A. Colyer
A. Clement

Aspect-oriented programming
with Aspect)

Aspect-oriented programming (AOP) is an exciting new development in the field of
software engineering. The open-source AspectJ® project has taken a leading role in
defining what an aspect-oriented programming language should look like and in
building tools that enable aspect-oriented techniques to be employed in the
development of large-scale commercial software. IBM both contributes to the
development of Aspect) and uses it internally with its accompanying IDE (integrated
development environment) support, Aspect) Development Tools (AJDT). This paper
provides an introduction to aspect-oriented programming using Aspect) and AJDT. We
also discuss the role that open source (and being an open-source project) has played

in the ongoing development of AspectJ, and how this has facilitated a level of
collaboration and exploitation that would not have been possible otherwise.

The first paper to use the term aspect-oriented
programming (AOP) was published in 1997 by a
research group at the Palo Alto Research Center
(PARC**).1 Since that time, interest in aspect-
oriented programming has steadily grown to the point
that it now attracts large audiences at developer
conferences, and a growing number of companies are
using AOP to build production applications. In this
paper we first introduce AOP and the benefits it brings
and then look at the AOP language AspectJ** 2
Aspect] is an open-source project initiated by PARC
and now led by IBM. The Aspect] Development Tools
(AJDT) project3 is a related open-source project, also
led by IBM, that provides IDE (integrated develop-
ment environment) support for programming with
Aspect]J within the Eclipse IDE.* After introducing the
language and tools, we discuss the adoption of
Aspect]J within IBM. The paper concludes by consid-
ering the role that open source has played both in the

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

development of Aspect] and AJDT and in IBM’s
involvement in that process.

WHAT IS AOP?

AOP is a term used to describe a programming
technique and a way of thinking about the con-
struction of software applications that complements
the forms of expression found in object-oriented
programming. The goal of AOP is to improve the
modularity of software applications, making them
easier to develop, test, and maintain. Aspect-
oriented programs comprise of a mixture of objects
and aspects. Both encapsulate state and behavior,

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

COLYER AND CLEMENT

301

but whereas the behavior in an object is executed
only when explicit calls are made to the object’s
methods, the behavior in an aspect can also execute
at points in the runtime of the program determined
by the aspect’s specification.

This simple idea turns out to be enormously
powerful at modularizing the implementation of
certain types of application features and functions.
For example, given the requirement to issue a
change notification to any registered listeners when
the state of any one of a set of model objects
changes, an object-based implementation requires
the addition of a call to notifyListeners() (or some
similar method) after each state-changing operation.
An aspect-based implementation can simply code
(in one module known as an aspect) the following,
“After the state of any model object changes, call
notifyListeners().” As another example, consider the
use of a persistence service that requires all updates
to the persistent state of an application to occur
within the scope of a session or transaction. An
object-based implementation requires the insertion
of logic to start a session before every interaction
with the persistence service and to close it again
afterwards—managing any exceptions that may be
generated by the service along the way. An
illustration of this example using the Hibernate
persistence framework for session and transaction
management is shown in the following listing:

try {
Session session = sessionFactory.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();

// perform updates to persistent state
// here ...

tx.commit();

} catch (HibernateException hEx) {
if (tx I= null) tx.rollback();
throw hEx;

} finally {
session.close();

}
} catch (HibernateException hEx) {

// handle exception

}

An aspect-based implementation of the same re-
dquirement can be coded once in an encapsulated

302 COLYER AND CLEMENT

module, “Before updating the persistent state of the
application start a session, and after the update has
been completed, close it again.” Although the
application may involve many interactions with the
persistence service, the aspect-based implementa-
tion will need to be written only once.

