
Providing Linux 2.6 support for
the zSeries platform

&

C. Bornträger

M. Schwidefsky

This paper describes the experiences of the Linuxt on zSeriest team at the IBM Linux

Technology Center in upgrading the support for the zSeries platform when migrating

from Linux 2.4 to Linux 2.6. In particular, the team’s contributions to supporting the

new device model, the redesigned I/O system, and improved memory management

are described as well as their collaboration with the Linux open-source community.

Version 2.6 of the Linux** kernel was released on

December 17, 2003.
1,2

The pertinent new features in

Linux 2.6 include a complete overhaul of the unified

device model (and the creation of the related

‘‘system’’ file system known as sysfs), a major

redesign of the I/O subsystems, a change in the

common Linux memory management, a change in

the timer mechanism, and the consolidation of the

emulation layers for various architectures.

As members of the Linux on zSeries* team at the

IBM Linux Technology Center,
3

we worked with the

Linux community to provide support for the zSeries

platform. This collaboration started in 1999, when

IBM developed the code required to run Linux on

the S/390* mainframe, now called IBM eServer*

zSeries. The changes in the Linux 2.6 kernel just

mentioned are of special interest to us because of

their impact on running Linux on the zSeries

platform (in this paper, our reference to Linux 2.6

also includes the development version 2.5).

One of the main features of the zSeries architecture

is its support for virtualization. There are two ways

of supporting virtualization on zSeries. First, logical

partitioning (LPAR) allows processor time to be

dynamically shared among several independent

partitions with fixed memory sizes. Second, the

z/VM* operating system supports any number of

virtual machines (VM) that share almost all hard-

ware resources and that run guest operating

systems. Due to this advanced virtualization tech-

nology, it is possible to run several Linux instances

on the same machine at the same time. It is also

possible to run Linux in parallel with other main-

frame operating systems such as z/VM, z/VSE, or

z/OS*.

In this paper we focus on certain changes made in

the Linux 2.6 kernel and their impact on Linux on

zSeries. Some of these changes were made to

increase scalability for large-scale systems. These

include a rewritten block device layer, the overhaul

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BORNTRÄGER AND SCHWIDEFSKY 331

of the unified device model, as well as improve-

ments to locking and other algorithms.

Although the zSeries platform stands to benefit from

the scalability enhancements in the Linux 2.6

release, we need to examine the impact of these

changes on other aspects of system performance.

Because the zSeries platform offers a highly

virtualized environment that may support hundreds

of Linux instances simultaneously, the Linux 2.6

changes could have negative side effects. In partic-

ular, we examine the impact of Linux 2.6 changes on

memory overhead, which turns out to be a critical

item for the zSeries platform. Similarly, if an

increase in I/O bandwidth is achieved by using more

processor cycles, there could be negative implica-

tions for situations in which the processor is shared.

The rest of the paper is structured as follows. In the

next section we describe the way our team

collaborated with the Linux development commu-

nity. In the following sections we describe our

contribution to upgrading Linux support for zSeries

in terms of the new device model, the I/O

subsystem, memory management, the timer tick,

and the system-call emulation, respectively. In the

last section we summarize our work and discuss

some of the advantages and disadvantages of

participating in an open-source project.

COLLABORATING WITH THE LINUX
DEVELOPMENT COMMUNITY

During the Linux 2.4 development cycle, our

development activities, which were focused on

supporting Linux on the zSeries platform, were not

particularly well integrated with the rest of the Linux

community. We developed the code and the

required bug fixes in-house, thoroughly tested them,

and then published these patches on the Web.
4

The

publication of the code, known as a ‘‘code drop,’’ is

done infrequently and usually involves a large

number of changes. Although zSeries users can

download the patches from the IBM Web site and

build their own version of the kernel, they usually

use major enterprise Linux distributions (such as

those supplied by Red Hat, Inc.) that are based on

these versions.

There are multiple Linux distributions for zSeries,

corresponding to different kernel versions. Because

each code drop applies only to a particular version

of the kernel, the latest version supported may lag

the main Linux distribution (sometimes referred to

as the mainline kernel). For example, the last IBM

code drop for the Linux 2.4 kernel was at version

2.4.21; whereas, the latest available 2.4 kernel at the

time of the code drop was 2.4.28.

After every code drop, we have tried to integrate

these patches into the mainline kernel. Toward this

end, it is necessary to communicate with the Linux

maintainers and to make the case for integrating

these patches. This communication takes place

through mailing lists. The Linux maintainers usually

prefer that the changes submitted for review be

incrementally small. Because our patch sets were

often large, they were not always included in the

mainline kernel.

