
Toward an on demand
service-oriented architecture

&

C. H. Crawford

G. P. Bate

L. Cherbakov

K. Holley

C. Tsocanos

The success of an on demand e-business requires that business process, application,

and information technology (IT) infrastructure integration merge into a comprehensive

and cohesive architecture, where business process transformation drives service-

oriented development and on demand enterprise computing. This enabling

architecture is often described as a service-oriented architecture (SOA) and is a

prerequisite accelerator for on demand solutions. The primary focus of SOA has been

on dynamic reconfiguration of services from defined business processes, and on

developing business services based on Web services and, more recently, grid services.

Current descriptions of SOA are less focused on overall IT infrastructure enablement,

both from a business policy perspective and within the context of service-oriented

development. In this paper, we extend the current thinking on SOA to include a more

comprehensive integration of business process transformation and the enabling

technologies of service-oriented development and policy-based IT management. We

call this extension on demand SOA. We develop these concepts by using an existing

scenario: a financial services sector ‘‘Life Change’’ business process scenario, which

involves distributed and disjoint transactions as well as stateless high-performance

computing (HPC) applications.

Over the last 40 years, information technology (IT)

architectures and development approaches have

dealt with increasing levels of IT complexity and

integration challenges. Constrained budgets contin-

ue to mandate that legacy systems be reused rather

than replaced. Growth by merger and acquisition

requires that entire IT organizations be integrated

and absorbed. Additionally, easy access to the Web

has created the possibility for new business models,

which must be evaluated for their potential.

At the same time, the traditional needs of IT

organizations persist—primarily focused on quick

response to new requirements, typically consisting

in turn of corporate management pushing for better

IT utilization, skills simplification, greater return on

investment (ROI), continued integration of histor-

ically separate systems, and faster implementation

of new ones. The endless varieties of hardware,

operating systems, middleware, languages, and data

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CRAWFORD ET AL. 81

storage create an environment where accommoda-

tion of heterogeneity is fundamental to system

development. The cumulative effects of decades of

growth and evolution, encompassing multiple com-

puting architectures, programming languages, and

connectivity products, have produced the complex-

ity that now challenges all IT organizations.

As the level of complexity continues to increase,

traditional approaches are reaching their limits.

Powerful new technologies such as Web services,
1

autonomic computing,
2

utility computing,
3

and grid

services
4

provide partial answers, but the problem

in many cases is the lack of a consistent architecture

within which applications can be rapidly developed,

integrated, and reused. SOA (service-oriented ar-

chitecture) holds the promise of being the consistent

architecture required for future development. In

isolation, however, neither the application of these

new technologies nor the use of the SOA approach,

itself, provides a complete solution.

ON DEMAND SOA

Much has been written about why SOA, Web

services, autonomic computing, utility computing,

and grid technologies and standards can be benefi-

cial, but a holistic view, unconstrained by technol-

ogy, is currently lacking. On demand SOA provides

such a view, namely a distributed computing model

infused with the building blocks of these new

technologies. Taken separately, each provides sig-

nificant benefits, but the integration of these

technologies promises far greater impact and pro-

vides the foundation for on demand SOA.

To demonstrate on demand SOA, we use a real-life

example of a business-to-business (B2B) process in

which services are used to automate the processing

of an electronic purchase order request (POR). Our

buyer, Acme, Inc., is a large manufacturing com-

pany. Our supplier, Pens R Us, is a large stationery

company. A contract already exists between the two

parties. Acme, Inc. wants to use an electronic POR to

buy 500 reams of paper from Pens R Us. The first

step is to determine which services are required to

fulfill the process. At one extreme POR may be

viewed as a single service; at the other extreme the

service granularity could be so fine that the POR

might be constructed from multiple services. The

choice is made by balancing quality of service (QoS)

characteristics, ubiquitous service reuse, and re-

duction of complexity for service composition.

The supplier may choose to view the process as the

following steps:

1. Supplier authenticates the purchaser.

2. Supplier looks up the buyer contract based on

purchaser ID.

3. Purchaser browses the product catalog with

negotiated prices from the contract.

4. Purchaser adds items to the shopping cart.

5. Purchaser checks out, providing payment

description and delivery information.

6. Order information is sent to the fulfillment

department.

7. Confirmation of order with expected delivery

date is sent to the purchaser.

From such a process description, we can further list

the software or application services that are re-

quired:

1. Login

2. Contract lookup

3. Catalog browsing with shopping cart and

checkout

4. POR data creation (from login ID, contract ID,

shopping cart data, and other information sup-

plied by checkout)

5. Information delivery to fulfillment process

6. Message to purchaser to confirm order

The enablement of SOA with open standards, for

example, Simple Object Access Protocol (SOAP),

Extensible Markup Language (XML), Web Services

Description Language (WSDL), and Open Grid

Services Architecture (OGSA), among others, offers

the ability to fulfill the promises and value propo-

sitions of SOA implementations. These open stan-

dards allow a service to be decoupled from the IT

infrastructure. As long as vendor support for the

standards exists across resources, the service com-

poser need not be concerned with where the service

will run—only with how to assemble flows between

services. Additionally, dynamic service lookup

means that service consumers need not be con-

cerned with where underlying software resources

exist on distributed, heterogeneous systems.

To achieve the promised benefits of SOA, one needs

all of these technologies working together in a

meaningful way to create what we define as on

demand SOA. John Hagel has asserted that, ‘‘Over

time, distributed service architectures enabled by

CRAWFORD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200582

Web services technologies have the potential to

become the dominant technology architecture for all

business activities.’’
5

When we include autonomic

computing, grid services, and Web services, this

vision becomes a reality, and we have on demand

SOA.

Benefits of on demand SOA

The key benefit of on demand SOA is allowing

business processes to be responsive with a high

degree of flexibility. In turn, for business processes

to be responsive, a high degree of automation and

& The key benefit of on
demand SOA is
allowing business processes
to be responsive with a
high degree of flexibility &

adaptability must be enabled with the underlying IT

application and technical architectures. Organiza-

tions that adopt an on demand SOA will realize

several benefits:

� Leveraging of existing assets—Using a suitable

SOA framework, a business service can be con-

structed as an aggregation of existing compo-

nents and made available to the enterprise.

Using this new service only requires knowing its

interface and name. The service’s internal details

are hidden from the outside world, as is the com-

plexity of the data flow through the components

that make up the service. This component ano-

nymity allows organizations to leverage current

investments, constructing services from a con-

glomeration of components built on different ma-

chines, running different operating systems, and

developed in different programming languages.

Legacy systems can be encapsulated and ac-

cessed through Web services interfaces.

� Commoditization of infrastructure—Infrastructure

development and deployment will become more

consistent across different enterprise applica-

tions. Existing components, newly developed

components, and components purchased from

vendors can be consolidated within a well-de-

fined SOA framework. Such aggregations of com-

ponents will be deployed as services on the

existing infrastructure, resulting in the underly-

ing infrastructure becoming essentially a com-

modity element.

� Faster time to market—Line-of-business (LOB)

and enterprise-Web-services libraries will be-

come core assets for enterprises adopting the

SOA framework. Building and deploying services

with these Web services libraries will reduce

time to market dramatically as new initiatives re-

use existing services and components, thus re-

ducing design, development, testing, and

deployment time.

� Reduced cost—As business demands evolve and

new requirements are introduced, the cost of en-

hancing and creating new services is greatly re-

duced by adopting the SOA framework and the

services library for both existing and new appli-

cations. The IT infrastructure can be further opti-

mized by using grid services or utility

computing.

� Risk mitigation—Reusing existing components re-

duces the risk of introducing new errors, and

thus potential points of failure, into the process

of enhancing or creating new business services.

� Continuous business process improvement—SOA

allows a clear representation of process flows

identified by the order of the services used in a

particular business process. This provides busi-

ness users with an ideal environment to monitor

business operations. Process modeling is re-

flected in the business service. Process manipula-

tion is achieved by reorganizing the pieces in a

pattern (the components that constitute a busi-

ness service). This allows users to change proc-

ess flows while monitoring the resulting effects,

thus facilitating continuous improvement.

� Customer-centric architecture—Existing

architecture models and practices tend to be ap-

plication-centric. As organizations evolve from

an application orientation toward a service orien-

tation, consumers or customers of the applica-

tions benefit. A customer-centric architecture

provides a user-configurable approach versus a

one-size-fits-all or prepackaged workflow. This

enhanced flexibility is brought about by identify-

ing and exposing services, as opposed to locking

users into hardwired application flows.

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CRAWFORD ET AL. 83

On demand SOA requirements

Maximum benefit from an SOA implementation in

an on demand environment occurs when the

underlying enterprise computing infrastructure is

virtualized and enabled for policy-based system

management and when the IT policies have been

derived in turn from the corresponding business

policies.

The current focus in SOA is on process definition and

application enablement by means of Web services or

grid technologies and standards. The link between

business process policy and IT policy through

application enablement has yet to be defined. For

instance, in the POR example described previously,

the login service could be reused across many

business processes. However, different processes

have different policies concerning the user class of

service, that is, the type of authorization required.

The virtualized IT infrastructure must be capable of

ensuring different types of security, based on busi-

ness policy, within the specific technology used to

enable the application (for example, Web services).

Any solution development for on demand SOA must

focus on an integrated approach among the follow-

ing: the on demand business-process transformation

that is driving application enablement, the corre-

sponding IT policy and governance, and the system

management of virtualized resources based on

service level agreements (SLAs).

The starting point for on demand SOA is business

process transformation. At the core of business

process transformation is the policy and governance

regarding how different parts of the process are

integrated. This business process policy is used to

derive IT policies, QoS, and SLAs. All of these terms

are related to the business process, but each has a

different meaning, as described below:

� Policy—A policy is a high-level statement of how

things are managed or organized, including man-

agement goals, objectives, beliefs, and responsi-

bilities. Policies are normally defined at an

overall strategy level and can be related to a spe-

cific area, for example, security and management

policies. In many instances, policies reflect the

law or other mandated requirements to which the

policies must adhere. This is especially true in

the case of security and privacy policies.

� SLA—A service level agreement is an agreement

between an IT service provider and the business

that includes:

— Performance and capacity (such as end-user

response times, business volumes, through-

put rates, system sizing, and utilization

levels)

— Availability (mean time between failure for

all or parts of the system, disaster recovery

mechanisms, mean time to recovery, etc.)

— Security (for example, response to system-

atic attempts to break into a system)

� QoS—Quality of Service addresses all features

and characteristics of a product or service that

bear on its ability to satisfy stated or implied ob-

jectives (from International Organization for

Standardization [ISO] 8402).

