
A middleware performance
characterization of Linux using
IBM WebSphere Application
Server

&

V. K. Anand

W. C. Jamison

As an open-source operating system, Linuxe made an impressive mark in the history

of computing when interest from the corporate IT industry soared toward the end of

1990s. Linux, however, still faces some challenges in the areas of high performance,

especially on symmetrical multiprocessor systems. This paper describes an initiative to

investigate Linux performance using IBM WebSpheret Application Server software.

The primary goal was to study how Linux performance and scalability could be

improved by applying some of the new enhancements put into the kernel as well as by

fine-tuning the middleware. We describe the results of this investigation and explain in

detail how issues were resolved through our collaboration with the open-source

community as well as within the IBM product teams.

Linux** has come a long way since it was first

introduced in 1991. It is undoubtedly one of the

most successful open-source programs in the market

today. Two of its strong points are its cost-

effectiveness and its availability on many hardware

platforms, including powerful workstations and

mainframes. At least four factors brought Linux to

its current status. First, its open nature encouraged

talented people from all over the world to collabo-

rate in its development and maintenance with the

goal of continually improving the software. Second,

the emergence of vendors and distributors such as

Red Hat, Caldera, Debian**, SUSE, and others

provided the software support customers look for in

a product. Third, Linux gained the confidence of big

software companies such as IBM, Hewlett-Packard,

and Sun Microsystems, which in turn promoted the

operating system and encouraged its adoption.

Finally, as more and more customers invested in

Linux, software development companies and inde-

pendent software vendors became more engaged in

porting their products to this platform.

Linux now faces even greater challenges, as busi-

nesses begin to look at their Linux machines as the

next generation of enterprise servers. This creates

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ANAND AND JAMISON 353

high expectations for Linux to perform well,

especially in the context of Internet-based services

such as Web servers and application servers. Most

companies today deploy networks of symmetrical

multiprocessor (SMP) systems for their IT infra-

structure. Originally, Linux was written for single

processor systems; modern Linux kernels now

support SMP systems, but traditionally have had

scalability problems with them.

LINUX AND IBM MIDDLEWARE

IBM has a strong presence in the middleware

market. For example, it holds the biggest market

share for application servers today. As a Linux

advocate, IBM views its middleware performance on

Linux throughout all of its eServer* platforms as

critical to the success of its Linux strategy. For this

reason, a special work group within IBM was

formed to specifically characterize the performance

of Linux using IBM WebSphere* Application Server

Version 5. The mission of the work group was to

investigate the special characteristics of WebSphere

Application Server and how the new enhancements

to the Linux kernel could help improve its per-

formance and scalability on SMP systems.

Throughput and response times are the key metrics

for performance.

WebSphere Application Server is a Java** 2 Enter-

prise Edition (J2EE**) server, and IBM’s primary

platform for e-business. Many other IBM products

run on it, such as IBM WebSphere Commerce Suite,

IBM WebSphere Portal Server and IBM Content

Manager. Because it is implemented almost entirely

in Java, it runs on many different hardware and

operating-system platforms, including various Linux

distributions.

OVERVIEW

This paper is not a formal performance report.

Instead, our focus is on describing the effects of

applying some of the major enhancements in the

Linux kernel to the overall performance and scal-

ability of WebSphere Application Server Version 5.

We describe relative improvements from a known

baseline in terms of percentages. When a negative

percentage is obtained, we describe how we

resolved the problem to gain a positive improve-

ment. Although we performed the tests on several

platforms, our discussions are based on the 32-bit

Intel Architecture** (IA32**) unless mentioned

otherwise.

In the following sections, we first introduce the

work group that performed the study and provide

information about the benchmark applications used.

After that, we discuss the Linux enhancements that

we applied. We also cover some issues and

improvements that are not Linux-specific but helped

boost performance, and which required collabora-

tion with other IBM product teams. To get a sense of

how Linux was performing relative to other operat-

ing systems, we ran the same tests on exactly the

same machine with a different operating system. In

the case of IA32, we used Microsoft Windows**

2000 and 2003 servers.

This work represents the view of the authors and

does not necessarily represent the view of IBM.

PERFORMANCE EVALUATION WORK GROUP

Our work group was composed of IBM teams from

various organizations. Its primary goals were to

make sure that we uncovered issues with Linux on

WebSphere Application Server and to understand

how we could achieve the best performance by

applying enhancements and fixes to the Linux

kernel and by fine-tuning parameters (‘‘knobs’’) in

the software stack. This necessitated collaborating

with various groups, especially with the Linux open-

source community, when problems and issues were

discovered. We performed our benchmarking on the

IA32, PowerPC*, and S/390* platforms.

We believe that the best test for Linux performance

is an end-to-end ‘‘macro benchmarking’’ using

applications that run on middleware, such as an

application server. This is because the real per-

formance landscape is only seen by customers when

their applications are actually running on top of the

underlying infrastructure.

The members of this work group included the IBM

teams from WebSphere Application Server Per-

formance, the Linux Technology Center (LTC), the

Java Technology Center (JTC), DB2* Performance,

and the various performance teams from the

pSeries*, iSeries*, and zSeries* platforms.
1
LTC

was our main liaison to the Linux open-source

community. The work group remains active to this

date and is continuing its studies on newer

versions of WebSphere Application Server and

Linux kernels.

ANAND AND JAMISON IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005354

THE BENCHMARK APPLICATIONS

We chose two benchmark applications to test

WebSphere Application Server Version 5 on differ-

ent kernel levels of Linux. Each application stresses

different parts of the application server.

Trade application

The Trade benchmark application was written by

the WebSphere Application Server performance

team for its own performance work. The application

models an electronic stock brokerage firm that

provides Web-based online securities trading. There

are several versions of Trade, depending on the J2EE

version supported by the application server. In our

study, we used Trade Version 2.7 and Version 3,

which are based on J2EE 1.2 and J2EE 1.3,

respectively. For more information about J2EE, see

Reference 2. More information about Trade is

available at Reference 3.