There are two major disadvantages to the code-drop

model. First, our process is not integrated into the

Linux development process, and thus we have less

opportunity to affect it. Second, we do not make use

of the peer review process of the open-source

community. Being close to the Linux development

process is particularly important for Linux on the

zSeries platform because this platform differs in

many ways from PCs (personal computers), on

which historically Linux development was focused.

This is the reason why sometimes we need to make

changes to platform-independent kernel code in

order to improve Linux behavior on our platform.

Convincing the kernel maintainers to accept our

patches requires an amount of trust. The main-

tainers usually accept patches when either the patch

is completely understood or the submitter is trusted,

which is critical when the patch involves complex

code. To improve our collaboration with the open-

source community we have actively participated in

the development of the Linux 2.6 kernel. As a result,

the mainline kernel and our internal development

version are very similar. This tighter integration

helped us benefit from the 2.6 changes that are the

topic of this paper.

DEVICE MODEL

In this section we describe the new device model

and its effects on the zSeries platform. Device

drivers can be adapted to the new device model

either by noninvasively and minimally changing the

device driver without exploiting all new features, or

by completely redesigning the device driver to fully

BORNTRÄGER AND SCHWIDEFSKY IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005332

exploit all new features and functions. We opted for

the second approach.

We completely rewrote the zSeries-specific inter-

mediate layer—called the common I/O layer—to

exploit all hardware and kernel features. Further-

more, we redesigned several low-level device

drivers to fully exploit all new features in the device

model. While making extensive use of the device-

model features, we found that the sysfs code caused

high memory consumption, and we created a patch

to address this problem.

Before the introduction of the new device model,

Linux had no well-structured internal representation

for devices. Each device driver was responsible for

handling the specific features of its devices.

Although this model worked well in most cases, it

offered no proper support for system-wide features

like suspend, hot plug, and hot remove. Some

features like hot plug had been implemented

separately by each device driver. Based on these

limitations, a new device model was proposed and

developed.
5,6,7

The new device model provides a

unified hierarchical view of the hardware.

Several zSeries device drivers offered hot plug

features long before the new device model was

available. Together with other hot-plug-capable

device drivers, these drivers created the foundation

of the hot plug design of the new device model.

On zSeries, all devices are accessed by means of a

common hardware architecture called the ‘‘channel

subsystem.’’ The channel subsystem offers 256

channel paths (each identified by a channel path ID,

or CHPID) and can drive up to 65,535 devices. Each

device is attached to the zSeries by using up to eight

CHPIDs. Furthermore, each device has a device

number and a subchannel ID. The device number

can be defined by the administrator, and the

subchannel ID is enumerated by the system.

To support the new device model we completely

rewrote the common I/O layer, which handles all

low-level transactions for our device drivers. The

previous common I/O layer was monolithic and did

not fully reflect the hardware complexity to the

client. Using the ability of the new device model to

create a hierarchy of buses, devices, and classes, we

redesigned the common I/O layer and added an

internal view of the one-to-one relation between

subchannels and device numbers.

The internal representation of the device model is

made visible to the client by sysfs through folders

& To support the Linux 2.6
device model we completely
rewrote the common I/O layer,
which handles all low-level
transactions for the device
drivers &

such as bus, class, or device. This virtual file system

can be mounted (placed at a specified location in the

directory tree) like every other file system. To make

the configuration as simple as possible, each file in

sysfs must contain only human-readable text or

numbers, and only one item of information is

exported per file (in order to avoid previously

experienced problems resulting from having more

complex entries that were to be parsed by a user-

level application). This simple interface helps

system administrators configure and administer

their system with generic tools like echo and cat. In

contrast to typical PCs, the zSeries kernel drivers

should not activate all available devices. Depending

on the configuration defined by the administrator,

devices can be shared among several LPARs, and

hardware cards can define sets of logical devices to

be used by different systems. Therefore, only a

subset of device numbers needs to be activated.

Due to the hierarchy enforced by the device model,

devices that are attached to a bus show up as a

directory entry one level below the bus to which

they are attached. For example, every available

CCW (channel command word) device can be

found as a subdirectory in /sys/bus/ccw/devices/

and as a subdirectory of the subchannel entry

/sys/devices/css0/,subchannel./. The former direc-

tory is a link to the latter. These links allow the user

to get different views of the hardware.