Furthermore, the on demand SOA-solution design

process must identify enabling technologies for

various IT virtualization functions. Fundamentally,

the on demand SOA solution must clearly articulate

the approach for the following:

� Transforming business processes to be more

dynamic and responsive.
� Rewriting or enabling applications with Web- or

grid-services interfaces.
� Developing corresponding process-based policy

and application awareness. Such changes will al-

so make more effective the implementation of an

on demand IT infrastructure with, for example,

grid (schedulers, resource brokers, and federated

file systems), autonomic (workload manage-

ment), and utility (provisioning) resource man-

agement.

On demand SOA-related technology
Many key technologies and standards must be

considered as part of an IT strategy if the goal is to

become on demand through SOA.
6

Key enablers for

on demand SOA include virtualization of the infra-

structure and application automation of manage-

ment. Enabling business processes, applications,

and IT infrastructures cannot be a monolithic effort

with overly rigid goals, such as turning every

application in an enterprise into a Web or grid

service, or completing all transformations by a

specified date, or orchestrating all server, network,

and storage resources with a single policy. However,

CRAWFORD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200584

applying the key technologies for on demand SOA is

a critical success criterion for achieving the benefits

of on demand SOA. As discussed previously, these

technologies include Web services, autonomic

computing, utility computing, and grid computing.

CUSTOMER SCENARIO

In order to illustrate the concepts of on demand SOA

solution development, we present a scenario derived

from an actual case study with a large financial

service company. We call our business process

scenario ‘‘Life Change.’’

Business process description and customer

goals

Consider a client service consisting of several

processing steps that a customer must follow to

modify employee benefits when a new child is

added (by birth or adoption) to a customer’s family.

These steps includes health insurance additions, life

insurance increases, and investment portfolio anal-

ysis. More specifically, the business process consists

of the following fundamental subprocesses:

1. Change Form W-4 (U.S. federal income tax

withholding) exemptions.

2. Add dependent medical coverage.

3. Add beneficiary to 401(k) retirement plan.

4. Open 529 account (college savings plan).

5. Run advice engine (using High Performance

Computing [HPC] analytics) to suggest an in-

vestment strategy to achieve 529 goals.

6. Create payroll deduction to fund investment

options for 529 plan and to adjust options for

401(k) plan.

7. Increase term life.

8. Run advice engine to suggest funding

mechanism for term life, with minimum tax

implications.

9. Suggest selling shares to fund term life

increase and execute sell.

10. Run portfolio analysis including pension-plan

estimate with various fund accounts to meet

new long-term financial objectives.

11. Suggest rebalancing of portfolio and execute

rebalance.

This overall process is shown in Figure 1. Black

arrows indicate the functions outlined above that

are initiated from the customer’s Human Resource’s

(HR) site. Red arrows indicate the functions that are

initiated from the company’s Web site. Blue arrows

indicate functions that are now initiated by a phone

call to an advisor and are asynchronous in nature.

The light blue arrow indicates a third-party inter-

action.

The current implementation of this process consists

of applications and resources distributed across not

only different departments (for example, health

benefits and investment benefits), but also resources

outside the company (external investment funds).

From an application point of view, these steps

include stateful and stateless transactions, stateless

analysis engines, and stateful data interactions.

(Stateful implies the capability to maintain last-

known or current status; stateless does not.)

Furthermore, the process is currently supported by

on-line subprocesses and off-line batch analysis and

advice engines driven by asynchronous requests,

including phone center requests. These flows are

illustrated in Figure 1.

The current process implementation requires cus-

tomers to follow a list of action items, connect to

different Web sites or electronic forms, make phone

calls, wait for data to be generated by various

applications, and share data among the different

applications. In our scenario, the client company

has indicated that the current process results in a

significant level of customer dissatisfaction as well

as a number of customer requests that cannot be

served by existing resources. This threatens com-

petitiveness in the marketplace, and therefore the

client is in danger of losing business in a highly

competitive market.

The financial service company’s primary goal is to

find a low-cost solution to improve customer

satisfaction and increase request throughput. The

resulting higher efficiency from the improved

process would in turn generate higher volumes of

completed requests and drive additional business as

more customers are served. More specifically, we

can define the objectives of business process trans-

formation for the Life Change scenario to be:

1. Use of a single identity for customers for both

internal and external interactions

2. Collaboration with partners, with real-time

interfaces replacing off-line batch interactions

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CRAWFORD ET AL. 85

3. Consolidation of many customer interfaces into

a single, consistent customer interface

4. Dynamic allocation of system resources as

types and volumes of customer requests change

5. Creation of a customer experience that allows

a single combined view across all relationships,

both internal and external

Process-driven meta-service composition and

policy definition

From the list of steps given in the previous section

and the functional flows shown in Figure 1, we can

immediately see that within the coarse-grained Life

Change business process there are subprocesses that

will become services. Hence, we associate the

overall Life Change business process with a corre-

sponding composition of services or a meta-service.

In this section, we demonstrate that each of these

services has an associated policy, in terms of QoS or

availability, necessary to meet the overall business

process goals. Therefore, one way to evaluate our

customer scenario is through the combined process

decomposition into multiple services and the policy

drivers for each service. Establishing this view of the

customer scenario is vital because it is a key

ingredient for our design work described in the

sections that follow.

As part of policy-based management, control hier-

archy and services must be described. The policy

hierarchy is used to decompose business-process

requirements into policy statements regarding the

operational and functional characteristics of the

services and underlying infrastructure. This is

important because formerly functional and opera-

tional requirements were captured as part of a static

architecture that was manually and iteratively tuned.

With the adoption of on demand SOA, it becomes

necessary to capture requirements as policy state-

ments in human- and machine-readable formats.

Thus, emerging technologies such as Web Service

Level Agreements (WSLAs)
7

have been created.

Regardless of the implementation, it is important to

understand the steps required to decompose a

process into a series of meta-services, services, and

operational characteristics. Process workflows and

use cases are employed as a basis for defining the

Figure 1
Architecture of the original process for a financial service company's Life Change scenario

Directory Services

Services

HR Site

ResourcesDelivery
Channels

Users

Client/End User

Phone

Browser

BrowserAdvisor

Databases

Legacy Systems

System Monitoring

Third-Party
Investment Fund

HR Payroll

Retail Brokerage

Life Insurance

Health Insurance

401(k)

HPC Analytics

FSS.com Site

CRAWFORD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200586

composition of services. During the development of

process workflows, functional and operational

characteristics are captured including, for example,

time and resource constraints, environmental is-

sues, performance, capacity, security, and orga-

nizational issues. These characteristics, once

documented, need to be implemented in an appro-

priate resource management schema. Process re-

quirements are used in order to ensure that

sufficient resources are provided to meet QoS

requirements defined within SLAs. Global resource

managers, in coordination with schedulers and

workload managers, determine what hardware or

operating environments are most suitable and

available for a specific job or task. In addition,

environmental requirements may dictate that a

specific type of engine or configuration be provi-

sioned or instantiated in order to reallocate re-

sources based on a predictive analysis of workload

trends or a manually triggered allocation or config-

uration change. These policies are defined as busi-

ness, functional, and operational (nonfunctional)

requirements within a typical on demand SOA.

A second set of policies defines guiding principles

that are focused on management of the environment

with respect to how the organization, processes, and

tools are defined, developed, and built. This is

required in order to sustain a well-operated envi-

ronment. Separating the processing and data envi-

ronments from the service-development

environment introduces a series of issues that must

be addressed. The separation of business, applica-

tion, and IT policies also requires that various issues

be correlated, rationalized, and arbitrated.

DESIGNING AN ON DEMAND SOA

There are multiple techniques that can be used to

perform business transformation. Transformation

implies that the re-engineering of process workflows

does not end solely with a successful implementa-

tion of a system or education program. Rather,

business transformation has many broader ele-

ments, including those handled by organization and

change management competencies.

Previously, business strategy and analysis tech-

niques focused on a process-centric model of a

business. The process view did not always force the

generalization of common tasks, nor did it aid in

identification of ‘‘specialist service centers’’—the

building blocks of on demand computing. The

emerging IBM-developed component business

modeling (CBM) technique represents a business as

a set of collaborating components that consume and

provide business services. These business compo-

nents are combined to form a viable operating

model. Because SOA has implications for both the

technology and the business levels, the transforma-

tion of CBM-identified business services into an on

demand SOA brings more business focus to how we

discover and publish SOA services.

On demand SOA requires the key elements of

organizational transformation to be in place. Other-

wise, the culture of the organization can continue to

be a major obstacle in adopting new processes,

technologies, or management techniques. In addi-

tion, an on demand transformation is much broader

than any tactical initiative and needs full manage-

ment leadership and commitment from the highest

levels down. Dynamic process and technology

sourcing decisions will not make employees com-

fortable without appropriate communication and

education. As a result, business transformation

projects are often put at risk, with employees

potentially resisting any change and in some cases

even acting as saboteurs to the adoption of new

processes. In addition, technological constraints,

whether purposefully implemented or due to current

technology limitations, can impose barriers to meet-

ing certain performance objectives. (Performance

objectives are typically metrics incorporated in

business processes in order to measure key attributes

such as speed, cost, and accuracy of results.)

Business process integration is a business enabler

which requires that an on demand SOA be in place

in order to provide the necessary workflow infra-

structure. Today, application development tools

have evolved to a point where process life cycles can

be enabled from start to finish. Moreover, process-

modeling tools can automatically generate use cases

and interaction models. These models can be

dynamically instantiated with components provided

as part of the application framework. Applications

are then assembled from a collection of services that

provide specific functionality. Ideally, this func-

tionality becomes part of an extensive library that

can be published as Web services, which in turn can

be reused by others simply by discovering the

service by means of the appropriate service direc-

tory. The benefit of this model is that it is based on

the application of frameworks, which are being

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CRAWFORD ET AL. 87

improved on a daily basis to add increased breadth

of packaged functionality. Admittedly, however, this

somewhat utopian view of services still lies in the

future on the business transformation roadmap.

Indeed, the discussion clearly shows the large gap

between what we have today and what is required

in the future.

Highly dynamic application environments that are

built upon readily instantiated services require an

on demand SOA infrastructure that can

� support the dynamic allocation of resources

needed to instantiate the service
� measure the service level characteristics of the

service, and
� sustain service level agreements within

tolerance by adjusting the infrastructure using

available resources.

Furthermore, both integration of the underlying

resources with these services and the enablement of

corresponding IT management systems must be

accomplished through the use of open standards.

