved.

Again, this is an indication that the GCC compiler

suite is capable of generating competitive code if the

appropriate focus is put into development. Note also

that the good performance of the PL8 code is also

due to the fact that it inherited the performance

gains of the GCC back end described in the section

‘‘The zSeries back end.’’

CONCLUSIONS
There are many benefits to our work on optimiza-

tions for GCC. Many existing and potential users of

IBM platforms are using GCC, and this is an effective

means to provide them with additional value and

improve support for our platforms. The vibrant

collaboration and synergy among compiler writers

contributing to GCC from various affiliations is very

helpful and supportive. The infrastructure of GCC

can pose challenges for advanced optimizations, but

it is being improved. The widespread usage of GCC

across platforms and environments also helps in

testing and debugging the compiler. Another benefit

of GCC is its availability for research in academia

and industry, an advantage we seek to exploit to

continue providing state-of-the-art and innovative

optimizations in GCC in the future.

The open-source approach and GCC’s modular

structure turned out to be of great value. Writing a

zSeries back end immediately made all languages

implemented by the GNU Compiler Collection avail-

able on that new platform. Writing a PL8 front end

made that language available on all platforms

supported by GCC. In both cases, existing code could

be reused. Most of the contributions described in this

paper have already been released as open-source

software.

ACKNOWLEDGMENTS
The authors would like to thank many people from IBM
and the GCC development community who were
involved in the GCC efforts covered in the paper,
including (in alphabetical order): Daniel Berlin, Doron
Cohen, Zdenek Dvorak, Olga Golovanevsky, Mario
Held, Richard Henderson, Vladimir Makarov, Devang
Patel, and Sebastian Pop. We would also like to thank

the many additional people from IBM who have
contributed to GCC in areas not covered by this paper.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of The Open Group,
Compaq Computer Corporation, Freescale Semiconductor,
Inc., Intel Corporation, Standard Performance Evaluation
Corporation, Linus Torvalds, Microsoft Corporation, or Wind
River Systems, Incorporated.

CITED REFERENCES AND NOTES
1. GCC Home Page—GNU Project—Free Software Founda-

tion (FSF), http://gcc.gnu.org.

2. R. M. Stallmann, Using and Porting the GNU Compiler
Collection, Free Software Foundation, Boston, MA (1999).

3. ‘‘GNU Compiler Collection Internals,’’ Free Software
Foundation, Boston, MA (2004), http://gcc.gnu.org/
onlinedocs/gccint/index.html#Top.

4. The Free Software Definition, Free Software Foundation,
http://www.gnu.org/philosophy/free-sw.html.

5. W. Gellerich, T. Hendel, R. Land, H. Lehmann, M.
Mueller, P. H. Oden, and H. Penner, ‘‘The GNU 64-bit PL8
Compiler: Toward an Open Standard Environment for
Firmware Development,’’ IBM Journal of Research and
Development 48, No. 3/4, 543–556 (July 2004), http://
www.research.ibm.com/journal/rd/483/gellerich.pdf.

6. H. Penner and U. Weigand, ‘‘Porting GCC to the IBM
S/390 Platform,’’ Proceedings of the GCC Developer’s
Summit (2003), pp. 195–213, http://zenii.linux.org.uk/
;ajh/gcc/gccsummit-2003-proceedings.pdf/.

7. An ‘‘attributed syntax tree’’ is a syntax tree with
additional attributes associated with its nodes.

8. ‘‘Constant folding’’ is an optimization technique to execute
an operation at compilation time rather than at execution
time if all operands are constant. For example, an
assignment i=2þ3 would be replaced by i=5 rather than
actually generating an ADD machine instruction.

9. SSA for Trees—GNU Project, Free Software Foundation
(FSF), http://gcc.gnu.org/projects/tree-ssa/.

10. R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K.
Zadeck, ‘‘Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph,’’ ACM Trans-
actions on Programming Languages and Systems 13, No.
4, 451–490 (October 1991).

11. D. Naishlos, ‘‘Autovectorization in GCC,’’ Proceedings of
the GCC Developer’s Summit (2004), pp. 105–118,
http://www.gccsummit.org/2004/
2004-GCC-Summit-Proceedings.pdf.

12. Loop Nest Optimizer—GNU Project, Free Software Foun-
dation (FSF), http://gcc.gnu.org/projects/tree-ssa/
lno.html.

13. K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scales,
‘‘Altivec Extension to PowerPC Accelerates Media Pro-
cessing,’’ IEEEMicro 20, No. 2, 85–95 (March–April 2000).

14. A. Peleg and U. Weiser, ‘‘MMX Technology Extension to
the Intel Architecture,’’ IEEE Micro 16, No. 4, 43–45
(August 1996).