Both the change notification and session-manage-
ment requirements are examples of what the AOP
community has termed a crosscutting concern. A
crosscutting concern is a single concern in the
design or implementation of a system that impacts
multiple places in the static structure of the system
or in its runtime control flow. Aspects modularize
crosscutting concerns, allowing the implementation
of a single (crosscutting) concern in a single module,
and therefore eliminating violations of the DRY
(don’t repeat yourself) principle.6 Instead of the
same fragment of code being repeated in many
places throughout the application (e.g., the calls to
notifyListeners(), or the session-management logic),
the code can be written once in an aspect. This
makes the implementation easier to add, remove,
and maintain. In the aspect-oriented community the
term scattering is often used to describe the situation
where multiple fragments of code that all do the
same thing (or that do closely related things) are
spread throughout a code base in a non-modular
fashion.

A concept closely related to scattering is tangling.
Tangling occurs when a module (typically a class in
an object-oriented system) contains logic pertaining
to more than one feature or function. The imple-
mentations of the different features are said to be
tangled together in the module. As an example,
consider the implementation of a BankAccount class
that contains logic to place a message in a queue
whenever a withdrawal over a certain threshold is
made. The implementations of the BankAccount
feature and a portion of a SupervisorAlerts feature
have become tangled in a single class. By using an
aspect to modularize the implementation of the
SupervisorAlerts feature, this tangling can be
eliminated.

Tangling is an indication of a less than ideal system
modularity. In particular, tangling makes it harder to
test, maintain, and reuse the tangled feature
implementations. Karl Lieberherr recently formu-
lated an update to the Law of Demeter designed to

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

eliminate tangling in a design: “Speak only to your
friends that share your current concerns.”’

By eliminating the effects of scattering and tangling
that are prevalent in object-oriented systems, the

goal of AOP can be stated simply: “Every module in
the system should do one thing and one thing only.”

The usual software engineering criteria for what
makes a good module (coupling, cohesion, etc.)
apply equally to AOP and to object-oriented
programming.

Underpinning all AOP systems is something called a
join point model. Join points are events that occur
during the runtime execution of a program (for
example, the initialization of a class, the execution
of a method, the handling of an exception, or the
updating of a field). The join point model deter-
mines which of these events are exposed to the
aspect-oriented programmer. Pointcuts are predi-
cates that match join points. For example, all AOP
systems known to the authors will provide for a
pointcut that matches the execution of a given
method (or set of methods). Blocks of code known
as advice are written to execute at any join point
matched by a pointcut expression associated with
the advice.

To implement the change notification requirement
that we introduced at the start of this section, an
aspect-oriented programmer would write a pointcut
that matched join points representing the setting of a
field value within any of the model objects. The
programmer would then write a simple piece of
advice associated with that pointcut to call the
notifyListeners() method.

ASPECTJ AND AIDT

In the following section we provide a brief intro-
duction to Aspect] and the AJDT and show how the
ideas of aspect orientation are implemented in the
Aspect]J language and supported by AJDT.

Aspect)

The AspectJ language is an extension of the Java**
language that supports AOP. The programs gener-
ated by the Aspect] compiler can run on any Java
Virtual Machine (JVM**) and have no special
runtime requirements, other than that the small
Aspect] runtime library, aspectjrt.jar, be available
somewhere on the classpath (a listing of locations
where Java can find class files).

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

The declaration of an aspect in AspectJ looks very
much like a class declaration, except that the
keyword class is replaced by the keyword aspect:

public aspect SupervisorAlerts {

Aspects can have state (fields) and behavior
encapsulated in methods in just the same way as a
class:

public aspect SupervisorAlerts {
private static final Money
WITHDRAWAL_THRESHOLD =new Money(1000, 0);
private QueueConnectionFactory
connectionFactory;

private void sendMessage(String messageText) {

Aspect]J’s join point model includes join points for:

e A method or constructor call

e The execution of a method or constructor
* The accessing or updating of a field

¢ The handling of an exception

e The initialization of a class or object

¢ The execution of advice

Pointcuts in Aspect] are declared using the pointcut
keyword. To issue a supervisor alert whenever a
withdrawal is made over some threshold, a pointcut
called withdrawal() that will match a join point
representing the execution of a withdrawal method
can be defined:

pointcut withdrawal() :
execution(* withdrawal(Money));

