Providing Linux 2.6 support for
the zSeries platform

This paper describes the experiences of the Linux® on zSeries® team at the IBM Linux

C. Borntrager
M. Schwidefsky

Technology Center in upgrading the support for the zSeries platform when migrating
from Linux 2.4 to Linux 2.6. In particular, the team’s contributions to supporting the
new device model, the redesigned 1/0 system, and improved memory management

are described as well as their collaboration with the Linux open-source community.

Version 2.6 of the Linux** kernel was released on
December 17, 2003." The pertinent new features in
Linux 2.6 include a complete overhaul of the unified
device model (and the creation of the related
“system” file system known as sysfs), a major
redesign of the I/0 subsystems, a change in the
common Linux memory management, a change in
the timer mechanism, and the consolidation of the
emulation layers for various architectures.

As members of the Linux on zSeries* team at the
IBM Linux Technology Center,” we worked with the
Linux community to provide support for the zSeries
platform. This collaboration started in 1999, when
IBM developed the code required to run Linux on
the S/390* mainframe, now called IBM eServer*
zSeries. The changes in the Linux 2.6 kernel just
mentioned are of special interest to us because of
their impact on running Linux on the zSeries
platform (in this paper, our reference to Linux 2.6
also includes the development version 2.5).

One of the main features of the zSeries architecture

is its support for virtualization. There are two ways
of supporting virtualization on zSeries. First, logical

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

partitioning (LPAR) allows processor time to be
dynamically shared among several independent
partitions with fixed memory sizes. Second, the
z/VM* operating system supports any number of
virtual machines (VM) that share almost all hard-
ware resources and that run guest operating
systems. Due to this advanced virtualization tech-
nology, it is possible to run several Linux instances
on the same machine at the same time. It is also
possible to run Linux in parallel with other main-
frame operating systems such as z/VM, z/VSE, or
z/0S*.

In this paper we focus on certain changes made in
the Linux 2.6 kernel and their impact on Linux on
zSeries. Some of these changes were made to
increase scalability for large-scale systems. These
include a rewritten block device layer, the overhaul

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

BORNTRAGER AND SCHWIDEFSKY

331

of the unified device model, as well as improve-
ments to locking and other algorithms.

Although the zSeries platform stands to benefit from
the scalability enhancements in the Linux 2.6
release, we need to examine the impact of these
changes on other aspects of system performance.
Because the zSeries platform offers a highly
virtualized environment that may support hundreds
of Linux instances simultaneously, the Linux 2.6
changes could have negative side effects. In partic-
ular, we examine the impact of Linux 2.6 changes on
memory overhead, which turns out to be a critical
item for the zSeries platform. Similarly, if an
increase in I/0 bandwidth is achieved by using more
processor cycles, there could be negative implica-
tions for situations in which the processor is shared.

The rest of the paper is structured as follows. In the
next section we describe the way our team
collaborated with the Linux development commu-
nity. In the following sections we describe our
contribution to upgrading Linux support for zSeries
in terms of the new device model, the I/O
subsystem, memory management, the timer tick,
and the system-call emulation, respectively. In the
last section we summarize our work and discuss
some of the advantages and disadvantages of
participating in an open-source project.

COLLABORATING WITH THE LINUX
DEVELOPMENT COMMUNITY

During the Linux 2.4 development cycle, our
development activities, which were focused on
supporting Linux on the zSeries platform, were not
particularly well integrated with the rest of the Linux
community. We developed the code and the
required bug fixes in-house, thoroughly tested them,
and then published these patches on the Web.* The
publication of the code, known as a “code drop,” is
done infrequently and usually involves a large
number of changes. Although zSeries users can
download the patches from the IBM Web site and
build their own version of the kernel, they usually
use major enterprise Linux distributions (such as
those supplied by Red Hat, Inc.) that are based on
these versions.

There are multiple Linux distributions for zSeries,

corresponding to different kernel versions. Because
each code drop applies only to a particular version
of the kernel, the latest version supported may lag

332 BORNTRAGER AND SCHWIDEFSKY

the main Linux distribution (sometimes referred to
as the mainline kernel). For example, the last IBM
code drop for the Linux 2.4 kernel was at version
2.4.21; whereas, the latest available 2.4 kernel at the
time of the code drop was 2.4.28.

