A middleware performance
characterization of Linux using
IBM WebSphere Application

Server

As an open-source operating system, Linux™ made an impressive mark in the history
of computing when interest from the corporate IT industry soared toward the end of
1990s. Linux, however, still faces some challenges in the areas of high performance,
especially on symmetrical multiprocessor systems. This paper describes an initiative to

V. K. Anand
W. C. Jamison

investigate Linux performance using IBM WebSphere® Application Server software.
The primary goal was to study how Linux performance and scalability could be

improved by applying some of the new enhancements put into the kernel as well as by
fine-tuning the middleware. We describe the results of this investigation and explain in
detail how issues were resolved through our collaboration with the open-source
community as well as within the IBM product teams.

Linux** has come a long way since it was first
introduced in 1991. It is undoubtedly one of the
most successful open-source programs in the market
today. Two of its strong points are its cost-
effectiveness and its availability on many hardware
platforms, including powerful workstations and
mainframes. At least four factors brought Linux to
its current status. First, its open nature encouraged
talented people from all over the world to collabo-
rate in its development and maintenance with the
goal of continually improving the software. Second,
the emergence of vendors and distributors such as
Red Hat, Caldera, Debian**, SUSE, and others
provided the software support customers look for in
a product. Third, Linux gained the confidence of big
software companies such as IBM, Hewlett-Packard,

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

and Sun Microsystems, which in turn promoted the
operating system and encouraged its adoption.
Finally, as more and more customers invested in
Linux, software development companies and inde-
pendent software vendors became more engaged in
porting their products to this platform.

Linux now faces even greater challenges, as busi-
nesses begin to look at their Linux machines as the
next generation of enterprise servers. This creates

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

ANAND AND JAMISON 353

high expectations for Linux to perform well,
especially in the context of Internet-based services
such as Web servers and application servers. Most
companies today deploy networks of symmetrical
multiprocessor (SMP) systems for their IT infra-
structure. Originally, Linux was written for single
processor systems; modern Linux kernels now
support SMP systems, but traditionally have had
scalability problems with them.

LINUX AND IBM MIDDLEWARE

IBM has a strong presence in the middleware
market. For example, it holds the biggest market
share for application servers today. As a Linux
advocate, IBM views its middleware performance on
Linux throughout all of its eServer* platforms as
critical to the success of its Linux strategy. For this
reason, a special work group within IBM was
formed to specifically characterize the performance
of Linux using IBM WebSphere* Application Server
Version 5. The mission of the work group was to
investigate the special characteristics of WebSphere
Application Server and how the new enhancements
to the Linux kernel could help improve its per-
formance and scalability on SMP systems.
Throughput and response times are the key metrics
for performance.

WebSphere Application Server is a Java** 2 Enter-
prise Edition (J2EE**) server, and IBM’s primary
platform for e-business. Many other IBM products
run on it, such as IBM WebSphere Commerce Suite,
IBM WebSphere Portal Server and IBM Content
Manager. Because it is implemented almost entirely
in Java, it runs on many different hardware and
operating-system platforms, including various Linux
distributions.

OVERVIEW

This paper is not a formal performance report.
Instead, our focus is on describing the effects of
applying some of the major enhancements in the
Linux kernel to the overall performance and scal-
ability of WebSphere Application Server Version 5.
We describe relative improvements from a known
baseline in terms of percentages. When a negative
percentage is obtained, we describe how we
resolved the problem to gain a positive improve-
ment. Although we performed the tests on several
platforms, our discussions are based on the 32-bit
Intel Architecture** (IA32**) unless mentioned
otherwise.

354 ANAND AND JAMISON

In the following sections, we first introduce the
work group that performed the study and provide
information about the benchmark applications used.
After that, we discuss the Linux enhancements that
we applied. We also cover some issues and
improvements that are not Linux-specific but helped
boost performance, and which required collabora-
tion with other IBM product teams. To get a sense of
how Linux was performing relative to other operat-
ing systems, we ran the same tests on exactly the
same machine with a different operating system. In
the case of 1A32, we used Microsoft Windows**
2000 and 2003 servers.

This work represents the view of the authors and
does not necessarily represent the view of IBM.

PERFORMANCE EVALUATION WORK GROUP

Our work group was composed of IBM teams from
various organizations. Its primary goals were to
make sure that we uncovered issues with Linux on
WebSphere Application Server and to understand
how we could achieve the best performance by
applying enhancements and fixes to the Linux
kernel and by fine-tuning parameters (“knobs”) in
the software stack. This necessitated collaborating
with various groups, especially with the Linux open-
source community, when problems and issues were
discovered. We performed our benchmarking on the
1A32, PowerPC*, and S/390* platforms.

We believe that the best test for Linux performance
is an end-to-end “macro benchmarking” using
applications that run on middleware, such as an
application server. This is because the real per-
formance landscape is only seen by customers when
their applications are actually running on top of the
underlying infrastructure.

The members of this work group included the IBM
teams from WebSphere Application Server Per-
formance, the Linux Technology Center (LTC), the
Java Technology Center (JTC), DB2* Performance,
and the various performance teams from the
pSeries*, iSeries*, and zSeries* platforms.1 LTC
was our main liaison to the Linux open-source
community. The work group remains active to this
date and is continuing its studies on newer
versions of WebSphere Application Server and
Linux kernels.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

Tier 1 Tier 2

Trade

EJB Mode/Synchronous/Standard

]

. DB2 Server
Client » 9080 IBM WebSphere
Driver HTTP Application Server
Requests/ Version 5
Responses 1 t
Embedded WebSphere MQ | DB2 Client
Figure 1

Three-tier configuration for Trade application

THE BENCHMARK APPLICATIONS

We chose two benchmark applications to test
WebSphere Application Server Version 5 on differ-
ent kernel levels of Linux. Each application stresses
different parts of the application server.

Trade application

The Trade benchmark application was written by
the WebSphere Application Server performance
team for its own performance work. The application
models an electronic stock brokerage firm that
provides Web-based online securities trading. There
are several versions of Trade, depending on the J2EE
version supported by the application server. In our
study, we used Trade Version 2.7 and Version 3,
which are based on J2EE 1.2 and J2EE 1.3,
respectively. For more information about J2EE, see
Reference 2. More information about Trade is
available at Reference 3.