Aspect]J supports three basic kinds of advice: before
advice, after advice, and around advice. Before
advice runs before the execution of a matched join
point, after advice runs after the execution of a
matched join point, and around advice gives control
over the actual execution of a matched join point. To
implement the withdrawal alert, we choose to send
a message to the supervisor after the successful
completion of a large withdrawal:

COLYER AND CLEMENT

303

after(") returning : withdrawal() {
// if the withdrawn amount was > threshold
// then send supervisor alert

}

After-returning advice runs after a successful return
from the execution of a matched join point. (Later
we will see after-throwing advice, which runs when
a join point is left via an exception.) To implement
the body of the advice, we need more information—
in particular, we need to know the BankAccount
object in question and the amount of the with-
drawal. Pointcuts can be used to provide contextual
information at matched join points, and we extend
the definition of the withdrawal() pointcut to do this:

pointcut withdrawal(Bank Account acc,
Money amount) :
execution(* withdrawal(Money)) &&
this(acc) &&
args(amount);

The new definition of the withdrawal() pointcut
matches any join point that represents the execution
of a withdrawal method, taking one argument (the
amount to withdraw). The this(acc) component of
the pointcut specifies that the object executing the
method is bound to the pointcut parameter acc and
therefore must be an instance of type BankAccount.
The args(amount) component of the pointcut speci-
fies that the single argument to the method is bound
to the pointcut parameter amount, and therefore
must be of type Money.

Now that the needed contextual values are provided
by the withdrawal() pointcut, they can be used in the
advice declaration:

after(BankAccount account,
Money amountOfWithdrawal) returning :
withdrawal(account,amountOfWithdrawal) {
if (amountOfWithdrawal.greaterThan(
WITHDRAWAL_THRESHOLD)) {
sendMessage(
"Large withdrawal from account: " +
account + " : " 4+ amountOfWithdrawal);

Notice how an advice declaration can have param-
eters much like a method declaration. Instead of the
parameter values being passed to the advice when it

304 COLYER AND CLEMENT

is called by a program statement (as happens for a
method), the parameter values for advice are
provided by the associated pointcut expression at
each matched join point. The basic implementation
of the SupervisorAlerts aspect is now complete:

public aspect SupenvisorAlerts {
private static final Money
WITHDRAWAL_THRESHOLD =new Money (1000, 0);
private QueueConnectionFactory
connectionFactory;

pointcut withdrawal(BankAccount acc,

Money amount) :
execution(* withdrawal(Money)) &&
this(acc) &&
args(amount);

after(Bank Account account,

Money amountOfWithdrawal) returning :
withdrawal(account,amountOfWithdrawal) {
if (amountOfWithdrawal.greaterThan(

WITHDRAWAL_THRESHOLD)) {
sendMessage(

"Large withdrawal from account: " +

account + " : " 4+ amountOfWithdrawal);

}
}

private void sendMessage (String messageText) {

This aspect could now be extended to encompass
the other supervisor alerts that are required, keeping
the whole alerting feature modularized and encap-
sulated. For example, given the requirement to alert
a supervisor whenever an account operation fails
with an InsufficientFundsException, or when an
AuthorizationException is generated by any method in
the banking package, then the aspect can be
extended as follows:

pointcut accountOperation(BankAccount acct) :
execution(* *(..)) && this(acct);
after(BankAccount account)
throwing(InsufficientFundsException ex) :
accountOperation(account) {
sendMessage(
"Insufficient funds for transaction " +
"on account"+ account +
" "+ exgetMessage());

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

pointcut bankingOperation() :
execution(* *(. .)) && within(banking.*);
after(') throwing(AuthorizationException ex):
bankingOperation() {
sendMessage ("'Authorization failure: " +
ex.getMessage());

}

If the logic to send supervisor alerts had not been
encapsulated in the aspect in this way, there would
be many places throughout the banking application
where fragments of code concerned with
implementing this feature would be found.