Each device can export options and settings by

means of files within its directory. These files are

called ‘‘attributes.’’ Therefore, sysfs is not only

useful for getting an overview of the system, but

also for configuring devices. With Linux 2.4, the

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BORNTRÄGER AND SCHWIDEFSKY 333

startup configuration of device drivers needs to be

done by using kernel or module parameters. The

proc file system (used to represent the state of the

& We implemented a change to
the new device model in order
to avoid excessive memory
consumption in a zSeries
system with many devices &

kernel) could be used to change some of the

configuration during runtime. Unfortunately, con-

figuration via proc is not standardized in any way.

By using sysfs, it is possible not only to configure

many parameters in a standardized way, but to do

the configuration at runtime. In the future, every

option will be exported via sysfs.

The flexibility of the hardware architecture is one of

the strong points of the zSeries platform. It is

possible to add and remove disk drives, network

cards, and other adapters while the machine is

running. It is also possible to activate and deactivate

hardware within Linux, although there was no

common way of configuring different devices types

in Linux 2.4. Disks, network cards, FCP (Fibre

Channel Protocol) adapters, and other devices all

offered different user interfaces for activating and

deactivating devices. Using the new device model

and the sysfs interface, a common way of activating

devices is now available. Independent of the device

type, the user can activate a device by setting the

online attribute to 1. For example, to activate a

device with the bus ID 0.0.1234 the administrator

can simply enter:

echo 1 . /sys/bus/ccw/devices/0.0.1234/online

As an added benefit of the new device model, the

hot plug infrastructure, which was introduced in

Linux 2.4, is now much more powerful. Hot plug is a

mechanism of the kernel for notifying user-level

applications of hardware changes. In Linux 2.4 each

device driver needed to send its own hot plug

events. For example, both the DASD (direct access

storage device) driver and the channel device layer

implemented hot plug on zSeries. In Linux 2.6 the

hot plug events are generated by the bus using a

common format for all devices on that bus. Using

scripts, the administrator is now able to automate

the processing of hardware changes (which requires

the uniform handling of hot plug events for all

devices). Additional features are included in the new

functionality, such as persistent device names. A

persistent device name does not change between

two system starts or a configuration change. The

major/minor combination for block and character

devices or the interface name for network devices

might change dependent on the order in which the

devices are enabled. When there is only a single

network device and a fixed set of disks, this is of no

importance, but for a system that changes dynam-

ically a unique name is needed for every device.

With hot plug and the information available through

sysfs, unique names can be created.

Very high memory consumption caused by sysfs on

larger systems was the most serious problem with

the device model. To simplify sysfs, the decision

was made to pin all internal data structures in

memory instead of dynamically allocating them.

Standard systems such as desktop PCs have only a

small number of devices, and thus the memory

consumption for sysfs is negligible. On the other

hand, on a zSeries system, which can have

hundreds or thousands of devices, all device drivers

make extensive use of sysfs for configuration.

Therefore, each device creates multiple files in sysfs.

It is not unusual to find zSeries LPARs with tens of

thousands sysfs files, in which case the memory

required for inodes (data structures holding infor-

mation about files in UNIX** file systems) in sysfs

becomes extensive. We have seen several zSeries

systems with Linux 2.6 that use 50 to 100 MB more

memory than Linux 2.4. The IBM Linux Technology

Center has published a patch to address this

problem.
8

This patch discards large parts of sysfs

data and re-creates this information (when needed)

by using a backing-store mechanism. The sysfs

backing-store patch was accepted by the Linux

maintainers and is expected to be part of Release

2.6.10.

I/O
The Linux 2.6 kernel includes a rewritten block

device layer, the kernel subsystem responsible for

accessing directly addressable storage devices like

DASDs or SCSI (small computer systems interface)

disks. As a result, the internal kernel interface for

block device drivers changed. The most visible

change is the move of the data structure

BORNTRÄGER AND SCHWIDEFSKY IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005334

struct buffer_head into the block-device-layer internal

structure. The block device drivers now use a

different data structure, struct bio (for block I/O), for

communicating with the block device layer. This use

of the new data structure enables new features and

improves performance.

We adapted all zSeries block device drivers (DASD,

zFCP, xpram, dcssblk) for the new interface. We

used this opportunity to redesign and improve all of

our block device drivers. We experienced a per-

formance problem related to very fast block devices,

such as xpram (a block device to access pages in

expanded memory; i.e., memory that is not directly

addressable and whose pages need to be copied to

real memory). The solution was provided by the

open-source community in the form of the ‘‘per

backing dev unplugging’’ mechanism (see the

discussion at the end of this section).

