A. Boulanger

Open-source versus proprietary
software: Is one more reliable
and secure than the other?

One of the most powerful movements in the information technology community
today is the widespread adoption of free and open-source software (FOSS). What was
once an idealistic fringe movement conceived and formalized by MacArthur award
laureate Richard Stallman has now become one of the most powerful influences in the
world of information technology. As FOSS systems grow in popularity, questions of the
reliability and security of these systems emerge, especially in comparison with
proprietary systems. This paper surveys the arguments presented by proponents of

each type of software in published reports and discusses the deployment and
reliability figures for both FOSS and proprietary systems as well.

The explosive increase in the number of deployed
free and open-source software (FOSS) systems has
changed the world of information technology. When
the first FOSS systems were developed, many of the
users of these early systems were themselves
technologists. Moreover, the distribution and use of
such FOSS systems was initially limited to academ-
ia, research laboratories, and technical user groups.
Today, however, FOSS systems are being developed
and designed for mass consumption. Most of the
businesses on the Internet use FOSS-developed
systems, and retail stores such as Wal-Mart are
offering to the general public steeply discounted
computers that take advantage of FOSS-developed
software. As the group of people and organizations
that depends on FOSS technologies continues to
grow, it becomes increasingly important that FOSS
systems be secure and reliable.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

Many FOSS systems were originally developed by a
loose collaboration of volunteer programmers. The
completed systems were then released to the public,
and anyone could acquire and use these systems
without paying a licensing fee. Free support for these
systems was also provided by the volunteer com-
munity in the form of mailing lists and Web sites.
Currently, however, many FOSS projects are pro-
fessional efforts in which development is performed
by a team of paid programmers, and the system is
supported either without charge or through fees and
subscriptions. In contrast, traditional proprietary
systems are developed by a team of designers,

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

BOULANGER

239

project managers, programmers, technical writers,
and quality assurance engineers. The systems they
produce undergo design reviews, development
progress reports, and formal quality assurance test-
ing. Once completed, these systems are packaged
commodities that are sold or licensed to the public
for a fee. Support for the software product is usually
provided by the developer of the system.

Which model is more reliable in terms of availability
and security? Many papers discussing these issues
have been published by proponents of each type of
software. This paper examines the arguments
presented in these published reports as well as the
deployment and reliability figures for both open and
proprietary systems.

SECURITY AND RELIABILITY CONSIDERATIONS
FOR FOSS AND PROPRIETARY SYSTEMS

The security and reliability of FOSS-based systems
are currently topics of an often heated debate.
Proprietary vendors are funding, producing, and
publishing reports supporting the position that
closed-source proprietary systems offer superior
security relative to their FOSS counterparts. For
every report that is published claiming the superior
security of proprietary systems, the FOSS community
responds with a report refuting these claims.

Perhaps a significant reason for this heated debate is
the fact that widespread adoption of the FOSS model
would directly threaten the revenue stream of
vendors of proprietary software. In several recent
10-Q quarterly filings with the Securities and
Exchange Commission, Microsoft, one of the
world’s largest software publishers, has stated that
the popularization and adoption of FOSS systems
pose a significant challenge to its business model." It
is not surprising then that proprietary software
vendors are on the offensive, attempting to discredit
FOSS-developed systems.

Arguments about the relative security and reliability
of FOSS and proprietary software typically focus on
two key issues: availability of source code and
software defect levels. We discuss these issues in the
following sections.

Availability of source code

In June 2002, the white paper “Opening the Open
Source Debate™ was released by the Alexis de
Tocqueville Institution, an organization funded in

240 BOULANGER

part by Microsoft. Among its most controversial
findings was that “Open source GPL [General Public
License] use by government agencies could easily
become a national security concern. Government
use of software in the public domain is exceptionally
risky.” The basis for this assertion is the assumption
that publicly available source code invites “hack-
ers” to examine the code in order first to search for
exploitable vulnerabilities and then to develop and
deploy Trojan horses and other types of malicious
software. Therefore, the study concludes that the
availability of source code is a significant security
threat to government organizations using FOSS.

There are several problems with this assertion. It is
inferred that closed-source proprietary systems are
automatically more secure than their FOSS coun-
terparts, a “security through obscurity” approach. If
this assertion were true, then the number and rate of
published vulnerability reports for closed-source
systems should be significantly lower than those of
their FOSS equivalents.