The Aspect] language includes many more features
that can be used to improve the modularity of
software applications, but a full treatment is beyond
the scope of this paper. Interested readers are
referred to the online Aspect]J tutorial® or one of the
many books on Aspect]J, for example, References 9
and 10.

AJDT

AJDT provides IDE support for programming in the
Aspect]J language and is freely available from the
Eclipse website.’ Along with the usual syntax
highlighting, building, and error-reporting elements,
AJDT also provides a wealth of features that help
users understand the effects of the aspects in their
program. This part of the AJDT tool set provides
aspect-browsing capabilities, similar to the class-
browsing capabilities that are available for object-
oriented programs.

Figure 1 shows a screenshot of AJDT in use. Both
the BankAccount class and the SupervisorAlerts aspect
are being edited, and the syntax highlighting that
AJDT provides can be seen. Notice the markers in
the gutter to the left of the BankAccount editor that
indicate the presence of advice on a join point that
the marked code will give rise to at runtime. In this
case, when the withdrawal method is executed, it
will give rise to an execution join point that is
advised by the SupervisorAlerts aspect. The Outline
View to the right of the Eclipse window shows an
outline for the SupervisorAlerts aspect. In addition to
indicating the members of the aspect (the fields,
methods, advice, and pointcuts in this case), the
Outline View shows the places that a piece of advice
is in effect (the advises relationship). The links can
be used for navigation to the advised locations. The
Outline View for an advised type also provides

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

advised by relationships that allow the developer to
see and to navigate to any advice affecting the type.

AJDT also includes comprehensive help on using
AJDT and Aspect], a visualizer that provides an
overview of an entire AspectJ project at a glance,
integrated debugging support, wizards for creating
aspects and Aspect]J projects, full access to the
Aspect]J compiler options, and more.

ADOPTION WITHIN IBM

Based on our experiences within IBM, we recom-
mend a staged approach when adopting AOP and
Aspect]. At the first stage of adoption, aspects can
be written that enforce design constraints and
contracts. The central mechanisms used to do this
are the AspectJ constructs declare warning and declare
error. Like the advice forms in the previous section,
these constructs are also associated with a pointcut.
Instead of taking action during the runtime execu-
tion of the program, they signal the compiler to
detect code that will give rise to matching join points
during the compilation process and raise a warning
or error at each match. The following statement can
be read as “raise a compile-time warning if a call is
made to JDBC**(Java Database Connector) outside
of the persistence layer”:

declare warning :
call(* java.sgl. *(.) &&
lwithin(org.xyz.persistence. .¥)
: "Only the persistence layer should " +
"be calling JDBC.";

In addition to enforcing such design constraints,
aspects can be written at this stage of adoption that
help in testing and debugging, for example, and that
check pre- and post-conditions on methods. Within
IBM we wrote a simple aspect that issued a warning
on violations of API (application programming
interface) contracts within the WebSphere* platform
(similar in style to the example just shown). The
aspect and the simple scripts that enable a product
team not skilled in AspectJ to pick up and easily use
the language have been widely used by product
groups inside IBM—over 20 product teams have
incorporated this approach into their testing to date,
and many thousands of problems have been
detected and eliminated.

At the second stage of adoption, we recommend the
use of aspects for implementing non-core function.

