
Open-source versus proprietary
software: Is one more reliable
and secure than the other?

&

A. Boulanger

One of the most powerful movements in the information technology community

today is the widespread adoption of free and open-source software (FOSS). What was

once an idealistic fringe movement conceived and formalized by MacArthur award

laureate Richard Stallman has now become one of the most powerful influences in the

world of information technology. As FOSS systems grow in popularity, questions of the

reliability and security of these systems emerge, especially in comparison with

proprietary systems. This paper surveys the arguments presented by proponents of

each type of software in published reports and discusses the deployment and

reliability figures for both FOSS and proprietary systems as well.

The explosive increase in the number of deployed

free and open-source software (FOSS) systems has

changed the world of information technology. When

the first FOSS systems were developed, many of the

users of these early systems were themselves

technologists. Moreover, the distribution and use of

such FOSS systems was initially limited to academ-

ia, research laboratories, and technical user groups.

Today, however, FOSS systems are being developed

and designed for mass consumption. Most of the

businesses on the Internet use FOSS-developed

systems, and retail stores such as Wal-Mart are

offering to the general public steeply discounted

computers that take advantage of FOSS-developed

software. As the group of people and organizations

that depends on FOSS technologies continues to

grow, it becomes increasingly important that FOSS

systems be secure and reliable.

Many FOSS systems were originally developed by a

loose collaboration of volunteer programmers. The

completed systems were then released to the public,

and anyone could acquire and use these systems

without paying a licensing fee. Free support for these

systems was also provided by the volunteer com-

munity in the form of mailing lists and Web sites.

Currently, however, many FOSS projects are pro-

fessional efforts in which development is performed

by a team of paid programmers, and the system is

supported either without charge or through fees and

subscriptions. In contrast, traditional proprietary

systems are developed by a team of designers,

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BOULANGER 239

project managers, programmers, technical writers,

and quality assurance engineers. The systems they

produce undergo design reviews, development

progress reports, and formal quality assurance test-

ing. Once completed, these systems are packaged

commodities that are sold or licensed to the public

for a fee. Support for the software product is usually

provided by the developer of the system.

Which model is more reliable in terms of availability

and security? Many papers discussing these issues

have been published by proponents of each type of

software. This paper examines the arguments

presented in these published reports as well as the

deployment and reliability figures for both open and

proprietary systems.

SECURITY AND RELIABILITY CONSIDERATIONS
FOR FOSS AND PROPRIETARY SYSTEMS

The security and reliability of FOSS-based systems

are currently topics of an often heated debate.

Proprietary vendors are funding, producing, and

publishing reports supporting the position that

closed-source proprietary systems offer superior

security relative to their FOSS counterparts. For

every report that is published claiming the superior

security of proprietary systems, the FOSS community

responds with a report refuting these claims.

Perhaps a significant reason for this heated debate is

the fact that widespread adoption of the FOSS model

would directly threaten the revenue stream of

vendors of proprietary software. In several recent

10-Q quarterly filings with the Securities and

Exchange Commission, Microsoft, one of the

world’s largest software publishers, has stated that

the popularization and adoption of FOSS systems

pose a significant challenge to its business model.
1
It

is not surprising then that proprietary software

vendors are on the offensive, attempting to discredit

FOSS-developed systems.

Arguments about the relative security and reliability

of FOSS and proprietary software typically focus on

two key issues: availability of source code and

software defect levels. We discuss these issues in the

following sections.

Availability of source code

In June 2002, the white paper ‘‘Opening the Open

Source Debate’’
2
was released by the Alexis de

Tocqueville Institution, an organization funded in

part by Microsoft. Among its most controversial

findings was that ‘‘Open source GPL [General Public

License] use by government agencies could easily

become a national security concern. Government

use of software in the public domain is exceptionally

risky.’’ The basis for this assertion is the assumption

that publicly available source code invites ‘‘hack-

ers’’
3
to examine the code in order first to search for

exploitable vulnerabilities and then to develop and

deploy Trojan horses and other types of malicious

software. Therefore, the study concludes that the

availability of source code is a significant security

threat to government organizations using FOSS.

There are several problems with this assertion. It is

inferred that closed-source proprietary systems are

automatically more secure than their FOSS coun-

terparts, a ‘‘security through obscurity’’ approach. If

this assertion were true, then the number and rate of

published vulnerability reports for closed-source

systems should be significantly lower than those of

their FOSS equivalents.

