
Empowering the business
analyst for on demand
computing

&

A. Arsanjani

The tools, methods, and techniques used to create business architecture are often

quite different from those used in developing software architecture. This ‘‘impedance

mismatch’’ or gap is aggravated by volatile business requirements that need to be

satisfied in operational systems. Bridging this gap not only allows a more seamless

transition and faster time to market, but also enables and empowers business analysts

to contribute their deep subject matter expertise at many phases of the software-

development life cycle, a critical aid in fruitful application development. This paper

presents a case study of a project with the U.S. Patent and Trademark Office (USPTO),

which explored the potential for reducing duplication of effort among patent offices by

sharing work products. IBM provided an innovative method to support the analysis,

the ‘‘business compiler,’’ a tool that implements Grammar-oriented Object Design

(GOOD). GOOD is a method for creating and maintaining dynamically reconfigurable

software architectures driven by business-process architectures. The business compiler

was used to capture business processes within real-time workshops for various lines

of business and create an executable simulation of the processes used.

The idea of using a process language to encode a

software process as a ‘‘process model,’’ and enacting

this by using a process-sensitive environment is now

well established. Over the past decade, a variety of

process languages have been defined and applied to

software-engineering environments, but their use

has been limited.
1
The same is true of the use of

process languages to model business processes. This

is because although business process modeling and

IT (information technology) interact in practice,

suggesting that modeling in those areas should also

be done in parallel, surprisingly few works have

addressed the issue of the integrated modeling of

business processes and IT.
2

Process modeling is often done with visual tools

(Visio, WBI Indexer, Rational Rose, etc.) and UML**

(Unified Modeling Language**). Processes can be

represented using activity diagrams or swimlane

�Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 � 2005 IBM

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 ARSANJANI 67

diagrams
3
(among other notations). In addition to

the symbols used in these diagrams, various other

symbols have been used by different vendors to

depict processing elements. Efforts have also been

made in the direction of simulation of the process

models.
4,5

There are various standards in this area,

such as BPML (Business Process Modeling Lan-

guage) and ebXML (Electronic Business Extensible

Markup Language). BPML
6
is a meta-language for

the modeling of business processes, just as XML is a

meta-language for the modeling of business data.

BPML provides an abstracted execution model for

collaborative and transactional business processes

based on the concept of a transactional finite-state

machine. ‘‘BPML represents business processes as

the interleaving of control flow, data flow, and event

flow, while adding orthogonal design capabilities for

business rules, security roles, and transaction

contexts.’’
2
ebXML

7
is a suite of specifications

designed to standardize the way businesses ex-

change messages, establish and manage trading

relationships, and define business processes.

In contrast with these approaches, the technique

presented here combines traditional business-proc-

ess modeling with service-oriented architecture

(SOA), domain-specific languages, and the use of

metamodels to create executable business process

specifications. These specifications can initially be

modeled using existing graphics-based tools, but can

later be translated into an underlying business

domain grammar that can be used not only at the

business level but at the IT level as well. This helps

bridge the gap between business and IT by having a

consistent representation of the process that can be

carried through into development efforts.

This technique augments the notion of use cases

with a ‘‘use case grammar’’ that describes the flow

and sequence of interactions within a use case by

using an executable language. In this way, use cases

are augmented with domain-specific languages that

allow a semi-formal specification of the domain to

be executed.

The GOOD (Grammar-oriented Object Design)

technique helps create business-driven dynamically

reconfigurable architectures, a significant departure

from current conventional thinking. Firstly, a

process is viewed as a domain-specific language in a

business domain rather than merely a set of partially

ordered activities that are drawn by using a graph-

ical design tool. Secondly, emphasis is given to how

process models are developed, used, and enhanced

over the duration of the software development life

cycle by using GOOD. In particular, the issue of

composing both new and existing model fragments,

consolidating modules of business processes that

are found to be common (common productions)

across business lines or between companies or

organizations, the achievement of consolidation

through the use of a metamodel, and process

verification through simulation via execution of the

metamodel are all central to our analysis and

development approach. This paper outlines these

features and gives the motivations behind them.

The development of GOOD started in 1984 as an

attempt to formalize valid interactions between

objects in an object model and to formalize

collaborations. This led to the augmentation of use

cases with use-case grammars, which was later

developed into an augmentation of OOAD (object-

oriented architecture and design) methods to sup-

port the alignment of business and IT through

creating a dynamically reconfigurable architectural

style.
8
Key to this paradigm are the notions depicted

in Figure 1, including bridging the gap between

business and IT through a common specification by

representing business processes in a domain-specific

language, or metamodel. This specification enables

dynamic reconfiguration through the externalization

of manners (i.e., rules for how a model behaves) of

context-aware components (CACs). CACs are com-

ponents that understand the environment or context

Figure 1
Grammar-oriented Object Design (GOOD) as the
intersection of several disciplines in computer science

SERVICE-ORIENTED

COMPUTING

COMPILERS

COMPILERS

ANALYSIS AND

DESIGN METHODS
DOMAIN-SPECIFIC

LANGUAGES

CREATIO
N

 O
F

M
ETAM

O
D

ELS
PATTERN

S
PATTERN

S

CO
M

PO
N

EN
T-

BA
SE

D

SO
FT

W
AR

E
AR

CH
IT

EC
TU

RE

GOOD

BU
SI

N
ES

S
RU

LE
S

ARSANJANI IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200568

in which they are inserted. They are context-aware

rather than context-sensitive; they gain insight into

their environment rather than being tied to or

dependent upon it.