Because users of large systems faced several

scalability problems with the Linux 2.4 kernel,

efforts were made to improve the locking structure

of Linux. Locking is necessary to protect data from

race conditions. These race conditions happen if two

or more processors are working with the same data

or if an interrupt handler and other kernel code

share some data. If two or more processors are

working on the same data in an unsynchronized

manner, data corruption is likely. By using mutual

exclusion, locking prevents this data corruption.

In versions prior to Linux 2.2, I/O operations were

protected by the ‘‘big kernel lock.’’ Whenever a

kernel component changed a shared data structure,

it first had to acquire the lock. On completion, the

kernel component released the lock, which allowed

other kernel components to acquire the lock in order

to handle shared data. This global locking created a

huge scalability problem, because locking prevented

access by other processors to shared data, even if

the data structures to be handled were not the same.

The Linux 2.2 kernel introduced a new locking data

structure for the block I/O layer, io_request_lock, that

protected all I/O data structures by major number (a

major number identifies a group of devices usually

owned by the same device driver). Although the

block device layer was now able to run disk

operations for devices with different block major

numbers in parallel, io_request_lock remained a

bottleneck.
9

If two or more processors tried to access

different disks with the same major number, they

still had to wait for the other processor to release the

lock. The contention for io_request_lock gets worse

the more processors or disks are involved. Because

zSeries typically has several processors and many

disks, this lock contention was a serious problem.

& We used the redesign of the
block device layer in Linux 2.6
as an opportunity to redesign
and improve all our block
device drivers. &

The solution developed in Linux 2.6 is based on the

use of request queues, data structures that keep

track of all active I/O requests for a specific device.

Instead of an io_request_lock per major number, we

now have one lock per request queue. Several

queues can be processed at the same time on

different processors, greatly enhancing the scalabil-

ity of the system because more work can be done in

parallel.

I/O performance can be improved by optimizing the

order in which requests are served (by minimizing

the average seek times) and also by processing

(merging) several requests as a single service unit.

Indeed, processing I/O requests one by one, in their

order of arrival, would result in very poor perform-

ance. The technique used is to temporarily stop I/O

operations on the queue (referred to as ‘‘plugging’’

the queue). During this stoppage the I/O scheduler

reorders and merges the requests on the request

queue. The queue can then be unplugged, which

triggers the processing of the optimized requests by

the block device layer.

The interface between the I/O scheduler and the

kernel in Linux 2.6 was changed. The I/O scheduler

was modularized and its functionality extended. The

Linux 2.4 scheduler is now known as the deadline

scheduler. It has been supplemented with several

other modular I/O schedulers: the anticipatory

scheduler, the complete-fair-queuing scheduler, and

the no-op scheduler. These schedulers optimize the

processing of the request queue based on various

heuristics, and the user is able to select the most

appropriate I/O scheduler at boot time by means of a

kernel parameter. The right choice of scheduler

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BORNTRÄGER AND SCHWIDEFSKY 335

depends on the workload and the system config-

uration.

The zSeries systems have no internal storage

devices. They are usually connected to storage

servers via FICON* (fiber connection), ESCON*

(Enterprise Systems Connection Architecture), or

switched fabrics. Most storage servers offer inte-

grated processing power, caching, and request

reordering. Because the Linux I/O schedulers are not

aware of the abilities of the storage servers, the

standard I/O scheduler does not always offer

optimal performance in the zSeries environment,

and thus it is likely that a ‘‘storage-server-aware’’

I/O scheduler would do better (tests show that in

some scenarios the best I/O scheduler can double

the overall disk performance). Currently, the stand-

ard scheduler is the anticipatory scheduler, which

works quite well on PCs under the assumption that a

disk has only one moving head. Because this

assumption is not true for storage servers found in

the zSeries environment, customers should use

different I/O schedulers. As the performance de-

pends on the workload, no generally applicable

recommendations can be offered.

Another change related to request queues appeared

quite late in the development cycle. The so-called

‘‘per backing dev unplugging’’ was merged into the

Linux 2.6.6 kernel. As previously stated, I/O

requests are handled by means of request queues

that can be plugged and unplugged. In the original

design, unplugging was initiated globally for all

queues, which turned out to be a performance and

scalability issue that affected some zSeries-specific

devices. The global unplugging was replaced by a

more selective unplugging that applies to only one

queue. This change drastically improved the per-

formance of many workloads.