Configuration

Figure 1 is a simple diagram of the 3-tier Trade
configuration adopted by the work group. The client
machine sends HTTP (HyperText Transport Proto-
col) requests directly to WebSphere Application
Server through port 9080. The minimum require-
ment for the benchmark is to use Trade’s EJB**
(Enterprise JavaBeans**) runtime mode, where all
access to the database uses the EJB technology,
thereby exercising the container-managed persis-
tence component of WebSphere Application Server
more heavily. The order-processing mode is set to
synchronous, which means that all buy and sell
orders are completed immediately when the request
is issued, removing the need for queuing messages.
The access mode we used is standard, in which all

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

communications between servers and EJBs are
performed using the Java Remote Method Invoca-
tion (RMI) protocol. The scenario workload mix,
which provides an equal distribution of Trade
operations such as login, register, quotes, and buy,
is also standard. For the Web interface, simple
JSPs** (JavaServer Pages**) are used.

Run procedures

The Trade database on the DB2 server was
populated initially with 5000 users and 1000 quotes.
As the benchmark executed, the database was
modified by updating and inserting records. In order
to maintain consistency between runs, we kept a
master copy of the original populated database and
restored it for every new run. For every test run, the
application server was restarted. The database was
restored and the desired Trade configurations were
reset. A warm-up run consisted of the following
workload (expressed in terms of number of con-
current users and total number of requests sub-
mitted to the system) and executed in this sequence:
one user, 1000 total requests; two users, 1000 total
requests; five users, 1000 total requests; ten users,
1000 total requests; 25 users, 5000 total requests; 50
users, 5000 total requests; and 100 users, 5000 total
requests. In a real environment, users spend some
amount of “pause” time after requesting a page; for
example, reading the contents or making decisions.
In performance terminology, this is called “think
time.” In our experiments, there is no think time,
which means that after a requested page is received,
the next request is immediately sent. This is also
equivalent to simulating more users than the actual
number of users in the system. In effect, the

ANAND AND JAMISON 355

Supplier Emulator |

]

IBM WebSphere Application Server |

SPECjAppServer2002

]

System Under Test (SUT)

]

DB2 Client

Figure 2
Three-tier configuration for SPECjAppServer2002

application server is stressed much more than in a
real environment, given the same number of users.

The client driver used is WebSphere Performance
Tool (WPT), which is available on the alphaWorks*
Web site.* For a given test scenario, there are at least
three test runs. The purpose is to ensure repeat-
ability (defined by a tolerable margin of 5 percent
variability). The final result is the average of these
three runs. All test runs were executed with no think
time.

SPECjAppServer2002 application

The other benchmark application is SPECjApp-
Server2002**, which is a public benchmark for
enterprise Java applications based on J2EE Version
1.3. It is available from the Standard Performance
Evaluation Corporation (SPEC).S The application
emulates a heavyweight manufacturing, supply-
chain management, and order/inventory system.
Unlike Trade, the client does not use HTTP to send
requests. Instead, Java clients communicate with the
application through Remote Method Invocation/
Internet Inter-Orb Protocol (RMI/IIOP), which con-
sequently stresses the EJB container as well as the
underlying Object Request Broker (ORB) layer of the
application server. The EJB container is where the
EJBs are executed; whereas, the ORB serves as the
communication channel between the EJB container

356 ANAND AND JAMISON

and the Java clients. Thus, SPECjAppServer2002
complements Trade’s heavy Web container work-
load but light workload on the EJB container. For
more information on SPECjAppServer2002, see
Reference 6.

The SPECjAppServer2002 results or findings in this
paper have not been reviewed or approved by SPEC;
therefore, no comparisons or performance inferen-

ces can be made against any published SPEC results.

Configuration

The three-tier configuration for SPECjApp-
Server2002, also called the dual-node configuration
by SPEC, is shown in Figure 2. The client driver is a
stand-alone Java program that sends order entry
requests to the application server, which in turn
interacts with the back-end DB2 database. The
supplier emulator services the manufacturing orders
sent by the application server (also called the system
under test or SUT) when it needs inventory to
service the order requests from the client.

In summary, the SPECjAppServer2002 benchmark
consists of order and manufacturing applications.
The throughput of this benchmark is directly related
to the load (injection rate) used by these applica-
tions. Hence, the injection rate needs to be increased
to scale up the throughput. The metric TOPS (total

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

operations per second) is the average number of
successful operations completed during the mea-
surement interval.

Run procedures

The run rules prescribed by the spec.org Web site are
not strictly followed by the work group, as these
results are for internal IBM use only and used under
SPEC’s research clause. However, the work group
has certain run rules that were followed to collect
these results. For a given injection rate, the
SPECjAppServer2002 database is created, populated,
and archived to be restored for each run using that
injection rate. During execution, the database is
scaled, but by a stepwise function, and does not grow
linearly in size. Because the database is modified for
each run, a new database needs to be loaded; for this
purpose, the created database is saved.

For every run, the database is restored and the SUT
and the supplier emulator are restarted before the
benchmark is commenced. There is a warm-up time
of 300 seconds, a steady runtime of 900 seconds,
and a cool-down time of 150 seconds. This is half
the time that was required by spec.org. We verified
that reducing this time value does not affect the
overall results of the run. The criteria for a
successful run mandate that the response time of
new order and manufacturing transactions are
below a certain range and that there is a good mix of
large and small order transactions.

LINUX ENHANCEMENTS, ISSUES, AND
SOLUTIONS

Versions 2.4, 2.5 and 2.6 of the Linux kernel, which
are referred to in this paper, are the development
kernels available from kernel.org.7 Linux distribu-
tion vendors usually choose a particular version of
development kernel from kernel.org and apply
additional patches that they consider important to
derive the distribution kernels. Therefore, there is
quite a bit of variation among the different
distribution kernels and the kernel.org development
kernels. This study uses the Red Hat and SUSE
versions of the Linux distribution kernels.

