
Aspect-oriented programming
with AspectJ

&

A. Colyer

A. Clement

Aspect-oriented programming (AOP) is an exciting new development in the field of

software engineering. The open-source AspectJt project has taken a leading role in

defining what an aspect-oriented programming language should look like and in

building tools that enable aspect-oriented techniques to be employed in the

development of large-scale commercial software. IBM both contributes to the

development of AspectJ and uses it internally with its accompanying IDE (integrated

development environment) support, AspectJ Development Tools (AJDT). This paper

provides an introduction to aspect-oriented programming using AspectJ and AJDT. We

also discuss the role that open source (and being an open-source project) has played

in the ongoing development of AspectJ, and how this has facilitated a level of

collaboration and exploitation that would not have been possible otherwise.

The first paper to use the term aspect-oriented

programming (AOP) was published in 1997 by a

research group at the Palo Alto Research Center

(PARC**).
1
Since that time, interest in aspect-

oriented programminghas steadily grown to the point

that it now attracts large audiences at developer

conferences, and a growing number of companies are

using AOP to build production applications. In this

paperwefirst introduceAOP and the benefits it brings

and then look at the AOP language AspectJ**.
2

AspectJ is an open-source project initiated by PARC

and now led by IBM. The AspectJ Development Tools

(AJDT) project
3
is a related open-source project, also

led by IBM, that provides IDE (integrated develop-

ment environment) support for programming with

AspectJ within the Eclipse IDE.
4
After introducing the

language and tools, we discuss the adoption of

AspectJ within IBM. The paper concludes by consid-

ering the role that open source has played both in the

development of AspectJ and AJDT and in IBM’s

involvement in that process.

WHAT IS AOP?

AOP is a term used to describe a programming

technique and a way of thinking about the con-

struction of software applications that complements

the forms of expression found in object-oriented

programming. The goal of AOP is to improve the

modularity of software applications, making them

easier to develop, test, and maintain. Aspect-

oriented programs comprise of a mixture of objects

and aspects. Both encapsulate state and behavior,

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 COLYER AND CLEMENT 301

but whereas the behavior in an object is executed

only when explicit calls are made to the object’s

methods, the behavior in an aspect can also execute

at points in the runtime of the program determined

by the aspect’s specification.

This simple idea turns out to be enormously

powerful at modularizing the implementation of

certain types of application features and functions.

For example, given the requirement to issue a

change notification to any registered listeners when

the state of any one of a set of model objects

changes, an object-based implementation requires

the addition of a call to notifyListeners() (or some

similar method) after each state-changing operation.

An aspect-based implementation can simply code

(in one module known as an aspect) the following,

‘‘After the state of any model object changes, call

notifyListeners().’’ As another example, consider the

use of a persistence service that requires all updates

to the persistent state of an application to occur

within the scope of a session or transaction. An

object-based implementation requires the insertion

of logic to start a session before every interaction

with the persistence service and to close it again

afterwards—managing any exceptions that may be

generated by the service along the way. An

illustration of this example using the Hibernate
5

persistence framework for session and transaction

management is shown in the following listing:

try f
Session session = sessionFactory.openSession();

Transaction tx = null;

try f
tx = session.beginTransaction();

// perform updates to persistent state

// here . . .

tx.commit();

g catch (HibernateException hEx) f
if (tx != null) tx.rollback();

throw hEx;

g finally f
session.close();

g
g catch (HibernateException hEx) f
// handle exception

g

An aspect-based implementation of the same re-

quirement can be coded once in an encapsulated

module, ‘‘Before updating the persistent state of the

application start a session, and after the update has

been completed, close it again.’’ Although the

application may involve many interactions with the

persistence service, the aspect-based implementa-

tion will need to be written only once.

Both the change notification and session-manage-

ment requirements are examples of what the AOP

community has termed a crosscutting concern. A

crosscutting concern is a single concern in the

design or implementation of a system that impacts

multiple places in the static structure of the system

or in its runtime control flow. Aspects modularize

crosscutting concerns, allowing the implementation

of a single (crosscutting) concern in a single module,

and therefore eliminating violations of the DRY

(don’t repeat yourself) principle.
6
Instead of the

same fragment of code being repeated in many

places throughout the application (e.g., the calls to

notifyListeners(), or the session-management logic),

the code can be written once in an aspect. This

makes the implementation easier to add, remove,

and maintain. In the aspect-oriented community the

term scattering is often used to describe the situation

where multiple fragments of code that all do the

same thing (or that do closely related things) are

spread throughout a code base in a non-modular

fashion.