However, the available data does not support this

assertion. In fact, many FOSS systems have

substantially lower rates of published vulnerabil-

ities than their closed-source counterparts. For

example, a recent report
4
showed that Apache**, a

FOSS Web server whose history and development
5

will be discussed in more detail later in this paper,

suffered from substantially fewer published vul-

nerabilities than Microsoft’s IIS (Internet Informa-

tion Server) and marginally more vulnerabilities

than Netscape** Enterprise Server. If the de

Tocqueville Institution’s assertion were true, then

Apache should have had significantly more pub-

lished vulnerabilities than the closed-source Web

servers.

Hiding the source code for a system does not

provide any additional security. People searching for

vulnerabilities do not require source code to

discover software defects. For example, a common

way to locate a software defect is to send a program

unexpected and unusual data and then monitor how

the system responds.
6
If the system fails or behaves

erratically as a result of the input, this might indicate

a flaw in the system that would warrant further

investigation.

With the prevalence of sophisticated software

monitoring, debugging, and disassembly tools,

BOULANGER IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005240

much of the source code can be derived from the

binary version of the executable program. Anyone

interested in obtaining the source code would

simply have to apply one of many widely available

tools to the program. The output from these

programs, while not perfect, would deliver sufficient

information to make it fairly easy to understand the

internal working of the system.

Moreover, source code for many deployed systems

has often been inadvertently leaked. Many software

producers outsource code development or exchange

source code with other organizations for a variety of

reasons. Anyone with access to the systems in-

volved, authorized or not, can obtain a copy of the

source code and distribute it. It is a very common

practice in the hacker community to traffic in source

code packages. In the course of investigating

systems intrusions, our organization has discovered

copies of the source code for nearly all of the major

operating systems on hacker systems. By examining

the source code, hackers hope to locate new

vulnerabilities and produce what are known as zero-

day exploits, attacks against vulnerabilities which

the software vendor has not yet found. Zero-day

exploits are the most prized exploits in the hacker

community because the targeted systems are de-

fenseless. On the surface, the possibility of such

exploits appears to support the most common

rationale for keeping source code secret, namely

preventing miscreants from using the code to

discover software defects and attack vulnerable

systems. However, the real problem may not be that

the source code is being used to discover vulner-

abilities. Rather, it may be that only two groups of

people have access to the source code, the small

group of developers, who are tasked with develop-

ing and maintaining the system, and the potentially

larger community of hackers, who are motivated to

discover and exploit vulnerabilities. When the

source code is widely available to everyone, as is the

case with FOSS systems, there are more opportu-

nities for people outside of the hacker community to

examine and correct potential software defects

before they can be exploited.

There are, of course, examples of FOSS systems that

have been notoriously insecure. Software defects in

sendmail, a FOSS mail transfer agent, have been a

favorite target of attack for years. In November of

1988, the first Internet worm was released by

Cornell graduate student Robert Morris.
7
The worm

quickly spread throughout the emerging Internet, in

part by exploiting vulnerabilities in the sendmail

and fingerd routines, causing widespread outages.

& The security and reliability
of FOSS-based systems are
currently topics of an often
heated debate &

According to one report, the Internet worm of 1988

impacted 6,000 out of 60,000 systems, or 10 percent

of the systems on the emerging Internet. Morris

discovered these vulnerabilities while analyzing the

source code for sendmail and finger. However, it

was the availability of the source code that enabled

the Internet community to respond quickly and

mitigate this threat. In their paper ‘‘An Analysis of

the Internet Virus of November 1988,’’
8
Mark Eichin

and Jon Rochlis remarked, ‘‘Source availability was

important. All of the sites that responded quickly

and made progress in truly understanding the virus

had the UNIX** source code.’’

Having the source code widely available is a multi-

edged sword. The hacker community can use the

code to analyze systems and locate vulnerabilities.

The developer community can maintain and im-

prove the code through analysis and can use

formalized testing methodologies to discover and

remedy software defects before they can be

exploited. The user community can also use the

source code in response to an attack to discover and

correct the vector through which the attacker has

exploited the system. After the flaw has been

discovered, the user community can respond rapidly

by patching the system, removing the vulnerability,

and then sharing the patch with the public. With a

closed system, users are completely dependent upon

the vendor’s ability to discover the vulnerability,

and then develop and distribute fixes.