15. AltiVec intrinsics constitute a set of C functions which the
GCC compiler maps onto single AltiVec instructions. For

EDELSOHN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005276

a listing of this set see: http://developer.apple.com/
hardware/ve/instruction_crossref.html.

16. R. Allen and K. Kennedy, Optimizing Compilers for
Modern Architectures—A Dependence-Based Approach,
Morgan Kaufmann, San Francisco, CA (2001).

17. G. Ren, P. Wu, and D. Padua, ‘‘A Preliminary Study on
the Vectorization of Multimedia Applications for Multi-
media Extensions,’’ Proceedings of the 16th International
Workshop of Languages and Compilers for Parallel
Computing (LCPC2003), Lecture Notes in Computer
Science 2958, pp. 420–435 (October 2003).

18. R. Allen and K. Kennedy, ‘‘Automatic Translation of
FORTRAN Programs to Vector Form,’’ ACM Transactions
on Programming Languages and Systems 9, No. 4, 491–
542 (October 1987).

19. M. Wolfe, High Performance Compilers for Parallel
Computing, Addison Wesley, Reading, MA (1996).

20. ‘‘Strip mining’’ is a term used for an optimization
technique to (partly) parallelize the execution of a loop. If
a loop ranges from i=1 to 1000, and the hardware is able
to execute eight instances of the loop body at the same
time, then strip mining would involve first executing the
loop instances for i=1 to i=8 at the same time; next, the
instances for i=9 to i=16; and so on.

21. Exploring Alpha Power for Technical Computing, Compaq
Technology Brief, High Performance Technical Comput-
ing Group, Compaq Computer Corporation (2000),
http://h18002.www1.hp.com/alphaserver/download/
wp_alpha_tech_apr00.pdf

22. In the GCC’s intermediate representation of trees, each
tree has a code which indicates what type of tree it is.

23. A ‘‘target hook’’ is a mechanism within GCC that enables
a target-independent pass to execute target-dependent
operations or preferences.

24. ‘‘Reduction’’ refers to an operation that produces a scalar
output from a vector input, for example, computing the
sum or maximum value of vector elements. ‘‘Induction’’
refers to an operation that updates a scalar variable inside
a loop, based on its values from previous iterations,
incrementing or decrementing by a loop-invariant
amount.

25. H. S. Warren, Jr., ‘‘Instruction Scheduling for the IBM RISC
System/6000 Processor,’’ IBM Journal of Research and
Development 34, No. 1, 85–92 (January 1990), http://
www.research.ibm.com/journal/rd/341/imbrd3401J.pdf.

26. D. Bernstein and M. Rodeh, ‘‘Global Instruction Sched-
uling for Superscalar Machines,’’ Proceedings of the ACM
SIGPLAN ’91 Conference on Programming Language
Design and Implementation, SIGPLAN Notices 26, No. 6,
241–255 (June 1991).

27. A move of an instruction from position P1 to position P2
is speculative if there exist executions that pass through
P2 but not P1. In such a case, the instruction will be
executed because of its position at P2 but would not have
been executed if it remained at P1.

28. A ‘‘control-flow arc’’ is an arc in a control-flow graph. This
graph has a node for each basic block. Two nodes are
connected by an arc if during any execution, the second
block can be executed immediately after the first block.

29. Block B1 is a dominator of block B2 if any execution that
reaches B2 must go through B1.

30. Block B2 is reachable from block B1 if there exists an
execution that reaches B2 after B1.

31. A variable is ‘‘live’’ at every position between its
definition and its use, also known as its ‘‘live range.’’

32. V. N. Makarov, ‘‘The Finite State Automaton Based
Pipeline Hazard Recognizer and Instruction Scheduler in
GCC,’’ Proceedings of the GCC Developer’s Summit (2003),
pp. 135–150, http://zenii.linux.org.uk/~ajh/gcc/
gccsummit-2003-proceedings.pdf.

33. D. Naishlos, insn Priority Adjustments in Scheduler and
RS6000 Port, http://gcc.gnu.org/ml/gcc-patches/
2003-10/msg00485.html.

34. D. Naishlos, Scheduling of Queued insns, http://
gcc.gnu.org/ml/gcc-patches/2003-10/msg00698.html.

35. D. Naishlos, Scheduling Tuning in RS6000 Port, http://
gcc.gnu.org/ml/gcc-patches/2003-10/msg01702.html.

36. Register pressure refers to the number of registers that are
needed at certain positions in the code because their live
ranges intersect.