However, the available data does not support this
assertion. In fact, many FOSS systems have
substantially lower rates of published vulnerabil-
ities than their closed-source counterparts. For
example, a recent 1report4 showed that Apache**, a
FOSS Web server whose history and developrnent5
will be discussed in more detail later in this paper,
suffered from substantially fewer published vul-
nerabilities than Microsoft’s IIS (Internet Informa-
tion Server) and marginally more vulnerabilities
than Netscape** Enterprise Server. If the de
Tocqueville Institution’s assertion were true, then
Apache should have had significantly more pub-
lished vulnerabilities than the closed-source Web
servers.

Hiding the source code for a system does not
provide any additional security. People searching for
vulnerabilities do not require source code to
discover software defects. For example, a common
way to locate a software defect is to send a program
unexpected and unusual data and then monitor how
the system responds.6 If the system fails or behaves
erratically as a result of the input, this might indicate
a flaw in the system that would warrant further
investigation.

With the prevalence of sophisticated software
monitoring, debugging, and disassembly tools,

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

much of the source code can be derived from the
binary version of the executable program. Anyone
interested in obtaining the source code would
simply have to apply one of many widely available
tools to the program. The output from these
programs, while not perfect, would deliver sufficient
information to make it fairly easy to understand the
internal working of the system.

Moreover, source code for many deployed systems
has often been inadvertently leaked. Many software
producers outsource code development or exchange
source code with other organizations for a variety of
reasons. Anyone with access to the systems in-
volved, authorized or not, can obtain a copy of the
source code and distribute it. It is a very common
practice in the hacker community to traffic in source
code packages. In the course of investigating
systems intrusions, our organization has discovered
copies of the source code for nearly all of the major
operating systems on hacker systems. By examining
the source code, hackers hope to locate new
vulnerabilities and produce what are known as zero-
day exploits, attacks against vulnerabilities which
the software vendor has not yet found. Zero-day
exploits are the most prized exploits in the hacker
community because the targeted systems are de-
fenseless. On the surface, the possibility of such
exploits appears to support the most common
rationale for keeping source code secret, namely
preventing miscreants from using the code to
discover software defects and attack vulnerable
systems. However, the real problem may not be that
the source code is being used to discover vulner-
abilities. Rather, it may be that only two groups of
people have access to the source code, the small
group of developers, who are tasked with develop-
ing and maintaining the system, and the potentially
larger community of hackers, who are motivated to
discover and exploit vulnerabilities. When the
source code is widely available to everyone, as is the
case with FOSS systems, there are more opportu-
nities for people outside of the hacker community to
examine and correct potential software defects
before they can be exploited.

There are, of course, examples of FOSS systems that
have been notoriously insecure. Software defects in
sendmail, a FOSS mail transfer agent, have been a
favorite target of attack for years. In November of
1988, the first Internet worm was released by
Cornell graduate student Robert Morris.” The worm

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

quickly spread throughout the emerging Internet, in
part by exploiting vulnerabilities in the sendmail
and fingerd routines, causing widespread outages.

m The security and reliability
of FOSS-based systems are
currently topics of an often

heated debate m

According to one report, the Internet worm of 1988
impacted 6,000 out of 60,000 systems, or 10 percent
of the systems on the emerging Internet. Morris
discovered these vulnerabilities while analyzing the
source code for sendmail and finger. However, it
was the availability of the source code that enabled
the Internet community to respond quickly and
mitigate this threat. In their paper “An Analysis of
the Internet Virus of November 1988,”° Mark Eichin
and Jon Rochlis remarked, “Source availability was
important. All of the sites that responded quickly
and made progress in truly understanding the virus
had the UNIX** source code.”

Having the source code widely available is a multi-
edged sword. The hacker community can use the
code to analyze systems and locate vulnerabilities.
The developer community can maintain and im-
prove the code through analysis and can use
formalized testing methodologies to discover and
remedy software defects before they can be
exploited. The user community can also use the
source code in response to an attack to discover and
correct the vector through which the attacker has
exploited the system. After the flaw has been
discovered, the user community can respond rapidly
by patching the system, removing the vulnerability,
and then sharing the patch with the public. With a
closed system, users are completely dependent upon
the vendor’s ability to discover the vulnerability,
and then develop and distribute fixes.