COLYER AND CLEMENT

305

* Java - SupervisorAlerts.aj - Eclipse Platform

File Edit Navigate Search Project Run Window Help
Mroi@ G -0~ | BHEG | ™ (o B BaspectVisu... &°Team Sync... [RCVS Reposi.. | §'lava »
18 Package E... 11 " Hierarchy| = O/ (1) BankAccount.java 22 - [1] Money.java | [InsufficientFund 1) Auth £ 0| B2 Outline & Suwe geh®=0
= wpublia { ~ # ‘¢ import declarations
J oary = visaralert
= & Banking o sff‘:" tsorilerts. = o
= &5 s 7 WITHDRAWAL_THRESHOLD
= {8 banking o connectionFactory
w 1] BankAccount.java i~ ¥ withdrawal{Bankaccount, Monay)
%-[1) Money.java = % aRerReturning(Bankaccount, Money): withdrawal.
= {8 banking.alerts = @ advses
4| Supenvisoralerts.aj @ Bankaccount.withdrawal{Money)
+ 8 banking.exceptions] sen-:\'essage-:Stn.z:g_' _
% B JRE System Library [sun142_ |y, < # sccountOperationBankAccount)
5 % ASFECTIRT_LE - C;-Ecll;sva- - = % afterThrowing{Bankaccount, InsufficientFundsExce
i) build.ajproperties =@ advses
513 Spring w @ BankAccount.withdrave
? < » @ BankAccount.deposi
D Supervisorilerts.a) X (m ;
public aspect Supezviscrilezts - # bankingOperation()
= % afterThrowing[AutherizationException): bankingOg
= & advises
@
°
L]
@
@
@
@ " BankAccount.open]
@ Banka
@ BankAccount.transfer{BankAcoount, Mone
< < >
[£: Protlems &2 - Javadoc| Dedlaration | Search B+ =0
0 errors, 0 warnings, 0 infos (Filter matched 0 of 174 items)
Description | Resource | in Folder
¢ ¥ < 3
Writable Smart Insart 39:62
Figure 1
AJDT screenshot

Sometimes we call these auxiliary aspects. Within
IBM we have modeled several of the WebSphere
platform policies (for example, the WebSphere
policy for first-failure data capture when an error or
exception is detected) as aspects.u’12 These ap-
proaches are being adopted by product groups
instead of hand-coding the implementation of the
policies throughout large code bases.

At the third stage of adoption, aspects are also used
to implement core pieces of a software program’s
functionality. A number of projects within IBM have
reached this stage of adoption. One emerging theme
is the use of aspects to aid in the incremental
addition of function around a small microkernel. We
also undertook a large-scale study to assess the use
of aspects in refactoring existing software in order to
improve modularity and to create new reusable
components. The results of this successful study are
documented in Reference 13.

306 COLYER AND CLEMENT

THE IMPORTANCE OF BEING OPEN SOURCE

The open-source nature of the AspectJ and AJDT
projects played a critical part in their adoption and
success, and in IBM’s involvement.

The early adopters who initially acquired AspectJ
and started experimenting with it were able to do so
without any inhibitors being placed in their way.
The three key features of the AspectJ project (which
are shared with many open-source projects) that
enabled this early adoption are:

1. The AspectJ binaries are freely available for
download. If there had been a license fee to pay, it
is unlikely that many of the early adopters would
have tried out AspectJ, especially because these
individuals typically worked at companies and
research establishments and were often acting
out of their own curiosity.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

2. The AspectJ source code is freely available. This
became of central importance to those early
adopters who had tried out AspectJ, found it to be
beneficial, and wanted to use it in the develop-
ment of their applications. We remember a
conversation with one early adopter at a com-
mercial organization who was asked “Are you
concerned about the lack of commercial support
for AspectJ?” He replied that his company had as
much confidence, if not more, in using AspectJ as
in many commercial tools they were already
using because of the direct access to developers
on the AspectJ mailing lists and the ability to
download the source code and fix problems
themselves if necessary.

3. There is ready access to Aspect]’s developers and
users. Like most good open-source projects,
Aspect] maintains a user mailing list through
which support from the Aspect] community and
from the AspectJ developers themselves is readily
available. (At the time of writing, there are almost
1,000 subscribers to the Aspect] mailing list.) By
being responsive to questions posed on the
mailing list and to bug reports submitted, the
Aspect]J team has won the confidence of their
user community to continue using Aspect]J, even
while Aspect] itself has undergone significant
development.