A differentiator then between widely deployed FOSS

systems and their proprietary counterparts is the

value of source code in responding to security

threats. Having the source code available was

critical in assisting systems administrators to re-

spond to the Internet worm of 1988. Technical staffs

reviewed the source code of the affected systems

and were able to understand the vulnerability and

develop defenses against both the immediate threat

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BOULANGER 241

and future attacks. This advantage of having source

code available was outlined in the government-

funded research report ‘‘A Business Case Study of

& Widespread adoption of
the FOSS model would directly
threaten the revenue stream
of vendors of proprietary
software &

Open Source Software,’’ published in July of 2001 by

MITRE**.
9
This report was the result of a publicly

funded study to help program managers evaluate

open-source software and development method-

ologies, as well as their potential application within

the managers’ technical programs. The MITRE

report stated that in the FOSS community ‘‘popular

open-source products have access to extensive

expertise, and this enables the software to achieve a

high level of efficiency,’’ and that software patches,

or corrections, happen ‘‘potentially an order of

magnitude faster than those of proprietary soft-

ware.’’

Software defect levels

Software defects are a fact of life, and any software

package, whether FOSS or proprietary, is likely to

have a substantial number of flaws. A percentage of

these defects will directly impact the security of the

system. According to the Software Engineering

Institute, an experienced programmer produces

approximately one defect per 100 lines of code, or an

average defect rate of 1 percent.
10

If, during the

software development life cycle, 99 percent of those

defects are discovered and remedied, then approx-

imately 1000 software defects will remain in a

software package consisting of one million lines of

source code, a modest code base by current stand-

ards. For example, the Red Hat Linux** 7.1

distribution consists of approximately 30 million

lines of code (LOC), and Microsoft Windows** XP

contains approximately 40 million LOC. Even with

extensive testing and defect remediation, there will

still remain a very significant number of software

defects in these systems. Using the defect rate

statistics noted earlier, Windows XP and Red Hat

Linux would be estimated to have approximately

40,000 and 30,000 undiscovered defects respec-

tively. In addition, both proprietary and FOSS

systems are constantly evolving. As they progress

through the software life cycle, features are added to

the system and defects are discovered and remedied.

Because most software packages are in this constant

state of evolution, it is difficult to estimate the

number of software defects a particular system will

contain. When code is added to a system, there is

also the possibility that the developers will introduce

a new defect into the system. There are even

examples where a developer has produced modifi-

cations to correct one security problem but inad-

vertently introduced another. Software defects can

even occur due to problems having nothing to do

with changes in the source code. For example, there

have been instances where a defect in a development

tool has introduced a defect into a system build.

Software defects are an unavoidable problem that

can reduce the overall reliability of a system. When

the reliability of a system is reduced, the overall

security of the system is also reduced. Reliability

and security are inextricably intertwined. A highly

reliable system has fewer software defects and, in

general, is more secure than an unreliable system.

To use an analogy from the physical world, a

padlock built with an excellent locking mechanism

(security) but constructed with defective steel (a

defect) offers very little security. The same is true for

a lock using excellent construction materials (se-

curity), but having a defect in the locking mecha-

nism (reliability) that makes the lock vulnerable. A

classic example of the latter involved the published

demonstration that a particular high-security bicycle

lock could be quickly opened with an ordinary Bic**

pen.
11

Every software package release, whether FOSS or

proprietary, contains a number of defects. The

available data suggest, however, that when a

software flaw is discovered, the FOSS community

responds more rapidly than proprietary software

vendors. According to an article published by

e-Week Labs, FOSS organizations in general respond

to problems more quickly and openly, while

proprietary ‘‘software vendors instinctively cover

up, deny, and delay.’’
12

The FOSS organizations

produce small fixes that are available publicly

through mailing lists and Web sites. Users of the

affected software can download the update, apply

the patch, and rebuild the system. The patch itself is

in turn a segment of source code that is available for

inspection by the general public. In contrast,

BOULANGER IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005242

proprietary software vendors tend to wait and roll

out large cumulative releases known as service

packages. These service packages usually contain

only binary code, which is not open for public

scrutiny and can potentially introduce new prob-

lems into the system. The users of proprietary

software products must blindly trust the integrity

and competence of the software publisher; whereas,

FOSS users know that the patches they have

installed can be (and will be) publicly scrutinized.

VENDOR-NEUTRAL STUDIES
If the FOSS community is more responsive to

software defects, then it would be reasonable to

conclude that FOSS products should show higher

reliability statistics than their proprietary counter-

parts. Although each side of the FOSS issue has

offered anecdotal evidence supporting its respective

position, there are several vendor-neutral studies

that favor popular FOSS-developed systems.