Applying open standards allows companies to

maximize the benefit of various vendor component

solutions and to ensure that these components will

work together.

We now proceed to the steps required to design an

on demand SOA solution. These steps will focus on

the concepts of business process and policy as well

as application and IT infrastructure enablement.

More specifically, we need to understand the busi-

ness process in the following contexts:

1. Current workflow definition

2. Compliance with industry standards

3. Componentization of workflows

4. Parameterization of workflows

5. Policy definitions within the workflow

After we understand the business process within

these contexts, we can proceed with application and

IT infrastructure enablement. Indeed, one of the

goals for our solution framework is that the business

process and policy drive the application and

IT-infrastructure implementation.

Process and policy definition

The first step in building a solution for the financial

services company’s Life Change scenario is to

clearly articulate the goals of the business-process

transformation. As discussed, these goals can be

summarized as follows:

1. Increase customer satisfaction with a more

uniform and seamless approach to the Life

Change business process.

2. Increase the throughput of available request

processing by leveraging existing resources and

improving their utilization.

Overall, the combination of these two goals will

result in the financial service company remaining

competitive in the marketplace.

We described the Life Change process as a series of

steps executed to build a complete business process,

and we also alluded to the fact that this process

could be thought of as a meta-service composed of a

set of service components in a workflow pattern.

That workflow is shown in Figure 2.

We now must define several overall process policies,

which will in turn generate policies for each

individual service. Let us assume that in order for the

financial service company’s implementation of the

Life Change process to be competitive, the start-to-

finish time for completion of a request must be less

than 5 minutes. In addition, customers expect a 95

percent availability rate for the Life Change service

(across all components), and are willing to pay more

for increased availability or throughput. Finally, to

reduce complexity the financial service company

needs to present a single client-facing portal for all

services within the Life Change process. We can

therefore set the following process policies:

1. An end-to-end request must be completed in

less than 5 minutes.

2. The supporting application and IT

infrastructure should have a 95 percent avail-

ability target.

3. A Gold customer has precedence over a Silver

customer, and a Silver customer has precedence

over a Bronze customer. Customer classes are

based upon a price/throughput algorithm.

4. All data feeds (data supplied by the customer/

data sent to the customer) must go through a

single, secure application portal.

After these high-level policies are set, we must

derive policies for each of the services. From an

CRAWFORD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200588

availability aspect, we can make the simplifying

assumption that if one service is not available, the

entire process is unavailable; hence, we can state

that each service must have an availability target of

greater than 95 percent. The response time QoS will

require a greater understanding of the complexity of

the applications and the potential infrastructure

used to run each of the services. For instance, we

must determine a theoretical maximum response

time for each of the services. We may decide that

each transactional service must be completed in 20

seconds and the computation for the analytics must

be completed in 2 minutes in order to reach our

overall business process QoS. Establishing customer

classes on a per-service basis to mediate requests

when these objectives cannot be met is a further

policy requirement.

There is a single point of entry and exit for data.

Consequently, there is a single governing security

policy for the process, and the individual services

adhere to this policy simply by presenting data (for

example, data used for analytics or account listings)

through the secure channel provided by the initial

login/authentication service. Thus, a process policy

has actually driven a new service to be defined,

namely a login/authentication service. We redefine

the services workflow for the process accordingly

Health
Insurance

Submit
Dependent
Medical
Changes

HPC
Analytics

Run 529
Advice
Engine

Submit
W-4
Changes

HR Payroll

Add
Dependent
Medical
Coverage

Health
Insurance

Change
W-4
Exemptions

HR Payroll

Health
Data

HR Data HR Data Life Data401(k)
Data

Call
Advisor

Add 401(k)
Beneficiary

401(k) HR Payroll

Submit
529
Deduction

Call
Advisor

Call
Advisor

HPC
Analytics

Run
Advice
Engine

HPC
Analytics

Run Cash
Advice
Engine

Update
Brokerage

Retail
Brokerage

Add
Dependent

Life
Insurance

Evaluate
Financial
Goals

Retail
Brokerage

Life Changed (Newborn/Adoption) Life Change Recorded

Figure 2
A flow diagram indicating subprocesses and databases for the Life Change process

Adjust
Payroll
Deductions

HR Payroll

Retail Brokerage
Data

Employee

Advisor

System
 HR Payroll

System
 Health
 Insurance

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CRAWFORD ET AL. 89

and show the results in Figure 3. It should now be

clear why process and process policy must drive

services and service policy definition.

Resource mapping

Now that the business process and corresponding

services have been identified, we need to identify

the resources, including software, hardware and

change management, that will be involved in the re-

engineering effort.

In the Life Change scenario, we need to specifically

identify the resources associated with each of the

services (both application and corresponding system

infrastructure, for example, servers and databases),

and map dependencies for each service. This is

especially important in understanding how legacy

transformation fits into application enablement. For

instance, the applications corresponding to the HR

payroll service may exist entirely on mainframe

technology using underlying messaging middle-

ware. We need to understand the effort required to

move those applications and corresponding mid-

dleware to another hardware environment, such as

a Linux** cluster. This approach calls for the

maximum possible decoupling of applications from

the underlying resources on which they currently

operate. Figure 4 shows a possible representation of

HR Payroll

Submit
W-4
Changes

HPC
Analytics

Run 529
Advice
Engine

Login
Service

Accounts

Add
Dependent
Medical
Coverage

Health
Insurance

Health
Data

HR DataAccount
Data

HR Data Life Data401(k)
Data

Call
Advisor

Submit
Dependent
Medical
Changes

Health
Insurance

HR Payroll

Submit
529
Deduction

Call
Advisor

Call
Advisor

HPC
Analytics

Run
Advice
Engine

HPC
Analytics

Run Cash
Advice
Engine

Update
Brokerage

Retail
Brokerage

Add
Dependent

Life
Insurance

Evaluate
Financial
Goals

Retail
Brokerage

Life Changed (Newborn/Adoption) Life Change Recorded

Figure 3
Refined flow diagram indicating subprocesses and databases for the Life Change process

Adjust
Payroll
Deductions

HR Payroll

Retail Brokerage
Data

Employee

Advisor

System
 Health
 Insurance

Add 401(k)
Beneficiary

401(k)

Change
W-4
Exemptions

HR Payroll
System
 HR Payroll

CRAWFORD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200590

the current resource mapping, with an application

definition and a hardware dependency shown for

each service in the workflow. We have specifically

added a login subprocess and a corresponding

accounts database to comply with the single-point-

of-entry policy.

Note that in the interest of brevity we have omitted a

physical topological drawing of the actual IT

resources and dependencies in Figure 4. However,

analysis of physical topology is also a necessary step

in the resource mapping to determine what actual

physical resources will be affected, especially if the

resources cross departments or lines of business.

Application enablement

At this point, the services and corresponding work-

flow have been identified. We have also mapped

application functions to services that they will

deliver. Now we must decide how to best encapsu-

late those applications in the SOA. At one extreme,

we could completely re-engineer and rewrite an

application both to make it independent of the

hardware from the outset by using, for example,

Employee

Advisor

System
 Health
 Insurance

System
 HR Payroll

Life Changed (Newborn/Adoption)

HPC
Analytics

Money
Maker
C/Linux

Benefits
Java/Linux

Health
Insurance

Payroll
System/390

HR Payroll

Oracle,
Solaris

DB2,
System/390

Account
Data

DB2,
System/390

Oracle,
Solaris

DB2, AIX
Regatta

HPC
Analytics

Money
Maker
C/Linux

HPC
Analytics

Money
Maker
C/Linux

Life Change Recorded

Figure 4
A resource mapping (applications and operating system) for the Life Change process corresponding to Figure 2

Payroll
System/390

HR Payroll

Oracle, Solaris

HR Payroll

Payroll
System/390

Login
Service

Accounts

Broker
Java/
Linux

Benefits
Java/Linux

Health
Insurance

HR Payroll

Payroll
System/390

Broker
Java/
Linux

Broker
Java/
Linux

Broker
Java/Linux

Retail
Brokerage

Benefits
Java/Linux

Life
Insurance

Broker
Java/Linux

Retail
Brokerage

RETMGR
Java/Linux

401(k)

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CRAWFORD ET AL. 91

J2EE** (Java 2 Platform, Enterprise Edition) and to

make it easily published as a Web or grid service.

However, this could be prohibitively expensive. At

the other extreme, we might choose not to imple-

ment an application as a service, but instead

continue to invoke the application in its current

form with a service layer wrapper around the

software. Clearly, this does not enable the applica-

tion to run on every platform, but it may be

sufficient to achieve the overall business process

goals.

The application enablement environment for SOA

A fundamental concept of SOA is that a service is

made available by publishing the interface specifi-

cation. The application environment can then be

used to create process-driven workflows that are

easily reconfigurable through the dynamic integra-

tion provided by advanced business-process cho-

reography engines coupled with standardized

application interfaces. In addition, the application

environment must provide a framework within

which developers can easily determine when and

how to abstract the data involved. Various reposi-

tories are linked together through these abstractions

and corresponding data-sharing mechanisms. Ap-

plications can begin to use common interfaces in a

common namespace (a set of names that is defined

according to some naming convention). The dis-

covery of the data location and its replication and

caching is handled by the underlying infrastructure.

As shown in Figure 5, business services are

composed of a variety of services that enable the

overall business process. In a true on demand SOA,

the applications themselves may be written on top

of underlying application services and integration

services.

After we have determined which applications

provide function for services, we then have to

decide at what layer to virtualize the corresponding

function or collection of functions as a service. The

level at which this virtualization is performed would

ideally be determined by a compromise between

compositional complexity (for example, building a

process workflow out of tens of services as opposed

to thousands) and maximizing code reuse. How-

ever, the reality of legacy application transformation

dictates this does not always hold. For instance, in

some legacy applications it may be impossible, or at

least prohibitively expensive, to decompose an

existing application into a collection of services.

However, when re-engineering is feasible, we need

to take the following design steps:

1. Determine a compositional or fundamental

building block model (i.e., the features that are

ubiquitous for given applications and the level

at which abstractions should take place) with

an emphasis on dynamic and reconfigurable

building blocks.

2. Determine the distributed programming para-

digm for each fundamental block (for example,

data parallel versus control parallel or distrib-

uted memory versus shared memory).

3. Select a programming model for each building

block.

4. Determine the statefulness of each building

block.

5. Select the programming model for each compo-

sitional block and overall service, taking advant-

age of open standards for resource virtualization

(e.g., Message Passing Interface, J2EE, SOAP,

WSDL, and OGSA/Open Grid Services Infra-

structure [OGSI]).