Configuration

Figure 1 is a simple diagram of the 3-tier Trade

configuration adopted by the work group. The client

machine sends HTTP (HyperText Transport Proto-

col) requests directly to WebSphere Application

Server through port 9080. The minimum require-

ment for the benchmark is to use Trade’s EJB**

(Enterprise JavaBeans**) runtime mode, where all

access to the database uses the EJB technology,

thereby exercising the container-managed persis-

tence component of WebSphere Application Server

more heavily. The order-processing mode is set to

synchronous, which means that all buy and sell

orders are completed immediately when the request

is issued, removing the need for queuing messages.

The access mode we used is standard, in which all

communications between servers and EJBs are

performed using the Java Remote Method Invoca-

tion (RMI) protocol. The scenario workload mix,

which provides an equal distribution of Trade

operations such as login, register, quotes, and buy,

is also standard. For the Web interface, simple

JSPs** (JavaServer Pages**) are used.

Run procedures

The Trade database on the DB2 server was

populated initially with 5000 users and 1000 quotes.

As the benchmark executed, the database was

modified by updating and inserting records. In order

to maintain consistency between runs, we kept a

master copy of the original populated database and

restored it for every new run. For every test run, the

application server was restarted. The database was

restored and the desired Trade configurations were

reset. A warm-up run consisted of the following

workload (expressed in terms of number of con-

current users and total number of requests sub-

mitted to the system) and executed in this sequence:

one user, 1000 total requests; two users, 1000 total

requests; five users, 1000 total requests; ten users,

1000 total requests; 25 users, 5000 total requests; 50

users, 5000 total requests; and 100 users, 5000 total

requests. In a real environment, users spend some

amount of ‘‘pause’’ time after requesting a page; for

example, reading the contents or making decisions.

In performance terminology, this is called ‘‘think

time.’’ In our experiments, there is no think time,

which means that after a requested page is received,

the next request is immediately sent. This is also

equivalent to simulating more users than the actual

number of users in the system. In effect, the

Figure 1
Three-tier configuration for Trade application

Tier 1

Client
Driver

DB2 Server

HTTP
Requests/
Responses

Tier 2

Command
Line
Interpreter
Messages

Tier 3

Trade
EJB Mode/Synchronous/Standard

IBM WebSphere
Application Server
Version 5

Embedded WebSphere MQ DB2 Client

9080

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ANAND AND JAMISON 355

application server is stressed much more than in a

real environment, given the same number of users.

The client driver used is WebSphere Performance

Tool (WPT), which is available on the alphaWorks*

Web site.
4
For a given test scenario, there are at least

three test runs. The purpose is to ensure repeat-

ability (defined by a tolerable margin of 5 percent

variability). The final result is the average of these

three runs. All test runs were executed with no think

time.

SPECjAppServer2002 application

The other benchmark application is SPECjApp-

Server2002**, which is a public benchmark for

enterprise Java applications based on J2EE Version

1.3. It is available from the Standard Performance

Evaluation Corporation (SPEC).
5
The application

emulates a heavyweight manufacturing, supply-

chain management, and order/inventory system.

Unlike Trade, the client does not use HTTP to send

requests. Instead, Java clients communicate with the

application through Remote Method Invocation/

Internet Inter-Orb Protocol (RMI/IIOP), which con-

sequently stresses the EJB container as well as the

underlying Object Request Broker (ORB) layer of the

application server. The EJB container is where the

EJBs are executed; whereas, the ORB serves as the

communication channel between the EJB container

and the Java clients. Thus, SPECjAppServer2002

complements Trade’s heavy Web container work-

load but light workload on the EJB container. For

more information on SPECjAppServer2002, see

Reference 6.

The SPECjAppServer2002 results or findings in this

paper have not been reviewed or approved by SPEC;

therefore, no comparisons or performance inferen-

ces can be made against any published SPEC results.

Configuration

The three-tier configuration for SPECjApp-

Server2002, also called the dual-node configuration

by SPEC, is shown in Figure 2. The client driver is a

stand-alone Java program that sends order entry

requests to the application server, which in turn

interacts with the back-end DB2 database. The

supplier emulator services the manufacturing orders

sent by the application server (also called the system

under test or SUT) when it needs inventory to

service the order requests from the client.

In summary, the SPECjAppServer2002 benchmark

consists of order and manufacturing applications.

The throughput of this benchmark is directly related

to the load (injection rate) used by these applica-

tions. Hence, the injection rate needs to be increased

to scale up the throughput. The metric TOPS (total

Figure 2
Three-tier configuration for SPECjAppServer2002

Tier 1

Client
Driver

DB2 Server

RMI/IIOP
Requests/
Responses

HTTP

Tier 2

Command
Line
Interpreter
Messages

Tier 3

SPECjAppServer2002

System Under Test (SUT)

DB2 Client

IBM WebSphere Application Server

Supplier Emulator

ANAND AND JAMISON IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005356

operations per second) is the average number of

successful operations completed during the mea-

surement interval.

Run procedures
The run rules prescribed by the spec.org Web site are

not strictly followed by the work group, as these

results are for internal IBM use only and used under

SPEC’s research clause. However, the work group

has certain run rules that were followed to collect

these results. For a given injection rate, the

SPECjAppServer2002 database is created, populated,

and archived to be restored for each run using that

injection rate. During execution, the database is

scaled, but by a stepwise function, and does not grow

linearly in size. Because the database is modified for

each run, a new database needs to be loaded; for this

purpose, the created database is saved.

For every run, the database is restored and the SUT

and the supplier emulator are restarted before the

benchmark is commenced. There is a warm-up time

of 300 seconds, a steady runtime of 900 seconds,

and a cool-down time of 150 seconds. This is half

the time that was required by spec.org. We verified

that reducing this time value does not affect the

overall results of the run. The criteria for a

successful run mandate that the response time of

new order and manufacturing transactions are

below a certain range and that there is a good mix of

large and small order transactions.

LINUX ENHANCEMENTS, ISSUES, AND
SOLUTIONS

Versions 2.4, 2.5 and 2.6 of the Linux kernel, which

are referred to in this paper, are the development

kernels available from kernel.org.
7
Linux distribu-

tion vendors usually choose a particular version of

development kernel from kernel.org and apply

additional patches that they consider important to

derive the distribution kernels. Therefore, there is

quite a bit of variation among the different

distribution kernels and the kernel.org development

kernels. This study uses the Red Hat and SUSE

versions of the Linux distribution kernels.