The O(1) scheduler

Version 2.4 of the Linux development kernel has a
scheduler that is not scalable on SMP systems.8 This
is because all runnable tasks are linked in a single
run queue. Extreme contention results from all
processors trying to access this one queue, and this

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

introduces increased scheduling latency as the
number of processors and/or tasks increase. Also,
this single run queue is prioritized (sorted) based on
the goodness value of a task. The goodness value is
calculated from the task’s priority, the amount of
CPU it uses and other factors. It is computed for all
tasks every time one needs to be dispatched to a
CPU.

This scalability problem is solved by the introduc-
tion of the O(1) scheduler’ in the Linux Version 2.5
development kernel. This new scheduler imple-
ments a run queue for each CPU promoting local
CPU scheduling. The name O(1) (“order one”) was
given to indicate that this scheduler takes approx-
imately the same amount of time irrespective of the
current number of tasks and processors in the
system. This is achieved by decomposing each CPU
run queue into a number of “buckets” in priority
order and then using a bitmap to identify the
buckets that have runnable tasks. Because the
number of supported priority levels is constant, the
scheduler always takes an equal amount of time to
select a task for scheduling. The O(1) scheduler was
originally written and is being maintained by Ingo
Molnar of Red Hat. This scheduler has also been
accepted into the Linux Version 2.6 development
“mainline” kernel.

Strong affinity is another feature that was intro-
duced in the O(1) scheduler. This means that a task
stays on the same CPU every time it is scheduled.
Periodically, load balancing is performed on the run
queues of the processors so that a CPU will not sit
idle while another CPU has several runnable tasks to
be scheduled.

Versions 2.5 and 2.6 of the kernel and some of the
Linux 2.4-based distributions include the O(1)
scheduler."® The LTC kernel performance team
observed significant improvements when the O(1)
scheduler was used on well-known benchmarks
such as VolanoMark,11 SPECWeb99,12 netperf,13
and so forth. Thus, we expected that using the O(1)
scheduler would also boost performance in our
middleware tests.

Load-balancing problem

When we tested Trade Version 2.7 on both Red Hat
7.2 and Red Hat Advanced Server 2.1 (RH AS 2.1),
we were surprised to see a 20 percent throughput
degradation on the latter. Red Hat 7.2 uses the old

ANAND AND JAMISON 357

720 100
~ 700 [| 90
2
5 680 o 80 §
2 660 § 70 B
a 5
9 640 60 5
%0 o
8 620 50 O
RS o
< 600 40 g
3] =
2 580 30 €
24 S
3 560 20 ©
=
F 540 10

520

2.4.7-10 2.5.59 2.5.59+D7
Kernel Levels
Pages/sec
Figure 3

The load balance problem on Trade2.7

scheduler, whereas, RH AS 2.1 uses the O(1)
scheduler. At first, we suspected that some new
features of RH AS 2.1 might have caused the
problem. However, two characteristics of the work-
load on RH AS 2.1 led us to believe that the problem
was related to the scheduler; namely, (1) the CPU
activity went down, making it 40 percent idle on the
average compared to almost less than 5 percent idle
in RH 7.2, and (2) there was a wide variation in the
number of runnable tasks (from none to 25 tasks)
throughout the run. In addition, the profiling data
taken using readprofile, a Linux kernel tool that
enables kernel timer-based profiling, revealed that
the old scheduler was using seven times more CPU
time than the O(1) scheduler to perform task
scheduling.

To verify that the scheduler was indeed the source of
problem, a quick test of Version 2.4.20 of the
development kernel with and without the O(1)
scheduler patch was performed. With the O(1)
scheduler patch, the symptoms that were just
described were observed again. A breakthrough
analysis showed that not only did the number of
runnable tasks vary widely, but they were also not
evenly distributed among all the CPUs. Thus, we
knew that the load-balancing algorithm of the O(1)
scheduler was not working very well.

This problem was brought to the attention of the
kernel developers. Some of the open-source com-

358 ANAND AND JAMISON

munity developers acknowledged seeing the load-
balancing problem with the O(1) scheduler on some
workloads. A few suggestions were given by the
kernel open-source community, including: (1) trying
out Andrea Arcangeli’s version of the O(1) sched-
uler'® because it has a better load balancing
algorithm, (2) fixing the code by making load
balancing more aggressive, and (3) modifying the
code so that load balancing is activated more
frequently. We followed the first suggestion. This
version of the O(1) scheduler had added capabilities
such as load balancing during a synchronous
process wake-up. This means that an idle CPU is
chosen to run an awakened process instead of
scheduling it to a processor where it ran recently.
This breaks the affinity to some extent. However, it
is widely known that affinity and load balancing
hardly complement each other. They are both
important, but finding the right balance is a
complicated job.

Unfortunately, using this O(1) scheduler did not
help to bridge the performance gap. In fact, the
throughput went down another 15 percent for Trade
2.7. However, it revealed to us a different issue, that
of the queuing policy of the kernel yield function.
We discuss this issue at length in the section “High
rates of context switching.”

While this work was ongoing, Ingo Molnar issued a
patch called D7’ for his O(1) scheduler. This patch
removed the affinity test in his load-balancing
algorithm. In the original algorithm, this test
specified that a task which is already in a run queue
cannot be migrated to another run queue if that task
has run in its current CPU in the last n milliseconds.
The value of n varies depending on the hardware
architecture, cache size, memory bandwidth, and so
forth. As a result, it is possible that the loads of the
queues in a system will not be balanced properly if
most of the tasks in the run queues still have affinity
to their respective processors. By removing the
affinity test, any idle CPU in the system can be given
tasks in its run queue. We applied the D7 patch, and
it fixed the performance problem with Trade 2.7, as
shown in Figure 3.

Because the original O(1) scheduler was made
available for the Version 2.5.59 kernel, a compar-
ison is made between this version and the Version
2.4.7-10 kernel that has the old scheduler. As seen
in the figure, the throughput on Version 2.5.59 went

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

down by 14.3 percent. When the D7 patch was
applied, the throughput lost was regained and came
out approximately 2 percent ahead of the Version
2.4.7-10 kernel.