MEMORY MANAGEMENT
In this section we describe the enhancements to

Linux 2.6 memory management and our contribu-

tion to them. Specifically, we replaced several

memory management functions with a set of

primitives and the means to override these primi-

tives with architecture-specific code. The use of such

code for primitives such as ptep_test_and_clear_dirty,

ptep_establish, page_referenced, and

ptep_test_and_clear_young significantly improves the

performance of memory management for the zSeries

platform and benefits other architectures as well.

The main change to Linux 2.6 memory manage-

ment, which applies to all supported architectures,

is the introduction of ‘‘reverse mapping.’’ Like many

other operating systems, Linux provides virtual

memory through paging, which is implemented with

the help of hardware address translation and page

tables. Given a virtual address, the hardware looks

up the appropriate page table entry (PTE) and reads

from it the physical address. When a physical page

has to be freed, all PTEs that point to that page have

to be removed or invalidated (it is possible for more

than one virtual page to be mapped to the same

physical page). In other words, the physical page

has to be mapped to the PTEs of the corresponding

virtual pages. Because Linux 2.4 cannot perform this

reverse mapping, it executes a search of all page

tables, which can be time-consuming.

The central data structure in memory management

is struct page, which contains information about a

physical page. The simplest way to implement

mapping is to add a pointer to struct page that points

to all page tables that refer to the page. This

solution, unfortunately, requires additional memo-

ry, thus increasing memory-management overhead.

Furthermore, the handling of the PTE chains

increases the time required for creating and termi-

nating processes.

To overcome these problems, an improved method,

object-based reverse mapping, is used. Each phys-

ical page that is referred to by one or more PTEs is

part of a mapping, either an anonymous or a file

mapping. All users of a page can be found by

‘‘walking the vm area (vma)’’ structs of the mapping.

A vma describes a block of virtual memory instead

of a single page. To find out if a particular vma uses

a physical page, a small number of calculations

needs to be performed. Which of the two ap-

proaches is faster depends on the workload. Object-

based reverse mappings trade a bit of CPU overhead

in the virtual memory manager for a smaller

memory footprint and faster process creation and

exit.

Paging systems keep track of several items of

information about physical pages. Every physical

page has a ‘‘dirty’’ indicator—if the page has been

written to, then the page is marked as dirty. This

implies that the contents of the page differ from

those in the backing store from which it was loaded

(the contents of the so called ‘‘anonymous’’ pages

BORNTRÄGER AND SCHWIDEFSKY IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005336

initially do not have a backup, but may be backed

up on the swapping device). When the kernel has to

free a page, the dirty indicator is used to determine

whether the page has to be written to the backing

store.

Every physical page also has a ‘‘referenced’’

indicator that is set whenever the page is referenced.

This information is necessary for implementing the

least-recently-used page replacement algorithm, an

algorithm used to determine which page should be

freed in order to enable a page-in operation. The

dirty indicator and the referenced indicator are

usually associated with virtual pages and are stored

as bits in the corresponding PTE. On zSeries,

however, this information is stored in storage keys,

a hardware assist associated with every physical

page. Whereas in the first case retrieving the

information requires following a chain of PTEs, in

the latter case the information is directly available

by interrogating the hardware.

The Linux 2.4 memory management is optimized for

platforms without the hardware assist. There are

several functions for querying and manipulating the

dirty and referenced indicators of PTEs. In order to

support various hardware platforms, each of these

functions has multiple implementations. The zSeries

‘‘port’’ (Linux code in support of this platform) uses

the ISKE (INSERT STORAGE KEY EXTENDED)

instruction to query the properties of the physical

page. This operation is quite expensive in terms of

cycle times. Due to the design of Linux 2.4, this

instruction is executed for each mapping (for each

PTE referring to the page), instead of once for each

physical page.

The use of the dirty and referenced indicators is

related to the flushing of the translation lookaside

buffer (TLB), a hardware cache for PTEs. Flushing

the cache information does of course affect per-

formance. The operating system has to flush the TLB

for a PTE whenever this entry is modified. Early

Linux 2.6 kernels flushed TLB entries every time the

dirty and referenced indicators of PTEs were

modified. These TLB flushes are unnecessary on

zSeries because the dirty and referenced indicators

are not stored in PTEs.