In our Life Change scenario we use the information

provided by the resource mapping shown in Figure 4

to draw the following conclusions about application

enablement:

1. The HR payroll service involves a single legacy

HR application, which we are unable to decom-

pose into lower-level services at this time; thus,

a simple WSDL wrapper connecting to a Java**-

RMI (remote method invocation) interface will

be used.

2. In the interest of performance, the calculation

for analytics should be virtualized at the parallel

job level, not at the level of independent tasks

within the job. In other words, the calculation

should be considered as a single service execut-

ing on a virtualized server that consists of sev-

eral computational nodes.

3. The login/authentication service is entirely new

and stateless and therefore will be written using

J2EE and WSDL interfaces, but will be based on

some of the technology from the retail broker-

age Hypertext Transfer Protocol (HTTP) client.

4. Because the life and health insurance applica-

tions have Java application programming inter-

faces (APIs), are stateful, and exchange

CRAWFORD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200592

transactional data, we will write an OGSI wrap-

per around these applications to enable them as

services.

5. The existing retail brokerage and 401(k) J2EE

code will be enhanced with OGSI interfaces, be-

cause those data are stateful and because trans-

actional data are shared across both services.

Enterprise infrastructure enablement

A virtualized infrastructure is a fundamental step in

implementing an on demand SOA. The on demand

environment requires an infrastructure that can be

dynamically adjusted based on new workloads and

changes in the business process. However, before

we enable the IT infrastructure for on demand

computing, it is important to determine if the

existing IT resources are sufficient to meet our

business-process goals and policies. For instance,

we must know whether there are enough nodes in

the cluster that handles HPC analytics to deliver a

response time of 2 minutes for an investment

strategy calculation. After we have determined that

Figure 5
Architectural overview of IBM's on demand operating environment

• • • • • • • • • • • • • • • • • •

• • •

• • •

• • •

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CRAWFORD ET AL. 93

sufficient capacity exists in our infrastructure (and

making the assumption that we will be operating in

a virtualized environment with improved utiliza-

tion), we can then begin to virtualize the physical

resources.

A virtualized systems environment

The on demand systems environment provides an

infrastructure of connectivity to resources on an as-

needed basis. The infrastructure also provides more

commonly reusable and dynamically instantiated

containers that allow for ease of portability and

common interprocess communication. The OGSA

specifications enable these requirements to become

reality by evolving Lightweight Directory Access

Protocol (LDAP) standards for Web services dis-

covery services. The core systems environment

provides operating-system (OS) and hardware-level

integration that enables the dynamic reconfiguration

and partitioning of resources. Partitioning and

reconfiguration are performed by a number of

controllers, which can be built conforming to the

OGSA standard. Virtual machines interlocked with

OGSA-enabled provisioning systems completely

abstract processors and storage from OS images. As

this occurs, resource allocations are determined by

service level objectives and subsequently correlated

to metering data provided by complex and auto-

nomic monitoring subsystems. These layers of

virtualization and corresponding system manage-

ment support are shown in Figure 5. OGSA provides

the bridging between the systems and application

environment, allowing for the virtualization of both

systems resources and application meta-OS services.

Finally, security and support services need to be

interlocked in order to maintain service integrity and

provide access based on service subscription agree-

ments. Lines of business must pay for what they

use, and correspondingly, the infrastructure must be

compensated to maintain quality.

IT management process and policy definition

Managing an on demand SOA begins with trans-

lating business process policies into enforceable IT

policies to manage the various services in a

virtualized environment. A strategy must be put in

place defining the enablement of the various

applications of the process in question as services.

After services are defined, policies must be identi-

fied and defined because policies determine how an

on demand business process should be orchestrated.

Policies concerning privacy, security, authentica-

tion, resource-sharing priorities, accounting, and

chargeback can be formalized through policy

workshops and then applied using IT management

models. We describe these concepts here.

Policy workshops. Policy definition is often con-

ducted by using a well-documented technique

known as a policy definition workshop. This work-

shop has its roots in what are also referred to as

‘‘guiding principles’’ workshops. The definition of

policies in such a workshop is typically facilitated by

the use of a predefined straw-man policy starter set.

Policy workshops can be used to define the guiding

principles within an organization that determine

how the organization, processes, and tools are

defined, developed, and built in order to sustain an

on demand SOA. Key issues that are typically used

as a starter set include the following:

� Sharing—What are the organizational rules of

engagement when contention exists for re-

sources?
� Ownership—Who maintains the financial burden

for the asset, and how is the cost allocated, dis-

tributed, and recouped?
� Charges—What are the usage charges associated

with the utilization of services? To what level of

granularity is usage metered, and what is the as-

sociated overhead associated with fine-grained

usage metering and billing?
� Allocation—How are these resources allocated,

and how are priorities defined?
� Commitments—How are SLAs measured, and

how is monitoring data aggregated and mathe-

matically modeled in order to measure QoS or

SLA attainment?
� Schedules—What are the rules associated with

defining batch, maintenance, and other opera-

tional windows, particularly where functionality

of a particular resource pool may shift in alloca-

tion or functional configuration?
� Standards—What level of standardization and in-

teroperability is required for architectural ele-

ments?
� Designs—What is the general approach or prior-

ity for migrating legacy applications, analyzing

the enterprise application portfolio, better lever-

aging HPC resources, and better leveraging trans-

actional resources?
� Services—What core services must the environ-

ment provide in order to enable key management

CRAWFORD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200594

and accounting functions? How will various re-

source managers communicate and publish their

interfaces?

Management model. The management model de-

fines the point of execution and control across a

management infrastructure. The points of applica-

tion execution and control must also be understood;

however, in terms of management functions, a

management model is instrumental in helping to

institutionalize an on demand SOA. There are

various forms of management model:

� Centralized—Central points of execution and cen-

tral points of control are found in traditional leg-

acy environments.
� Enterprise hierarchical—This model is typical of

a large distributed environment where control

must be centralized, but systems continue to exe-

cute functionality locally and communicate re-

sults upward to a single enterprise manager.

This is similar to an intra-grid
8

across an enter-

prise.
� Distributed hierarchical—This model is suitable

for a federated approach to management (distrib-

uted and collaborative control), allowing local

domains a certain level of autonomy (distributed

execution), while ensuring that there is cross-do-

main collaboration as required. This is similar to

an extra-grid
8

or multiple intra-grids, wherein re-

sources are managed as distinct domains, but

may at some level participate in a collaboration.
� Workgroup: Islands of automation can be a

viable and efficient solution in sufficiently simple

situations.

Template-based process and service re-engineering.

IT process re-engineering is often based on the IBM

IT Process Model (ITPM), but may also use the IT

Infrastructure Library (ITIL**).
9

These comprehen-

sive models provide frameworks of activities

grouped by relevant scope of processes. The various

process outlines include such information as where

processes begin and end, activities, inputs and

outputs, measurements, dependencies on other

processes and data, and what is included and

excluded in the scope of each process. This

methodology provides a template-based approach to

designing processes based on prebuilt workflows.

We assume that many of these workflows, such as

problem management, can be nearly 80 percent

complete and applicable in most customers’ sce-

narios.

Adoption of new technologies will change service

definitions in an on demand SOA. For example, the

autonomic architecture defines a series of service

flows that essentially couple various process activ-

ities in order to provide some end result to a

customer of IT. Thus, change deployment can be

coupled with other process activities to create a

service, for example, when it becomes part of a

provisioning service. Provisioning, when defined as

a service, can and will include elements of config-

uration management and change management,

among other process activities. The adoption of

service definitions will become more critical as on

demand SOAs drive the need for more orchestrated

cost and resource management. Users will truly

become subscribers to an on demand SOA, requiring

well-defined and measured services that deliver a

suite of capabilities. The intent is to decouple users

and applications from an abstracted SOA framework

and provide resources dynamically to address the

QoS and SLA requirements of the business.

Virtualized infrastructure design

The guiding principles for a virtualized infrastruc-

ture are founded on policy-based resource sharing.

Of course, the level at which resources are shared,

from a logical partition (LPAR) to a cluster, depends

on both the applications that use the shared

resources and the organizational governance from

which the policies are derived. For instance, in our

customer scenario both mission-critical

e-business applications and applications that use

HPC analytics can run on Linux clusters. However,

the level at which one department can charge for use

of those resources (for example, on a cluster basis as

opposed to a per-node basis) will help determine

whether the resource should be virtualized at the

cluster or node level. In fact, the underlying system

and workload management of that cluster may only

be capable of a specific level of resource-sharing

granularity. Before a virtualized infrastructure de-

sign is begun, these types of constraints must be

documented. Even more fundamentally, before

undertaking the effort to consolidate resources for a

virtualized infrastructure, some capacity planning

and analysis is required. This planning will deter-

mine if enough resources exist to meet projected

demand based on policies. This can be accom-

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CRAWFORD ET AL. 95

plished through continual online modeling and

analysis of different systems.

Scheduling meta-services. As stated earlier, in an

SOA design a business process can be described as a

composition of several services, referred to as a

meta-service. A request from an end user to execute

a meta-service must have some initial policy-based

scheduling, most likely based on user class of

service and security-based policies. For instance,

some customers in our scenario could be paying

higher prices to ensure better Life Change process

throughput; these Gold class customers would be

preferentially scheduled over Bronze class custom-

ers. The meta-services scheduler needs to decom-

pose the meta-service description of several

participating services and identify a workflow or a

calendar plan of how these services should be

executed. This would include synchronous versus

asynchronous service-scheduling constraints. After

the plan is in place, the scheduler routes the service

to the appropriate workload domain for scheduling

and instantiation on the local resources. A workload

domain consists of a request scheduler or router and

a collection of resources. In certain cases multiple

workload types can be scheduled within the same

workload domain. For instance, in our Life Change

scenario the WebSphere* services
10

would be

routed to a WebSphere Web services scheduler, and

the HPC application would be routed to the

appropriate HPC scheduler. Data and states that

must be shared by the various services within the

workflow can be maintained within the meta-

services scheduler. (Some SOA standards such as

OGSI allow for state notification and data sharing, so

this function would not necessarily always reside

within a meta-services scheduler.) We also note that

the meta-services scheduler could act as a single

point of entry for all resource requests (services-

based or otherwise) on the system, and this

scheduler would then be responsible for routing a

request to the appropriate workload domain for

local resource scheduling. It is important to recog-

nize that when working with distributed data, the

SOA paradigm does not make data storage visible

directly, but instead uses the concept of a meta-

service to mask the physical data representation.