A concept closely related to scattering is tangling.

Tangling occurs when a module (typically a class in

an object-oriented system) contains logic pertaining

to more than one feature or function. The imple-

mentations of the different features are said to be

tangled together in the module. As an example,

consider the implementation of a BankAccount class

that contains logic to place a message in a queue

whenever a withdrawal over a certain threshold is

made. The implementations of the BankAccount

feature and a portion of a SupervisorAlerts feature

have become tangled in a single class. By using an

aspect to modularize the implementation of the

SupervisorAlerts feature, this tangling can be

eliminated.

Tangling is an indication of a less than ideal system

modularity. In particular, tangling makes it harder to

test, maintain, and reuse the tangled feature

implementations. Karl Lieberherr recently formu-

lated an update to the Law of Demeter designed to

COLYER AND CLEMENT IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005302

eliminate tangling in a design: ‘‘Speak only to your

friends that share your current concerns.’’
7

By eliminating the effects of scattering and tangling

that are prevalent in object-oriented systems, the

goal of AOP can be stated simply: ‘‘Every module in

the system should do one thing and one thing only.’’

The usual software engineering criteria for what

makes a good module (coupling, cohesion, etc.)

apply equally to AOP and to object-oriented

programming.

Underpinning all AOP systems is something called a

join point model. Join points are events that occur

during the runtime execution of a program (for

example, the initialization of a class, the execution

of a method, the handling of an exception, or the

updating of a field). The join point model deter-

mines which of these events are exposed to the

aspect-oriented programmer. Pointcuts are predi-

cates that match join points. For example, all AOP

systems known to the authors will provide for a

pointcut that matches the execution of a given

method (or set of methods). Blocks of code known

as advice are written to execute at any join point

matched by a pointcut expression associated with

the advice.

To implement the change notification requirement

that we introduced at the start of this section, an

aspect-oriented programmer would write a pointcut

that matched join points representing the setting of a

field value within any of the model objects. The

programmer would then write a simple piece of

advice associated with that pointcut to call the

notifyListeners() method.

ASPECTJ AND AJDT
In the following section we provide a brief intro-

duction to AspectJ and the AJDT and show how the

ideas of aspect orientation are implemented in the

AspectJ language and supported by AJDT.

AspectJ
The AspectJ language is an extension of the Java**

language that supports AOP. The programs gener-

ated by the AspectJ compiler can run on any Java

Virtual Machine (JVM**) and have no special

runtime requirements, other than that the small

AspectJ runtime library, aspectjrt.jar, be available

somewhere on the classpath (a listing of locations

where Java can find class files).

The declaration of an aspect in AspectJ looks very

much like a class declaration, except that the

keyword class is replaced by the keyword aspect:

public aspect SupervisorAlerts f
� � �
g

Aspects can have state (fields) and behavior

encapsulated in methods in just the same way as a

class:

public aspect SupervisorAlerts f
private static final Money

WITHDRAWAL_THRESHOLD = newMoney(1000, 0);

private QueueConnectionFactory

connectionFactory;

� � �
private void sendMessage(String messageText) f
� � �

g
g

AspectJ’s join point model includes join points for:

� A method or constructor call
� The execution of a method or constructor
� The accessing or updating of a field
� The handling of an exception
� The initialization of a class or object
� The execution of advice

Pointcuts in AspectJ are declared using the pointcut

keyword. To issue a supervisor alert whenever a

withdrawal is made over some threshold, a pointcut

called withdrawal() that will match a join point

representing the execution of a withdrawal method

can be defined:

pointcut withdrawal() :

execution(* withdrawal(Money));

AspectJ supports three basic kinds of advice: before

advice, after advice, and around advice. Before

advice runs before the execution of a matched join

point, after advice runs after the execution of a

matched join point, and around advice gives control

over the actual execution of a matched join point. To

implement the withdrawal alert, we choose to send

a message to the supervisor after the successful

completion of a large withdrawal:

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 COLYER AND CLEMENT 303

after() returning : withdrawal() f
// if the withdrawn amount was . threshold

// then send supervisor alert

g

After-returning advice runs after a successful return

from the execution of a matched join point. (Later

we will see after-throwing advice, which runs when

a join point is left via an exception.) To implement

the body of the advice, we need more information—

in particular, we need to know the BankAccount

object in question and the amount of the with-

drawal. Pointcuts can be used to provide contextual

information at matched join points, and we extend

the definition of the withdrawal() pointcut to do this:

pointcut withdrawal(BankAccount acc,

Money amount) :

execution(* withdrawal(Money)) &&

this(acc) &&

args(amount);

The new definition of the withdrawal() pointcut

matches any join point that represents the execution

of a withdrawal method, taking one argument (the

amount to withdraw). The this(acc) component of

the pointcut specifies that the object executing the

method is bound to the pointcut parameter acc and

therefore must be an instance of type BankAccount.

The args(amount) component of the pointcut speci-

fies that the single argument to the method is bound

to the pointcut parameter amount, and therefore

must be of type Money.

Now that the needed contextual values are provided

by the withdrawal() pointcut, they can be used in the

advice declaration:

after(BankAccount account,

Money amountOfWithdrawal) returning :

withdrawal(account,amountOfWithdrawal) f
if (amountOfWithdrawal.greaterThan(

WITHDRAWAL_THRESHOLD)) f
sendMessage(

"Large withdrawal from account: "þ
account þ " : " þ amountOfWithdrawal);

g
g

Notice how an advice declaration can have param-

eters much like a method declaration. Instead of the

parameter values being passed to the advice when it

is called by a program statement (as happens for a

method), the parameter values for advice are

provided by the associated pointcut expression at

each matched join point. The basic implementation

of the SupervisorAlerts aspect is now complete:

public aspect SupervisorAlerts f
private static final Money

WITHDRAWAL_THRESHOLD=new Money (1000, 0);

private QueueConnectionFactory

connectionFactory;

� � �
pointcut withdrawal(BankAccount acc,

Money amount) :

execution(* withdrawal(Money)) &&

this(acc) &&

args(amount);

after(BankAccount account,

Money amountOfWithdrawal) returning :

withdrawal(account,amountOfWithdrawal) f
if (amountOfWithdrawal.greaterThan(

WITHDRAWAL_THRESHOLD)) f
sendMessage(

"Large withdrawal from account: " þ
account þ " : " þ amountOfWithdrawal);

g
g
private void sendMessage (String messageText) f

� � �
g

g

This aspect could now be extended to encompass

the other supervisor alerts that are required, keeping

the whole alerting feature modularized and encap-

sulated. For example, given the requirement to alert

a supervisor whenever an account operation fails

with an InsufficientFundsException, or when an

AuthorizationException is generated by any method in

the banking package, then the aspect can be

extended as follows:

pointcut accountOperation(BankAccount acct) :

execution(* *(. .)) && this(acct);

after(BankAccount account)

throwing(InsufficientFundsException ex) :

accountOperation(account) f
sendMessage(

"Insufficient funds for transaction " þ
"on account"þ account þ
" : " þ ex.getMessage());

g

COLYER AND CLEMENT IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005304

pointcut bankingOperation() :

execution(* *(. .)) && within(banking.*);

after() throwing(AuthorizationException ex):

bankingOperation() f
sendMessage ("Authorization failure: " þ

ex.getMessage());

g

If the logic to send supervisor alerts had not been

encapsulated in the aspect in this way, there would

be many places throughout the banking application

where fragments of code concerned with

implementing this feature would be found.

The AspectJ language includes many more features

that can be used to improve the modularity of

software applications, but a full treatment is beyond

the scope of this paper. Interested readers are

referred to the online AspectJ tutorial
8
or one of the

many books on AspectJ, for example, References 9

and 10.

AJDT

AJDT provides IDE support for programming in the

AspectJ language and is freely available from the

Eclipse website.
3
Along with the usual syntax

highlighting, building, and error-reporting elements,

AJDT also provides a wealth of features that help

users understand the effects of the aspects in their

program. This part of the AJDT tool set provides

aspect-browsing capabilities, similar to the class-

browsing capabilities that are available for object-

oriented programs.