After every code drop, we have tried to integrate
these patches into the mainline kernel. Toward this
end, it is necessary to communicate with the Linux
maintainers and to make the case for integrating
these patches. This communication takes place
through mailing lists. The Linux maintainers usually
prefer that the changes submitted for review be
incrementally small. Because our patch sets were
often large, they were not always included in the
mainline kernel.

There are two major disadvantages to the code-drop
model. First, our process is not integrated into the
Linux development process, and thus we have less
opportunity to affect it. Second, we do not make use
of the peer review process of the open-source
community. Being close to the Linux development
process is particularly important for Linux on the
zSeries platform because this platform differs in
many ways from PCs (personal computers), on
which historically Linux development was focused.
This is the reason why sometimes we need to make
changes to platform-independent kernel code in
order to improve Linux behavior on our platform.

Convincing the kernel maintainers to accept our
patches requires an amount of trust. The main-
tainers usually accept patches when either the patch
is completely understood or the submitter is trusted,
which is critical when the patch involves complex
code. To improve our collaboration with the open-
source community we have actively participated in
the development of the Linux 2.6 kernel. As a result,
the mainline kernel and our internal development
version are very similar. This tighter integration
helped us benefit from the 2.6 changes that are the
topic of this paper.

DEVICE MODEL

In this section we describe the new device model
and its effects on the zSeries platform. Device
drivers can be adapted to the new device model
either by noninvasively and minimally changing the
device driver without exploiting all new features, or
by completely redesigning the device driver to fully

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

exploit all new features and functions. We opted for
the second approach.

We completely rewrote the zSeries-specific inter-
mediate layer—called the common I/0O layer—to
exploit all hardware and kernel features. Further-
more, we redesigned several low-level device
drivers to fully exploit all new features in the device
model. While making extensive use of the device-
model features, we found that the sysfs code caused
high memory consumption, and we created a patch
to address this problem.

Before the introduction of the new device model,
Linux had no well-structured internal representation
for devices. Each device driver was responsible for
handling the specific features of its devices.
Although this model worked well in most cases, it
offered no proper support for system-wide features
like suspend, hot plug, and hot remove. Some
features like hot plug had been implemented
separately by each device driver. Based on these
limitations, a new device model was proposed and
deve,'lope,'d.5’6’7 The new device model provides a
unified hierarchical view of the hardware.

Several zSeries device drivers offered hot plug
features long before the new device model was
available. Together with other hot-plug-capable
device drivers, these drivers created the foundation
of the hot plug design of the new device model.

On zSeries, all devices are accessed by means of a
common hardware architecture called the “channel
subsystem.” The channel subsystem offers 256
channel paths (each identified by a channel path ID,
or CHPID) and can drive up to 65,535 devices. Each
device is attached to the zSeries by using up to eight
CHPIDs. Furthermore, each device has a device
number and a subchannel ID. The device number
can be defined by the administrator, and the
subchannel ID is enumerated by the system.

To support the new device model we completely
rewrote the common I/0 layer, which handles all
low-level transactions for our device drivers. The
previous common I/0 layer was monolithic and did
not fully reflect the hardware complexity to the
client. Using the ability of the new device model to
create a hierarchy of buses, devices, and classes, we
redesigned the common I/0 layer and added an

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

internal view of the one-to-one relation between
subchannels and device numbers.

The internal representation of the device model is
made visible to the client by sysfs through folders

m To support the Linux 2.6
device model we completely
rewrote the common 1/O layer,
which handles all low-level
transactions for the device
drivers m

such as bus, class, or device. This virtual file system
can be mounted (placed at a specified location in the
directory tree) like every other file system. To make
the configuration as simple as possible, each file in
sysfs must contain only human-readable text or
numbers, and only one item of information is
exported per file (in order to avoid previously
experienced problems resulting from having more
complex entries that were to be parsed by a user-
level application). This simple interface helps
system administrators configure and administer
their system with generic tools like echo and cat. In
contrast to typical PCs, the zSeries kernel drivers
should not activate all available devices. Depending
on the configuration defined by the administrator,
devices can be shared among several LPARs, and
hardware cards can define sets of logical devices to
be used by different systems. Therefore, only a
subset of device numbers needs to be activated.

Due to the hierarchy enforced by the device model,
devices that are attached to a bus show up as a
directory entry one level below the bus to which
they are attached. For example, every available
CCW (channel command word) device can be
found as a subdirectory in /sys/bus/ccw/devices/
and as a subdirectory of the subchannel entry
/sys/devices/cssO/<subchannel>/. The former direc-
tory is a link to the latter. These links allow the user
to get different views of the hardware.