The same problem was observed using the SPEC-
jAppServer2002 workload. Applying the D7 patch to
the 2.5.59 kernel, however, improved performance
by 16.4 percent. Comparing it to the old scheduler
(Version 2.4.7-10), a 2 percent improvement was
obtained, as seen in Figure 4. Aside from the fact
that the throughput on the 2.5.59 kernel went down,
the CPU cycles also dropped significantly. Because
the same injection rate is used in all of these tests,
this indicates a serious bottleneck in Version 2.5.59
of the kernel. However, it also tells us that
performance can be improved if all of the bottle-
necks can be found. Assuming this could be done,
we computed analytically the throughput “scaled to
CPU” in each case; that is, the projected throughput
was based on 100 percent CPU consumption. The
resulting improvement, as seen in the figure, is
better in the case of the 2.5.59 kernel.

Looking at Figure 4, it appears that the O(1)
scheduler, even with the D7 patch, is not signifi-
cantly better than the old scheduler for this
particular workload. This is because the old
scheduler had only one queue, and the scheduler
was able to keep all the processors busy. Also, the
number of runnable tasks in this workload was not
in the order of thousands, so no scaling problem was
evident with the old scheduler. The difference in
performance between the two schedulers will be
more significant when the number of runnable tasks
is in the order of thousands.

With these tests, we found that both the Trade and
SPECjAppServer2002 workloads do not seem to
favor processor affinity of tasks. Both of these
workloads are very stressful. Trade does not use any
think time, and therefore, the work coming in is
continuous and fills up the queues very quickly.
Thus, in a highly stressful workload where requests
come in continuously, load balancing results in
better performance than strong processor affinity.

High rates of context switching

When Arcangeli’s O(1) scheduler patch15 was used
for the Trade 2.7 benchmark, context switching was
occurring at an alarming rate. The context switches
on this kernel increased to approximately 30,000 per

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

15 100

90
10 %CPU _
80 5
£ o 70 2
D
< o mil 60 5
= o
= 2559 25.59+D7 50 g
2 5 S
g0 40 g,
5 =
i -10 30 é
20 &
-15 =

10

-20 0

Kernel Levels
1% Change in TOPS] 9% Scaled to CPU
Figure 4

Fixing the load balance problem: Relative
performance based on 2.4.7-10 Linux kernel on
SPECjAppServer2002

second, or four times the usual rate of context
switching observed for this workload.

In the kernel code, the yield function queues the
yielding task to one of the scheduler’s run queues.
The scheduler then selects another task to run,
resulting in a context switch. The sys_yield function
is called by the application (in our case, the Java
virtual machine is the application), but the kernel
executes the function through the yield code. Where
a yielding task is queued depends on the queuing
policy used by the kernel. We believed that different
queuing policies could have a very significant effect
on context switches.

We performed detailed profiling of the queues in the
yield code. Table 1 summarizes the total calls to the
yield function in our eight-way system and the
distribution of the relative priority level of the
yielding task and the task that was selected to run.
For example, on CPU 0, there were a total of 263,711
yields, of which 145,103 had the yielding task and
the selected task on the same priority level (“Same”
row in the table.) “Only” in the table refers to a
condition where there is no runnable task other than
the yielding task, and this situation does not result
in a context switch. As shown in the table, the
values in the “Same” and “Only” rows are higher
than the other rows, but the “Only” condition is an
exceptional condition as the yielding task is the only

ANAND AND JAMISON 359

Table 1 Distribution of yield calls on an eight-way x440 system using the Arcangeli O(1) scheduler patch

Relative CPU O CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7
Priority

Same 145103 157055 163064 156379 162783 161733 167366 177876
Only 117653 112387 112387 105653 101420 96053 108830 92293
Higher 26 34 28 29 31 25 33 36
Lower 929 937 1000 1073 1036 1016 1156 1132
Total 263711 270413 276479 263134 265270 258827 277385 271337

runnable task in the system. When there are tasks
with the same priority as the yielding task, the
queuing policy used determines how long the
yielding task is queued before it runs again.

An examination of the yield code in Arcangeli’s
patch and the 2.5.x kernels revealed that the
queuing policies adopted by these two code sets are
different. In Arcangeli’s patch, the yielding task is
queued right after the selected task, and thus makes
the yielding task the head of the queue (see Policy
P1 in Figure 5). This implies that only one task will
be able to run before the yielding task gets

(A) Policy P1
Task O
(Yielding Task)
Task 1) Task 2 ™= Task 3
(Selected Task) | g (—

scheduled again. In the Red Hat AS 2.1 kernel, the
yielding task is queued to the tail of the same
priority queue, making it yield to all runnable tasks
at the same priority level (Policy P2). In the Version
2.5.69 development mainline kernel, the yielding
process is moved to the priority queue on the
expired list, making it yield to all runnable tasks in
the system (Policy P3, not shown in the figure)
because the expired list becomes active only after all
runnable tasks have exhausted their time slices. ® It
is clear that the yielding task yielded longer in the P2
case. This is desirable for the application, as no
additional yield calls are issued. In contrast, in the

Task 1
(Selected Task)
[11 3
Task O m— Task 2 [Task 3
(Yielding Task) — —_—

\ head

Before inserting the yielding task into the active
queue with same priority level

(B) Policy P2
Task O
(Yielding Task)
Task 1) Task 2 ™= Task 3
(Selected Task) | g (—

\ head

After inserting the yielding task into the active queue
where the yielding task becomes the head of the queue

Task 1
(Selected Task)

(11 3
Task 2 m— Task 3
<

\ head

Before inserting the yielding task into the active
queue with same priority level

Figure 5
Queuing policies

) Task O
— (Yielding Task)
\ head

After inserting the yielding task into the active queue
where the yielding task becomes the tail of the queue

360 ANAND AND JAMISON

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

P1 case, because the time interval during which the
task yielded is not long enough, the application
keeps issuing more yields, resulting in more context
switches. Even though this is fixed in the 2.5.x
development mainline kernels, SLES distribution
kernels follow the P1 policy. The zLinux team also
reported high rates of context switching as a result
of their Trade benchmarking effort. This issue has
two aspects: the queuing policy in the kernel and the
number of yields that the application, in this case
the Java virtual machine (middleware), is issuing.