The O(1) scheduler
Version 2.4 of the Linux development kernel has a

scheduler that is not scalable on SMP systems.
8
This

is because all runnable tasks are linked in a single

run queue. Extreme contention results from all

processors trying to access this one queue, and this

introduces increased scheduling latency as the

number of processors and/or tasks increase. Also,

this single run queue is prioritized (sorted) based on

the goodness value of a task. The goodness value is

calculated from the task’s priority, the amount of

CPU it uses and other factors. It is computed for all

tasks every time one needs to be dispatched to a

CPU.

This scalability problem is solved by the introduc-

tion of the O(1) scheduler
9
in the Linux Version 2.5

development kernel. This new scheduler imple-

ments a run queue for each CPU promoting local

CPU scheduling. The name O(1) (‘‘order one’’) was

given to indicate that this scheduler takes approx-

imately the same amount of time irrespective of the

current number of tasks and processors in the

system. This is achieved by decomposing each CPU

run queue into a number of ‘‘buckets’’ in priority

order and then using a bitmap to identify the

buckets that have runnable tasks. Because the

number of supported priority levels is constant, the

scheduler always takes an equal amount of time to

select a task for scheduling. The O(1) scheduler was

originally written and is being maintained by Ingo

Molnar of Red Hat. This scheduler has also been

accepted into the Linux Version 2.6 development

‘‘mainline’’ kernel.

Strong affinity is another feature that was intro-

duced in the O(1) scheduler. This means that a task

stays on the same CPU every time it is scheduled.

Periodically, load balancing is performed on the run

queues of the processors so that a CPU will not sit

idle while another CPU has several runnable tasks to

be scheduled.

Versions 2.5 and 2.6 of the kernel and some of the

Linux 2.4-based distributions include the O(1)

scheduler.
10

The LTC kernel performance team

observed significant improvements when the O(1)

scheduler was used on well-known benchmarks

such as VolanoMark,
11

SPECWeb99,
12

netperf,
13

and so forth. Thus, we expected that using the O(1)

scheduler would also boost performance in our

middleware tests.

Load-balancing problem
When we tested Trade Version 2.7 on both Red Hat

7.2 and Red Hat Advanced Server 2.1 (RH AS 2.1),

we were surprised to see a 20 percent throughput

degradation on the latter. Red Hat 7.2 uses the old

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ANAND AND JAMISON 357

scheduler, whereas, RH AS 2.1 uses the O(1)

scheduler. At first, we suspected that some new

features of RH AS 2.1 might have caused the

problem. However, two characteristics of the work-

load on RH AS 2.1 led us to believe that the problem

was related to the scheduler; namely, (1) the CPU

activity went down, making it 40 percent idle on the

average compared to almost less than 5 percent idle

in RH 7.2, and (2) there was a wide variation in the

number of runnable tasks (from none to 25 tasks)

throughout the run. In addition, the profiling data

taken using readprofile, a Linux kernel tool that

enables kernel timer-based profiling, revealed that

the old scheduler was using seven times more CPU

time than the O(1) scheduler to perform task

scheduling.

To verify that the scheduler was indeed the source of

problem, a quick test of Version 2.4.20 of the

development kernel with and without the O(1)

scheduler patch was performed. With the O(1)

scheduler patch, the symptoms that were just

described were observed again. A breakthrough

analysis showed that not only did the number of

runnable tasks vary widely, but they were also not

evenly distributed among all the CPUs. Thus, we

knew that the load-balancing algorithm of the O(1)

scheduler was not working very well.

This problem was brought to the attention of the

kernel developers. Some of the open-source com-

munity developers acknowledged seeing the load-

balancing problem with the O(1) scheduler on some

workloads. A few suggestions were given by the

kernel open-source community, including: (1) trying

out Andrea Arcangeli’s version of the O(1) sched-

uler
14

because it has a better load balancing

algorithm, (2) fixing the code by making load

balancing more aggressive, and (3) modifying the

code so that load balancing is activated more

frequently. We followed the first suggestion. This

version of the O(1) scheduler had added capabilities

such as load balancing during a synchronous

process wake-up. This means that an idle CPU is

chosen to run an awakened process instead of

scheduling it to a processor where it ran recently.

This breaks the affinity to some extent. However, it

is widely known that affinity and load balancing

hardly complement each other. They are both

important, but finding the right balance is a

complicated job.

Unfortunately, using this O(1) scheduler did not

help to bridge the performance gap. In fact, the

throughput went down another 15 percent for Trade

2.7. However, it revealed to us a different issue, that

of the queuing policy of the kernel yield function.

We discuss this issue at length in the section ‘‘High

rates of context switching.’’

While this work was ongoing, Ingo Molnar issued a

patch called D7
9
for his O(1) scheduler. This patch

removed the affinity test in his load-balancing

algorithm. In the original algorithm, this test

specified that a task which is already in a run queue

cannot be migrated to another run queue if that task

has run in its current CPU in the last n milliseconds.

The value of n varies depending on the hardware

architecture, cache size, memory bandwidth, and so

forth. As a result, it is possible that the loads of the

queues in a system will not be balanced properly if

most of the tasks in the run queues still have affinity

to their respective processors. By removing the

affinity test, any idle CPU in the system can be given

tasks in its run queue. We applied the D7 patch, and

it fixed the performance problem with Trade 2.7, as

shown in Figure 3.

Because the original O(1) scheduler was made

available for the Version 2.5.59 kernel, a compar-

ison is made between this version and the Version

2.4.7–10 kernel that has the old scheduler. As seen

in the figure, the throughput on Version 2.5.59 went

Figure 3
The load balance problem on Trade2.7

2.4.7-10 2.5.59 2.5.59+D7
520

540

560

580

600

620

640

660

680

700

720
Th

ro
ug

hp
ut

 (
in

 p
ag

es
 p

er
 s

ec
on

d)

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f C
PU

 U
til

iz
at

io
n

Kernel Levels

Pages/sec

%CPU

ANAND AND JAMISON IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005358

down by 14.3 percent. When the D7 patch was

applied, the throughput lost was regained and came

out approximately 2 percent ahead of the Version

2.4.7-10 kernel.