Figure 1 shows a screenshot of AJDT in use. Both

the BankAccount class and the SupervisorAlerts aspect

are being edited, and the syntax highlighting that

AJDT provides can be seen. Notice the markers in

the gutter to the left of the BankAccount editor that

indicate the presence of advice on a join point that

the marked code will give rise to at runtime. In this

case, when the withdrawal method is executed, it

will give rise to an execution join point that is

advised by the SupervisorAlerts aspect. The Outline

View to the right of the Eclipse window shows an

outline for the SupervisorAlerts aspect. In addition to

indicating the members of the aspect (the fields,

methods, advice, and pointcuts in this case), the

Outline View shows the places that a piece of advice

is in effect (the advises relationship). The links can

be used for navigation to the advised locations. The

Outline View for an advised type also provides

advised by relationships that allow the developer to

see and to navigate to any advice affecting the type.

AJDT also includes comprehensive help on using

AJDT and AspectJ, a visualizer that provides an

overview of an entire AspectJ project at a glance,

integrated debugging support, wizards for creating

aspects and AspectJ projects, full access to the

AspectJ compiler options, and more.

ADOPTION WITHIN IBM

Based on our experiences within IBM, we recom-

mend a staged approach when adopting AOP and

AspectJ. At the first stage of adoption, aspects can

be written that enforce design constraints and

contracts. The central mechanisms used to do this

are the AspectJ constructs declare warning and declare

error. Like the advice forms in the previous section,

these constructs are also associated with a pointcut.

Instead of taking action during the runtime execu-

tion of the program, they signal the compiler to

detect code that will give rise to matching join points

during the compilation process and raise a warning

or error at each match. The following statement can

be read as ‘‘raise a compile-time warning if a call is

made to JDBC**(Java Database Connector) outside

of the persistence layer’’:

declare warning :

call(* java.sql. .*(. .)) &&

!within(org.xyz.persistence. .*)

: "Only the persistence layer should " þ
"be calling JDBC.";

In addition to enforcing such design constraints,

aspects can be written at this stage of adoption that

help in testing and debugging, for example, and that

check pre- and post-conditions on methods. Within

IBM we wrote a simple aspect that issued a warning

on violations of API (application programming

interface) contracts within the WebSphere* platform

(similar in style to the example just shown). The

aspect and the simple scripts that enable a product

team not skilled in AspectJ to pick up and easily use

the language have been widely used by product

groups inside IBM—over 20 product teams have

incorporated this approach into their testing to date,

and many thousands of problems have been

detected and eliminated.

At the second stage of adoption, we recommend the

use of aspects for implementing non-core function.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 COLYER AND CLEMENT 305

Sometimes we call these auxiliary aspects. Within

IBM we have modeled several of the WebSphere

platform policies (for example, the WebSphere

policy for first-failure data capture when an error or

exception is detected) as aspects.
11,12

These ap-

proaches are being adopted by product groups

instead of hand-coding the implementation of the

policies throughout large code bases.

At the third stage of adoption, aspects are also used

to implement core pieces of a software program’s

functionality. A number of projects within IBM have

reached this stage of adoption. One emerging theme

is the use of aspects to aid in the incremental

addition of function around a small microkernel. We

also undertook a large-scale study to assess the use

of aspects in refactoring existing software in order to

improve modularity and to create new reusable

components. The results of this successful study are

documented in Reference 13.

THE IMPORTANCE OF BEING OPEN SOURCE

The open-source nature of the AspectJ and AJDT

projects played a critical part in their adoption and

success, and in IBM’s involvement.

The early adopters who initially acquired AspectJ

and started experimenting with it were able to do so

without any inhibitors being placed in their way.

The three key features of the AspectJ project (which

are shared with many open-source projects) that

enabled this early adoption are:

1. The AspectJ binaries are freely available for

download. If there had been a license fee to pay, it

is unlikely that many of the early adopters would

have tried out AspectJ, especially because these

individuals typically worked at companies and

research establishments and were often acting

out of their own curiosity.

Figure 1
AJDT screenshot

COLYER AND CLEMENT IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005306

2. The AspectJ source code is freely available. This

became of central importance to those early

adopters who had tried out AspectJ, found it to be

beneficial, and wanted to use it in the develop-

ment of their applications. We remember a

conversation with one early adopter at a com-

mercial organization who was asked ‘‘Are you

concerned about the lack of commercial support

for AspectJ?’’ He replied that his company had as

much confidence, if not more, in using AspectJ as

in many commercial tools they were already

using because of the direct access to developers

on the AspectJ mailing lists and the ability to

download the source code and fix problems

themselves if necessary.