A differentiator then between widely deployed FOSS
systems and their proprietary counterparts is the
value of source code in responding to security
threats. Having the source code available was
critical in assisting systems administrators to re-
spond to the Internet worm of 1988. Technical staffs
reviewed the source code of the affected systems
and were able to understand the vulnerability and
develop defenses against both the immediate threat

BOULANGER

241

and future attacks. This advantage of having source
code available was outlined in the government-
funded research report “A Business Case Study of

m Widespread adoption of

the FOSS model would directly
threaten the revenue stream
of vendors of proprietary
software m

Open Source Software,” published in July of 2001 by
MITRE**.” This report was the result of a publicly
funded study to help program managers evaluate
open-source software and development method-
ologies, as well as their potential application within
the managers’ technical programs. The MITRE
report stated that in the FOSS community “popular
open-source products have access to extensive
expertise, and this enables the software to achieve a
high level of efficiency,” and that software patches,
or corrections, happen “potentially an order of
magnitude faster than those of proprietary soft-
ware.”

Software defect levels

Software defects are a fact of life, and any software
package, whether FOSS or proprietary, is likely to
have a substantial number of flaws. A percentage of
these defects will directly impact the security of the
system. According to the Software Engineering
Institute, an experienced programmer produces
approximately one defect per 100 lines of code, or an
average defect rate of 1 percent.10 If, during the
software development life cycle, 99 percent of those
defects are discovered and remedied, then approx-
imately 1000 software defects will remain in a
software package consisting of one million lines of
source code, a modest code base by current stand-
ards. For example, the Red Hat Linux** 7.1
distribution consists of approximately 30 million
lines of code (LOC), and Microsoft Windows** XP
contains approximately 40 million LOC. Even with
extensive testing and defect remediation, there will
still remain a very significant number of software
defects in these systems. Using the defect rate
statistics noted earlier, Windows XP and Red Hat
Linux would be estimated to have approximately
40,000 and 30,000 undiscovered defects respec-
tively. In addition, both proprietary and FOSS

242 BOULANGER

systems are constantly evolving. As they progress
through the software life cycle, features are added to
the system and defects are discovered and remedied.
Because most software packages are in this constant
state of evolution, it is difficult to estimate the
number of software defects a particular system will
contain. When code is added to a system, there is
also the possibility that the developers will introduce
a new defect into the system. There are even
examples where a developer has produced modifi-
cations to correct one security problem but inad-
vertently introduced another. Software defects can
even occur due to problems having nothing to do
with changes in the source code. For example, there
have been instances where a defect in a development
tool has introduced a defect into a system build.

Software defects are an unavoidable problem that
can reduce the overall reliability of a system. When
the reliability of a system is reduced, the overall
security of the system is also reduced. Reliability
and security are inextricably intertwined. A highly
reliable system has fewer software defects and, in
general, is more secure than an unreliable system.
To use an analogy from the physical world, a
padlock built with an excellent locking mechanism
(security) but constructed with defective steel (a
defect) offers very little security. The same is true for
a lock using excellent construction materials (se-
curity), but having a defect in the locking mecha-
nism (reliability) that makes the lock vulnerable. A
classic example of the latter involved the published
demonstration that a particular high-security bicycle
lock 1clould be quickly opened with an ordinary Bic**
pen.

Every software package release, whether FOSS or
proprietary, contains a number of defects. The
available data suggest, however, that when a
software flaw is discovered, the FOSS community
responds more rapidly than proprietary software
vendors. According to an article published by
e-Week Labs, FOSS organizations in general respond
to problems more quickly and openly, while
proprietary “software vendors instinctively cover
up, deny, and delay.”12 The FOSS organizations
produce small fixes that are available publicly
through mailing lists and Web sites. Users of the
affected software can download the update, apply
the patch, and rebuild the system. The patch itself is
in turn a segment of source code that is available for
inspection by the general public. In contrast,

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

proprietary software vendors tend to wait and roll
out large cumulative releases known as service
packages. These service packages usually contain
only binary code, which is not open for public
scrutiny and can potentially introduce new prob-
lems into the system. The users of proprietary
software products must blindly trust the integrity
and competence of the software publisher; whereas,
FOSS users know that the patches they have
installed can be (and will be) publicly scrutinized.

VENDOR-NEUTRAL STUDIES

If the FOSS community is more responsive to
software defects, then it would be reasonable to
conclude that FOSS products should show higher
reliability statistics than their proprietary counter-
parts. Although each side of the FOSS issue has
offered anecdotal evidence supporting its respective
position, there are several vendor-neutral studies
that favor popular FOSS-developed systems.