The same problem was observed using the SPEC-

jAppServer2002 workload. Applying the D7 patch to

the 2.5.59 kernel, however, improved performance

by 16.4 percent. Comparing it to the old scheduler

(Version 2.4.7-10), a 2 percent improvement was

obtained, as seen in Figure 4. Aside from the fact

that the throughput on the 2.5.59 kernel went down,

the CPU cycles also dropped significantly. Because

the same injection rate is used in all of these tests,

this indicates a serious bottleneck in Version 2.5.59

of the kernel. However, it also tells us that

performance can be improved if all of the bottle-

necks can be found. Assuming this could be done,

we computed analytically the throughput ‘‘scaled to

CPU’’ in each case; that is, the projected throughput

was based on 100 percent CPU consumption. The

resulting improvement, as seen in the figure, is

better in the case of the 2.5.59 kernel.

Looking at Figure 4, it appears that the O(1)

scheduler, even with the D7 patch, is not signifi-

cantly better than the old scheduler for this

particular workload. This is because the old

scheduler had only one queue, and the scheduler

was able to keep all the processors busy. Also, the

number of runnable tasks in this workload was not

in the order of thousands, so no scaling problem was

evident with the old scheduler. The difference in

performance between the two schedulers will be

more significant when the number of runnable tasks

is in the order of thousands.

With these tests, we found that both the Trade and

SPECjAppServer2002 workloads do not seem to

favor processor affinity of tasks. Both of these

workloads are very stressful. Trade does not use any

think time, and therefore, the work coming in is

continuous and fills up the queues very quickly.

Thus, in a highly stressful workload where requests

come in continuously, load balancing results in

better performance than strong processor affinity.

High rates of context switching
When Arcangeli’s O(1) scheduler patch

15
was used

for the Trade 2.7 benchmark, context switching was

occurring at an alarming rate. The context switches

on this kernel increased to approximately 30,000 per

second, or four times the usual rate of context

switching observed for this workload.

In the kernel code, the yield function queues the

yielding task to one of the scheduler’s run queues.

The scheduler then selects another task to run,

resulting in a context switch. The sys_yield function

is called by the application (in our case, the Java

virtual machine is the application), but the kernel

executes the function through the yield code. Where

a yielding task is queued depends on the queuing

policy used by the kernel. We believed that different

queuing policies could have a very significant effect

on context switches.

We performed detailed profiling of the queues in the

yield code. Table 1 summarizes the total calls to the

yield function in our eight-way system and the

distribution of the relative priority level of the

yielding task and the task that was selected to run.

For example, on CPU 0, there were a total of 263,711

yields, of which 145,103 had the yielding task and

the selected task on the same priority level (‘‘Same’’

row in the table.) ‘‘Only’’ in the table refers to a

condition where there is no runnable task other than

the yielding task, and this situation does not result

in a context switch. As shown in the table, the

values in the ‘‘Same’’ and ‘‘Only’’ rows are higher

than the other rows, but the ‘‘Only’’ condition is an

exceptional condition as the yielding task is the only

Figure 4
Fixing the load balance problem: Relative
performance based on 2.4.7-10 Linux kernel on
SPECjAppServer2002

Kernel Levels

Th
ro

ug
hp

ut
 (

in
 T

O
PS

)

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f C
PU

 U
til

iz
at

io
n

%CPU

-20

-15

-10

-5

0

5

10

15

% Scaled to CPU% Change in TOPS

2.5.59 2.5.59+D7

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ANAND AND JAMISON 359

runnable task in the system. When there are tasks

with the same priority as the yielding task, the

queuing policy used determines how long the

yielding task is queued before it runs again.

An examination of the yield code in Arcangeli’s

patch and the 2.5.x kernels revealed that the

queuing policies adopted by these two code sets are

different. In Arcangeli’s patch, the yielding task is

queued right after the selected task, and thus makes

the yielding task the head of the queue (see Policy

P1 in Figure 5). This implies that only one task will

be able to run before the yielding task gets

scheduled again. In the Red Hat AS 2.1 kernel, the

yielding task is queued to the tail of the same

priority queue, making it yield to all runnable tasks

at the same priority level (Policy P2). In the Version

2.5.69 development mainline kernel, the yielding

process is moved to the priority queue on the

expired list, making it yield to all runnable tasks in

the system (Policy P3, not shown in the figure)

because the expired list becomes active only after all

runnable tasks have exhausted their time slices.
16

It

is clear that the yielding task yielded longer in the P2

case. This is desirable for the application, as no

additional yield calls are issued. In contrast, in the

Figure 5
Queuing policies

Task 0
(Yielding Task)

Task 1
(Selected Task)

Before inserting the yielding task into the active
queue with same priority level

After inserting the yielding task into the active queue
where the yielding task becomes the head of the queue

(A) Policy P1

(B) Policy P2

head

Task 2 Task 3 Task 2 Task 3

head

Task 0
(Yielding Task)

Task 1
(Selected Task)

Before inserting the yielding task into the active
queue with same priority level

After inserting the yielding task into the active queue
where the yielding task becomes the tail of the queue

head

Task 0
(Yielding Task)

Task 1
(Selected Task)

Task 2 Task 3 Task 3Task 2

head

Task 1
(Selected Task)

Task 0
(Yielding Task)

Table 1 Distribution of yield calls on an eight-way x440 system using the Arcangeli O(1) scheduler patch

Relative
Priority

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7

Same 145103 157055 163064 156379 162783 161733 167366 177876

Only 117653 112387 112387 105653 101420 96053 108830 92293

Higher 26 34 28 29 31 25 33 36

Lower 929 937 1000 1073 1036 1016 1156 1132

Total 263711 270413 276479 263134 265270 258827 277385 271337

ANAND AND JAMISON IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005360

P1 case, because the time interval during which the

task yielded is not long enough, the application

keeps issuing more yields, resulting in more context

switches. Even though this is fixed in the 2.5.x

development mainline kernels, SLES distribution

kernels follow the P1 policy. The zLinux team also

reported high rates of context switching as a result

of their Trade benchmarking effort. This issue has

two aspects: the queuing policy in the kernel and the

number of yields that the application, in this case

the Java virtual machine (middleware), is issuing.