3. There is ready access to AspectJ’s developers and

users. Like most good open-source projects,

AspectJ maintains a user mailing list through

which support from the AspectJ community and

from the AspectJ developers themselves is readily

available. (At the time of writing, there are almost

1,000 subscribers to the AspectJ mailing list.) By

being responsive to questions posed on the

mailing list and to bug reports submitted, the

AspectJ team has won the confidence of their

user community to continue using AspectJ, even

while AspectJ itself has undergone significant

development.

The AspectJ project continually exploited the close

feedback that an open-source project can provide in

order to develop both the core AspectJ language and

the supporting tools. This feedback helped to make

the technology easier to use and better able to

address user requirements. Planned extensions and

changes to the language were discussed openly on

the mailing list, and user feedback helped to drive

many enhancements, such as improved error

messages, faster compilation times, the inclusion of

Ant
14

tasks for building AspectJ programs, support

for incremental compilation, program browsing

tools, and more.

Recall that AspectJ began life as an open-source

project led by a team from PARC. IBM interest in the

project began simply when an IBM employee

downloaded and experimented with a release of

AspectJ in much the same way that any user might

proceed. Exchanges on the AspectJ mailing lists led

to the establishment of an initial relationship. When

IBM first announced another open-source project,

Eclipse, in late 2001, an IBM group at Hursley

proposed to the AspectJ development team the idea

of a joint open-source project under the eclipse.org
15

umbrella to provide IDE support for AspectJ inside

Eclipse. This project became known as AJDT and

was first made public in May of 2002. The joint

development that occurred during work on the

project quickly built up a strong relationship

between the IBM and PARC teams, as well as a

growing understanding of the AspectJ code base

within IBM.

At the time that the AJDT project was beginning,

several members of the AspectJ development team

from PARC visited IBM Hursley to undertake a

proof-of-concept demonstration applying AspectJ in

the context of IBM product development. This visit

led to several suggestions for enhancements to the

AspectJ compiler, which in turn culminated in a

substantial change in the implementation of AspectJ

in the Version 1.1 release. The results of that proof-

of-concept demonstration and a description of the

changes in AspectJ’s implementation that it helped

to trigger have been published in References 11 and

12.

By late 2002, it had become clear to the management

at PARC that AspectJ was maturing beyond the

point of being a research project, and the decision

was made to move the project from its home at

PARC. An agreement was made to transfer the

AspectJ project to eclipse.org under the Common

Public License (CPL).
16

The existing Eclipse-based

collaboration between IBM and PARC was a

contributing factor in the choice of eclipse.org as a

home for the AspectJ project. When AspectJ became

an Eclipse Technology Project in December of 2002,

the first external programmer to join the existing

developers from PARC on the AspectJ project was

an IBM employee. Once again the collaborative

development made possible through the open-

source nature of the project enabled the further

development of AspectJ expertise within IBM. When

the AspectJ project leader stepped down from the

role in 2003, the newly elected leader was an IBM

employee. The open-source nature of three projects,

Eclipse, AJDT, and AspectJ, had played a crucial

role in building trust and expertise across organiza-

tional boundaries, ultimately allowing this transfer

of leadership to occur. Today AspectJ remains an

open-source project on eclipse.org, with contrib-

utors from several different organizations.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 COLYER AND CLEMENT 307

CONCLUSION

AOP is an exciting new development in the field of

software engineering with the goal of improving the

modularity of software applications and making

them easier to develop, test, and maintain. The

open-source AspectJ project has taken a leading role

in defining what an AOP language should look like

and in building tools that enable aspect-oriented

techniques to be employed in the development of

large-scale commercial software. IBM not only

contributes to the development of AspectJ and its

accompanying IDE support, AJDT, but also uses

them internally. The open-source nature of AspectJ

and AJDT projects has played and continues to play

a critical role in the evolution, adoption, and

ongoing development of these projects.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of the Palo Alto
Research Center, Inc. or Sun Microsystems, Inc.

CITED REFERENCES
1. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Videira Lopes, J.-M. Loingtier, and J. Irwin, ‘‘Aspect-
Oriented Programming,’’ Proceedings of the 11th Euro-
pean Conference on Object-Oriented Computing
(ECOOP’97), Jyväskylä, Finland, June 9–13, 1997,
Lecture Notes on Computer Science 1241, Springer-Verlag,
New York (1997), pp. 220–242.