In 1990, Professor Barton Miller from the Univer-
sity of Wisconsin developed the fuzz system, a
system which produced random data streams that
were then fed as input to programs from several
proprietary versions of the UNIX systern.6 Dr.
Miller discovered that 24-33 percent of the
programs tested failed when fed the fuzz-generated
data. Each of these failures can be directly
attributable to a software defect. A properly written
program should not fail when it receives unex-
pected or random data. In 1995, Dr. Miller revisited
this work and included in his test both Linux-
derived and other freely available GNU utilities.
(GNU is a recursive acronym for “GNU’s not
UNIX.”) The new study tested over 80 utility
programs from nine different versions of UNIX. Of
these UNIX platforms, seven were from proprietary
vendors and two were from the FOSS community.
The major results of the study were published in
the paper “Fuzz Revisited: A Re-examination of the
Reliability of UNIX Utilities and Services.”"” Since
the original study, the proprietary systems had
improved, and their overall failure rate dropped
from 24-33 percent down to 18-23 percent. For the
FOSS systems, the failure rate for the Linux utilities
was second lowest at 9 percent failures, and the
failure rate for the GNU utilities was the lowest at 6
percent. The results of the study demonstrate that
popular FOSS implementations of UNIX utilities
can have significantly better resilience to unex-
pected input than their proprietary counterparts.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

This in turn could indicate higher quality and
reliability for the FOSS utilities. This is not to say

m Hiding the source code for a
system does not provide any
additional security m

that all FOSS systems are more reliable than
proprietary systems. However, this experiment does
demonstrate that the quality of software developed
under the FOSS model can equal or exceed the
quality of commercially developed software.

Another study conducted in 1999 by Bloor Research,
an independent IT analysis and consultancy organi-
zation based in the United Kingdom, pitted Windows
NT** against GNU/Linux in a head-to-head com-
parison.14 The test was conducted for one year and
rated each of the platforms according to nine criteria.
Overall, GNU/Linux was rated as superior to
Windows NT in seven of the nine categories. In
particular, in the OS (Operating System) Availability
category, GNU/Linux had a significantly better
reliability rating than Windows NT. During the year
of testing, the GNU/Linux system did not experience
a single outage that was attributable to software.
However, a hardware failure resulting from a hard
disk malfunction did cause an outage for the GNU/
Linux system that lasted four hours before service
was restored. The resulting availability figure for
GNU/Linux was thus 8756 hours out of 8760 hours,
or 99.95 percent uptime. During the same period of
time the Windows NT system suffered a total of 68
failures. Of the 68 failures, one failure was a hard
disk failure; twenty-six failures were attributed to
memory management faults; eight failures were
attributable to file system faults; and the remaining
failures were of unknown origin. The amount of lost
time due to these outages was reported as 65 hours,
resulting in an overall availability of the Window NT
system of 99.26 percent or 8695 hours out of a total
of 8760 hours. The results of this one-year study are
impressive and demonstrate that FOSS-developed
systems, at the very least, can compete well with
their proprietary counterparts, providing stable and
reliable server platforms.

Additional information comes from companies that
develop automated software-inspection services.
Some background will help explain the role of these

BOULANGER 243

companies in the software industry. In large projects
the people responsible for maintaining a system are
often not the same people who originally developed
the system. Unless the maintainers are careful and

m Reliability and security are
inextricably intertwined m

fully understand the system, it becomes very easy to
make a mistake that can affect the overall quality of
the system code. One of the ways to increase the
reliability of a system is to review the source code for
defects and remedy them before the system is
released. Typically the inspection process is per-
formed through formal code reviews and evalua-
tions. This process is very labor-intensive and time-
consuming. Historically, as systems grew and it
became more expensive to perform formalized code
reviews, researchers developed ways to automate
this process and make code reviews less labor-
intensive than manual inspection. Several compa-
nies now offer automated software-inspection ser-
vices, allowing software publishers to outsource
their code reviews. One such company, Reasoning,
Inc., has been assisting organizations to improve the
quality of their systems through automated software
inspection for almost 20 years and is considered a
leader in this field.