As mentioned the queuing policy determines the
length of time a yielding task waits until it is
scheduled again. However, the kernel is unaware of
the needs of the caller. An application typically calls
the sched_yield function because the resource it
needs is not yet available, but the application rarely
knows how long it will need to wait for the resource
to become available. The availability of the resource
depends on external events and progress made by
other competing tasks. Determining the optimum
length of time the task needs to be yielded is a
complex job. Moreover, the needs of applications
vary and must be treated differently. For example,
interactive applications require quick response time,
and so policy P1 works very well. This is exactly the
reason why the two kernels have two different
behaviors when satisfying two different needs.
Arcangeli adopted the P1 policy to support inter-
active applications. At IBM’s request, he agreed to
adopt policy P2 through a configuration option. For
the SLES 8 SP3B1 kernel, he used P2 as the default
yield policy. The improvements from using Policy
P2 are shown in Table 2. We discovered that using
policy P3 yields results similar to using Policy P2 on
both the Trade3 and SPECjAppServer2002 work-
loads.

Using futex versus sys_yield

Even though the problem concerning the high rate of
context switching has been resolved, there is a need
for more automatic detection of what the optimum
wait period for each application should be. Adopting
a suitable dynamic policy in the kernel would be a
preferable solution if applications continue to use
the sys_yield mechanism. Arcangeli suggested that
the application should use the new fast user-level
mutex or futex mechanisms instead of sys_yield. The
problem with yield is that it is nondeterministic and
thus does not have clear semantics. The kernel does
not know what the application is waiting for and

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

Table 2 SPECjAppServer2002 benchmark results
using queuing policies P1 and P2: (A) results; (B)
system configuration

(A) Results
Policy TOPS WebSphere Application
Server CPU Utilization
P1 baseline 70%
P2 +32% 88%

(B) System Configuration

Websphere Application
Server

x440 P4,
4x2GHz,

2MB L3 cache,
4GB RAM,

Intel Gigabit NIC

DB2 Server x350 P3,
4x700MHz,

1MB L2 cache,
5GB RAM

IBM ServRaid

SCSI with 10 disks,

Intel Gigabit NIC

Client x330 P3,
2xIGHz,
4GB RAM,

Intel Gigabit NIC

SLES 8 SP2 (for P1),
SLES 8 SP3B1 (for P2)

Kernel

therefore cannot estimate how long it should be
made to wait. With futex, however, the application
issues a futex wait call when there is contention.
After the lock to the resource has been released, the
application calls the kernel for a futex wake."” Thus,
the kernel does not need to estimate a wait period.
The Linux kernel open-source community in general
is opposed to the idea of applications using sys_yield
because every application seems to have different
requirements as to how sys_yield should behave.

The sys_yield function is used basically by multi-
threaded applications to improve performance by
giving up control of the processor to other tasks
instead of waiting and consuming CPU cycles. The
IBM Java virtual machine and its just-in-time (JIT)
compiler both use sys_yield calls. A high number of
yield calls are issued by the Java virtual machine as
part of its three-tier locking scheme for Monitors
(i.e., classes that control the access to resources by
threads), which is its primary synchronization

ANAND AND JAMISON 361

mechanism. One study claims that over 19 percent
of a Java application’s time is spent on synchroni-
zation."® Given the importance of Monitors to
performance, considerable effort has been expended
throughout IBM in designing and implementing
them for each platform on which the Java virtual
machine runs." Hence, the IBM team was initially
not convinced that the three-tier monitor scheme
needed any change.

Three-tier locking

The three-tier lock implements a combination of
three possible actions that can be taken when a
process or thread faces contention: (1) block
completely and wait to be notified, (2) yield the
processor and try again, and (3) idle, consuming
CPU cycles. A combination of these three actions
seems to yield better performance when the work-
load has more threads than the number of proces-
sors. It has been found through empirical database
studies done with DB2 that the optimal length of
time to spin before blocking depends on the number
of processors in the system.20 As a result, the IBM
Java virtual machine has adopted three loop counts
to determine how many times each of these three
actions is taken before blocking. These counts were
given default values based on experimental studies.

As the SPECjAppServer2002 benchmark effort
moved to an eight-processor system, the problem of
context switching along with high Java lock
contention surfaced again. To reduce the number of
context switches, we suggested removing sys_yield
calls completely from the three-tier locking scheme,
making it a two-tier scheme. An experiment with
this approach resulted in fewer context switches but
higher lock contention and lower throughput,
leading to negative eight-way scalability. That
clearly showed that the time spent in these two-tier
locks before blocking was not enough for the eight-
way system. The JIT team continued the tuning
experimentation and found that the default values
set in the Java virtual machine for these three loop
counts needed adjustments to increase the wait time
before blocking. This was especially true because in
addition to increasing the number of processors to
eight, the speed of the processors also increased
since the last empirical studies were done to set the
default values. By increasing and fine-tuning these
loop counts, the throughput for the eight-way
system improved by 20 percent. The Java lock
contention was reduced with these adjustments, but

362 ANAND AND JAMISON

the number of context switches remained the same.
These adjustments improved performance on other
Java benchmark workloads as well, such as
SPECjBB2000, not only on Linux but also on AIX*,
Microsoft Windows, and so forth. The IBM team
updated the default values of these loop counts for
all Java virtual machine platforms in the follow-on
release.

LTC continued working with the Java virtual
machine team and created a prototype of the Java
virtual machine that replaced sys_yield calls with
futex calls in the three-tier locking for Linux."” This
prototype study shows that using futex calls
improved performance marginally, around 2 per-
cent. However this study also shows that by running
multiple SPEC]'BB21 application instances on the
same system, futex uses the CPU more efficiently
than sys_yield. There is more experimentation to be
done to understand the effects of futex in other Java
workloads, and LTC will participate in that effort.