In 1990, Professor Barton Miller from the Univer-

sity of Wisconsin developed the fuzz system, a

system which produced random data streams that

were then fed as input to programs from several

proprietary versions of the UNIX system.
6
Dr.

Miller discovered that 24–33 percent of the

programs tested failed when fed the fuzz-generated

data. Each of these failures can be directly

attributable to a software defect. A properly written

program should not fail when it receives unex-

pected or random data. In 1995, Dr. Miller revisited

this work and included in his test both Linux-

derived and other freely available GNU utilities.

(GNU is a recursive acronym for ‘‘GNU’s not

UNIX.’’) The new study tested over 80 utility

programs from nine different versions of UNIX. Of

these UNIX platforms, seven were from proprietary

vendors and two were from the FOSS community.

The major results of the study were published in

the paper ‘‘Fuzz Revisited: A Re-examination of the

Reliability of UNIX Utilities and Services.’’
13

Since

the original study, the proprietary systems had

improved, and their overall failure rate dropped

from 24–33 percent down to 18–23 percent. For the

FOSS systems, the failure rate for the Linux utilities

was second lowest at 9 percent failures, and the

failure rate for the GNU utilities was the lowest at 6

percent. The results of the study demonstrate that

popular FOSS implementations of UNIX utilities

can have significantly better resilience to unex-

pected input than their proprietary counterparts.

This in turn could indicate higher quality and

reliability for the FOSS utilities. This is not to say

& Hiding the source code for a
system does not provide any
additional security &

that all FOSS systems are more reliable than

proprietary systems. However, this experiment does

demonstrate that the quality of software developed

under the FOSS model can equal or exceed the

quality of commercially developed software.

Another study conducted in 1999 by Bloor Research,

an independent IT analysis and consultancy organi-

zation based in the United Kingdom, pitted Windows

NT** against GNU/Linux in a head-to-head com-

parison.
14

The test was conducted for one year and

rated each of the platforms according to nine criteria.

Overall, GNU/Linux was rated as superior to

Windows NT in seven of the nine categories. In

particular, in the OS (Operating System) Availability

category, GNU/Linux had a significantly better

reliability rating than Windows NT. During the year

of testing, the GNU/Linux system did not experience

a single outage that was attributable to software.

However, a hardware failure resulting from a hard

disk malfunction did cause an outage for the GNU/

Linux system that lasted four hours before service

was restored. The resulting availability figure for

GNU/Linux was thus 8756 hours out of 8760 hours,

or 99.95 percent uptime. During the same period of

time the Windows NT system suffered a total of 68

failures. Of the 68 failures, one failure was a hard

disk failure; twenty-six failures were attributed to

memory management faults; eight failures were

attributable to file system faults; and the remaining

failures were of unknown origin. The amount of lost

time due to these outages was reported as 65 hours,

resulting in an overall availability of the Window NT

system of 99.26 percent or 8695 hours out of a total

of 8760 hours. The results of this one-year study are

impressive and demonstrate that FOSS-developed

systems, at the very least, can compete well with

their proprietary counterparts, providing stable and

reliable server platforms.

Additional information comes from companies that

develop automated software-inspection services.

Some background will help explain the role of these

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BOULANGER 243

companies in the software industry. In large projects

the people responsible for maintaining a system are

often not the same people who originally developed

the system. Unless the maintainers are careful and

& Reliability and security are
inextricably intertwined &

fully understand the system, it becomes very easy to

make a mistake that can affect the overall quality of

the system code. One of the ways to increase the

reliability of a system is to review the source code for

defects and remedy them before the system is

released. Typically the inspection process is per-

formed through formal code reviews and evalua-

tions. This process is very labor-intensive and time-

consuming. Historically, as systems grew and it

became more expensive to perform formalized code

reviews, researchers developed ways to automate

this process and make code reviews less labor-

intensive than manual inspection. Several compa-

nies now offer automated software-inspection ser-

vices, allowing software publishers to outsource

their code reviews. One such company, Reasoning,

Inc., has been assisting organizations to improve the

quality of their systems through automated software

inspection for almost 20 years and is considered a

leader in this field.