In 2003, Reasoning conducted a study of the
implementation of the Internet protocol code in the
2.4.19 version of the Linux kernel and in five
proprietary operating systems.15 The purpose of the
study was to use automated code inspection
techniques to compare the quality and defect rate
of each implementation of the TCP/IP (Trans-
mission Control Protocol/Internet Protocol) net-
working software. Reasoning discovered that the
defect rate for the Linux code was 0.1 reported
defects per 1000 lines of code (KLOC). The defect
rate for proprietary implementations was reported
to be 0.55 defects per KLOC. Reasoning concluded
that the FOSS implementation of TCP/IP had a
significantly lower defect density compared to the
implementations in the five proprietary operating
systems. The study also concluded that the overall
quality of the FOSS package rated in the top third
of all source-code projects that had been inspected
by Reasoning.

244 BOULANGER

In July of 2003, Reasoning analyzed the popular
Apache Web server software package.16 The Apache
Web server is a FOSS system developed and
maintained by the Apache Software Foundation, a
membership-based not-for-profit corporation.S The
Apache server is the dominant HTTP (Hypertext
Transfer Protocol) server package on the Internet
today, according to a recent survey by Netcraft."”
This survey, conducted in June 2004, reported that of
the 51.6 million identifiable servers on the Internet at
that time, Apache had over 67 percent of the market,
followed by Microsoft with a 21 percent market
share. With so many organizations relying on FOSS
technology for their Internet presence, it would
obviously be valuable for IT managers to have a
vendor-neutral software-quality metric to assist in a
decision whether to deploy FOSS or proprietary
systems. Reasoning concluded in their study that the
defect density for the 2.1 release of the Apache
system was 0.53 defects per KLOC. To put that figure
into perspective, Reasoning compared the defect
density of the Apache system to the 200 other
projects Reasoning had analyzed at that time, both
FOSS and proprietary, involving a total of 33 million
analyzed lines of code. The top third of these 200
projects showed defect densities of less than 0.36
defects per KLOC; defect densities of the middle third
ranged from 0.36 to 0.71 defects per KLOC; the
bottom third had defect densities greater than 0.71
defects per KLOC. Given these statistics, the defect
rate for the Apache system falls somewhere in the
middle compared to the rest of the industry and
slightly above the average defect density Reasoning
has found for proprietary software (0.51 defects per
KLOQ).

Reasoning then continued their study of FOSS
quality by inspecting the source code for the 4.0.16
version of MySQL**, the leading open-source data-
base system.18 In this December 2003 study,
Reasoning examined 236,000 lines of MySQL source
code and detected 21 software defects in the system.
The study determined that the code quality of the
MySQL system was six times better than that of
comparable proprietary code, with a defect density
for the MySQL system of 0.09 defects per KLOC
compared to the average defect rate of 0.51 defects
per KLOC for proprietary code. Not incidentally, as a
result of this study the maintainers of the MySQL
package promptly corrected the problems Reasoning
had found and produced a maintenance release,

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

Version 4.0.17, that was made available for down-
load from their distribution site.

These studies suggest that FOSS systems can meet, or
even exceed, the quality of their proprietary coun-
terparts. Furthermore, the Reasoning studies only
inspected defect rates in source code. Their studies
did not include other aspects of software packages
such as usability, compatibility, features, and sup-
port costs, all important aspects that need to be
considered in the decision-making process when
deploying systems. The studies from Reasoning do
suggest that FOSS-developed systems offer viable
alternatives to proprietary systems in terms of
software quality and reliability.

COMPARISON OF DEVELOPMENT PROCESSES
The empirical evidence from these studies suggests
that popular FOSS-developed systems are, at the very
least, as secure and reliable as their proprietary
counterparts. Obviously, proprietary software is
expensive to develop and support. How can a
disparate loose-knit group of developers produce
software of comparable quality for free? A look into
how open-source software is produced provides
some insight into the success of FOSS projects.

Most traditional proprietary software projects use a
variant of the waterfall model' in their software
development process. The waterfall model has five
well-defined phases:

1. The requirements phase, in which the problem
and the requirements of the proposed system are
defined.

2. The system and software design phase, in which a
technical solution is applied to the problem.

3. The implementation and unit-testing phase, in
which the components of the technical solution
are developed and individually tested.

4. The integration and system-testing phase, in
which all of the individual components are
aggregated and tested as a whole unit and
compared to the defined requirements.