Each device can export options and settings by
means of files within its directory. These files are
called “attributes.” Therefore, sysfs is not only
useful for getting an overview of the system, but
also for configuring devices. With Linux 2.4, the

BORNTRAGER AND SCHWIDEFSKY

333

startup configuration of device drivers needs to be
done by using kernel or module parameters. The
proc file system (used to represent the state of the

m We implemented a change to
the new device model in order
to avoid excessive memory
consumption in a zSeries
system with many devices m

kernel) could be used to change some of the
configuration during runtime. Unfortunately, con-
figuration via proc is not standardized in any way.
By using sysfs, it is possible not only to configure
many parameters in a standardized way, but to do
the configuration at runtime. In the future, every
option will be exported via sysfs.

The flexibility of the hardware architecture is one of
the strong points of the zSeries platform. It is
possible to add and remove disk drives, network
cards, and other adapters while the machine is
running. It is also possible to activate and deactivate
hardware within Linux, although there was no
common way of configuring different devices types
in Linux 2.4. Disks, network cards, FCP (Fibre
Channel Protocol) adapters, and other devices all
offered different user interfaces for activating and
deactivating devices. Using the new device model
and the sysfs interface, a common way of activating
devices is now available. Independent of the device
type, the user can activate a device by setting the
online attribute to 1. For example, to activate a
device with the bus ID 0.0.1234 the administrator
can simply enter:

echo 1 > /sys/bus/ccw/devices/0.0.1234/online

As an added benefit of the new device model, the
hot plug infrastructure, which was introduced in
Linux 2.4, is now much more powerful. Hot plug is a
mechanism of the kernel for notifying user-level
applications of hardware changes. In Linux 2.4 each
device driver needed to send its own hot plug
events. For example, both the DASD (direct access
storage device) driver and the channel device layer
implemented hot plug on zSeries. In Linux 2.6 the
hot plug events are generated by the bus using a
common format for all devices on that bus. Using

334 BORNTRAGER AND SCHWIDEFSKY

scripts, the administrator is now able to automate
the processing of hardware changes (which requires
the uniform handling of hot plug events for all
devices). Additional features are included in the new
functionality, such as persistent device names. A
persistent device name does not change between
two system starts or a configuration change. The
major/minor combination for block and character
devices or the interface name for network devices
might change dependent on the order in which the
devices are enabled. When there is only a single
network device and a fixed set of disks, this is of no
importance, but for a system that changes dynam-
ically a unique name is needed for every device.
With hot plug and the information available through
sysfs, unique names can be created.

Very high memory consumption caused by sysfs on
larger systems was the most serious problem with
the device model. To simplify sysfs, the decision
was made to pin all internal data structures in
memory instead of dynamically allocating them.
Standard systems such as desktop PCs have only a
small number of devices, and thus the memory
consumption for sysfs is negligible. On the other
hand, on a zSeries system, which can have
hundreds or thousands of devices, all device drivers
make extensive use of sysfs for configuration.
Therefore, each device creates multiple files in sysfs.
It is not unusual to find zSeries LPARs with tens of
thousands sysfs files, in which case the memory
required for inodes (data structures holding infor-
mation about files in UNIX** file systems) in sysfs
becomes extensive. We have seen several zSeries
systems with Linux 2.6 that use 50 to 100 MB more
memory than Linux 2.4. The IBM Linux Technology
Center has published a patch to address this
problem.8 This patch discards large parts of sysfs
data and re-creates this information (when needed)
by using a backing-store mechanism. The sysfs
backing-store patch was accepted by the Linux
maintainers and is expected to be part of Release
2.6.10.

1/0

The Linux 2.6 kernel includes a rewritten block
device layer, the kernel subsystem responsible for
accessing directly addressable storage devices like
DASDs or SCSI (small computer systems interface)
disks. As a result, the internal kernel interface for
block device drivers changed. The most visible
change is the move of the data structure

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

struct buffer_head into the block-device-layer internal
structure. The block device drivers now use a
different data structure, struct bio (for block 1/0), for
communicating with the block device layer. This use
of the new data structure enables new features and
improves performance.

We adapted all zSeries block device drivers (DASD,
zFCP, xpram, dcssblk) for the new interface. We
used this opportunity to redesign and improve all of
our block device drivers. We experienced a per-
formance problem related to very fast block devices,
such as xpram (a block device to access pages in
expanded memory; i.e., memory that is not directly
addressable and whose pages need to be copied to
real memory). The solution was provided by the
open-source community in the form of the “per
backing dev unplugging” mechanism (see the
discussion at the end of this section).