In 2003, Reasoning conducted a study of the

implementation of the Internet protocol code in the

2.4.19 version of the Linux kernel and in five

proprietary operating systems.
15

The purpose of the

study was to use automated code inspection

techniques to compare the quality and defect rate

of each implementation of the TCP/IP (Trans-

mission Control Protocol/Internet Protocol) net-

working software. Reasoning discovered that the

defect rate for the Linux code was 0.1 reported

defects per 1000 lines of code (KLOC). The defect

rate for proprietary implementations was reported

to be 0.55 defects per KLOC. Reasoning concluded

that the FOSS implementation of TCP/IP had a

significantly lower defect density compared to the

implementations in the five proprietary operating

systems. The study also concluded that the overall

quality of the FOSS package rated in the top third

of all source-code projects that had been inspected

by Reasoning.

In July of 2003, Reasoning analyzed the popular

Apache Web server software package.
16

The Apache

Web server is a FOSS system developed and

maintained by the Apache Software Foundation, a

membership-based not-for-profit corporation.
5
The

Apache server is the dominant HTTP (Hypertext

Transfer Protocol) server package on the Internet

today, according to a recent survey by Netcraft.
17

This survey, conducted in June 2004, reported that of

the 51.6 million identifiable servers on the Internet at

that time, Apache had over 67 percent of the market,

followed by Microsoft with a 21 percent market

share. With so many organizations relying on FOSS

technology for their Internet presence, it would

obviously be valuable for IT managers to have a

vendor-neutral software-quality metric to assist in a

decision whether to deploy FOSS or proprietary

systems. Reasoning concluded in their study that the

defect density for the 2.1 release of the Apache

system was 0.53 defects per KLOC. To put that figure

into perspective, Reasoning compared the defect

density of the Apache system to the 200 other

projects Reasoning had analyzed at that time, both

FOSS and proprietary, involving a total of 33 million

analyzed lines of code. The top third of these 200

projects showed defect densities of less than 0.36

defects per KLOC; defect densities of the middle third

ranged from 0.36 to 0.71 defects per KLOC; the

bottom third had defect densities greater than 0.71

defects per KLOC. Given these statistics, the defect

rate for the Apache system falls somewhere in the

middle compared to the rest of the industry and

slightly above the average defect density Reasoning

has found for proprietary software (0.51 defects per

KLOC).

Reasoning then continued their study of FOSS

quality by inspecting the source code for the 4.0.16

version of MySQL**, the leading open-source data-

base system.
18

In this December 2003 study,

Reasoning examined 236,000 lines of MySQL source

code and detected 21 software defects in the system.

The study determined that the code quality of the

MySQL system was six times better than that of

comparable proprietary code, with a defect density

for the MySQL system of 0.09 defects per KLOC

compared to the average defect rate of 0.51 defects

per KLOC for proprietary code. Not incidentally, as a

result of this study the maintainers of the MySQL

package promptly corrected the problems Reasoning

had found and produced a maintenance release,

BOULANGER IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005244

Version 4.0.17, that was made available for down-

load from their distribution site.

These studies suggest that FOSS systems canmeet, or

even exceed, the quality of their proprietary coun-

terparts. Furthermore, the Reasoning studies only

inspected defect rates in source code. Their studies

did not include other aspects of software packages

such as usability, compatibility, features, and sup-

port costs, all important aspects that need to be

considered in the decision-making process when

deploying systems. The studies from Reasoning do

suggest that FOSS-developed systems offer viable

alternatives to proprietary systems in terms of

software quality and reliability.

COMPARISON OF DEVELOPMENT PROCESSES

The empirical evidence from these studies suggests

that popular FOSS-developed systems are, at the very

least, as secure and reliable as their proprietary

counterparts. Obviously, proprietary software is

expensive to develop and support. How can a

disparate loose-knit group of developers produce

software of comparable quality for free? A look into

how open-source software is produced provides

some insight into the success of FOSS projects.

Most traditional proprietary software projects use a

variant of the waterfall model
19

in their software

development process. The waterfall model has five

well-defined phases:

1. The requirements phase, in which the problem

and the requirements of the proposed system are

defined.

2. The system and software design phase, in which a

technical solution is applied to the problem.

3. The implementation and unit-testing phase, in

which the components of the technical solution

are developed and individually tested.

4. The integration and system-testing phase, in

which all of the individual components are

aggregated and tested as a whole unit and

compared to the defined requirements.

5. The support andmaintenance phase, which begins

when the tested system, having met the defined

requirements, is deployed and maintained.

The entire process is iterative, in that at any phase in

the process the project may be forced to return to an

earlier phase as new problems and requirements are

defined. This is the developer feedback loop.