The Aspect]J project continually exploited the close
feedback that an open-source project can provide in
order to develop both the core Aspect]J language and
the supporting tools. This feedback helped to make
the technology easier to use and better able to
address user requirements. Planned extensions and
changes to the language were discussed openly on
the mailing list, and user feedback helped to drive
many enhancements, such as improved error
messages, faster compilation times, the inclusion of
Ant'* tasks for building AspectJ programs, support
for incremental compilation, program browsing
tools, and more.

Recall that Aspect] began life as an open-source
project led by a team from PARC. IBM interest in the
project began simply when an IBM employee
downloaded and experimented with a release of
Aspect]J in much the same way that any user might
proceed. Exchanges on the Aspect] mailing lists led
to the establishment of an initial relationship. When
IBM first announced another open-source project,
Eclipse, in late 2001, an IBM group at Hursley

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

proposed to the Aspect] development team the idea
of a joint open-source project under the eclipse.org15
umbrella to provide IDE support for Aspect] inside
Eclipse. This project became known as AJDT and
was first made public in May of 2002. The joint
development that occurred during work on the
project quickly built up a strong relationship
between the IBM and PARC teams, as well as a
growing understanding of the AspectJ code base
within IBM.

At the time that the AJDT project was beginning,
several members of the Aspect] development team
from PARC visited IBM Hursley to undertake a
proof-of-concept demonstration applying AspectJ in
the context of IBM product development. This visit
led to several suggestions for enhancements to the
Aspect]J compiler, which in turn culminated in a
substantial change in the implementation of AspectJ
in the Version 1.1 release. The results of that proof-
of-concept demonstration and a description of the
changes in AspectJ’s implementation that it helped
to trigger have been published in References 11 and
12.

By late 2002, it had become clear to the management
at PARC that Aspect] was maturing beyond the
point of being a research project, and the decision
was made to move the project from its home at
PARC. An agreement was made to transfer the
Aspect] project to eclipse.org under the Common
Public License (CPL).16 The existing Eclipse-based
collaboration between IBM and PARC was a
contributing factor in the choice of eclipse.org as a
home for the AspectJ project. When AspectJ became
an Eclipse Technology Project in December of 2002,
the first external programmer to join the existing
developers from PARC on the Aspect] project was
an IBM employee. Once again the collaborative
development made possible through the open-
source nature of the project enabled the further
development of Aspect] expertise within IBM. When
the AspectJ project leader stepped down from the
role in 2003, the newly elected leader was an IBM
employee. The open-source nature of three projects,
Eclipse, AJDT, and AspectJ, had played a crucial
role in building trust and expertise across organiza-
tional boundaries, ultimately allowing this transfer
of leadership to occur. Today Aspect] remains an
open-source project on eclipse.org, with contrib-
utors from several different organizations.

COLYER AND CLEMENT

307

CONCLUSION

AOP is an exciting new development in the field of
software engineering with the goal of improving the
modularity of software applications and making
them easier to develop, test, and maintain. The
open-source Aspect]J project has taken a leading role
in defining what an AOP language should look like
and in building tools that enable aspect-oriented
techniques to be employed in the development of
large-scale commercial software. IBM not only
contributes to the development of Aspect] and its
accompanying IDE support, AJDT, but also uses
them internally. The open-source nature of Aspect]J
and AJDT projects has played and continues to play
a critical role in the evolution, adoption, and
ongoing development of these projects.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of the Palo Alto
Research Center, Inc. or Sun Microsystems, Inc.

CITED REFERENCES

1. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Videira Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-
Oriented Programming,” Proceedings of the 11th Euro-
pean Conference on Object-Oriented Computing
(ECOOP’97), Jyvaskyld, Finland, June 9-13, 1997,
Lecture Notes on Computer Science 1241, Springer-Verlag,
New York (1997), pp. 220-242.

2. Aspect] Project, The Eclipse Foundation, http://
www.eclipse.org/aspectj/.

3. Aspect]J Development Tools Subproject, The Eclipse
Foundation, http://www.eclipse.org/ajdt/.

4. Eclipse Platform Technical Overview, The Eclipse Foun-
dation, http://www.eclipse.org/whitepapers/
eclipse-overview.pdf.