Because users of large systems faced several
scalability problems with the Linux 2.4 kernel,
efforts were made to improve the locking structure
of Linux. Locking is necessary to protect data from
race conditions. These race conditions happen if two
or more processors are working with the same data
or if an interrupt handler and other kernel code
share some data. If two or more processors are
working on the same data in an unsynchronized
manner, data corruption is likely. By using mutual
exclusion, locking prevents this data corruption.

In versions prior to Linux 2.2, I/O operations were
protected by the “big kernel lock.” Whenever a
kernel component changed a shared data structure,
it first had to acquire the lock. On completion, the
kernel component released the lock, which allowed
other kernel components to acquire the lock in order
to handle shared data. This global locking created a
huge scalability problem, because locking prevented
access by other processors to shared data, even if
the data structures to be handled were not the same.

The Linux 2.2 kernel introduced a new locking data
structure for the block I/0 layer, io_request_lock, that
protected all I/0 data structures by major number (a
major number identifies a group of devices usually
owned by the same device driver). Although the
block device layer was now able to run disk
operations for devices with different block major
numbers in parallel, io_request_lock remained a
bottleneck.” If two or more processors tried to access

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

different disks with the same major number, they
still had to wait for the other processor to release the
lock. The contention for io_request_lock gets worse
the more processors or disks are involved. Because
zSeries typically has several processors and many
disks, this lock contention was a serious problem.

m We used the redesign of the
block device layer in Linux 2.6
as an opportunity to redesign
and improve all our block
device drivers. m

The solution developed in Linux 2.6 is based on the
use of request queues, data structures that keep
track of all active I/0 requests for a specific device.
Instead of an io_request_lock per major number, we
now have one lock per request queue. Several
queues can be processed at the same time on
different processors, greatly enhancing the scalabil-
ity of the system because more work can be done in
parallel.

I/0 performance can be improved by optimizing the
order in which requests are served (by minimizing
the average seek times) and also by processing
(merging) several requests as a single service unit.
Indeed, processing I/0 requests one by one, in their
order of arrival, would result in very poor perform-
ance. The technique used is to temporarily stop I/0
operations on the queue (referred to as “plugging”
the queue). During this stoppage the I/O scheduler
reorders and merges the requests on the request
queue. The queue can then be unplugged, which
triggers the processing of the optimized requests by
the block device layer.

The interface between the I/O scheduler and the
kernel in Linux 2.6 was changed. The I/O scheduler
was modularized and its functionality extended. The
Linux 2.4 scheduler is now known as the deadline
scheduler. It has been supplemented with several
other modular I/0 schedulers: the anticipatory
scheduler, the complete-fair-queuing scheduler, and
the no-op scheduler. These schedulers optimize the
processing of the request queue based on various
heuristics, and the user is able to select the most
appropriate I/0 scheduler at boot time by means of a
kernel parameter. The right choice of scheduler

BORNTRAGER AND SCHWIDEFSKY

335

depends on the workload and the system config-
uration.

The zSeries systems have no internal storage
devices. They are usually connected to storage
servers via FICON* (fiber connection), ESCON*
(Enterprise Systems Connection Architecture), or
switched fabrics. Most storage servers offer inte-
grated processing power, caching, and request
reordering. Because the Linux I/O schedulers are not
aware of the abilities of the storage servers, the
standard I/O scheduler does not always offer
optimal performance in the zSeries environment,
and thus it is likely that a “storage-server-aware”
I/O scheduler would do better (tests show that in
some scenarios the best I/O scheduler can double
the overall disk performance). Currently, the stand-
ard scheduler is the anticipatory scheduler, which
works quite well on PCs under the assumption that a
disk has only one moving head. Because this
assumption is not true for storage servers found in
the zSeries environment, customers should use
different I/O schedulers. As the performance de-
pends on the workload, no generally applicable
recommendations can be offered.

Another change related to request queues appeared
quite late in the development cycle. The so-called
“per backing dev unplugging” was merged into the
Linux 2.6.6 kernel. As previously stated, I/0
requests are handled by means of request queues
that can be plugged and unplugged. In the original
design, unplugging was initiated globally for all
queues, which turned out to be a performance and
scalability issue that affected some zSeries-specific
devices. The global unplugging was replaced by a
more selective unplugging that applies to only one
queue. This change drastically improved the per-
formance of many workloads.