& FOSS systems can meet, or
even exceed, the quality of
their proprietary counterparts &

Problems that are detected downstream in the testing

and maintenance phases are communicated back to

the programmers. The programmers research a

solution to the problem, develop a correction, and

resubmit the component for testing and integration.

FOSS development is often less structured, but still

shares features of traditional development. The main

difference is the addition of a consumer feedback

loop, wherein the users of the systems are encour-

aged to directly participate as part of the develop-

ment community. In a proprietary environment,

consumers may report software defects and offer

suggestions, but they are unable to directly partic-

ipate in the development process because they lack

access to the system source code. In FOSS develop-

ment, every consumer has access to the source code

and can thus directly participate in the continuous

improvement of the software package. In reality only

a small percentage of the user base will have the

desire or expertise to actively participate in the

project. However, when the user base grows large

enough, that small percentage of users can swell into

a substantial number of contributors.

The development of the Apache Web server dem-

onstrates this process.
5
The Apache system emerged

in 1995 and was derived from a set of patches that

were applied to the then-popular NCSA (National

Center for Supercomputing Applications) Web serv-

er source code (leading to the name ‘‘Apache’’ server,

a play on the words ‘‘a patchy’’ server). These

patches were contributed by frustrated users of the

then-largely-unsupported NCSA server who required

additional functionality. These users had access to

the server source code and were able to modify the

system to meet their requirements. They then

submitted their patches to a group of volunteers who

maintained the system. Eventually the group aban-

doned the initial set of patches and completely

redesigned the system. In December 1995, Apache

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BOULANGER 245

Version 1.0 was formally released and, as noted

previously, quickly became the dominant Web

server on the Internet. As the Apache system grew in

& FOSS-developed systems
have a distinct advantage in
their ability to respond to
security threats &

popularity, more organizations became dependent

on this server technology to support their missions,

and as a result, more people contributed to the

project. The group of volunteers who reviewed

submissions and maintained the Apache source code

continued to grow in size, eventually forming the

Apache Group in 1995, and then the Apache

Software Foundation in 1999.

The Apache Software Foundation currently consists

of 22 core developers who contribute to the devel-

opment and maintenance of the Apache system.

Users of the system submit patches, bug reports, and

suggestions for improvement to this core team of

developers. The Apache development community

communicates through Internet mailing lists and

Web sites. Any piece of software that is submitted is

peer-reviewed and extensively tested before being

included in the source code repository. Every Apache

source code repository contains status information

on changes and plans for improvements, as well as

references to outstanding issues, so that all devel-

opers can stay informed. This collaborative effort is

synchronized through status information and iden-

tification of the developers who are responsible for

specific parts of the project. The actual software

development and module testing are performed on

the developer’s machine. When a module has been

tested and is ready for release, the developer posts

the software patches to the developer mailing list.

Subscribers to the developer list then review the

proposed modifications and test them against their

own systems. Only when the proposed changes have

been peer-reviewed and tested are they incorporated

into the Apache source repository. If there are

problems with the proposed code changes, such as

incompatibility issues or software defects, the

developer community has the opportunity to detect

and remedy these defects before they can impact the

rest of the system. This is the developer feedback

loop of collaborative software development: people

responsible for developing the system reviewing one

another’s work.

In the consumer feedback loop, users of the

published system uncover defects and submit bug

reports and suggestions for improvement to the core

developers. Because the source code is publicly

available, users are able to locate defects, submit

suspect code fragments, and contribute patches to

correct the problem. Once a patch is submitted from

the consumer loop, it undergoes rigorous peer

review and testing in the developer loop before

making its way into the system source code

repository. This is a remarkably efficient system for

distributing the burden of code review across both

the developer and user domains. Every user can

potentially become a developer and contribute to the

overall success of the software package. One caveat

is that this system may only work well with popular

FOSS projects. A small orphaned FOSS project could

lack the critical mass of resources that a larger, more

popular project enjoys with its extensive user base.

However, for large FOSS projects this system appears

to work very well. There are many examples of

FOSS-developed systems that enjoy massive user

bases who continually work to improve the reli-

ability and functionality of the system. Once a critical

mass of developers and users emerges, the open-

source development project can achieve the same

reliability and security standards as proprietary

systems.

CONCLUSIONS

Which is more secure: closed or open-source

software? Unfortunately the answer is not that clear.