As mentioned the queuing policy determines the

length of time a yielding task waits until it is

scheduled again. However, the kernel is unaware of

the needs of the caller. An application typically calls

the sched_yield function because the resource it

needs is not yet available, but the application rarely

knows how long it will need to wait for the resource

to become available. The availability of the resource

depends on external events and progress made by

other competing tasks. Determining the optimum

length of time the task needs to be yielded is a

complex job. Moreover, the needs of applications

vary and must be treated differently. For example,

interactive applications require quick response time,

and so policy P1 works very well. This is exactly the

reason why the two kernels have two different

behaviors when satisfying two different needs.

Arcangeli adopted the P1 policy to support inter-

active applications. At IBM’s request, he agreed to

adopt policy P2 through a configuration option. For

the SLES 8 SP3B1 kernel, he used P2 as the default

yield policy. The improvements from using Policy

P2 are shown in Table 2. We discovered that using

policy P3 yields results similar to using Policy P2 on

both the Trade3 and SPECjAppServer2002 work-

loads.

Using futex versus sys_yield

Even though the problem concerning the high rate of

context switching has been resolved, there is a need

for more automatic detection of what the optimum

wait period for each application should be. Adopting

a suitable dynamic policy in the kernel would be a

preferable solution if applications continue to use

the sys_yield mechanism. Arcangeli suggested that

the application should use the new fast user-level

mutex or futex mechanisms instead of sys_yield. The

problem with yield is that it is nondeterministic and

thus does not have clear semantics. The kernel does

not know what the application is waiting for and

therefore cannot estimate how long it should be

made to wait. With futex, however, the application

issues a futex wait call when there is contention.

After the lock to the resource has been released, the

application calls the kernel for a futex wake.
17

Thus,

the kernel does not need to estimate a wait period.

The Linux kernel open-source community in general

is opposed to the idea of applications using sys_yield

because every application seems to have different

requirements as to how sys_yield should behave.

The sys_yield function is used basically by multi-

threaded applications to improve performance by

giving up control of the processor to other tasks

instead of waiting and consuming CPU cycles. The

IBM Java virtual machine and its just-in-time (JIT)

compiler both use sys_yield calls. A high number of

yield calls are issued by the Java virtual machine as

part of its three-tier locking scheme for Monitors

(i.e., classes that control the access to resources by

threads), which is its primary synchronization

Table 2 SPECjAppServer2002 benchmark results

using queuing policies P1 and P2: (A) results; (B)

system configuration

(A) Results

Policy TOPS WebSphere Application
Server CPU Utilization

P1 baseline 70%

P2 þ32% 88%

(B) System Configuration

Websphere Application
Server

x440 P4,
4x2GHz,
2MB L3 cache,
4GB RAM,
Intel Gigabit NIC

DB2 Server x350 P3,
4x700MHz,
1MB L2 cache,
5GB RAM
IBM ServRaid
SCSI with 10 disks,
Intel Gigabit NIC

Client x330 P3,
2xlGHz,
4GB RAM,
Intel Gigabit NIC

Kernel SLES 8 SP2 (for P1),
SLES 8 SP3B1 (for P2)

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ANAND AND JAMISON 361

mechanism. One study claims that over 19 percent

of a Java application’s time is spent on synchroni-

zation.
18

Given the importance of Monitors to

performance, considerable effort has been expended

throughout IBM in designing and implementing

them for each platform on which the Java virtual

machine runs.
19

Hence, the IBM team was initially

not convinced that the three-tier monitor scheme

needed any change.

Three-tier locking

The three-tier lock implements a combination of

three possible actions that can be taken when a

process or thread faces contention: (1) block

completely and wait to be notified, (2) yield the

processor and try again, and (3) idle, consuming

CPU cycles. A combination of these three actions

seems to yield better performance when the work-

load has more threads than the number of proces-

sors. It has been found through empirical database

studies done with DB2 that the optimal length of

time to spin before blocking depends on the number

of processors in the system.
20

As a result, the IBM

Java virtual machine has adopted three loop counts

to determine how many times each of these three

actions is taken before blocking. These counts were

given default values based on experimental studies.

As the SPECjAppServer2002 benchmark effort

moved to an eight-processor system, the problem of

context switching along with high Java lock

contention surfaced again. To reduce the number of

context switches, we suggested removing sys_yield

calls completely from the three-tier locking scheme,

making it a two-tier scheme. An experiment with

this approach resulted in fewer context switches but

higher lock contention and lower throughput,

leading to negative eight-way scalability. That

clearly showed that the time spent in these two-tier

locks before blocking was not enough for the eight-

way system. The JIT team continued the tuning

experimentation and found that the default values

set in the Java virtual machine for these three loop

counts needed adjustments to increase the wait time

before blocking. This was especially true because in

addition to increasing the number of processors to

eight, the speed of the processors also increased

since the last empirical studies were done to set the

default values. By increasing and fine-tuning these

loop counts, the throughput for the eight-way

system improved by 20 percent. The Java lock

contention was reduced with these adjustments, but

the number of context switches remained the same.

These adjustments improved performance on other

Java benchmark workloads as well, such as

SPECjBB2000, not only on Linux but also on AIX*,

Microsoft Windows, and so forth. The IBM team

updated the default values of these loop counts for

all Java virtual machine platforms in the follow-on

release.

LTC continued working with the Java virtual

machine team and created a prototype of the Java

virtual machine that replaced sys_yield calls with

futex calls in the three-tier locking for Linux.
19

This

prototype study shows that using futex calls

improved performance marginally, around 2 per-

cent. However this study also shows that by running

multiple SPECjBB
21

application instances on the

same system, futex uses the CPU more efficiently

than sys_yield. There is more experimentation to be

done to understand the effects of futex in other Java

workloads, and LTC will participate in that effort.