2. AspectJ Project, The Eclipse Foundation, http://
www.eclipse.org/aspectj/.

3. AspectJ Development Tools Subproject, The Eclipse
Foundation, http://www.eclipse.org/ajdt/.

4. Eclipse Platform Technical Overview, The Eclipse Foun-
dation, http://www.eclipse.org/whitepapers/
eclipse-overview.pdf.

5. Hibernate—Relational Persistence for Idiomatic Java,
http://www.hibernate.org/.

6. A. Hunt and D. Thomas, The Pragmatic Programmer:
From Journeyman to Master, Addison-Wesley Profes-
sional, Boston, MA (1999).

7. K. J. Lieberherr, ‘‘Controlling the Complexity of Software
Designs,’’ Proceedings of the 26th International Confer-
ence on Software Engineering (ICSE 2004), Edinburgh,
Scotland, UK, May 23–28, 2004, ACM, New York (2004),
pp. 2–11.

8. The AspectJ Team, The AspectJ Programming Guide, The
Eclipse Foundation, http://www.eclipse.org/aspectj/.

9. R. Laddad, AspectJ in Action, Manning Publications Co.,
Greenwich, CT (2003).

10. A. Colyer, A. Clement, G. Harley, and M. Webster, Eclipse
AspectJ: Aspect-Oriented Programming with
AspectJ and the Eclipse AspectJ Development Tools,
Addison-Wesley Professional, Boston, MA (2004).

11. R. Bodkin, A. Colyer, and J. Hugunin, ‘‘Applying AOP for
Middleware Platform Independence,’’ Practitioner Report,

2nd International Conference on Aspect-Oriented Software
Development (AOSD 2003), Northeastern University,
Boston, MA, March 17–23, 2003, http://aosd.net/
archive/2003/program/bodkin.pdf.

12. A. Colyer, A. Clement, R. Bodkin, and J. Hugunin, ‘‘Using
AspectJ for Component Integration in Middleware,’’
Proceedings of the 18th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2003), Anaheim, CA, October
26–30, 2003, ACM, New York (2003), pp. 339–344.

13. A. Colyer and A. Clement, ‘‘Large-Scale AOSD for
Middleware,’’ Proceedings of the 3rd International Con-
ference on Aspect-Oriented Software Development (AOSD
2004), Lancaster, UK, March 22–26, 2004, ACM, New
York (2004), pp. 56–65.

14. The Apachee Ant Project, The Apache Software Foun-
dation, http://ant.apache.org/.

15. Eclipse.org is the Web site of the Eclipse Foundation,
http://www.eclipse.org/.

16. Common Public License—v1.0, The Eclipse Foundation,
http://www.eclipse.org/legal/cpl-v10.html.

Accepted for publication September 29, 2004.

Adrian Colyer
MP 146, IBM Hursley Park, Winchester, England SO21 2JN
(adrian_colyer@uk.ibm.com). Adrian Colyer is an IBM Senior
Technical Staff Member based in Hursley, England. He leads
the open-source AspectJ and AJDT projects on eclipse.org and
is a frequent writer and speaker on AspectJ and aspect-
oriented programming (AOP). He is a co-author of the book
Eclipse AspectJ: Aspect-Oriented Programming with AspectJ
and the Eclipse AspectJ Development Tools. In 2004 he was
named as one of the top 100 young innovators by the MIT
Technology Review magazine. Before working on aspect-
oriented technologies, Adrian worked on distributed systems
middleware for nearly a decade.

Andy Clement
MP 146, IBM Hursley Park, Winchester, England SO21 2JN
(clemas@uk.ibm.com). Andy Clement is a senior software
engineer at IBM Hursley Park. With a background in
transaction processing and enterprise systems development,
he is currently involved in the use of aspects in J2EEe
middleware and has given tutorials on best practices for using
aspect-oriented programming (AOP) techniques. He is one of
the founders of the AspectJ Development Tools (AJDT) for the
Eclipse project and is an active participant in the AspectJ
project. He is a co-author of the book Eclipse AspectJ: Aspect-
Oriented Programming with AspectJ and the Eclipse AspectJ
Development Tools. &

COLYER AND CLEMENT IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005308

Published online April 7, 2005.