5. Hibernate—Relational Persistence for Idiomatic Java,
http://www.hibernate.org/.

6. A. Hunt and D. Thomas, The Pragmatic Programmer:
From Journeyman to Master, Addison-Wesley Profes-
sional, Boston, MA (1999).

7. K.J. Lieberherr, “Controlling the Complexity of Software
Designs,” Proceedings of the 26th International Confer-
ence on Software Engineering (ICSE 2004), Edinburgh,
Scotland, UK, May 23-28, 2004, ACM, New York (2004),
pp. 2-11.

8. The Aspect] Team, The Aspect] Programming Guide, The
Eclipse Foundation, http://www.eclipse.org/aspectj/.

9. R. Laddad, AspectJ in Action, Manning Publications Co.,
Greenwich, CT (2003).

10. A. Colyer, A. Clement, G. Harley, and M. Webster, Eclipse
AspectJ: Aspect-Oriented Programming with
Aspect] and the Eclipse AspectJ Development Tools,
Addison-Wesley Professional, Boston, MA (2004).

11. R. Bodkin, A. Colyer, and J. Hugunin, “Applying AOP for
Middleware Platform Independence,” Practitioner Report,

308 COLYER AND CLEMENT

2nd International Conference on Aspect-Oriented Software
Development (AOSD 2003), Northeastern University,
Boston, MA, March 17-23, 2003, http://aosd.net/
archive/2003/program/bodkin.pdf.

12. A. Colyer, A. Clement, R. Bodkin, and J. Hugunin, “Using
AspectJ for Component Integration in Middleware,”
Proceedings of the 18th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2003), Anaheim, CA, October
26-30, 2003, ACM, New York (2003), pp. 339-344.

13. A. Colyer and A. Clement, “Large-Scale AOSD for
Middleware,” Proceedings of the 3rd International Con-
ference on Aspect-Oriented Software Development (AOSD
2004), Lancaster, UK, March 22-26, 2004, ACM, New
York (2004), pp. 56-65.

14. The Apache™ Ant Project, The Apache Software Foun-
dation, http://ant.apache.org/.

15. Eclipse.org is the Web site of the Eclipse Foundation,
http://www.eclipse.org/.

16. Common Public License—v1.0, The Eclipse Foundation,
http://www.eclipse.org/legal/cpl-v10.html.

Accepted for publication September 29, 2004.
Published online April 7, 200S5.

Adrian Colyer

MP 146, IBM Hursley Park, Winchester, England SO21 2JN
(adrian_colyer@uk.ibm.com). Adrian Colyer is an IBM Senior
Technical Staff Member based in Hursley, England. He leads
the open-source Aspect] and AJDT projects on eclipse.org and
is a frequent writer and speaker on Aspect] and aspect-
oriented programming (AOP). He is a co-author of the book
Eclipse Aspect]: Aspect-Oriented Programming with Aspect]
and the Eclipse Aspect] Development Tools. In 2004 he was
named as one of the top 100 young innovators by the MIT
Technology Review magazine. Before working on aspect-
oriented technologies, Adrian worked on distributed systems
middleware for nearly a decade.

Andy Clement

MP 146, IBM Hursley Park, Winchester, England SO21 2JN
(clemas@uk.ibm.com). Andy Clement is a senior software
engineer at IBM Hursley Park. With a background in
transaction processing and enterprise systems development,
he is currently involved in the use of aspects in J2EE™
middleware and has given tutorials on best practices for using
aspect-oriented programming (AOP) techniques. He is one of
the founders of the Aspect] Development Tools (AJDT) for the
Eclipse project and is an active participant in the Aspect]
project. He is a co-author of the book Eclipse AspectJ: Aspect-
Oriented Programming with Aspect] and the Eclipse Aspect]
Development Tools. B

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