Large page support in Linux and the IBM Java
virtual machine

Modern computer architectures support more than

one page size. If an operating system supports

multiple page sizes, applications have the option to

specify which page size to use. Applications with

large working sets (i.e., data and code needed for

application execution) benefit from using larger

page sizes, especially when they need to randomly

access huge amounts of data. With smaller page

sizes, this kind of random access usually results in

page-table misses, which have significant perfor-

mance impact. Large pages reduce the number of

entries in the translation lookaside buffer (TLB)

table; that is, each entry is backed by larger amount

of memory. They further improve the process of

memory prefetching by eliminating the necessity to

restart prefetch operations on 4KB boundaries.

Linux supports two page sizes, 4KB and 4MB. The

actual number of large pages available in the system

is configurable through the proc interface. Also, the

allocation of large pages depends on the availability

of contiguous physical memory. Thus, it is recom-

mended to allocate large pages during system

bootup. However, because large pages are not

available through anonymous memory allocation

(e.g., malloc), a temporary file system called

hugetlbfs has to be created, which can be deleted

after establishing the mapping through mmap. Any

ANAND AND JAMISON IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005362

file used in hugetlbfs is backed by large pages.

Another way to allocate large pages is by using the

shmget() interface. In either case, the large pages

should be made available in the system during the

system startup time.

Version 1.4.2 of the IBM Java virtual machine for

Linux supports huge TLB tables or large pages.

However, the results shown here are derived from a

prototype based on Version 1.4.1 with a Version

2.5.69 Linux development kernel and the SPEC-

jAPPServer2002 benchmark on WebSphere Appli-

cation Server Version 5.0.2. On a four-way system,

the large page support improved throughput per-

formace by 1.3 percent; on an eight-way system, it

improved throughput performance by 3.3 percent.

WebSphere clustering

We discovered that scalability for up to eight

processors remains a challenge with Linux. Even

with the three-tier lock tuning leading to 20 percent

more throughput on eight-way runs of SPECjApp-

Server2002, the scalability is still well below the

expected range. Considering the limitation of 32-bit

Java in taking advantage of the memory in this

eight-way system, the remaining option is to use

more instances of the application server on the

machine. This is called vertical clustering or cloning

>in the context of the WebSphere Application

Server, and is a typical approach when a single

application server cannot reach maximum perfor-

mance; that is, it cannot maximally utilize the CPU,

memory, and other resources.

In the clustering approach, we create multiple

instances of the application server on the same

machine and then install the benchmark applica-

tions on each application server. WebSphere Appli-

cation Server has a built-in facility called workload

management (WLM) in which requests are distrib-

uted evenly among the application servers (since

both have the same application installed). By doing

this, we are using more CPU cycles, as there are

more processes that are actually running actively.

This improved the scalability of moving from four to

eight processors. The improvement is from a factor

of 1.1 to 1.3 (a factor of 2.0 means perfect scaling).

NUMA characteristics of an eight-way system

Besides the middleware, the hardware system

characteristics of the eight-way system were also

evaluated to assess scalability. We used an eight-

way x440 system for our IA32 test. The IBM x440

NUMA Server uses a modular hardware architecture

design where each module or node consists of a set

of processors and local memory. In this non-uniform

memory access (NUMA) architecture, modules can

be added to the system as desired. The eight-way

system was formed using two NUMA nodes, each

with four processors. The two nodes are connected

by a high-speed interconnect bus.

The NUMA architecture was designed to surpass the

scalability limits of the SMP architecture, where all

memory accesses go through the same shared

memory bus. The Linux kernel has to leverage this

architecture to reach higher scalability. The sched-

uler has to maintain process affinity in such a way

that a given process, along with its working set, does

not have to migrate to a different node. The memory

subsystem has to strive to allocate memory from the

local node rather than from a remote node. The IBM

Linux Technology Center, along with SGI and

Fujitsu (through the SourceForge
22

open-source

community project ‘‘NUMA’’
23
) enhanced the

memory subsystem and scheduler in the 2.5.x

versions of the kernel to leverage the NUMA

characteristics. Versions 2.5 and 2.6 of the Linux

kernel have data structures and macros for deter-

mining the layout of the memory and processors on

the system. The virtual memory subsystem uses

these to make decisions on the optimal placement of

memory processes.

The O(1) scheduler has been enhanced to include

NUMA awareness in order to support locality of

processes to memory by scheduling a process on the

same node throughout the life of the process.

Optionally, we can also force a process to stay on

the same node by pinning the process to the

processors on that node. To improve the scalability

of SPECjAppServer2002 on the eight-way system,

two application servers are pinned, one to each node

in the x440 system, so that each Java virtual

machine in which the Web application server is

started is localized within the node for heap

allocation and garbage collection. The NUMA

enhancements in the memory subsystem of the

Version 2.5 kernel ensure that process memory is

allocated in the local node. By using this config-

uration, which utilizes two WebSphere Application

Servers, the eight-way system scalability is im-

proved from a factor of 1.3 to 1.6.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ANAND AND JAMISON 363

OTHER ISSUES: DEADLOCK IN
SPECJAPPSERVER2002

During the performance evaluation effort of the

2.5.x versions of the kernel on WebSphere using the

SPECjAppServer2002 application, a deadlock in the

Linux Version 2.5.59 development kernel was

uncovered. This problem was reported to the Linux

kernel mailing list, and the LTC kernel development

team helped to resolve the bug. Because most of the

kernel developers use ‘‘microbenchmarks’’
24

for

evaluating performance, they may or may not

encounter some of the issues that might surface

using multitier enterprise benchmarks such as

SPECjAppServer2002 or Trade.

When a task acquires a ‘‘spinlock’’
25

with interrupts

disabled and then performs an operation that

requires a flush of the TLBs in other processors, it

sends an interprocessor interrupt (IPI) to other

processors. It then enters a busy wait state, awaiting

an acknowledgment. The deadlock occurs if another

CPU is waiting for the same spinlock that the task is

currently holding.

A patch for the deadlock was submitted to the kernel

mailing list, which facilitates the open-source

community verification of patches through their

code review and testing. After the patch was tested

in our laboratory and after making sure there was no

objection to the posted patch from the community,

the patch was sent to the kernel maintainers for

acceptance into the development mainline kernel.