To solve these performance issues, we proposed a

change in the Linux memory management. We

proposed to identify typical access patterns, group

the sequences of operations involved, and define

them as memory-management primitives. Further-

more, we suggested that the implementations allow

the redefinition of these memory-management

primitives whenever necessary. Specifically, we

& Changes to the memory
management led to improved
scalability of the memory
transfer rate with the number
of processors. &

defined primitives to query and set the dirty and

referenced indicators and other information in PTEs

in combination with flushing the TLB. Afterwards,

we replaced the memory-management code in-

volved with code that makes use of the new

primitives. The next step was to redefine these

primitives on zSeries. Many of these primitives,

such as ptep_test_and_clear_dirty and ptep_test_and_

clear_young, could be replaced by much simpler

operations or simply became non-operations (the

TLB flushes are unnecessary on zSeries because the

dirty and referenced indicators are not stored in

PTEs). These enhancements drastically reduced the

number of TLB flushes and ISKE calls.

A result of implementing the reverse-mapping

mechanism is the availability of the page_referenced

function, which determines if a physical page has

been used recently. Whereas the Linux 2.4 kernel

had to search all process page tables in order to

obtain this information, in Linux 2.6 the information

can be extracted directly from the PTEs. Further-

more, an additional improvement is possible on

zSeries by eliminating the loop in page_referenced

(the page referenced bit is stored per physical page

and not per PTE) through the use of the RRBE (Reset

Reference Bit Extended) instruction.

We have implemented another enhancement to the

memory management code by making better use of

two zSeries instructions: IPTE (INVALIDATE PAGE

TABLE ENTRY) and IDTE (INVALIDATE DAT

TABLE ENTRY). The IPTE instruction removes

virtual pages by setting the invalid bit in a PTE and

flushing the TLBs for this page on all processors.

Although IPTE is an expensive instruction, its use in

this context is much faster than the alternative

implementation.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BORNTRÄGER AND SCHWIDEFSKY 337

The execution of IPTE requires that the PTE it tries

to invalidate (and flush the corresponding TLB

entries for) must be valid (i.e., a processor using the

page table that contains the PTE is able to create a

TLB for the page the PTE refers to). The Linux 2.4

memory management was not able to satisfy this

prerequisite in a number of situations. We proposed

two memory management primitives, ptep_establish

and ptep_invalidate, that ensure the applicability of

IPTE. This combination of design changes improved

zSeries memory performance.

We obtained significant improvements in memory

performance in experiments running the dbench

benchmark, as illustrated in Figure 1. The figure

shows the extent to which the memory transfer rate

(i.e., bandwidth) scales with the number of pro-

cessors. Although dbench is typically used to

measure disk I/O performance, in this test we

configured the LPAR with sufficient memory to

ensure that Linux could cache the data, and because

all data is deleted again before the kernel writes it to

disk, this scenario measured memory scalability

instead. SLES8 and SLES9 are SUSE** Linux

distributions. SLES8 is based on the Linux 2.4

kernel; whereas, SLES9 is based on the Linux 2.6

kernel. For up to four processors, the performance

of the two Linux versions is quite similar. In

configurations with eight processors and beyond,

Linux 2.6 scales much better than Linux 2.4. The

maximal throughput for a benchmark test with 16

processors increased from 1500 MB per second to

3250 MB per second. Moreover, in the Linux 2.4

experiments the measured transfer rate drops

significantly when there are more than 20 process-

ors; whereas, as illustrated in Figure 1, Linux 2.6

does much better.

There are, of course, scenarios in which Linux 2.4

already works well, and no significant improvement

is observed. Therefore, it is not possible to make

general statements on the performance gain as it is

highly dependent on the environment.

TIMER TICK

One aspect of the Linux kernel which does not fit

particularly well into the zSeries virtualization

paradigm is the timing infrastructure. For reasons

that originate with the x86 architecture, the Linux

kernel uses an evenly spaced timer interrupt to

trigger housekeeping tasks. The number of timer

interrupts (or ticks) per second is determined by the

value of parameter HZ. In Linux 2.4, HZ is a

constant whose value is set at 100 for almost every

hardware architecture except Alpha (originally

developed by Digital Equipment Corporation).
10

The

HZ value was increased to 1000 for the Linux 2.6

Figure 1
Memory transfer rate vs number of processors (benchmark dbench): (A) Linux 2.4; (B) Linux 2.6
Figure 1
Memory transfer rate vs number of processors (benchmark dbench): (A) Linux 2.4; (B) Linux 2.6

SLES 8

Number of processors

Tr
an

sf
er

 R
at

e
(M

eg
ab

yt
es

/s
ec

)
3500

3250

3000

2750

2500

2250

2000

1750

1500

1250

1000

750

500

250

0
1 4 8 12 16 20 26 32 40

A SLES 9

Number of processors

Tr
an

sf
er

 R
at

e
(M

eg
ab

yt
es

/s
ec

)