5. The support and maintenance phase, which begins

when the tested system, having met the defined
requirements, is deployed and maintained.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

The entire process is iterative, in that at any phase in
the process the project may be forced to return to an
earlier phase as new problems and requirements are
defined. This is the developer feedback loop.

m FOSS systems can meet, or
even exceed, the quality of
their proprietary counterparts m

Problems that are detected downstream in the testing
and maintenance phases are communicated back to
the programmers. The programmers research a
solution to the problem, develop a correction, and
resubmit the component for testing and integration.

FOSS development is often less structured, but still
shares features of traditional development. The main
difference is the addition of a consumer feedback
loop, wherein the users of the systems are encour-
aged to directly participate as part of the develop-
ment community. In a proprietary environment,
consumers may report software defects and offer
suggestions, but they are unable to directly partic-
ipate in the development process because they lack
access to the system source code. In FOSS develop-
ment, every consumer has access to the source code
and can thus directly participate in the continuous
improvement of the software package. In reality only
a small percentage of the user base will have the
desire or expertise to actively participate in the
project. However, when the user base grows large
enough, that small percentage of users can swell into
a substantial number of contributors.

The development of the Apache Web server dem-
onstrates this process.5 The Apache system emerged
in 1995 and was derived from a set of patches that
were applied to the then-popular NCSA (National
Center for Supercomputing Applications) Web serv-
er source code (leading to the name “Apache” server,
a play on the words “a patchy” server). These
patches were contributed by frustrated users of the
then-largely-unsupported NCSA server who required
additional functionality. These users had access to
the server source code and were able to modify the
system to meet their requirements. They then
submitted their patches to a group of volunteers who
maintained the system. Eventually the group aban-
doned the initial set of patches and completely
redesigned the system. In December 1995, Apache

BOULANGER

245

Version 1.0 was formally released and, as noted
previously, quickly became the dominant Web
server on the Internet. As the Apache system grew in

m FOSS-developed systems
have a distinct advantage in
their ability to respond to
security threats m

popularity, more organizations became dependent
on this server technology to support their missions,
and as a result, more people contributed to the
project. The group of volunteers who reviewed
submissions and maintained the Apache source code
continued to grow in size, eventually forming the
Apache Group in 1995, and then the Apache
Software Foundation in 1999.

The Apache Software Foundation currently consists
of 22 core developers who contribute to the devel-
opment and maintenance of the Apache system.
Users of the system submit patches, bug reports, and
suggestions for improvement to this core team of
developers. The Apache development community
communicates through Internet mailing lists and
Web sites. Any piece of software that is submitted is
peer-reviewed and extensively tested before being
included in the source code repository. Every Apache
source code repository contains status information
on changes and plans for improvements, as well as
references to outstanding issues, so that all devel-
opers can stay informed. This collaborative effort is
synchronized through status information and iden-
tification of the developers who are responsible for
specific parts of the project. The actual software
development and module testing are performed on
the developer’s machine. When a module has been
tested and is ready for release, the developer posts
the software patches to the developer mailing list.
Subscribers to the developer list then review the
proposed modifications and test them against their
own systems. Only when the proposed changes have
been peer-reviewed and tested are they incorporated
into the Apache source repository. If there are
problems with the proposed code changes, such as
incompatibility issues or software defects, the
developer community has the opportunity to detect
and remedy these defects before they can impact the
rest of the system. This is the developer feedback
loop of collaborative software development: people

246 BOULANGER

responsible for developing the system reviewing one
another’s work.

In the consumer feedback loop, users of the
published system uncover defects and submit bug
reports and suggestions for improvement to the core
developers. Because the source code is publicly
available, users are able to locate defects, submit
suspect code fragments, and contribute patches to
correct the problem. Once a patch is submitted from
the consumer loop, it undergoes rigorous peer
review and testing in the developer loop before
making its way into the system source code
repository. This is a remarkably efficient system for
distributing the burden of code review across both
the developer and user domains. Every user can
potentially become a developer and contribute to the
overall success of the software package. One caveat
is that this system may only work well with popular
FOSS projects. A small orphaned FOSS project could
lack the critical mass of resources that a larger, more
popular project enjoys with its extensive user base.
However, for large FOSS projects this system appears
to work very well. There are many examples of
FOSS-developed systems that enjoy massive user
bases who continually work to improve the reli-
ability and functionality of the system. Once a critical
mass of developers and users emerges, the open-
source development project can achieve the same
reliability and security standards as proprietary
systems.