Policy-based resource sharing. Policies for resource

sharing can be as simple as those based on time of

day, or they can be as complex as those guarantee-

ing a certain level of performance or ability for a

given service. In order to meet increases in demand

for a given service, resources from other services

must typically be reallocated. The corresponding

optimization problem for autonomic resource man-

agement across multiple workload domains is quite

daunting. As a first step, however, we can rely on

the human decision-making process to decide when

to move resources based on QoS guarantees and

QoS violation events. Each of the actual deallocation

and allocation processes can be automated by

supplying tools and workflows for reconfiguring the

available resources. We may refer to this as an

enterprise, global, or multiworkload domain view of

resource sharing. However, in order to develop a

comprehensive workload management system, we

need to further address additional levels of gran-

ularity within domains and resources.

In addition to the enterprise scenario just described,

we must also consider policy-based resource sharing

within a single workload domain, for example, a

WebSphere cluster, a LoadLeveler* cluster, or a

Cisco cluster. We are concerned with how requests

from different users for a certain service should be

handled based on incoming order, customer type,

and current QoS statistics. If services of different

types are managed within a single workload

domain, that is, within a single WebSphere cluster,

we must also consider how resources should be

allocated for services of different types. For work-

loads of different types, the actual scheduling or

load-balancing algorithms could differ greatly. For

example, in HPC parallel jobs the scheduling

requirements include resource matching, advanced

reservation, and backfill scheduling for batch jobs.

Interactive e-business or HTTP request load bal-

ancers may not be concerned with advanced

reservation or backfill. In a resource-sharing system,

both schedulers will need some user-based policies

such as QoS and security. These policies must be

built into each workload management system that

they impact within the domain. We may refer to this

type of resource sharing as policy-based scheduling

or load balancing within a workload domain.

Finally, resources within a single machine can be

allocated and managed according to a given set of

policies. Operating-system-level controls, LPAR

configuration, job swapping, and paging can be used

to manage workload priorities according to a set of

policies within a server. Memory and CPU resources

CRAWFORD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200596

can be moved across LPARs using hypervisor

controls, and jobs within a single LPAR can be

halted while jobs of higher priority are swapped in

to obtain the required system resources. Of course,

the priorities of jobs and applications are set by the

service policies. We note here that in all these cases

the mapping of service policies to the actual tuning

knobs on a system, whether that system be a single

server or a collection of clusters on a network, may

not always be straightforward and may require

some additional tooling to implement.

We now need to relate this infrastructure to our

customer scenario. Recalling the flows shown in

Figure 4, we see that the 401(k)-plan, health- and

life-insurance, retail-brokerage, and HPC-analytics

services can all run on Linux clusters. We can

realistically divide these services between two

workload domains: an interactive, HPC parallel

service workload and a Web services e-business

multitiered transactional workload. Our meta-ser-

vices scheduler for the cluster is quite simply a

scheduler that knows how to route the different

requests to different domain schedulers. The meta-

services scheduler is also a multidomain resource

manager that builds an initial set of nodes and

dynamically manages the resources allocated be-

tween the two workloads to satisfy the policy

constraints, most probably based on QoS or per-

formance, for the different services. The dynamic,

autonomic management of these resources between

two workloads is a very difficult task and a topic of

intense research today. We note that the meta-

services scheduler would also be responsible for

routing requests to the mainframe for the Form W-4-

based service.

SLA-based monitoring and metering. In the preced-

ing section, we reviewed requirements for policy-

based resource sharing. This type of resource

allocation is impossible without the appropriate

monitoring and event infrastructure in place. SLA-

based monitoring must be based upon service level

guarantees and QoS violations. Furthermore, SLA-

based monitoring is a requirement for accurate

accounting, billing, and chargeback, especially

when we view pricing as a type of policy for the

system. In addition to monitoring the metrics

specified in a given SLA, various components of

virtualized resources must also be monitored, so

that predictive models or analysis can provide

information that can be used to better manage future

allocations of resources. This type of analysis and

& Ideally, resources should be
dynamically allocated
not just according to demand
but also in advance
of the peaks and
valleys of service requests &

allocation enables the system to anticipate SLA-

based violations before they occur and take pre-

scribed preventative measures.

Another important aspect of this type of monitoring

relates to transactional monitoring and dependency

analysis. Consider that several of our services are

transactional in nature and that the underpinnings

of these services involve a traditional two-tiered

architecture with an application server and a data-

base server. This is the case with the benefits and

retail-brokerage services in our scenario. In order to

determine how to best allocate resources for these

services after the QoS-based policies have been

violated, we will need to know if more application

servers or more database servers are required to

meet our QoS goals. Bottleneck identification is a

key for appropriate resource management in an on

demand SOA for transactional applications. Often,

the topology of a service request is not known, and

dependency analysis is required to determine how

many tiers are involved in processing a request.

Therefore, dynamic instrumentation of services to

identify bottlenecks must be available.

Accounting and billing. In any virtualized on de-

mand SOA infrastructure, accurate accounting and

billing is required. For the scenario in this paper,

Linux cluster resources are shared among the

analytics department, the retail brokerage group,

and the benefits businesses. Beyond the meta-

service request for which we must provide accurate

metering information for proper billing of custom-

ers, these shared resources may also be used

independent of the meta-service request. For exam-

ple, the analytics department may want to use the

combined Linux resources, when available, to run

larger and more complex value-at-risk simulations

for portfolio analysis. They would be using the

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CRAWFORD ET AL. 97

resources of another department and organization to

do this. We need to account for the fact that these

resources are not being used to support the Life

Change business process (or any other business

process running in the on demand SOA environ-

ment) and identify which department is using them

and for how long. Billing or chargeback for shared

resources is feasible using this type of information.

Federated data. Thus far, we have concerned

ourselves with the sharing of computing or server

resources. However, most on demand SOA scenar-

ios, including our scenario, have data-sharing

requirements as well. To understand this, we need

only think about how portfolio management is done.

In our calculations, we must consider investments in

multiple funds, including 401(k), 529, and actual

stock portfolios. Most often, these data sets exist on

different departmental databases. When an advice

engine is required, a person must then access

disparate servers, collect the data by running a

series of complex queries, and use the aggregate

data to generate some investment advice. If the data

were easily accessible programmatically by each of

the services, the need for human intervention in this

process would be removed. The architecture by

which data is easily accessible in this fashion is

called data federation, and, in this case, databases

are federated. File-system federation most often

occurs for numerically intensive computing jobs

where data I/O has extensive performance require-

ments. In this case data, which often includes

intermediate results of a calculation, are stored in

files that must be accessible to all nodes in a

distributed system, including access across clusters.

For our scenario, the data in these files may also

include state information or checkpoints used to

save the state for each of the portfolio calculations

within the job.

Network provisioning. Network allocation is also a

key consideration for distributed-system and shared-

resource management. Because some customers

might have higher priority than others, we need to

implement policy-based bandwidth allocation on the

network, both into the main site (portal) and among

and within the different workload domains as

requests move from one service to another in the

workflow. When nodes are allocated and deal-

located, network provisioning is also very important

to ensure secure access and appropriate network

topologies for many multitiered transactional ser-

vices. Network provisioning is important as internal

utilities begin providing hosting services for external

utilities. Virtual local area networks (VLAN) are one

example of network resources that are configured

through switches to provide data and server

security.

Capacity planning. Capacity planning is critical to

any distributed system design. In many respects,

capacity planning in the on demand SOA architec-

ture is similar to classic IT performance analysis

work. There are, however, new business-process

and IT-policy implications for capacity planning for

an on demand SOA.

Business processes, applications, and the underlying

IT infrastructure of our solution are on demand by

design. This means that, ideally, resources should

be dynamically allocated not just according to

demand, but also in advance of the peaks and

valleys of service requests. For instance, we would

like to allocate servers at different times of the day to

handle the Life Change scenario transactional

services when the request rate is highest, but

perhaps reallocate some Linux servers for different

types of HPC analytics that could run overnight to

help provide more information for accurate portfolio

balancing the following day. How far in advance

and with what accuracy these peaks and valleys

need to be predicted are determined by IT QoS

policy. Fundamentally, these changes in the pre-

diction horizon interval correspond to a real-time

analysis requirement for on demand computing.

This means that we may need to run closed-loop,

feedback-control predictions every 5 minutes; these

predictions may not need to be extremely accurate,

but they must be accurate enough to prevent

overprovisioning or thrashing (unnecessary provi-

sioning and deprovisioning of resources at excessive

rates). We may still choose to run highly accurate,

off-line, traditional capacity-planning algorithms at

the end of every day, once a week, or once a month

to aid in on-line prediction accuracy or simply to

assess the efficiency of our current system archi-

tecture. We want our capacity-planning element in

the on demand SOA to be capable of both on-line

and off-line analysis and prediction.

Capacity planning in the SOA environment also

requires that we be able to provide performance

analysis and prediction for services, not just for

single applications or transactions. This philosoph-

CRAWFORD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200598

ical shift requires that a services dependency or

topology diagram be made available, either through

dynamic generation via traces or through static user

description. These are, of course, two extremes of a

spectrum of possibilities, and we envision that there

& Because the on demand
SOA philosophy is based upon
open standards,
implementations and future
projections will rely on open
standards roadmaps &

will be ways to generate dependency diagrams that

are a combination of user-defined topology and

dynamic discovery of resources within a service. The

services dependency diagram will correspond to an

IT topology diagram, mapping services to resources.

For instance, the health insurance subscription

service corresponds to a two-tiered architecture with

both application and database servers. Capacity

planning for that service involves planning for both

types of server capacity. After the IT topology for a

service is known and the desired values for analysis

are entered, the requisite measurements, including

type and frequency, must be determined.

Finally, when on demand SOA solutions include a

grid implementation, the problem often referred to

as ‘‘moving resources’’ exists. By this we mean that

resources (computing, network, and storage) in a

grid can join and leave a grid in a nondeterministic

fashion. Therefore, we do not always know when

capacity is growing or shrinking in our distributed

system. We note that although this may seem like an

intractable problem, most intra-grids are built with

fairly strict IT policy about when and how nodes can

join or leave a grid within the on demand SOA. This

is true because business process, policy, and

governance drive the on demand SOA. Thus, the

risk of not knowing when resources are available for

a grid is mitigated by the underlying policies.