Large page support in Linux and the IBM Java
virtual machine

Modern computer architectures support more than
one page size. If an operating system supports
multiple page sizes, applications have the option to
specify which page size to use. Applications with
large working sets (i.e., data and code needed for
application execution) benefit from using larger
page sizes, especially when they need to randomly
access huge amounts of data. With smaller page
sizes, this kind of random access usually results in
page-table misses, which have significant perfor-
mance impact. Large pages reduce the number of
entries in the translation lookaside buffer (TLB)
table; that is, each entry is backed by larger amount
of memory. They further improve the process of
memory prefetching by eliminating the necessity to
restart prefetch operations on 4KB boundaries.

Linux supports two page sizes, 4KB and 4MB. The
actual number of large pages available in the system
is configurable through the proc interface. Also, the
allocation of large pages depends on the availability
of contiguous physical memory. Thus, it is recom-
mended to allocate large pages during system
bootup. However, because large pages are not
available through anonymous memory allocation
(e.g., malloc), a temporary file system called
hugetlbfs has to be created, which can be deleted
after establishing the mapping through mmap. Any

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

file used in hugetlbfs is backed by large pages.
Another way to allocate large pages is by using the
shmget() interface. In either case, the large pages
should be made available in the system during the
system startup time.

Version 1.4.2 of the IBM Java virtual machine for
Linux supports huge TLB tables or large pages.
However, the results shown here are derived from a
prototype based on Version 1.4.1 with a Version
2.5.69 Linux development kernel and the SPEC-
jAPPServer2002 benchmark on WebSphere Appli-
cation Server Version 5.0.2. On a four-way system,
the large page support improved throughput per-
formace by 1.3 percent; on an eight-way system, it
improved throughput performance by 3.3 percent.

WebSphere clustering

We discovered that scalability for up to eight
processors remains a challenge with Linux. Even
with the three-tier lock tuning leading to 20 percent
more throughput on eight-way runs of SPECjApp-
Server2002, the scalability is still well below the
expected range. Considering the limitation of 32-bit
Java in taking advantage of the memory in this
eight-way system, the remaining option is to use
more instances of the application server on the
machine. This is called vertical clustering or cloning
>in the context of the WebSphere Application
Server, and is a typical approach when a single
application server cannot reach maximum perfor-
mance; that is, it cannot maximally utilize the CPU,
memory, and other resources.

In the clustering approach, we create multiple
instances of the application server on the same
machine and then install the benchmark applica-
tions on each application server. WebSphere Appli-
cation Server has a built-in facility called workload
management (WLM) in which requests are distrib-
uted evenly among the application servers (since
both have the same application installed). By doing
this, we are using more CPU cycles, as there are
more processes that are actually running actively.
This improved the scalability of moving from four to
eight processors. The improvement is from a factor
of 1.1 to 1.3 (a factor of 2.0 means perfect scaling).

NUMA characteristics of an eight-way system
Besides the middleware, the hardware system
characteristics of the eight-way system were also

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

evaluated to assess scalability. We used an eight-
way x440 system for our IA32 test. The IBM x440
NUMA Server uses a modular hardware architecture
design where each module or node consists of a set
of processors and local memory. In this non-uniform
memory access (NUMA) architecture, modules can
be added to the system as desired. The eight-way
system was formed using two NUMA nodes, each
with four processors. The two nodes are connected
by a high-speed interconnect bus.

The NUMA architecture was designed to surpass the
scalability limits of the SMP architecture, where all
memory accesses go through the same shared
memory bus. The Linux kernel has to leverage this
architecture to reach higher scalability. The sched-
uler has to maintain process affinity in such a way
that a given process, along with its working set, does
not have to migrate to a different node. The memory
subsystem has to strive to allocate memory from the
local node rather than from a remote node. The IBM
Linux Technology Center, along with SGI and
Fujitsu (through the SourceForge22 open-source
community project “NUMA”ZS) enhanced the
memory subsystem and scheduler in the 2.5.x
versions of the kernel to leverage the NUMA
characteristics. Versions 2.5 and 2.6 of the Linux
kernel have data structures and macros for deter-
mining the layout of the memory and processors on
the system. The virtual memory subsystem uses
these to make decisions on the optimal placement of
Memory processes.

The O(1) scheduler has been enhanced to include
NUMA awareness in order to support locality of
processes to memory by scheduling a process on the
same node throughout the life of the process.
Optionally, we can also force a process to stay on
the same node by pinning the process to the
processors on that node. To improve the scalability
of SPECjAppServer2002 on the eight-way system,
two application servers are pinned, one to each node
in the x440 system, so that each Java virtual
machine in which the Web application server is
started is localized within the node for heap
allocation and garbage collection. The NUMA
enhancements in the memory subsystem of the
Version 2.5 kernel ensure that process memory is
allocated in the local node. By using this config-
uration, which utilizes two WebSphere Application
Servers, the eight-way system scalability is im-
proved from a factor of 1.3 to 1.6.

ANAND AND JAMISON

363

350

300

250

200

150

100

Transactions per second

50

Tway 2way 4way 8way

SLES 8 SP2A JJ Windows 2003

Figure 6
SMP scaling comparison using Trade3: Linux
vs Microsoft Windows

OTHER ISSUES: DEADLOCK IN
SPECJIAPPSERVER2002

During the performance evaluation effort of the
2.5.x versions of the kernel on WebSphere using the
SPECjAppServer2002 application, a deadlock in the
Linux Version 2.5.59 development kernel was
uncovered. This problem was reported to the Linux
kernel mailing list, and the LTC kernel development
team helped to resolve the bug. Because most of the

Table 3 System configuration for SMP scaling
comparison using Trade3

Client machine SunFire V880 8-way,
900 MHz,

16GB RAM

OS: Solaris 9

Driver: WPT 1.9.4.1

System under test IBM xSeries x440 8-way,

2 GHz,

6GB RAM

OS: SLES 8 SP2A (for Linux)
Microsoft Windows 2003 Enterprise
Edition (for Windows)

Application server: WebSphere
Application Server V5.0.2

Database system Hewlett-Packard RP7410 8-way,
875 MHz,

16GB RAM

0OS: HP-UX 11i

Database: DB2 8.1 FP 2

364 ANAND AND JAMISON

kernel developers use “microbenchmarks™** for
evaluating performance, they may or may not
encounter some of the issues that might surface
using multitier enterprise benchmarks such as
SPECjAppServer2002 or Trade.