CONCLUSIONS

Which is more secure: closed or open-source
software? Unfortunately the answer is not that clear.
In general, both FOSS and proprietary systems are
roughly equivalent in terms of security and reli-
ability. Neither is inherently more secure or reliable
than the other. Analytical arguments made in favor
of either approach are not conclusive. Empirical
studies have suggested that FOSS can potentially
outperform proprietary systems. Nonetheless, any
system that was not developed to be secure
invariably will not be. There are certainly proprietary
systems deployed that are more secure than their
FOSS counterparts (e.g., S/COMP or GEMSOS**
versus Gnu/Linux), just as there are FOSS-deployed
systems that appear to be more secure than their
proprietary equivalent (e.g., Apache versus Micro-
soft IIS).20 One problem with attempting to quantify
the security of proprietary and FOSS systems is the
fact that verifiably trustworthy systems are very

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

difficult and expensive to develop and certify. To
date there are only seven operating systems that
have achieved a Common Criteria Certification
evaluation assurance level (CC EAL) rating of 4
(meaning “methodically designed, tested and re-
viewed”).21 The highest rated FOSS-developed op-
erating system is the SUSE** Enterprise Server V8
distribution of Gnu/Linux with a rating of CC EAL 3+
(meaning “methodically tested and checked”). This
does not necessarily mean that FOSS operating
systems with lower ratings are less reliable than
proprietary systems. This can also mean that the
funding required for formal certification has not been
made available. Because the CC certification is
expensive to obtain, only larger organizations can
afford to sponsor a CC evaluation, especially at the
higher levels of certification.

Another problem is that every software system
mentioned in this article, both open-source and
proprietary, requires frequent patching to remediate
defects. Any system that requires frequent patching is
inherently insecure. Using patch counts as a metric
for security is misleading. A system that requires a
security patch every six months is not twice as secure
as a system that requires patching every three
months. They are both insecure. To use another
analogy from the physical world, a car that explodes
once every 1000 miles cannot be considered twice as
safe as a car that explodes once every 500 miles. As in
the software example, both vehicles should be
considered unsafe. Another issue with using pub-
lished vulnerabilities as a security metric is that
software systems are under constant change. When-
ever old software defects are discovered and rem-
edied, new software defects may be introduced into
the system. Because systems are constantly evolving,
there is no easy way to determine the absolute
number of defects in a system at a given instant.
However, FOSS-developed systems have a distinct
advantage in their ability to respond to security
threats. As noted previously, the organizations that
responded most successfully to the Internet Worm of
1988 had access to the UNIX source code. Having the
source code enabled technical personnel to under-
stand the immediate threat and then share that
information with other affected organizations.

Itis this sharing of information that is the key strength
behind the FOSS movement. FOSS developers have
the ability to analyze how previous systems were
constructed and “stand on the shoulders of giants.”

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

As in the scientific research community, this free
exchange of information promotes innovation and
advances the field. The FOSS movement can use this
shared information to encourage participation from a
global talent pool. When the number of users of a
FOSS project increases, so too will the number of
developers who can potentially participate in the
project. Once a critical mass of users has formed, the
momentum from this combined effort will yield
quality systems that meet and exceed the security and
reliability metrics of their proprietary counterparts—
at a much reduced cost.

The FOSS movement is gaining traction. What was
once an idealized concept espoused by hackers,
hobbyists, and academics is now formalized and
organized and is the dominant technology behind
the Internet. As FOSS-based technologies continue to
gain market share, proprietary software publishers
will be forced to innovate to remain competitive and
survive. It will be interesting to watch and see where
FOSS technology takes us in the future. It will be
even more interesting to participate.

**Trademark or registered trademark of Aesec, Linus Tor-
valds, Microsoft Corporation, MySQL AB Company, Netscape
Communications Group, Red Hat, Inc., Société BIC, SUSE
LINUX AG, The MITRE Corporation, The Apache Software
Foundation, or The Open Group.

CITED REFERENCES
1. See, for example, Securities and Exchange Commission
Form 10-Q Quarterly Report For the Quarterly Period Ended
March 31, 2004, Microsoft Corporation (May 3, 2004), p.
35, http://www.microsoft.com/msft/
download/FY04/MSFT_3Q2004_10Q.doc.

2. Opening the Open Source Debate: A White Paper, Alexis de
Tocqueville Institution (June 2002), http://www.adti.
net/opensource.pdf.