MEMORY MANAGEMENT

In this section we describe the enhancements to
Linux 2.6 memory management and our contribu-
tion to them. Specifically, we replaced several
memory management functions with a set of
primitives and the means to override these primi-
tives with architecture-specific code. The use of such
code for primitives such as ptep_test_and_clear_dirty,
ptep_establish, page_referenced, and
ptep_test_and_clear_young significantly improves the
performance of memory management for the zSeries
platform and benefits other architectures as well.

336 BORNTRAGER AND SCHWIDEFSKY

The main change to Linux 2.6 memory manage-
ment, which applies to all supported architectures,
is the introduction of “reverse mapping.” Like many
other operating systems, Linux provides virtual
memory through paging, which is implemented with
the help of hardware address translation and page
tables. Given a virtual address, the hardware looks
up the appropriate page table entry (PTE) and reads
from it the physical address. When a physical page
has to be freed, all PTEs that point to that page have
to be removed or invalidated (it is possible for more
than one virtual page to be mapped to the same
physical page). In other words, the physical page
has to be mapped to the PTEs of the corresponding
virtual pages. Because Linux 2.4 cannot perform this
reverse mapping, it executes a search of all page
tables, which can be time-consuming.

The central data structure in memory management
is struct page, which contains information about a
physical page. The simplest way to implement
mapping is to add a pointer to struct page that points
to all page tables that refer to the page. This
solution, unfortunately, requires additional memo-
ry, thus increasing memory-management overhead.
Furthermore, the handling of the PTE chains
increases the time required for creating and termi-
nating processes.

To overcome these problems, an improved method,
object-based reverse mapping, is used. Each phys-
ical page that is referred to by one or more PTEs is
part of a mapping, either an anonymous or a file
mapping. All users of a page can be found by
“walking the vm area (vma)” structs of the mapping.
A vma describes a block of virtual memory instead
of a single page. To find out if a particular vma uses
a physical page, a small number of calculations
needs to be performed. Which of the two ap-
proaches is faster depends on the workload. Object-
based reverse mappings trade a bit of CPU overhead
in the virtual memory manager for a smaller
memory footprint and faster process creation and
exit.

Paging systems keep track of several items of
information about physical pages. Every physical
page has a “dirty” indicator—if the page has been
written to, then the page is marked as dirty. This
implies that the contents of the page differ from
those in the backing store from which it was loaded
(the contents of the so called “anonymous” pages

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

initially do not have a backup, but may be backed
up on the swapping device). When the kernel has to
free a page, the dirty indicator is used to determine
whether the page has to be written to the backing
store.

Every physical page also has a “referenced”
indicator that is set whenever the page is referenced.
This information is necessary for implementing the
least-recently-used page replacement algorithm, an
algorithm used to determine which page should be
freed in order to enable a page-in operation. The
dirty indicator and the referenced indicator are
usually associated with virtual pages and are stored
as bits in the corresponding PTE. On zSeries,
however, this information is stored in storage keys,
a hardware assist associated with every physical
page. Whereas in the first case retrieving the
information requires following a chain of PTEs, in
the latter case the information is directly available
by interrogating the hardware.

The Linux 2.4 memory management is optimized for
platforms without the hardware assist. There are
several functions for querying and manipulating the
dirty and referenced indicators of PTEs. In order to
support various hardware platforms, each of these
functions has multiple implementations. The zSeries
“port” (Linux code in support of this platform) uses
the ISKE (INSERT STORAGE KEY EXTENDED)
instruction to query the properties of the physical
page. This operation is quite expensive in terms of
cycle times. Due to the design of Linux 2.4, this
instruction is executed for each mapping (for each
PTE referring to the page), instead of once for each
physical page.

The use of the dirty and referenced indicators is
related to the flushing of the translation lookaside
buffer (TLB), a hardware cache for PTEs. Flushing
the cache information does of course affect per-
formance. The operating system has to flush the TLB
for a PTE whenever this entry is modified. Early
Linux 2.6 kernels flushed TLB entries every time the
dirty and referenced indicators of PTEs were
modified. These TLB flushes are unnecessary on
zSeries because the dirty and referenced indicators
are not stored in PTEs.