37. E. Ayguade, M. Valero, J. Llosa, and A. Gonzalez, ‘‘Swing
Modulo Scheduling: A Lifetime Sensitive Approach,’’
Proceedings of the 1996 Conference on Parallel Architec-
tures and Compilation Techniques (PACT ’96) (1996), pp.
80–87.

38. E. Ayguade, M. Valero, J. Llosa, A. Gonzalez, and J.
Eckhardt, ‘‘Lifetime-sensitive Modulo Scheduling in a
Production Environment,’’ IEEE Transactions on Com-
puters 50, No. 3, 234–249 (2001).

39. This refers to a register dependency between an
instruction in one iteration and an instruction (possibly
the same one) in the next iteration. For example, the
instruction r5 = r5þ 1 inside a loop creates an interloop
register dependency of distance one.

40. M. Hagog and A. Zaks, ‘‘Swing Modulo Scheduling in
GCC,’’ Proceedings of the GCC Developer’s Summit (2004),
http://www.gccsummit.org/2004/
2004-GCC-Summit-Proceedings.pdf.

41. This is also known as a ‘‘write-after-read’’ dependency. It
is the dependency of an instruction that writes to a variable
on a previous instruction that read from the variable.

42. ‘‘Spill code’’ is a set of instructions that store and load a
variable into memory. This is needed in situations where
there is no available register.

43. Because of the limited number of registers, values
previously held in registers must at times be stored in
memory, if the value is needed, and this process is
referred to as ‘‘register spilling.’’

44. ESA/390 Principles of Operation, IBM Document Number
SA22-7201-07 (2000), http://publibfp.boulder.ibm.com/
cgi-bin/bookmgr/BOOKS/dz9ar007.

45. z/Architecture Principles of Operation, IBM Document
Number SA22-7832-01 (2000), http://publibfp.boulder.
ibm.com/cgi-bin/bookmgr/BOOKS/dz9zr001.

46. LINUX for S/390 ELF Application Binary Interface
Supplement, IBM Document Number LNUX-1107-00
(2001), http://oss.software.ibm.com/linux390/docu/
1390abi0.pdf.

47. LINUX for zSeries ELF Application Binary Interface
Supplement, IBM Document Number LNUX-1107-00
(2001), http://oss.software.ibm.com/linux390/docu/
lzsabi0.pdf.

48. DWARF is a format for debugging information in which
additional information is inserted into the binary file
produced by the compiler.

49. ‘‘Expanders’’ are operations that make modifications to
GCC’s intermediate RTL representation.

50. An ‘‘insn’’ is a pattern used internally by GCC and
constitutes a formal description of a machine instruction.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 EDELSOHN ET AL. 277

The description is used to translate the program being
compiled from a (more or less) target-independent form
into real binary code.

51. T. J. Slegel, E. Pfeffer, and J. A. Magee, ‘‘The IBM eServer
z990 Microprocessor,’’ IBM Journal of Research and
Development 48, No. 3/4, 295–310 (July 2004), http://
www.research.ibm.com/journal/rd/483/slegel.pdf.

52. G. Gerwig, H. Wetter, E. M. Schwarz, J. Haess, C. A.
Krygowski, B. M. Fleischer, and M. Kroener, ‘‘The IBM
eServer z990 Floating-Point Unit,’’ IBM Journal of
Research and Development 48, No. 3/4, 311–322 (July
2004), http://www.research.ibm.com/journal/rd/483/
gerwig.pdf.

53. SPEC—Standard Performance Evaluation Corporation,
http://www.spec.org.

54. SPEC CPU2000 V1.2, http://www.spec.org/cpu2000.

55. I. G. Siegel, B. A. Glendening, and J. P. Kubala, ‘‘Logical
Partition Mode Physical Resource Management on the
IBM eServer z990,’’ IBM Journal of Research and
Development 48, No. 3/4, 535–541 (July 2004), http://
www.research.ibm.com/journal/rd/483/siegel.pdf.

56. Pathscale—Compiler Suite, http://www.pathscale.com/
products1.html.

57. CINT2000 Result: Advanced Micro Devices ASUS SK8V
Motherboard, AMD Opteron 150, http://www.spec.org/
osg/cpu2000/results/res2004q2/
cpu2000-20040503-02999.html, http://www.spec.org/
osg/cpu2000/results/res2004q2/
cpu2000-20040503-03003.html.

58. CINT2000 Result: Sun Microsystems Sun Java Work-
station W2100z, http://www.spec.org/osg/cpu2000/
results/res2004q3/cpu2000-20040628-03192.html.

Accepted for publication November 9, 2004.