3500

3250

3000

2750

2500

2250

2000

1750

1500

1250

1000

750

500

250

0
1 4 8 12 16 20 26 32 40

B

 1 CPU
 2 CPUs
 4 CPUs
 8 CPUs
16 CPUs

 1 CPU
 2 CPUs
 4 CPUs
 8 CPUs
16 CPUs

BORNTRÄGER AND SCHWIDEFSKY IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005338

kernel on some hardware architectures in order to

improve system responsiveness.

The evenly spaced ticks cause the virtualization

engine to dispatch every virtual CPU (which

executes the timer interrupt code) every 10ms.

Because z/VM supports hundreds of Linux guests,

the overhead for the idle guests adds up to a

considerable value. Although z/VM tries to detect

idle systems in order to improve the overall

performance, the timer activity prevents z/VM from

recognizing the guest system as being idle.

The best solution for this problem would be to move

to an event-driven timing model. This would

remove the need for regular timer interrupts.

Unfortunately, this change would require a major

rework of the common timer infrastructure, which is

not feasible in the Linux 2.6 development cycle.

Instead we wrote a patch that deactivates the timer

interrupts while the system is idle. This patch has

been accepted for the Linux 2.6.6 kernel.

SYSTEM-CALL EMULATION
The introduction of 64-bit architectures led to the

creation of a system-call emulation (or compatibil-

ity) layer that allows users to run older applications

as well. In Linux, for example, it is possible to run

31-bit or 32-bit applications under a 64-bit operating

system. This feature is implemented for several

Linux hardware architectures, such as SPARC**,
11

zSeries, and x86–64.
12

System-call emulation is

required for an enterprise system like the zSeries, as

some proprietary applications used by customers are

only available for the 31-bit architecture. To run 31-

bit applications on a 64-bit system, every system call

and every other kernel call has to be translated.

Each parameter is converted to the correct data type,

the appropriate system call is made, and the result is

translated back for the application.

With Linux 2.4 each architecture had its own

implementation of the emulation layer. These

redundant implementations became a maintenance

burden, as every change or bug fix of the standard

kernel interface also had to be applied to all

emulation layers, a task that was not always carried

out. Therefore, a 31-bit application sometimes

behaved differently when it was running on a 64-bit

operating system.

In a joint effort with the open-source community,

we participated in the consolidation of all emulation

layers in Linux 2.6 with the goal of minimizing the

architecture-specific part of the emulation layer.

Whereas the low-level trap and call interception

functions needed to be implemented for each

architecture, the rest of the emulation function is

similar or identical for all architectures. The ongoing

effort in consolidating the emulation layers im-

proved the stability of the emulation function.

During this process many problems were uncovered

in several architectures. As the common code that is

shared among different architectures increases, the

probability of finding and resolving problems

quickly increases.

CONCLUSION

The many changes in the Linux 2.6 kernel

architecture-independent code forced our team to

carry out architecture-specific changes to kernel and

driver code. The Linux development philosophy

allows major changes to be made not only to

development kernels, such as the Linux 2.5 kernel,

but also to stable versions, such as the Linux 2.6

kernel. Without continuously spending the effort to

keep our code up to date, it would eventually stop

working. Often this activity helps to find areas in the

kernel that are no longer of use, and thus are no

longer being maintained. The changes made by the

open-source community caused us to consolidate

our drivers to use a common interface, instead of

repeatedly ‘‘reinventing the wheel.’’ In addition to

this consolidation, we also had the opportunity to

add new features to the kernel and to make major

improvements in Linux at little development cost.

For example, the changes to the block device layer

improved the performance of several workloads. We

only had to adapt our zSeries device-driver code in

order to use this new interface.

The development work we have described here is

grounded in a much cleaner design than what

existed previously, and as a result we have

improved the quality and the stability of the code.

We have also observed improvements in scalability

and performance. Whereas most of the scalability

improvements resulted from Linux 2.6 design

improvements, our contribution has been to keep

track of all 2.6 changes and resolve possible

negative side effects that might affect the zSeries

platform. In addition, we have initiated changes to

Linux memory management that were later adopted

by the Linux community.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 BORNTRÄGER AND SCHWIDEFSKY 339

Additional improvements not covered in this paper

include several changes to process scheduling, such

as the design of the so-called O(1) scheduler, which

can make scheduling decisions in constant time

independent of how many processes are running in

the system, and a hot plug feature that enables the

activation and deactivation of CPUs on a running

system.