In general, both FOSS and proprietary systems are

roughly equivalent in terms of security and reli-

ability. Neither is inherently more secure or reliable

than the other. Analytical arguments made in favor

of either approach are not conclusive. Empirical

studies have suggested that FOSS can potentially

outperform proprietary systems. Nonetheless, any

system that was not developed to be secure

invariably will not be. There are certainly proprietary

systems deployed that are more secure than their

FOSS counterparts (e.g., S/COMP or GEMSOS**

versus Gnu/Linux), just as there are FOSS-deployed

systems that appear to be more secure than their

proprietary equivalent (e.g., Apache versus Micro-

soft IIS).
20

One problem with attempting to quantify

the security of proprietary and FOSS systems is the

fact that verifiably trustworthy systems are very

BOULANGER IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005246

difficult and expensive to develop and certify. To

date there are only seven operating systems that

have achieved a Common Criteria Certification

evaluation assurance level (CC EAL) rating of 4

(meaning ‘‘methodically designed, tested and re-

viewed’’).
21

The highest rated FOSS-developed op-

erating system is the SUSE** Enterprise Server V8

distribution of Gnu/Linux with a rating of CC EAL 3þ
(meaning ‘‘methodically tested and checked’’). This

does not necessarily mean that FOSS operating

systems with lower ratings are less reliable than

proprietary systems. This can also mean that the

funding required for formal certification has not been

made available. Because the CC certification is

expensive to obtain, only larger organizations can

afford to sponsor a CC evaluation, especially at the

higher levels of certification.

Another problem is that every software system

mentioned in this article, both open-source and

proprietary, requires frequent patching to remediate

defects. Any system that requires frequent patching is

inherently insecure. Using patch counts as a metric

for security is misleading. A system that requires a

security patch every six months is not twice as secure

as a system that requires patching every three

months. They are both insecure. To use another

analogy from the physical world, a car that explodes

once every 1000 miles cannot be considered twice as

safe as a car that explodes once every 500miles. As in

the software example, both vehicles should be

considered unsafe. Another issue with using pub-

lished vulnerabilities as a security metric is that

software systems are under constant change. When-

ever old software defects are discovered and rem-

edied, new software defects may be introduced into

the system. Because systems are constantly evolving,

there is no easy way to determine the absolute

number of defects in a system at a given instant.

However, FOSS-developed systems have a distinct

advantage in their ability to respond to security

threats. As noted previously, the organizations that

responded most successfully to the Internet Worm of

1988 had access to the UNIX source code. Having the

source code enabled technical personnel to under-

stand the immediate threat and then share that

information with other affected organizations.

It is this sharing of information that is the key strength

behind the FOSS movement. FOSS developers have

the ability to analyze how previous systems were

constructed and ‘‘stand on the shoulders of giants.’’

As in the scientific research community, this free

exchange of information promotes innovation and

advances the field. The FOSS movement can use this

shared information to encourage participation from a

global talent pool. When the number of users of a

FOSS project increases, so too will the number of

developers who can potentially participate in the

project. Once a critical mass of users has formed, the

momentum from this combined effort will yield

quality systems thatmeet and exceed the security and

reliability metrics of their proprietary counterparts—

at a much reduced cost.

The FOSS movement is gaining traction. What was

once an idealized concept espoused by hackers,

hobbyists, and academics is now formalized and

organized and is the dominant technology behind

the Internet. As FOSS-based technologies continue to

gain market share, proprietary software publishers

will be forced to innovate to remain competitive and

survive. It will be interesting to watch and see where

FOSS technology takes us in the future. It will be

even more interesting to participate.

**Trademark or registered trademark of Aesec, Linus Tor-
valds, Microsoft Corporation, MySQL AB Company, Netscape
Communications Group, Red Hat, Inc., Société BIC, SUSE
LINUX AG, The MITRE Corporation, The Apache Software
Foundation, or The Open Group.

CITED REFERENCES
1. See, for example, Securities and Exchange Commission

Form 10-Q Quarterly Report For the Quarterly Period Ended
March 31, 2004, Microsoft Corporation (May 3, 2004), p.
35, http://www.microsoft.com/msft/
download/FY04/MSFT_3Q2004_10Q.doc.

2. Opening the Open Source Debate: AWhite Paper, Alexis de
Tocqueville Institution (June 2002), http://www.adti.
net/opensource.pdf.

3. The term ‘‘hacker’’ is used here to mean ‘‘a person who
illegally gains access to and sometimes tampers with
information in a computer system,’’ as defined in
Merriam-Webster’s Collegiate Dictionary, Eleventh Edi-
tion, Merriam-Webster, Inc., Springfield, MA (2003), p.
559. Others prefer to use the term ‘‘cracker’’ to describe
such a person.