To solve these performance issues, we proposed a

change in the Linux memory management. We
proposed to identify typical access patterns, group

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

the sequences of operations involved, and define
them as memory-management primitives. Further-
more, we suggested that the implementations allow
the redefinition of these memory-management
primitives whenever necessary. Specifically, we

m Changes to the memory
management led to improved
scalability of the memory
transfer rate with the number
of processors. m

defined primitives to query and set the dirty and
referenced indicators and other information in PTEs
in combination with flushing the TLB. Afterwards,
we replaced the memory-management code in-
volved with code that makes use of the new
primitives. The next step was to redefine these
primitives on zSeries. Many of these primitives,
such as ptep_test_and_clear_dirty and ptep_test_and_
clear_young, could be replaced by much simpler
operations or simply became non-operations (the
TLB flushes are unnecessary on zSeries because the
dirty and referenced indicators are not stored in
PTEs). These enhancements drastically reduced the
number of TLB flushes and ISKE calls.

A result of implementing the reverse-mapping
mechanism is the availability of the page_referenced
function, which determines if a physical page has
been used recently. Whereas the Linux 2.4 kernel
had to search all process page tables in order to
obtain this information, in Linux 2.6 the information
can be extracted directly from the PTEs. Further-
more, an additional improvement is possible on
zSeries by eliminating the loop in page_referenced
(the page referenced bit is stored per physical page
and not per PTE) through the use of the RRBE (Reset
Reference Bit Extended) instruction.

We have implemented another enhancement to the
memory management code by making better use of
two zSeries instructions: IPTE (INVALIDATE PAGE
TABLE ENTRY) and IDTE (INVALIDATE DAT
TABLE ENTRY). The IPTE instruction removes
virtual pages by setting the invalid bit in a PTE and
flushing the TLBs for this page on all processors.
Although IPTE is an expensive instruction, its use in
this context is much faster than the alternative
implementation.

BORNTRAGER AND SCHWIDEFSKY

337

3500 SLES 8

3250 © m 1CPU

3000 ~ & 2CPUs
2750 - VV 4 CPUs
2500 A 8 CPUs
2250 P 16 CPUs
2000
1750
1500
1250
1000
750
500
250

Transfer Rate (Megabytes/sec)

1 4 8 12 16 20 26 32 40
Number of processors

Figure 1

3500 E SLES 9

3250 ~m 1CPU

3000 = & 2CPUs
2750 = \/ 4 CPUs
2500 = A 8 CPUs
» 16 CPUs

Transfer Rate (Megabytes/sec)

1 4 8 12 16 20 26 32 40
Number of processors

Memory transfer rate vs number of processors (benchmark dbench): (A) Linux 2.4; (B) Linux 2.6

The execution of IPTE requires that the PTE it tries
to invalidate (and flush the corresponding TLB
entries for) must be valid (i.e., a processor using the
page table that contains the PTE is able to create a
TLB for the page the PTE refers to). The Linux 2.4
memory management was not able to satisfy this
prerequisite in a number of situations. We proposed
two memory management primitives, ptep_establish
and ptep_invalidate, that ensure the applicability of
IPTE. This combination of design changes improved
zSeries memory performance.

We obtained significant improvements in memory
performance in experiments running the dbench
benchmark, as illustrated in Figure 1. The figure
shows the extent to which the memory transfer rate
(i.e., bandwidth) scales with the number of pro-
cessors. Although dbench is typically used to
measure disk I/O performance, in this test we
configured the LPAR with sufficient memory to
ensure that Linux could cache the data, and because
all data is deleted again before the kernel writes it to
disk, this scenario measured memory scalability
instead. SLES8 and SLES9 are SUSE** Linux
distributions. SLES8 is based on the Linux 2.4
kernel; whereas, SLES9 is based on the Linux 2.6
kernel. For up to four processors, the performance
of the two Linux versions is quite similar. In
configurations with eight processors and beyond,

338 BORNTRAGER AND SCHWIDEFSKY

Linux 2.6 scales much better than Linux 2.4. The
maximal throughput for a benchmark test with 16
processors increased from 1500 MB per second to
3250 MB per second. Moreover, in the Linux 2.4
experiments the measured transfer rate drops
significantly when there are more than 20 process-
ors; whereas, as illustrated in Figure 1, Linux 2.6
does much better.

There are, of course, scenarios in which Linux 2.4
already works well, and no significant improvement
is observed. Therefore, it is not possible to make
general statements on the performance gain as it is
highly dependent on the environment.