The problem was found in Version 2.5.59 of the

kernel, and the patch was accepted into the Version

2.5.63 of the kernel.

Comparing Linux with Windows on IA32

Finally, this section describes the comparison we

made between Linux and Windows using Trade3

and SPECjAppServer2002. To ensure an ‘‘apples-to-

apples’’ comparison, we used exactly the same

physical machines in our configuration and main-

tained the tuning values for all middleware and user

applications, using exactly the same run procedures.

In the other words, only the operating system

changed. Figure 6 shows the summary of the Trade3

comparison. The system configuration and results

for this comparison are shown in Table 3 and Table

4. We used the SLES 8 SP2A release of the

distribution kernel from SUSE for Linux and Micro-

soft Windows 2003 Enterprise Server for the other

operating system.

At first glance, Figure 6 and Table 4 clearly show

that the performance of Linux is very comparable

with that of Windows. Although Windows utilized

the CPU better than Linux, as more processors were

added (except in the case of eight processors), Linux

produced more throughput, indicating better effi-

ciency. The scaling factor for each operating system

was exactly the same for up to four processors. The

Figure 6
SMP scaling comparison using Trade3: Linux
vs Microsoft Windows

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

0

50

100

150

200

250

300

350

1way 2way 4way 8way

SLES 8 SP2A Windows 2003

Table 3 System configuration for SMP scaling

comparison using Trade3

Client machine SunFire V880 8-way,
900 MHz,
16GB RAM
OS: Solaris 9
Driver: WPT 1.9.4.1

System under test IBM xSeries x440 8-way,
2 GHz,
6GB RAM
OS: SLES 8 SP2A (for Linux)
Microsoft Windows 2003 Enterprise
Edition (for Windows)
Application server: WebSphere
Application Server V5.0.2

Database system Hewlett-Packard RP7410 8-way,
875 MHz,
16GB RAM
OS: HP-UX 11i
Database: DB2 8.1 FP 2

ANAND AND JAMISON IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005364

eight-way scaling results were not good for both

operating systems, with a very low factor of 4.2 for

Linux (8.0 being the perfect scaling). The scaling

results for Windows are not as high as the Linux

results, but it must be remembered that the amount

of tuning applied to the Linux system was not

applied to the Windows system. Nevertheless, it is

our expectation that the Windows scaling results for

an 8-way system will not improve drastically even

when the best tuning parameters possible are used.

Table 5 shows the results of the SPECjApp-

Server2002 comparison between Windows 2000 and

two Linux kernels. The first Linux kernel, SLES 8

SP3B2, is a distribution kernel from SUSE and the

other kernel is an early version of the new Version

Table 4 Results for SMP scaling comparison

Scaling One way Two way Four way Eight way

Operating system Linux Windows Linux Windows Linux Windows Linux Windows

Users 15 15 30 30 60 60 120 120

Response time (secs) 0.23 0.23 0.27 0.28 0.31 0.30 0.44 0.53

WebSphere Application Server
percentage of CPU utilization 100 100 97 100 96 100

92
90

Database percentage of CPU
utilization 3 3 6 6 13 13 17 15

Scaling 1.0 1.0 1.7 1.7 3.0 3.0 4.2 3.6

Table 5 Linux and Microsoft Windows comparison using SPECjAppServer2002: (A) comparison; (B) system

configuration

(A) Comparison

Four Way Eight Way
(One Java virtual machine)

Eight Way
(Two Java virtual machines)

TOPS Scaling TOPS Scaling TOPS Scaling

Windows2000 Baseline 1.0 Baseline 1.28 Baseline 1.48

SLES 8 SP3B2 þ3.4% 1.0 �6.1% 1.16 þ5% 1.50

2.6-test2 Kernel þ3.4% 1.0 �0.002% 1.24 þ7.9% 1.55

(B) System Configuration

Client Machine: x330 2-Way (Pentium 3) 1GHz, 4GB RAM 256 KB L2 Cache, Intel Gigabit Ethernet card
Operating System: SLES 8 SP3 Beta 1

SUT: x440 8-way (Pentium 4) 2 GHzm, 8 GB RAM 2MB L3 Cache
Operating System: Windows 2000 Advanced Server
SLES 8 SP3 Beta 2 þ patches
Linux Kernel 2.6-test2
Application Server: IBM WebSphere Application Server v5.0.2

Database: (for Windows 2000) x400 4-way 2GHz, 8MB RAM with exp300 disk array
Operating System: Windows 2000 Advanced Server
Database: DB2 V8.1 FP 3

Database: (for Linux) x350 4-way 1MB L2 Cache 5GB RAM 512 KB L2 Cache
Operating System: SLES 8 SP3 Beta 1
Database: DB2 V8.1 FP 3

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ANAND AND JAMISON 365

2.6 development kernel from kernel.org. In this

comparison, we use the results of Windows 2000 as

the baseline.

On the four-way system, we see that both Linux

kernels yield better throughput than Windows.

However, when moving to the eight-way system (for

a single instance of the application server), Linux

falls behind Windows. The scaling of Linux is also

behind, especially with SLES 8 SP3B2. The good

news, however, is that this gap has been narrowed

by the new Version 2.6 kernel, with only a differ-

ence of 0.04 in the scaling factor. We tried the

clustered approach where two application servers

were used, each one pinned to a four-processor node

in our NUMA-based machine. As we can see from

the scaling, both Windows and Linux benefited from

this approach quite significantly. It is also interest-

ing to note that Linux has benefited a lot more in this

approach, as it surpassed the scaling and throughput

of Windows. This may be a manifestation that Linux

supports NUMA better than Windows. Thus we

achieved a scaling of 1.55 out of a perfect scaling of

2.0 for the Linux 2.6 kernel.

CONCLUSION

We have provided a detailed description of the work

we have done to improve the performance and

scalability of WebSphere Application Server Version

5 on the Linux platform. The overall performance of

the middleware, and hence the user applications,

depends heavily on Linux because it is at the bottom

of the software stack. We have demonstrated

performance gains by applying some of the key

enhancements in the Linux kernel and have

analyzed some of the characteristics of the workload

with each patch that we have tried. Overall, the

performance of WebSphere Application Server on

Linux is comparable to that of other operating

systems on the same hardware. Scalability on SMP

systems has improved for up to four processors.