David Edelsohn
IBM T.J. Watson Research Center, 1101 Kitchawan Road,
Yorktown Heights, New York (edelsohn@us.ibm.com). Dr.
Edelsohn received an A.B. degree in astronomy and physics
from the University of California at Berkeley in 1988, an M.Sc.
degree in astronomy from the California Institute of
Technology in 1990, and a Ph.D. degree in physics from
Syracuse University in 1996. He joined IBM Research in 1995
and developed the PowerPC port of the GCC. He is a member
of the GCC Steering Committee.

Wolfgang Gellerich
IBM Deutschland Entwicklung GmbH, Schoenaicher Strasse
220, 71032 Boeblingen, Germany (gellerich@de.ibm.com). Dr.
Gellerich studied computer science and chemistry at the
University of Erlangen-Nuernberg and graduated in 1993 with
a Master’s degree in computer science. Until 1999, he was
with the programming languages group of Stuttgart University
where he received a Ph.D. degree. Dr. Gellerich joined the IBM
development laboratories in Boeblingen in 2000. He was with
the firmware development group, where his main
responsibility was the development of GNU PL8, and he
recently joined the compiler team focusing on code
optimization for the IBM zSeries.

Mostafa Hagog
IBM Research Division, Haifa Research Laboratory, University
Campus, Haifa, Israel 31905 (mustafa@il.ibm.com). Mr.
Hagog received a B.Sc. degree in computer engineering in

1998 and an M.Sc. degree in electrical engineering in 2001
from the Technion–Israel Institute of Technology. He has been
with the IBM Research Lab in Haifa since 2000. His fields of
interest include compilers and code optimization
technologies.

Dorit Naishlos
IBM Research Division, Haifa Research Laboratory, University
Campus, Haifa, Israel 31905 (dorit@il.ibm.com). Ms. Naishlos
received a B.Sc. degree in computer science from the
Technion–Israel Institute of Technology in 1998 and an M.Sc.
degree in computer science from the University of Maryland in
2000. Since 2001, she has been with the code optimization
technologies group at the IBM Research Lab in Haifa.

Mircea Namolaru
IBM Research Division, Haifa Research Laboratory, University
Campus, Haifa, Israel 31905 (namolaru@il.ibm.com). Mr.
Namolaru received an M.Sc. degree in mathematics from the
University of Bucharest in 1985, and an M.Sc. degree in
computer science from the Technion–Israel Institute of
Technology in 1992. Since 1992, he has been with the code
optimization technologies group at the IBM Research Lab in
Haifa.

Eberhard Pasch
IBM Systems and Technology Group, IBM Deutschland
Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (epasch@de.ibm.com). Dr. Pasch
studied mathematics at the universities of Tuebingen and
Massachusetts. He received a Master’s degree in 1995 and a
Ph.D. degree in 1998 from the University of Tuebingen. After
joining IBM in 1999, he worked in Linux development,
specializing on a variety of performance problems. He is now
a Senior Technical Staff Member responsible for Linux
architecture and performance.

Hartmut Penner
IBM Deutschland Entwicklung GmbH, Schoenaicher Strasse
220, 71032 Boeblingen, Germany (hpenner@de.ibm.com). Mr.
Penner studied computer science at the University of
Kaiserslautern and graduated in 1996 with an M.A. degree. In
1996, he joined IBM and worked in firmware development,
commencing shortly after the development of the zSeries back
end for GCC and working on the Linux port for zSeries.

Ulrich Weigand
IBM Deutschland Entwicklung GmbH, Schoenaicher Strasse
220, 71032 Boeblingen, Germany (uweigand@de.ibm.com).
Dr. Weigand studied computer science at the University of
Erlangen-Nuernberg and graduated in 1994 with a Master’s
degree. Subsequently, he was with the department of
theoretical computer science at the University of Erlangen-
Nuernberg, where he received a Ph.D. degree. Since 2000, he
has been a member of IBM’s Linux on zSeries development
group, focusing on improving the zSeries back end in GCC. He
is currently one of the official code maintainers of that back
end.

Ayal Zaks
IBM Research Division, Haifa Research Laboratory, University
Campus, Haifa, Israel 31905 (zaks@il.ibm.com). Dr. Zaks is a
manager in the Code Optimization Technologies group. He
received B.Sc., M.Sc., and Ph.D. degrees in mathematics and
operations research from Tel Aviv University. He joined the
IBM Haifa Research Lab in 1997 and initially worked on
compiler back-end optimizations for the AS/400. Later he
worked on developing an optimizing compiler for the eLite
DSP, spending one year at the IBM Thomas J. Watson
Research Center in Yorktown Heights, New York. &

EDELSOHN ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005278

Published online April 12, 2005.