TIMER TICK

One aspect of the Linux kernel which does not fit
particularly well into the zSeries virtualization
paradigm is the timing infrastructure. For reasons
that originate with the x86 architecture, the Linux
kernel uses an evenly spaced timer interrupt to
trigger housekeeping tasks. The number of timer
interrupts (or ticks) per second is determined by the
value of parameter HZ. In Linux 2.4, HZ is a
constant whose value is set at 100 for almost every
hardware architecture except Alpha (originally
developed by Digital Equipment Corporation).10 The
HZ value was increased to 1000 for the Linux 2.6

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

kernel on some hardware architectures in order to
improve system responsiveness.

The evenly spaced ticks cause the virtualization
engine to dispatch every virtual CPU (which
executes the timer interrupt code) every 10ms.
Because z/VM supports hundreds of Linux guests,
the overhead for the idle guests adds up to a
considerable value. Although z/VM tries to detect
idle systems in order to improve the overall
performance, the timer activity prevents z/VM from
recognizing the guest system as being idle.

The best solution for this problem would be to move
to an event-driven timing model. This would
remove the need for regular timer interrupts.
Unfortunately, this change would require a major
rework of the common timer infrastructure, which is
not feasible in the Linux 2.6 development cycle.
Instead we wrote a patch that deactivates the timer
interrupts while the system is idle. This patch has
been accepted for the Linux 2.6.6 kernel.

SYSTEM-CALL EMULATION

The introduction of 64-bit architectures led to the
creation of a system-call emulation (or compatibil-
ity) layer that allows users to run older applications
as well. In Linux, for example, it is possible to run
31-bit or 32-bit applications under a 64-bit operating
system. This feature is implemented for several
Linux hardware architectures, such as SPARC**,""
zSeries, and x86-64." System-call emulation is
required for an enterprise system like the zSeries, as
some proprietary applications used by customers are
only available for the 31-bit architecture. To run 31-
bit applications on a 64-bit system, every system call
and every other kernel call has to be translated.
Each parameter is converted to the correct data type,
the appropriate system call is made, and the result is
translated back for the application.

With Linux 2.4 each architecture had its own
implementation of the emulation layer. These
redundant implementations became a maintenance
burden, as every change or bug fix of the standard
kernel interface also had to be applied to all
emulation layers, a task that was not always carried
out. Therefore, a 31-bit application sometimes
behaved differently when it was running on a 64-bit
operating system.

In a joint effort with the open-source community,
we participated in the consolidation of all emulation

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

layers in Linux 2.6 with the goal of minimizing the
architecture-specific part of the emulation layer.
Whereas the low-level trap and call interception
functions needed to be implemented for each
architecture, the rest of the emulation function is
similar or identical for all architectures. The ongoing
effort in consolidating the emulation layers im-
proved the stability of the emulation function.
During this process many problems were uncovered
in several architectures. As the common code that is
shared among different architectures increases, the
probability of finding and resolving problems
quickly increases.

CONCLUSION

The many changes in the Linux 2.6 kernel
architecture-independent code forced our team to
carry out architecture-specific changes to kernel and
driver code. The Linux development philosophy
allows major changes to be made not only to
development kernels, such as the Linux 2.5 kernel,
but also to stable versions, such as the Linux 2.6
kernel. Without continuously spending the effort to
keep our code up to date, it would eventually stop
working. Often this activity helps to find areas in the
kernel that are no longer of use, and thus are no
longer being maintained. The changes made by the
open-source community caused us to consolidate
our drivers to use a common interface, instead of
repeatedly “reinventing the wheel.” In addition to
this consolidation, we also had the opportunity to
add new features to the kernel and to make major
improvements in Linux at little development cost.
For example, the changes to the block device layer
improved the performance of several workloads. We
only had to adapt our zSeries device-driver code in
order to use this new interface.

The development work we have described here is
grounded in a much cleaner design than what
existed previously, and as a result we have
improved the quality and the stability of the code.
We have also observed improvements in scalability
and performance. Whereas most of the scalability
improvements resulted from Linux 2.6 design
improvements, our contribution has been to keep
track of all 2.6 changes and resolve possible
negative side effects that might affect the zSeries
platform. In addition, we have initiated changes to
Linux memory management that were later adopted
by the Linux community.

BORNTRAGER AND SCHWIDEFSKY 339

Additional improvements not covered in this paper
include several changes to process scheduling, such
as the design of the so-called O(1) scheduler, which
can make scheduling decisions in constant time
independent of how many processes are running in
the system, and a hot plug feature that enables the
activation and deactivation of CPUs on a running
system.