Beyond that, however, major work and research in

this area are still needed. Thus, it is fair to say that

Linux is ready to be an enterprise server provided

processors are limited to a maximum of four when

SMP systems are used.

The work group continues to work on its mission

with the additional goal of ensuring that perfor-

mance does not regress with newer releases of

WebSphere Application Server and Linux distribu-

tions. Some of the major areas that need to be

investigated further include NPTL (Native POSIX**

Thread Library for Linux) measurements; differ-

entiating the performance of futex and sys_yield;

trying out a distributed configuration of WebSphere

Application Server, that is, a clustered configuration

of application server nodes; extending scalability

improvements to eight processors; and conducting

additional competitive evaluations with other oper-

ating systems.

ACKNOWLEDGMENTS
We would like to thank our management teams and

Andrea Arcangeli from SUSE and recognize all of the

hard work of the WPLP (WebSphere Application

Server Performance on Linux Platforms) team

members, Christopher Blythe, Kenichiro Ueno, Rajan

Ravindran, Brian Twichell, the JIT/Java virtual

machine team, and the DB2 team from Toronto.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds,
Software in the Public Interest, Inc., Sun Microsystems, Inc.,
Intel Corporation, Microsoft Corporation, Volano LLC, Stan-
dard Performance Evaluation Corporation, VA Software
Corporation, or the Institute of Electrical and Electronic
Engineers, Inc.

CITED REFERENCES AND NOTES
1. The LTC itself performed the tests on the xSeries

platform.

2. Java 2 Platform, Enterprise Edition (J2EE), http://
java.sun.com/j2ee.

3. Pulsar—eBusiness Benchmarks for WebSphere Applica-
tion Server, http://pulsar.raleigh.ibm.com.

4. IBM alphaWorks: Emerging Technologies, http://
www.alphaworks.ibm.com.

5. SPEC—Standard Performance Evaluation Corporation,
http://www.spec.org.

6. SPECjAppServer2002, http://www.spec.org/
jAppServer2002/.

7. The Linux Kernel Archives, http://www.kernel.org.

8. M. Kravetz and H. Franke, ‘‘Linux Multi-queue Sched-
uler,’’ (2001), http://lse.sourceforge.net/scheduling/
mq1.html.

9. I. Molnar, ‘‘O(1) Scheduler Version 2.5.59,’’ http://
people.redhat.com/mingo/O(1)-scheduler/
sched-2.5.59-D7.

10. The O(1) scheduler was ‘‘backported’’ to some of the later
releases of the Version 2.4 distribution kernels.

11. Volano: The Volano Report and Benchmark Tests, http://
www.volano.com/benchmarks.html.

12. SPECWeb99 User’s Guide, http://www.spec.org/Web99/
docs/users_guide.html.

ANAND AND JAMISON IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005366

13. The Public Netperf Homepage, http://www.netperf.org/
netperf/NetperfPage.html.

14. A. Arcangeli, ‘‘Scheduler for Linux Kernel Version
2.4.20,’’ The Public Linux Archive, http://
www.kernel.org/pub/linux/kernel/people/andrea/
kernels/v2.4/2.4.20rclaal/.

15. This patch is based on the 2.4.20 kernel.

16. V. Anand, H. Franke, H. Linder, S. Nagar, P. Narayan, R.
Ravindran, and T. Ts’o, ‘‘Benchmarks that Model Enter-
prise Workloads,’’ Proceedings of the Ottawa Linux
Symposium (2003), pp. 434–446, http://
archive.linuxsymposium.org/ols2003/Proceedings/
All-Reprints/Reprint-Tso-OLS2003.pdf.

17. R. Russell, M. Kirkwood, and H. Franke, ‘‘Fuss, Futexes
and Furwocks: Fast User-Level Locking in Linux,’’
Proceedings of the Ottawa Linux Symposium (2002), pp.
479–495, http://www.linux.org.uk/;ajh/
ols2002_proceedings.pdf.gz.

18. E. Armstrong, ‘‘HotSpot: A New Breed of Virtual
Machine’’, Java World, March 1998.

19. R. Dimpsey, R. Arora, and K. Kuiper, ‘‘Java Server
Performance: A Case Study of Building Efficient, Scalable
Jvms,’’ IBM Systems Journal 39, No. 1, 151–174
(November 2000).

20. D. Guniguntala, ‘‘2 Tier IBM JVM Monitor Implementa-
tion with Fastlocks,’’ http://bvrgsa.ibm.com/projects/l/
ltcisl/public/jvm/fastlock/fastlock.html.

21. SPEC JBB2000, http://www.spec.org/jbb2000.

22. SourceForge.net is the world’s largest open-source soft-
ware development Web site, with the largest repository
of open-source code and applications available on the
Internet. SourceForge.net provides free services to open-
source developers.

23. Open Source NUMA Project, http://lse.sourceforge.net/
numa.

24. ‘‘Microbenchmarks’’ are small programs written to
measure the performance of a single subsystem such as a
network, SCSI layer, file system, or memory. They are
usually easy to set up and run.

25. ‘‘Spinlock’’ is a busy-wait method of ensuring mutually
exclusive use of a resource.

Accepted for publication November 12, 2004.

Vaijayanthimala K. Anand
IBM Systems Group, LTC, 11501 Burnet Road, Austin, TX,
7878 (manand@us.ibm.com). Ms. Anand is a member of the
Linux Kernel Performance team in the Linux Technology
Center. Her interests include networks, Java technology, and
kernel performance. She has a Master’s degree in computer
science from the University of Houston.

Wilfred C. Jamison
IBM Software Group, AIM Division, 3039 Cornwallis Rd.,
Research Triangle Park, North Carolina 27709
(wjamison@us.ibm.com). Dr. Jamison is currently a member
of the on demand software strategy team. He was a member of
the WebSphere Performance team when this study was
conducted and led the study at that time. His interests include
software performance, Java technology, distributed systems,
and programming methodologies. He received a Ph.D. degree
in computer science in 1998 from Syracuse University. &

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ANAND AND JAMISON 367

Published online April 12, 2005.