A summary of the on demand SOA solution

architecture is shown in Figure 6. Black indicates

service requests generated by the user. Orange

indicates data flow (synchronous or asynchronous)

from a service to the user, redirected through the

FSS.com site. Blue indicates monitored, SLA-based

data collected at the different schedulers or load

balancers and sent back to the resource manager;

the resource manager also provides this and perhaps

other data to the capacity-planning tool. The

capacity-planning component provides SLA-based

events or threshold analysis to the resource man-

ager, so that the manager can either reconfigure

existing allocations to keep up with demand before

peaks or valleys occur or configure the metasched-

uler to offload a request, if appropriate, to an

available third-party hosting service shown in purple.

IMPLEMENTING AN ON DEMAND SOA SOLUTION

The final steps in our hypothetical on demand SOA

customer engagement would be first to implement

our solution as thoroughly as possible with current

products and then to indicate where these products

are lacking and provide a reasonable technical

roadmap for achieving a more complete solution. As

indicated previously, to see real benefit from this

approach we cannot afford either a solution requir-

ing complete elimination of existing resources or a

solution in which all of the applications and all of

the IT infrastructure must be transformed at once.

Furthermore, because we are developing solutions

for an evolving technology, we are necessarily

limited to what is already existing and mature

within distributed-computing and Web-services

product bases. Because the on demand SOA

philosophy is based on open standards, implemen-

tations and future projections will rely on open

standards roadmaps. Finally, we note that in this

section we are proposing a set of technologies that

are derived from autonomic, grid, and utility-

computing technologies. There may also be other

viable technologies and solutions. However, our

purpose here is primarily to demonstrate by specific

examples how one could implement an on demand

SOA for our given customer scenario.

As has been the theme in this paper, we describe the

technologies in our implementation in reference to

business process, application, and infrastructure

enablement. We also identify specific autonomic,

utility, and grid-computing technologies where

appropriate.

Business process enablement
Developing an overall on demand corporate busi-

ness strategy will remain the work of experienced

business consultants who have an in-depth knowl-

edge of the emerging enabling technologies and

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CRAWFORD ET AL. 99

open standards. Once an overall on demand busi-

ness strategy has been developed, specific business

processes that have been identified for on demand

SOA enablement should be addressed within the

context of a certain core group of technologies.

One specific technology for business process en-

ablement is the language used to describe a business

process or meta-service. Today, Business Process

Execution Language for Web Services (BPEL4WS
11

or BPEL for short) is an obvious choice, because it is

standards-based and because such BPEL4WS-sup-

porting technologies as composition tools and

service decomposition engines already exist. In our

scenario, BPEL4WS could quite easily be used to

describe our meta-service as a collection of services,

and our metascheduler would then just need a

BPEL4WS engine to decompose and parse the meta-

service definition.

Business processes are enabled at the IT level by

using policy-based resource management. In this

regard, it is important that the different IT policy

descriptions, including enterprise workload man-

agement (eWLM
12

) and WSLA, be understood at a

sufficient level that the business process policy does

not require levels of IT policy and capability that do

not exist or cannot be achieved.

Application enablement

As stated previously, the key decision for any

services designed in an on demand SOA is to decide

at what layer different applications should be

virtualized as services. This type of analysis should

become part of existing legacy-transformation and

application-portfolio-analysis assets and offerings.

However, after this analysis has been carried out,

the next real decision involves whether to use Web

services or grid technologies and standards, in other

words WSDL or OGSI. The issue of whether to use

WSDL or OGSI at this point is a very subtle one, and

one that we expect to become more difficult as the

two standards begin to converge. For our scenario,

we may choose to do something like this:

Client/End User

Customer FSS Company

Multiworkload
Domain Resource

Manager

Metascheduler

Third-Party
Partners

Services
Portal
(WS, OGSA)

Meta-Service

SLA
Monitoring

SLA
Monitoring

HPC
Scheduler

Transactional
Router

Shared ResourcesFederated Data

Figure 6
Architecture of an on demand SOA solution for a financial service company's Life Change scenario

Service
Registry

Capacity
Planning

FSS.com
Site

HR Site

Service Workflow

CRAWFORD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005100

1. For the services that change portfolio or invest-

ment profiles (retail brokerage, 529 account cre-

ation, 401(k) plan management), we will write

the services by using OGSI and taking advan-

tage of its notification mechanisms.

2. For the HR application, for benefits (life and

health insurance) and for numerically intensive

computing, we will use WSDL.

WebSphere provides a framework for developing

and building WSDL-based services called Web-

Sphere Application Developer (WSAD). There is no

such equivalent in Globus Toolkit 3** for building

OGSI-based services.

After a service has been built by using OGSI or

WSDL, a container is required on each node on

which the service will be instantiated. For Web

services, this is typically WebSphere Application

Server, BEA WebLogic**,
13

or Tomcat.
14

OGSI

containers will be available on all IBM eServer*

platforms. In the meantime, particularly for non-

IBM platforms, one can use any SOAP container, for

example, Tomcat. Again, the choice of which

container to use is a fairly subtle decision based

upon available middleware budget, support, and

other considerations. For our scenario, we use

WebSphere Application Server to develop WSDL

applications, minimally implement Tomcat on every

node in the system for containers, and have Web-

Sphere Application Server installed on the main-

frame.

IT infrastructure enablement

We now review the functional blocks from Figure 6

and describe the corresponding list of candidate

technologies from autonomic, utility, and grid

computing that could be implemented to meet the

design requirements of our scenario.

Scheduling

First, we assume that BPEL will be the language

used to describe the meta-service. Therefore, we will

need a technology based on a BPEL4WS engine.

Second, we will need a scheduler that has fairly rich

APIs to accommodate the domain-specific workload

balancers and schedulers for a specific type of

service. Third, the meta-service scheduler should

work across administrative domains as well. The

Globus Resource Allocation Manager (GRAM)
15

provides a rich set of standardized APIs for various

schedulers, so that workload domain-specific re-

sources can be discovered and used by the

appropriate applications. However, GRAM does not

support a BPEL4WS engine. The DataSynapse

GridServer** broker manager
16

provides service-

based scheduling across many resource domains,

but it also lacks a BPEL4WS engine and has no

policy-based scheduling. Web Services Management

Middleware (WSMM),
17

a technology developed in

IBM Research and now released in product form, is a

Web services scheduler, but it is unclear at this time

how such technology would support multiple Web-

Sphere Application Server clusters. Not enough is

known publicly about the Platform Symphony**

product
18

or the recently announced Community

Scheduler Framework (CSF),
19

which will be an

open-source metascheduler. Thus, at this point there

could be three reasonable solutions for the meta-

scheduler in our scenario:

1. Customers write their own scheduler with an

underlying BPEL4WS engine and GRAM infra-

structure.

2. Customers write their own BPEL4WS and poli-

cy-based scheduler and use DataSynapse to

schedule services to the different workload do-

mains.

3. Customers use a prototype based upon WSMM

technology, including multidomain support.

For each of the workload domains we also need a

scheduler. For the transactional workloads (every-

thing but the HPC analytics service), we could use

WSMM technology as is. WSMM is a good choice

because it includes some resource affinity as well as

SLA-based scheduling. For the HPC scheduler, there

are many choices including Platform LSF,
20

Con-

dor,
21

and OpenPBS,
22

among others. Platform LSF

is a sensible choice because of its existing Linux and

multiplatform support; however, its licensing fees

may be a concern. OpenPBS has a Linux and

multicluster solution, but our customer will prob-

ably not want to implement an open-source solution

for such a key middleware product as scheduling in

a mission-critical deployment. Another option

would be IBM’s LoadLeveler (LL),
23

which at this

writing is under limited availability on Linux;

additional work would have to be done for multi-

cluster support. DataSynapse might be another

choice if the analytics application fits well within the

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CRAWFORD ET AL. 101

DataSynapse programming paradigm. Platform

Symphony actually has all of the function needed to

schedule parallel services such as the HPC analytics.

There is also another possible solution to the HPC

scheduling and parallel service problem. IBM has an

existing parallel application programming environ-

ment called Parallel Operating Environment (POE).
24

POE represents a distributed parallel job with one

context in a UNIX** or Linux operating environ-

ment. Today, POE is a runtime library that contacts a

resource manager, in this case LL, to acquire a

certain number of nodes with specified requirements

to execute a parallel job on a system. POE provides

wrappers around the main execution of the code on

each node to start up and terminate jobs. In order for

an HPC application to be treated as a service, POE

would now need a Java wrapper to publish some

type of WSDL for the service. Furthermore, if POE

did not terminate the job after the main method of

the code was finished, there would also be a

mechanism to stream new data into the application

code without restarting the job.

Given this background, we could now start up the

parallel service using this modified POE and the LL

resource manager. After that has been done, we

need only a single service scheduler for the Linux

clusters because the POE parallel service appears to

the service scheduler as just another service on a

virtualized server (a collection of Linux nodes used

to execute a parallel job). The task-level parallelism

within the job can be handled within the application

using standard master-slave parallel-programming-

paradigm implementations.

Policy-based resource sharing

In our scenario, we are most concerned with how

the resources on the Linux clusters will be shared for

the health- and life-insurance, retail-brokerage, and

HPC-analytics services. If we know that one service

is more important than the others with respect to

ensuring that the Life Change process executes with

reasonable QoS, then we can give that service

preferential access to resources. We would need to

implement this type of preferential policy first within

a server and then across the distributed system.

Within a node, we can use eWLM to manage

resources preferentially. Within a Linux cluster we

can use WSMM policy-based scheduling to make

sure that resources are scheduled optimally to meet

different Web services SLA metrics, such as

throughput. Finally, if the services can be split into

different types of workload domains, such as the

HPC domain and the transactional domain, or even

& The overriding value of an on
demand SOA is the ability
to build once and use often &

into dedicated service nodes within the transactional

domain, we can use IBM Tivoli Intelligent Think-

Dynamic* Orchestrator
25

connected to an SLA-based

monitoring and event system to dynamically real-

locate cluster resources. Furthermore, some feed-

back between these different components will be

required for more coordinated resource sharing. At

the time of writing, however, the policy languages

used by eWLM, WSMM, and ThinkDynamic Or-

chestrator are all different.

SLA-based monitoring and metering

Before we decide what SLA-based monitoring we

will employ on our system, we have to decide what

products are using SLA-based monitors for resource

sharing and for accounting and billing. As we stated

previously, the resource-sharing infrastructure

components actually use a myriad of policy lan-

guages, and all provide relevant monitoring infor-

mation for accounting and billing. One approach

here would be to provide a central SLA-based

monitoring manager that could actually connect to

all of the data being generated by the resource

manager agents. This manager would then also be

responsible for sending events to a variety of

subscribers, extending from the resource managers,

schedulers, and provisioners to the accounting and

billing functions. Currently, there is a system under

development at IBM Research, designated the WSLA

manager,
26

which provides just such an abstraction.