When a task acquires a “spinlock”25 with interrupts
disabled and then performs an operation that
requires a flush of the TLBs in other processors, it
sends an interprocessor interrupt (IPI) to other
processors. It then enters a busy wait state, awaiting
an acknowledgment. The deadlock occurs if another
CPU is waiting for the same spinlock that the task is
currently holding.

A patch for the deadlock was submitted to the kernel
mailing list, which facilitates the open-source
community verification of patches through their
code review and testing. After the patch was tested
in our laboratory and after making sure there was no
objection to the posted patch from the community,
the patch was sent to the kernel maintainers for
acceptance into the development mainline kernel.
The problem was found in Version 2.5.59 of the
kernel, and the patch was accepted into the Version
2.5.63 of the kernel.

Comparing Linux with Windows on 1A32

Finally, this section describes the comparison we
made between Linux and Windows using Trade3
and SPECjAppServer2002. To ensure an “apples-to-
apples” comparison, we used exactly the same
physical machines in our configuration and main-
tained the tuning values for all middleware and user
applications, using exactly the same run procedures.
In the other words, only the operating system
changed. Figure 6 shows the summary of the Trade3
comparison. The system configuration and results
for this comparison are shown in Table 3 and Table
4. We used the SLES 8 SP2A release of the
distribution kernel from SUSE for Linux and Micro-
soft Windows 2003 Enterprise Server for the other
operating system.

At first glance, Figure 6 and Table 4 clearly show
that the performance of Linux is very comparable
with that of Windows. Although Windows utilized
the CPU better than Linux, as more processors were
added (except in the case of eight processors), Linux
produced more throughput, indicating better effi-
ciency. The scaling factor for each operating system
was exactly the same for up to four processors. The

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

Table 4 Results for SMP scaling comparison

Scaling One way Two way Four way Eight way
Operating system Linux ~ Windows Linux Windows Linux Windows Linux Windows
Users 15 15 30 30 60 60 120 120
Response time (secs) 0.23 0.23 0.27 0.28 0.31 0.30 0.44 0.53
WebSphere Application Server 92

percentage of CPU utilization 100 100 97 100 96 100 90
Database percentage of CPU

utilization 3 3 6 6 13 13 17 15
Scaling 1.0 1.0 1.7 1.7 3.0 3.0 4.2 3.6

eight-way scaling results were not good for both
operating systems, with a very low factor of 4.2 for
Linux (8.0 being the perfect scaling). The scaling
results for Windows are not as high as the Linux
results, but it must be remembered that the amount
of tuning applied to the Linux system was not
applied to the Windows system. Nevertheless, it is
our expectation that the Windows scaling results for

an 8-way system will not improve drastically even
when the best tuning parameters possible are used.

Table 5 shows the results of the SPECjApp-
Server2002 comparison between Windows 2000 and
two Linux kernels. The first Linux kernel, SLES 8
SP3B2, is a distribution kernel from SUSE and the
other kernel is an early version of the new Version

Table 5 Linux and Microsoft Windows comparison using SPECjAppServer2002: (A) comparison; (B) system

configuration
(A) Comparison
Four Way Eight Way Eight Way
(One Java virtual machine) (Two Java virtual machines)
TOPS Scaling TOPS Scaling TOPS Scaling
Windows2000 Baseline 1.0 Baseline 1.28 Baseline 1.48
SLES 8 SP3B2 +3.4% 1.0 —6.1% 1.16 +5% 1.50
2.6-test2 Kernel +3.4% 1.0 —0.002% 1.24 +7.9% 1.55

(B) System Configuration

Client Machine:

SUT:

Database: (for Windows 2000)

Database: (for Linux)

x330 2-Way (Pentium 3) 1GHz, 4GB RAM 256 KB L2 Cache, Intel Gigabit Ethernet card
Operating System: SLES 8 SP3 Beta 1

x440 8-way (Pentium 4) 2 GHzm, 8 GB RAM 2MB L3 Cache
Operating System: Windows 2000 Advanced Server

SLES 8 SP3 Beta 2 + patches

Linux Kernel 2.6-test2

Application Server: IBM WebSphere Application Server v5.0.2

x400 4-way 2GHz, 8MB RAM with exp300 disk array
Operating System: Windows 2000 Advanced Server
Database: DB2 V8.1 FP 3

x350 4-way 1MB L2 Cache 5GB RAM 512 KB L2 Cache
Operating System: SLES 8 SP3 Beta 1
Database: DB2 V8.1 FP 3

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

ANAND AND JAMISON

365

2.6 development kernel from kernel.org. In this
comparison, we use the results of Windows 2000 as
the baseline.

On the four-way system, we see that both Linux
kernels yield better throughput than Windows.
However, when moving to the eight-way system (for
a single instance of the application server), Linux
falls behind Windows. The scaling of Linux is also
behind, especially with SLES 8 SP3B2. The good
news, however, is that this gap has been narrowed
by the new Version 2.6 kernel, with only a differ-
ence of 0.04 in the scaling factor. We tried the
clustered approach where two application servers
were used, each one pinned to a four-processor node
in our NUMA-based machine. As we can see from
the scaling, both Windows and Linux benefited from
this approach quite significantly. It is also interest-
ing to note that Linux has benefited a lot more in this
approach, as it surpassed the scaling and throughput
of Windows. This may be a manifestation that Linux
supports NUMA better than Windows. Thus we
achieved a scaling of 1.55 out of a perfect scaling of
2.0 for the Linux 2.6 kernel.

CONCLUSION

We have provided a detailed description of the work
we have done to improve the performance and
scalability of WebSphere Application Server Version
5 on the Linux platform. The overall performance of
the middleware, and hence the user applications,
depends heavily on Linux because it is at the bottom
of the software stack. We have demonstrated
performance gains by applying some of the key
enhancements in the Linux kernel and have
analyzed some of the characteristics of the workload
with each patch that we have tried. Overall, the
performance of WebSphere Application Server on
Linux is comparable to that of other operating
systems on the same hardware. Scalability on SMP
systems has improved for up to four processors.
Beyond that, however, major work and research in
this area are still needed. Thus, it is fair to say that
Linux is ready to be an enterprise server provided
processors are limited to a maximum of four when
SMP systems are used.