3. The term “hacker” is used here to mean “a person who
illegally gains access to and sometimes tampers with
information in a computer system,” as defined in
Merriam-Webster’s Collegiate Dictionary, Eleventh Edi-
tion, Merriam-Webster, Inc., Springfield, MA (2003), p.
559. Others prefer to use the term “cracker” to describe
such a person.

4. CERT® Coordination Center, Software Engineering Insti-
tute, http://www.cert.org/.

5. Apache HTTP Server Project, The Apache Software
Foundation, http://httpd.apache.org/ABOUT_APACHE.
html.

6. B. Miller, L. Fredriksen, and B. So, “An Empirical Study of
the Reliability of UNIX Utilities,” Communications of the
ACM 33, No. 12, 32-44 (1990).

7. K. Hafner and J. Markoff, Cyberpunk: Outlaws and
Hackers on the Computer Frontier, Simon & Schuster, Inc.,
New York (July 1992).

BOULANGER

247

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Eichin and J. Rochlis, “With Microscope and Tweez-
ers: An Analysis of the Internet Virus of November 1988,”
Proceedings of the 1989 IEEE Symposium on Security and
Privacy, Oakland, CA, May 1-3, 1989, IEEE, New York
(1989), pp. 326-343.

C. A. Kenwood, A Business Case Study of Open Source
Software, MITRE Corporation (July 2001), http://
www.mitre.org/work/tech_papers/tech_papers_01/
kenwood_software/kenwood_software.pdf.

W. S. Humphrey, The Quality Attitude, Software Engi-
neering Institute (2004), http://www.sei.cmu.edu/
news-at-sei/columns/watts_new/watts-new.htm.

J. S. Clark, “Kryptonite Bic-picking,” New Cyclist (October
1992).

J. Papoza, eWeek Labs: Open Source Quicker at Fixing
Flaws, Ziff-Davis Media, Inc. (September 30, 2002),
http://www.eweek.com/article2/0,3959,562226,00.asp.

B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A.
Natarajan, and J. Steidl, Fuzz Revisited: A Re-examination
of the Reliability of UNIX Utilities and Services, Technical
Report, Computer Science Department, University of
Wisconsin (November 1995), ftp://ftp.cs.wisc.edu/
paradyn/technical_papers/fuzz-revisited.pdf.

Linux versus Windows NT: The Verdict, Bloor Research
(October 1999), http://www.bloor-research.com/
research_library.php?productid = 245.

Linux TCP/IP Inspection Report, Reasoning, Inc. (2003),
http://www.reasoning.com/downloads.html.

Apache Open Source Inspection Report, Reasoning, Inc.
(2003), http://www.reasoning.com/downloads.html.

June 2004 Web Server Survey, Netcraft, Ltd. (June 6,
2004), http://news.netcraft.com/archives/2004,/06/06/
june_2004_web_server_survey.html.

How Open Source and Commercial Software Compare:
MySQL White Paper, Reasoning, Inc. (2003), http://
www.reasoning.com/downloads.html.

W. W. Royce, “Managing the Development of Large
Software Systems: Concepts and Techniques,” 1970
Western Electronic Show and Convention (WESCON)
Technical Papers 14, Los Angeles, CA, August 25-28,
1970, IEEE, New York (1970), pp. 1-9; reprinted in
Proceedings of the Ninth International Conference on
Software Engineering (ICSE’87), Monterey, CA, March 30-
April 2, 1987, IEEE Computer Society Press, Los Alamitos,
CA (1987), pp. 328-338.

D. A. Wheeler, Why Open Source Software/Free Software
(OSS/FS)? Look at the Numbers! (November 7, 2004),
http://www.dwheeler.com/oss_fs_why.html.

Consumers—List of Evaluated Products, Common Cri-
teria Project, http://www.commoncriteriaportal.org/
public/consumer/index.php?menu =4.

Accepted for publication October 27, 2004.
Published online April 12, 2005.

Alan Boulanger

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (boulange@us.ibm.com).
Alan Boulanger joined IBM in October 1995 as a member of the
Thomas J. Watson Global Security Analysis Laboratory. His
research interests include network security, intrusion detection
and remediation, applied penetration testing techniques, data
forensics, telephony-related security, and emerging threat

248 BOULANGER

analysis. Since joining IBM, Mr. Boulanger has filed several
information-security-related patents and has provided
security-related technical assistance to the business
community and to federal government agencies. He is an active
member of both the New York and New England Electronic
Crimes Task Forces. l

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