This system is configurable to connect to any data

source for monitored data, provided that interfaces

to the data source are built and that they send data

to any listener subscribing to SLA-based events.

Work with the customer would involve writing the

correct interfaces for data and events for customer-

specific systems.

Accounting and billing

Accounting and billing are highly dependent on

functions such as monitoring, which are required to

CRAWFORD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005102

manage a utility. Fundamentally, data for account-

ing is based on usage metrics captured from

monitoring subsystems. Monitoring systems tied to

SLA management components determine if a target

level of service is being breached; however, the

same data can be tied into a usage accounting

system to correlate applications with the systems on

which they are running and with the duration of the

run.

Accounting functionality will continue to evolve

over time as probes become less intrusive and as

measurement overhead is reduced. This will enable

greater granularity in the data points that can be

captured relative to application cycle counts over a

period of time. Currently when an application

begins to execute on a given server, a trigger

indicates that work has started on that server and

begins the billing period for a particular user of a

particular resource. This information can also be

obtained through historical analysis of such data as

system usage logs. Software exists today that can be

configured to address such accounting require-

ments, including SAS** IT Resource Management,
27

Evident Enterprise,
28

and Tivoli Decision Support

for OS/390*.
29

Billing and chargeback are based on the information

found in accounting systems, including both usage

data and the cost models and mechanisms by which

the cost is allocated. Billing systems have existed for

many years and will not require major overhauls.

However, these systems will need to undergo a

transformation in terms of how they are used in

chargeback schemas within IT providers to ensure

that costs are properly allocated to the correct

subscribers based on the usage data from account-

ing systems.

Measurement data is usually available from several

existing sources. For instance in the OS/390

environment, tools already in place will likely be

System Management Facility (SMF), online trans-

action monitors, and database logging. For the UNIX

and LAN/WAN (local area network/wide area

network) environments, tools that may already be in

place that provide measurement data are Computer

Associates (CA) Unicenter** NeuMICs**,
30

Hewlett-

Packard OpenView**,
31

or BMC PATROL**.
32

Im-

plementation considerations include requirements

for these tools to interface with or feed data to the IT

accounting software.

Commonly used IT accounting or chargeback-

specific products currently include the following:

� SAS IT Resource Management and IT Charge

Management
33

� CA MICS (NeuMICS) Accounting and Chargeback
� CIMS

34

� Tivoli Decision Support for OS/390 Accounting

and Accounting WorkStation
� Evident Enterprise
� Veritas MicroMeasure**

35

� ADC Singl.eView**
36

Federated data

We are concerned with two types of data federation

in our scenario. First, the HPC analytics application

could require shared data via a file system. In this

case we are concerned with cluster file systems. In

the Linux cluster market, IBM’s General Parallel File

System (GPFS)
37

is ‘‘state of the art’’ and the most

affordable option available. GPFS is also being

extended to work over wide area networks so that

multicluster support is available. We note that

several customers who are considering using HPC

applications within SOA also wish to save the state

between job execution cycles, for example, saving

intermediate computational results in a type of

distributed cache. Currently work is underway to

investigate GPFS as the basis of a distributed

cache.
38

However, at the time of writing no solution

exists in the marketplace for the distributed-cache-

in-a-cluster problem that performs well enough and

is general enough to be part of an HPC solution.

The second type of data federation deals with

database-type storage, allowing data to be shared

across tables and even physical volumes. In this

arena, much of the technology is still under

development, but IBM does have a significant

existing product in DB2* Information Integrator.
39

Network provisioning

Policy-based resource sharing ties together a series

of management components in order to reallocate

cluster or server resources and application compo-

nents or workload. Network provisioning couples

policy-based resource sharing with an underlying

dynamic connectivity environment to perform both

topology reconfiguration and policy reconfiguration.

Intelligent networks today allow for the dynamic

construction and deconstruction of private VLANs to

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CRAWFORD ET AL. 103

create logical segments. In addition, virtual private

networks (VPNs) encompassing wide areas can now

be used to secure bridges between private segments

and allow collaboration within a public network.

These services can be set up as required by network

administrators to control traffic flow through private

and public networks, and in our scenario could be

used to build virtual Linux clusters for different

services. This is more time- and cost-effective than

creating clusters on truly distinct LANs. However,

these services alone do not provide the dynamic

provisioning required to ensure that the QoS

requirements for application connectivity are met.

Congestion management is a more recent form of

network provisioning. Many firms have begun

performing QoS management by using tools from

companies like Converged Access
40

or Packeteer
41

to manage congestion. These tools typically address

the scenario wherein a firm knows it has more

traffic than it can send over the current network and

must therefore control which users or applications

are given priority and which are denied service

based on management policy. Networks tend to

discard excess traffic (traffic above a certain

threshold). QoS management systems enable the

network to make decisions based on QoS reporting

of how effectively policies are being attained.

Typically these systems provide a probe in-line

between the WAN and border routers to manage

congestion. Products such as those from Converged

Access or Packeteer provide devices or probes that

measure QoS to rearrange traffic. These products

manage defined traffic flows and also tell the

administrator about unknown traffic flows in

addition to those that are configured. This process

relies on well-specified input in terms of policy and

traffic flow analysis.

Over time it is expected that QoS and advanced

reservation protocols will become more common-

place and will be embedded within vendor hardware

and operating systems in order to ensure that

applications can be provided connectivity at a

certain guaranteed level of service. In the meantime,

point solutions exist that can be coupled together to

begin orchestrating allocation of bandwidth to

applications.

Capacity planning

As stated previously, capacity planning for on

demand SOA should be based on services. This

means that we will need dependency analysis and

corresponding IT-based topology maps for each

service. In our scenario, we will need to understand

the request path or server topology for each of the

services. For instance, we will need to know which

servers are required for an ‘‘add dependent medical

coverage’’ service and how these servers are

connected (e.g., application server and database

server). The eWLM policy description provides the

required dependency map. However, in order for

requests within a service to be traced with eWLM,

the application or associated middleware should be

instrumented with application response measure-

ment (ARM) calls. For some applications, this is not

possible. New technology for dynamic dependency

analysis that does not require such instrumentation

is under development.
42

Even this newer technology

has some limitations, however, because it requires

that applications be written in Java. For non-Java

applications, building dependency and topology

maps can be much more difficult, and experience in

analyzing existing application logging becomes

crucial.

After the topology and dependencies are known for

one of the services, we would specify a certain QoS,

in terms of either throughput or response time, and

generate an appropriate system configuration to

support that QoS. Combining these capacity re-

quirements is an optimization problem. In partic-

ular, analyzing possible workload scenarios is

crucial to addressing both the advanced reservation

problem for any policy-based resource manager and

the dynamic provisioning of resources. In our

scenario, we would use such tooling to configure the

system one way for a time of day when we expect a

heavy customer load, perhaps allocating more Linux

servers to the advice engine application. Then we

could reconfigure the system to give more capacity

to the other Linux applications during off-peak

hours. Sophisticated capacity planning and optimi-

zation models are clearly required for these scenar-

ios. An example of such technology for advanced

tooling that combines request topology, use pre-

diction, performance analysis, and resource optimi-

zation can be found in Reference 43.

CONCLUSIONS

The overriding value of an on demand SOA is the

ability to build once and use often. Moreover, it is an

opportunity to bring the concept of encapsulation

CRAWFORD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005104

from the object world, where the reuse impact is

small, to the enterprise world, where the impact will

be far greater. In on demand SOA, integration is also

explicitly defined and better understood at the

application and enterprise level than can be the case

in current environments. Overall, we can expect that

on demand SOA will lower development, opera-

tions, and maintenance costs. Finally, linking

requestors and providers by contract agreements

will provide a looser coupling in which each can

vary the specific details of his or her own work

independently.

In this paper we have used a specific customer

scenario to demonstrate how an on demand SOA

allows us both to define a business process explicitly

and to separate it from the definition of its individual

component steps. One important result is that

multiple processes can now share the same imple-

mentation of common individual steps. In partic-

ular, this allows processes and implementations to

vary independently. We also showed how to enable

the processes and the implementations for this

scenario, both in the application and system areas,

by using existing technologies and standards.

On demand SOA is about the fusion of business and

IT. It is also about the integration of multiple

technologies, which when taken in isolation provide

some value, but which when used holistically

provide far more significant payback to the enter-

prise. Thus, on demand SOA enables on demand

business to reach a higher level of IT effectiveness.

Ultimately, this paper is about making on demand

business a reality. SOA, itself, is the glue that binds

business processes, applications, and IT infrastruc-

ture integration into a comprehensive architecture.

On demand SOA takes this concept a step further

with the fusion of business process transformation,

service-oriented enabling technologies, and policy-

based management.

ACKNOWLEDGMENTS
We are grateful to Rhonda Childress, Daron Green,

Mark Ernest, Cary Perkins, and Chris Reech for their

participation in the initial brainstorming sessions that

were the basis for this paper. We are especially

appreciative to Paul Magnone for posing this problem

to us in the first place and to Scott Penberthy for

providing financial support for the work summarized

in this paper. C.H.C. is grateful for the constant

management support of Nagui Halim, Dan Dias, and

Asit Dan and for funding support from Dave Turek.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of ADC, BEA Systems,
Inc., BMC Software, Inc., Computer Associates International,
Inc., DataSynapse, Inc., Hewlett Packard Company, Linus
Torvalds, Platform Computing, Inc., SAS Institute, Inc., Sun
Microsystems, Inc., The Open Group, UK Office of Govern-
ment Commerce, University of Chicago, and Veritas Software
Corporation.

CITED REFERENCES
1. Web Services, World Wide Web Consortium, http://

www.w3.org/2002/ws/.

2. A. G. Ganek and T. A. Corbi, ‘‘The Dawning of the
Autonomic Computing Era,’’ IBM Systems Journal 42, No.
1, 5–18 (2003).

3. J. W. Ross and G. Westerman, ‘‘Preparing for Utility
Computing: The Role of IT Architecture and Relationship
Management,’’ IBM Systems Journal 43, No. 1, 5–19
(2004).

4. The Grid 2: Blueprint for a New Computing Infrastructure
(2nd Edition), I. Foster and C. Kesselman, Editors,
Morgan Kaufmann Publishing, Inc., San Francisco, CA
(2003).