The work group continues to work on its mission
with the additional goal of ensuring that perfor-
mance does not regress with newer releases of
WebSphere Application Server and Linux distribu-
tions. Some of the major areas that need to be

366 ANAND AND JAMISON

investigated further include NPTL (Native POSIX**
Thread Library for Linux) measurements; differ-
entiating the performance of futex and sys_yield;
trying out a distributed configuration of WebSphere
Application Server, that is, a clustered configuration
of application server nodes; extending scalability
improvements to eight processors; and conducting
additional competitive evaluations with other oper-
ating systems.

ACKNOWLEDGMENTS

We would like to thank our management teams and
Andrea Arcangeli from SUSE and recognize all of the
hard work of the WPLP (WebSphere Application
Server Performance on Linux Platforms) team
members, Christopher Blythe, Kenichiro Ueno, Rajan
Ravindran, Brian Twichell, the JIT/Java virtual
machine team, and the DB2 team from Toronto.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds,
Software in the Public Interest, Inc., Sun Microsystems, Inc.,
Intel Corporation, Microsoft Corporation, Volano LLC, Stan-
dard Performance Evaluation Corporation, VA Software
Corporation, or the Institute of Electrical and Electronic
Engineers, Inc.

CITED REFERENCES AND NOTES
1. The LTC itself performed the tests on the xSeries
platform.

2. Java 2 Platform, Enterprise Edition (J2EE), http://
java.sun.com/j2ee.

3. Pulsar—eBusiness Benchmarks for WebSphere Applica-
tion Server, http://pulsar.raleigh.ibm.com.

4. IBM alphaWorks: Emerging Technologies, http://
www.alphaworks.ibm.com.

5. SPEC—Standard Performance Evaluation Corporation,
http://www.spec.org.

6. SPECjAppServer2002, http://www.spec.org/
jAppServer2002/.

7. The Linux Kernel Archives, http://www.kernel.org.

8. M. Kravetz and H. Franke, “Linux Multi-queue Sched-
uler,” (2001), http://lse.sourceforge.net/scheduling/
mql.html.

9. 1. Molnar, “O(1) Scheduler Version 2.5.59,” http://

people.redhat.com/mingo/O(1)-scheduler/
sched-2.5.59-D7.

10. The O(1) scheduler was “backported” to some of the later
releases of the Version 2.4 distribution kernels.

11. Volano: The Volano Report and Benchmark Tests, http://
www.volano.com/benchmarks.html.

12. SPECWeb99 User’s Guide, http://www.spec.org/Web99/
docs/users_guide.html.

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005

13. The Public Netperf Homepage, http://www.netperf.org/
netperf/NetperfPage.html.

14. A. Arcangeli, “Scheduler for Linux Kernel Version
2.4.20,” The Public Linux Archive, http://
www .kernel.org/pub/linux/kernel/people/andrea/
kernels/v2.4/2.4.20rclaal/.

15. This patch is based on the 2.4.20 kernel.

16. V. Anand, H. Franke, H. Linder, S. Nagar, P. Narayan, R.
Ravindran, and T. Ts’o, “Benchmarks that Model Enter-
prise Workloads,” Proceedings of the Ottawa Linux
Symposium (2003), pp. 434-446, http://
archive.linuxsymposium.org/ols2003 /Proceedings/
All-Reprints/Reprint-Tso-OLS2003.pdf.

17. R. Russell, M. Kirkwood, and H. Franke, “Fuss, Futexes
and Furwocks: Fast User-Level Locking in Linux,”
Proceedings of the Ottawa Linux Symposium (2002), pp.
479-495, http://www linux.org.uk/~ajh/
01s2002_proceedings.pdf.gz.

18. E. Armstrong, “HotSpot: A New Breed of Virtual
Machine”, Java World, March 1998.

19. R. Dimpsey, R. Arora, and K. Kuiper, “Java Server
Performance: A Case Study of Building Efficient, Scalable
Jvms,” IBM Systems Journal 39, No. 1, 151-174
(November 2000).

20. D. Guniguntala, “2 Tier IBM JVM Monitor Implementa-
tion with Fastlocks,” http://bvrgsa.ibm.com/projects/1/
Itcisl/public/jvm/fastlock/fastlock.html.

21. SPEC JBB2000, http://www.spec.org/jbb2000.

22. SourceForge.net is the world’s largest open-source soft-
ware development Web site, with the largest repository
of open-source code and applications available on the
Internet. SourceForge.net provides free services to open-
source developers.

23. Open Source NUMA Project, http://lse.sourceforge.net/
numa.

24. “Microbenchmarks” are small programs written to
measure the performance of a single subsystem such as a
network, SCSI layer, file system, or memory. They are
usually easy to set up and run.

25. “Spinlock” is a busy-wait method of ensuring mutually
exclusive use of a resource.

Accepted for publication November 12, 2004.
Published online April 12, 2005.

Vaijayanthimala K. Anand

IBM Systems Group, LTC, 11501 Burnet Road, Austin, TX,
7878 (manand@us.ibm.com). Ms. Anand is a member of the
Linux Kernel Performance team in the Linux Technology
Center. Her interests include networks, Java technology, and
kernel performance. She has a Master’s degree in computer
science from the University of Houston.

Wilfred C. Jamison

IBM Software Group, AIM Division, 3039 Cornwallis Rd.,
Research Triangle Park, North Carolina 27709
(wjamison@us.ibm.com). Dr. Jamison is currently a member
of the on demand software strategy team. He was a member of
the WebSphere Performance team when this study was
conducted and led the study at that time. His interests include
software performance, Java technology, distributed systems,
and programming methodologies. He received a Ph.D. degree
in computer science in 1998 from Syracuse University. W

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 ANAND AND JAMISON 367