4. CERTt Coordination Center, Software Engineering Insti-
tute, http://www.cert.org/.

5. Apache HTTP Server Project, The Apache Software
Foundation, http://httpd.apache.org/ABOUT_APACHE.
html.

6. B. Miller, L. Fredriksen, and B. So, ‘‘An Empirical Study of
the Reliability of UNIX Utilities,’’ Communications of the
ACM 33, No. 12, 32–44 (1990).

7. K. Hafner and J. Markoff, Cyberpunk: Outlaws and
Hackers on the Computer Frontier, Simon & Schuster, Inc.,
New York (July 1992).

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BOULANGER 247

8. M. Eichin and J. Rochlis, ‘‘With Microscope and Tweez-
ers: An Analysis of the Internet Virus of November 1988,’’
Proceedings of the 1989 IEEE Symposium on Security and
Privacy, Oakland, CA, May 1–3, 1989, IEEE, New York
(1989), pp. 326–343.

9. C. A. Kenwood, A Business Case Study of Open Source
Software, MITRE Corporation (July 2001), http://
www.mitre.org/work/tech_papers/tech_papers_01/
kenwood_software/kenwood_software.pdf.

10. W. S. Humphrey, The Quality Attitude, Software Engi-
neering Institute (2004), http://www.sei.cmu.edu/
news-at-sei/columns/watts_new/watts-new.htm.

11. J. S. Clark, ‘‘Kryptonite Bic-picking,’’ New Cyclist (October
1992).

12. J. Papoza, eWeek Labs: Open Source Quicker at Fixing
Flaws, Ziff-Davis Media, Inc. (September 30, 2002),
http://www.eweek.com/article2/0,3959,562226,00.asp.

13. B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A.
Natarajan, and J. Steidl, Fuzz Revisited: A Re-examination
of the Reliability of UNIX Utilities and Services, Technical
Report, Computer Science Department, University of
Wisconsin (November 1995), ftp://ftp.cs.wisc.edu/
paradyn/technical_papers/fuzz-revisited.pdf.

14. Linux versus Windows NT: The Verdict, Bloor Research
(October 1999), http://www.bloor-research.com/
research_library.php?productid=245.

15. Linux TCP/IP Inspection Report, Reasoning, Inc. (2003),
http://www.reasoning.com/downloads.html.

16. Apache Open Source Inspection Report, Reasoning, Inc.
(2003), http://www.reasoning.com/downloads.html.

17. June 2004 Web Server Survey, Netcraft, Ltd. (June 6,
2004), http://news.netcraft.com/archives/2004/06/06/
june_2004_web_server_survey.html.

18. How Open Source and Commercial Software Compare:
MySQL White Paper, Reasoning, Inc. (2003), http://
www.reasoning.com/downloads.html.

19. W. W. Royce, ‘‘Managing the Development of Large
Software Systems: Concepts and Techniques,’’ 1970
Western Electronic Show and Convention (WESCON)
Technical Papers 14, Los Angeles, CA, August 25–28,
1970, IEEE, New York (1970), pp. 1–9; reprinted in
Proceedings of the Ninth International Conference on
Software Engineering (ICSE’87), Monterey, CA, March 30–
April 2, 1987, IEEE Computer Society Press, Los Alamitos,
CA (1987), pp. 328–338.

20. D. A. Wheeler, Why Open Source Software/Free Software
(OSS/FS)? Look at the Numbers! (November 7, 2004),
http://www.dwheeler.com/oss_fs_why.html.

21. Consumers—List of Evaluated Products, Common Cri-
teria Project, http://www.commoncriteriaportal.org/
public/consumer/index.php?menu=4.

Accepted for publication October 27, 2004.

Alan Boulanger
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (boulange@us.ibm.com).
Alan Boulanger joined IBM in October 1995 as a member of the
Thomas J. Watson Global Security Analysis Laboratory. His
research interests include network security, intrusion detection
and remediation, applied penetration testing techniques, data
forensics, telephony-related security, and emerging threat

analysis. Since joining IBM, Mr. Boulanger has filed several
information-security-related patents and has provided
security-related technical assistance to the business
community and to federal government agencies. He is an active
member of both the New York and New England Electronic
Crimes Task Forces. &

BOULANGER IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005248

Published online April 12, 2005.