Some of the Linux 2.6 changes had a negative

impact on the zSeries platform, and we were not

always able to find a timely solution for them. This

experience taught us that we need to have good

communication with the open-source community.

Because Linux runs on dozens of different hardware

architectures, we cannot expect Linux developers to

have a good understanding of every architecture. In

order to be able to influence kernel design decisions

from the beginning, we (the zSeries team) must

make Linux developers aware of potential problems

as early as possible. Fortunately, Linux development

is an ongoing process, and solutions to remaining

zSeries problems will certainly find their way into

future versions of the Linux kernel.

Our participation in the Linux open-source devel-

opment process taught us that the advantages far

outweigh the disadvantages. It is clear to us that the

peer review philosophy and the number of hours

invested in Linux development have an enormous

value.

As the development process continues, we expect to

see further improvements in the Linux kernel. Many

of these improvements will also benefit zSeries,

especially if we continue our involvement in the

open-source community.

ACKNOWLEDGMENTS
We thank our colleagues in the Linux on zSeries

performance team for supplying the performance

data used here. We thank Maneesh Soni for writing

most of the sysfs backing-store patches. We thank

our colleagues in the development and the test teams

without whose contributions there would be no

Linux 2.6 on zSeries to write about.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds,
Object Management Group, Inc., Sparc International, Inc., or
SUSE LINUX AG.

CITED REFERENCES
1. The Linux Kernel Archives, Kernel.org Organization, Inc.,

http://www.kernel.org/.

2. J. Pranevich, The Wonderful World of Linux 2.6, http://
www.kniggit.net/wwol26.html.

3. Linux Technology Center, IBM Corporation, http://
oss.software.ibm.com/linux/.

4. Linux for zSeries and S/390, IBM Corporation, http://
oss.software.ibm.com/linux390/index.shtml.

5. J. Corbet, Porting Device Drivers to the 2.6 Kernel,
LWN.net, http://lwn.net/Articles/driver-porting/.

6. P. Mochel, ‘‘Linux Kernel Power Management,’’ Proceed-
ings of Ottawa Linux Symposium 2003, Ottawa, Ontario
(July 23–26, 2003), pp. 343–358.

7. P. Mochel, ‘‘The Linux Kernel Device Model,’’ Proceed-
ings of Ottawa Linux Symposium 2002, Ottawa, Ontario
(July 26–29, 2002), pp. 368–375.

8. M. Soni, SYSFS Backing Store Patch, Linux Technology
Center, IBM Corporation, http://oss.software.ibm.com/
linux/patches/?developer_id=78.

9. P. W. Y. Wong, B. Pulavarty, S. Nagar, and J. Morgan,
‘‘Improving Linux Block I/O for Enterprise Workloads,’’
Proceedings of Ottawa Linux Symposium 2002, Ottawa,
Ontario (July 26–29, 2002), pp. 390–406.

10. HP Alpha Systems, Hewlett-Packard Development Com-
pany, http://h18002.www1.hp.com/alphaserver/.

11. UltraSPARC Processors, Sun Microsystems, Inc., http://
www.sun.com/processors/.

12. The AMD64 computing platform, Advanced Micro
Devices, Inc., http://www.amd.com/us-en/assets/
content_type/white_papers_and_tech_docs/30172C.pdf.

Accepted for publication October 18, 2004

Christian Bornträger
IBM Deutschland Entwicklung GmbH, Schönaicher Straße 220,
71032 Boeblingen (cborntra@de.ibm.com). Christian
Bornträger received a diploma in computer science for
engineering from Technische Universität Ilmenau in 2003. He
subsequently joined the Boeblingen Development Lab, where
he is a Linux Software Engineer in the zSeries System
Evaluation Department, responsible for the Linux 2.5/2.6
kernel test.

Martin Schwidefsky
IBM Deutschland Entwicklung GmbH, Schönaicher Straße 220,
71032 Boeblingen (schwidefsky@de.ibm.com). Martin
Schwidefsky received a diploma in computer science from the
Technische Universität Karlsruhe. After joining IBM in 1996,
he first worked on the VSE operating system before getting
involved in Linux on zSeries development. He is currently a
Linux Software Engineer and the zSeries maintainer of the
Linux kernel. &

BORNTRÄGER AND SCHWIDEFSKY IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005340

Published online April 7, 2005.