5. J. Hagel III, Out of the Box, Strategies for Achieving Profits
Today and Growth Tomorrow through Web Services,
Harvard Business School Press, Boston, MA (2002), p. 15.

6. K. Holley, Powerful Enterprise Architecture and
Information Technology Strategies, Why SOA is the
Missing Link, IBM Corporation (June 4, 2004), http://
www.sys-con.com/story/?storyid=45100&DE=1.

7. H. Ludwig, A. Keller, A. Dan, and R. King, ‘‘A Service
Level Agreement for Dynamic Electronic Services,’’
Fourth IEEE International Workshop on Advanced Issues
of E-Commerce and Web-Based Information Systems
(WECWIS’02), Newport Beach, CA, IEEE Computer
Society, Washington, DC (2002), pp. 25–32.

8. B. Carpenter and P. Janson, ‘‘Abstract Inter-Domain
Security Assertions: A Basis for Extra-Grid Virtual
Organizations,’’ IBM Systems Journal 43, No. 4, 689–704
(2004).

9. IT Infrastructure Library (ITIL), UK Office of Government
Commerce, http://www.ogc.gov.uk/index.asp?id=2261.

10. WebSphere, IBM Corporation, http://www.ibm.com/
websphere.

11. F. Leymann and D. Roller, Business Processes in a Web
Services World—A Quick Overview of BPEL4WS, IBM
Corporation (August 2002), http://www-106.ibm.com/
developerworks/library/ws-bpelwp/.

12. J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D.
Dillenberger, ‘‘Adaptive Algorithms for Managing a
Distributed Data Processing Workload,’’ IBM Systems
Journal 36, No. 2, 242–283 (1997).

13. BEA WebLogic Server, BEA Systems, Inc., http://
www.bea.com/products/weblogic/server/index.shtml.

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CRAWFORD ET AL. 105

14. Tomcat, The Apache Software Foundation, http://
jakarta.apache.org/tomcat/.

15. Globus Resource Allocation Manager (GRAM), The
Globus Alliance, http://www-unix.globus.org/
developer/resource-management.html.

16. GridServer, DataSynapse, http://www.datasynapse.com/
solutions/gridserver.html.

17. R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A.
Tantawi, and A. Youssef, ‘‘Performance Management for
Cluster Based Web Services,’’ Proceedings of 8th IFIP/IEEE
International Symposium on Integrated Network
Management (IM 2003), Colorado Springs, CO, IEEE
Communications Society, New York, NY (March 2003),
pp. 247–261.

18. Platform Symphony, Platform Computing, Inc., http://
www.platform.com/products/Symphony/.

19. Platform Community Scheduler Framework (CSF),
Platform Computing, Inc., http://www.platform.com/
products/Globus/.

20. Platform LSF, Platform Computing, Inc., http://
www.platform.com/products/LSF/.

21. Condor, The Condor Project, University of Wisconsin-
Madison (UW-Madison), http://www.cs.wisc.edu/
condor/.

22. OpenPBS, Altair Engineering, Inc., http://
www.openpbs.org/main.html.

23. IBM LoadLeveler, IBM Corporation, http://www-1.
ibm.com/servers/eserver/pseries/library/sp_books/
loadleveler.html.

24. IBM Parallel Environment for AIX, IBM Corporation,
http://www-1.ibm.com/servers/eserver/pseries/library/
sp_books/pe.html.

25. IBM Tivoli Intelligent Orchestrator, IBM Corporation,
http://www-306.ibm.com/software/tivoli/products/
intell-orch/.

26. A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D.
Kuebler, H. Ludwig, M. Polan, M. Spreitzer, and A.
Youssef, ‘‘Web Services On Demand: WSLA-Driven
Automated Management,’’ IBM Systems Journal 43, No.
1, 136–158 (2003).

27. SAS IT Resource Management, SAS Institute, Inc., http://
support.sas.com/documentation/onlinedoc/itsv/.

28. Evident Enterprise, Evident Software, Inc., http://
www.evidentsoftware.com/products/entfeatures.aspx.

29. Tivoli Decision Support for OS/390, IBM Corporation,
http://www.306.ibm.com/software/tivoli/products/tds-
390/.

30. Unicenter NeuMICS Resource Management Analyzer
Option for MQSeries, Computer Associates International,
Inc., http://www3.ca.com/Solutions/
ProductOption.asp?ID=1404.

31. HP OpenView, Hewlett-Packard Company, http://
www.openview.hp.com/.

32. PATROL Enterprise Manager, BMC Software, http://
www.bmc.com/products/proddocview/
0,2832,19052_19429_23191_7266,00.html.

33. SAS IT Charge Management, SAS Institute, Inc., http://
www.sas.com/solutions/itcharge/index.html.

34. CIMS, CIMS Lab, Inc., http://www.cimslab.com/
default.htm.

35. Veritas Micromeasure, Veritas Software Corporation,
http://www.veritas.com/news/press/

PressReleaseDetail.jhtml;vrtsid=
FV02LFBCMLLEHQFIYCLCFEY?NewsId=62001.

36. Singl.eView Billing and Commerce Software, ADC,
http://www.adc.com/software/billingandcommerce/.

37. F. Schmuck and R. Haskin, ‘‘GPFS: A Shared-Disk File
System for Large Computing Clusters,’’ Proceedings of the
Conference on File and Storage Technologies (FAST’02),
Monterey, CA (January 2002), pp. 231–244.

38. C.H. Crawford and K. Gildea, ‘‘Building a Distributed
Shared Object Cache on Top of a Parallel File System,’’
IBM Corporation, unpublished work.

39. DB2 Information Integrator, IBM Corporation, http://
www-306.ibm.com/software/data/integration/db2ii/.

40. QoSWorks, Converged Access, Inc., http://
www.convergedaccess.com/products/QoSWorks.html.

41. Packeteer Application Traffic Management, Packeteer,
Inc., http://www.packeteer.com/resources/prod-sol/
PacketeerBroFinal2.pdf.

42. M. Gupta, A. Neogi, M. Agarwal, and G. Kar,
‘‘Discovering Dynamic Dependencies in Enterprise
Environments for Problem Determination,’’ Proceedings
of the 14th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management (DSOM
2003), Heidelberg, Germany, October 20–22, 2003,
Lecture Notes on Computer Science, Vol. 2867, Springer-
Verlag, New York (2003), pp. 221–233.

43. C. H. Crawford and A. Dan, ‘‘eModel: Addressing the
Need for a Flexible Modeling Framework in Autonomic
Computing,’’ Proceedings of the 10th International
Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS
2002), Fort Worth, TX, October 11–16, 2002, IEEE
Computer Society, Washington, DC (2002), pp. 203–208.

Accepted for publication July 12, 2004.

Catherine H. Crawford
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (catcraw@us.ibm.com).
Dr. Crawford is a Senior Software Engineer in the IBM
Research Division. She is a member of the Distributed
Computing Department and the Exploratory Stream
Processing group. Her current research focuses on high
performance and distributed computing. She is the author of
several papers in the areas of distributed computing,
numerical simulation, and wall-bounded turbulence. She
received a bachelor’s degree from the Massachusetts Institute
of Technology (MIT) and master’s and Ph.D. degrees in
mechanical and aerospace engineering from Princeton
University.

G. Paul Bate
IBM Global Services, 6710 Rockledge Drive, Bethesda, MD
20817 (batep@us.ibm.com). Paul Bate is a Certified Executive
I/T Architect and Senior Technical Staff Member of the
leadership team in the Enterprise Architecture & Technology
service area within Application Innovation Services in the
U.S.A. With over 30 years of experience in various roles
within the IT industry, Paul is currently specializing in the
emerging areas of grid computing, service-oriented
architecture, and on demand computing. He is a technologist
with deep expertise in enterprise technology architectures,
leveraging reusable assets, and IBM best practices. Paul’s
contributions to IBM include the Adaptive Blueprint for
Enterprise Architecture and commercialization of the ESS
(Enterprise Solution Structure) e-business Reference

CRAWFORD ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005106

Internet publication January 7, 2005.

Architecture. Paul joined IBM in 1975 after receiving his
Bachelor of Technology degree in computer science from the
University of Bradford, England.

Luba Cherbakov
IBM Global Services, 6710 Rockledge Drive, Bethesda, MD
20817 (lubacher@us.ibm.com). Luba Cherbakov is an IBM
Distinguished Engineer and a key technical leader of
Application Innovation Services in the IBM Global Services
organization. She is a recognized expert in enterprise
architecture design and the development of complex
distributed applications using component-based methods. She
is also a key contributor to winning and delivery of many
complex, first-of-a-kind IBM Global Services engagements
across a wide variety of customer industries, with recent focus
on the emerging areas of grid computing and service-oriented
architecture. She is an author, advocate, and contributor to
IBM’s Reference Architecture assets, Architectural Description
Standard, Adaptive Blueprint for Enterprise Architecture, and
grid-computing offerings. She holds B.S. and M.S. degrees in
computer science, with a major in software and systems and a
minor in artificial intelligence and simulations.

Kerrie L. Holley
IBM Global Service, 425 Market Street, San Francisco, CA
94105 (klholley@us.ibm.com). Kerrie Holley is the CTO for
IBM’s SOA and Web Services Center of Excellence, and he is
also the Chief Architect in Application Innovation Services
(AIS). He is an IBM Distinguished Engineer and a member of
IBM’s Academy of Technology. He has 25 years of experience
translating business requirements into process designs for
cutting-edge network-centric distributed solutions. His
responsibilities include technical oversight for network-centric
projects, adaptive enterprise architecture design, IT strategy,
formation of partnerships among clients and vendors, leading
of architecture reviews, and management of technical risk. He
has experience working in a variety of industries and has
frequently advised senior management on how technology,
Web-based technologies, software best practices, high-
performance teams, and effective implementation can be used
for competitive advantage within their businesses. Mr. Holley
has a B.A. degree in mathematics from DePaul University and
a Juris Doctorate degree from DePaul School of Law.

Charles Tsocanos
1608B Gerome Ave, Fort Lee, NJ, 07024
(chucklezt@yahoo.com). Charles Tsocanos received a B.S.
degree from Rutgers University in electrical engineering and
will receive an M.S. degree in telecommunications from Pace
University. During his 9-year tenure at IBM he was involved in
many leadership activities, including the development of
consulting services and go-to-market strategies. He has
extensive customer experience in business transformation and
operational efficiency and has been a key contributor to IBM’s
on demand infrastructure services. Chuck is currently North
American Director of Consulting for Equant Professional
Services. &

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CRAWFORD ET AL. 107