Some of the Linux 2.6 changes had a negative
impact on the zSeries platform, and we were not
always able to find a timely solution for them. This
experience taught us that we need to have good
communication with the open-source community.
Because Linux runs on dozens of different hardware
architectures, we cannot expect Linux developers to
have a good understanding of every architecture. In
order to be able to influence kernel design decisions
from the beginning, we (the zSeries team) must
make Linux developers aware of potential problems
as early as possible. Fortunately, Linux development
is an ongoing process, and solutions to remaining
zSeries problems will certainly find their way into
future versions of the Linux kernel.

Our participation in the Linux open-source devel-
opment process taught us that the advantages far
outweigh the disadvantages. It is clear to us that the
peer review philosophy and the number of hours
invested in Linux development have an enormous
value.

As the development process continues, we expect to
see further improvements in the Linux kernel. Many
of these improvements will also benefit zSeries,
especially if we continue our involvement in the
open-source community.

ACKNOWLEDGMENTS

We thank our colleagues in the Linux on zSeries
performance team for supplying the performance
data used here. We thank Maneesh Soni for writing
most of the sysfs backing-store patches. We thank
our colleagues in the development and the test teams
without whose contributions there would be no
Linux 2.6 on zSeries to write about.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds,
Object Management Group, Inc., Sparc International, Inc., or
SUSE LINUX AG.

340 BORNTRAGER AND SCHWIDEFSKY

CITED REFERENCES
1. The Linux Kernel Archives, Kernel.org Organization, Inc.,
http://www.kernel.org/.

2. J. Pranevich, The Wonderful World of Linux 2.6, http://
www.kniggit.net/wwol26.html.

3. Linux Technology Center, IBM Corporation, http://
oss.software.ibm.com/linux/.

4. Linux for zSeries and S/390, IBM Corporation, http://
oss.software.ibm.com/linux390/index.shtml.

5. J. Corbet, Porting Device Drivers to the 2.6 Kernel,
LWN.net, http://lwn.net/Articles/driver-porting/.

6. P. Mochel, “Linux Kernel Power Management,” Proceed-
ings of Ottawa Linux Symposium 2003, Ottawa, Ontario
(July 23-26, 2003), pp. 343-358.

7. P. Mochel, “The Linux Kernel Device Model,” Proceed-
ings of Ottawa Linux Symposium 2002, Ottawa, Ontario
(July 26-29, 2002), pp. 368-375.

8. M. Soni, SYSFS Backing Store Patch, Linux Technology
Center, IBM Corporation, http://oss.software.ibm.com/
linux/patches/2developer_id = 78.

9. P. W. Y. Wong, B. Pulavarty, S. Nagar, and J. Morgan,
“Improving Linux Block I/O for Enterprise Workloads,”
Proceedings of Ottawa Linux Symposium 2002, Ottawa,
Ontario (July 26-29, 2002), pp. 390-406.

10. HP Alpha Systems, Hewlett-Packard Development Com-
pany, http://h18002.www1.hp.com/alphaserver/.

11. UltraSPARC Processors, Sun Microsystems, Inc., http://
WWW.SUN.COm,/processors/.

12. The AMDG64 computing platform, Advanced Micro
Devices, Inc., http://www.amd.com/us-en/assets/
content_type/white_papers_and_tech_docs/30172C.pdf.

Accepted for publication October 18, 2004
Published online April 7, 200S.

Christian Borntrdger

IBM Deutschland Entwicklung GmbH, Schonaicher Strafie 220,
71032 Boeblingen (cborntra@de.ibm.com). Christian
Borntrdger received a diploma in computer science for
engineering from Technische Universitdt Ilmenau in 2003. He
subsequently joined the Boeblingen Development Lab, where
he is a Linux Software Engineer in the zSeries System
Evaluation Department, responsible for the Linux 2.5/2.6
kernel test.

Martin Schwidefsky

IBM Deutschland Entwicklung GmbH, Schonaicher Strafie 220,
71032 Boeblingen (schwidefsky@de.ibm.com). Martin
Schwidefsky received a diploma in computer science from the
Technische Universitdt Karlsruhe. After joining IBM in 1996,
he first worked on the VSE operating system before getting
involved in Linux on zSeries development. He is currently a
Linux Software Engineer and the zSeries maintainer of the
Linux kernel. ®

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