To illustrate the GOOD technique, we present a case

study involving business processes for patent

offices. The top three intellectual property offices, as

measured by the number of patents granted, are the

European Patent Office (EPO), the Japan Patent

Office (JPO), and the USPTO (United States Patent

and Trademark Office). A very high percentage of

patent applications are submitted to two or all three

of these offices, resulting in a great deal of duplicate

processing of the same invention. With the escalat-

ing growth of filings in all three patent offices and

the increasing difficulty in keeping up with the

demand for timely processing, workload reduction

may be achieved by processing a given application

in one office and sharing the results with the other

offices. (There are many legal issues that must be

resolved before work products can be shared; this

paper addresses only the technical issues).

Using this example, we discuss the experience

gained in applying GOOD to the problem of finding

commonality and variations in business processes,

for the purpose of workload reduction across

multiple geographic areas. In addition, we explore

the spectrum of applications of this paradigm,

including support for and realization of on demand

computing.

Problems and forces in the problem space
At a sufficiently abstract level, the functions and

processes in all of the patent offices mentioned

previously are very similar. The work products that

might ultimately be shared (patent applications and

correspondence between patent examiners and

applicants) and how they are processed, however,

reflect a wealth of low-level details that are quite

different from one office to the other. The three

patent offices agreed on a common XML vocabulary

for publishing patent applications and grants, as

well as for filing patent applications. In 2002, the

offices explored the use of XML for prosecution (i.e.,

the processes that take place between the filing of a

patent application and the granting of a patent).

The USPTO identified more than 300 distinct

standardized forms and components of correspon-

dence between applicant and examiner. JPO re-

ported nearly 300 forms, and EPO reported

approximately 3,000 (including many forms in

multiple languages). Determining which forms were

the best candidates for workload reduction and

exchange required some basic description of the

examination process at the three patent offices.

Prior business process reengineering at the USPTO

produced results in the form of process descriptions,

which reflected the idiosyncratic details of the

processing of patent applications at this office.

These results proved inadequate as a basis for

determining the commonalities of process among

the offices. No corresponding process descriptions

for the other offices were available. For this and

other reasons, the project was ultimately aban-

doned. Nevertheless, a number of results were

achieved in the course of applying GOOD to this

project that have proven useful in other contexts.

The process itself can be fully generalized and used

in other contexts.

Solution approach
A method was needed to capture from subject

matter experts (SMEs) a description of their func-

tions (elements of business functionality) and

processes (end-to-end activities aimed at a goal

based on business rules and policies) independent of

the details of any particular implementation. To

avoid excessive use of SME time, a permanent,

negotiated record of the descriptions was required.

Finally, a method was needed for transferring this

description to developers with minimal opportunity

for misinterpretation.

The first step of the project was the activity of

finding commonality between activities and artifacts

used by various offices. In order to do this, a

metamodel of the business processes had to be

created. However, this had to be a ‘‘scoped’’

metamodel. We controlled the scope of the meta-

model by limiting it to high-impact correspondence

events (correspondence between an applicant and

the patent office). We decided to use GOOD for this

metamodel because we needed to capture the

processes in a near-natural language in order to run

and simulate the process for verification by many

SMEs. Looking at a sheet of paper for verification of

business processes and use cases was not feasible

for the dynamic environment of a workshop, where

the simulations were to be verified.

We used a tool (the ‘‘business compiler’’
9
[BC])

developed by IBM and based on GOOD to address

the challenges of this project. At the time, very few if

any tools were present that met all these require-

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 ARSANJANI 69

ments in an integrated manner. The tool’s graphical

user interface (GUI) was customized based on the

requirements and significant input of the USPTO,

and functionality was added by using the tool’s

plug-in development facility to incorporate new

requirements.

In the following sections, we give a brief overview of

the theoretical foundations of GOOD, explore the BC

tool itself along with its usage scenarios, and finally

discuss lessons learned from the application of

GOOD and the BC tool to this project.

DESIGNING AN EXECUTABLE METAMODEL

WITH GOOD
GOOD is the application of business-domain-specific

languages to objects, components, and services to

implement context-aware software components that

are business-driven and facilitate the creation of

dynamically reconfigurable business-driven archi-

tectures (BDAs).
10

In many cases, IT systems often

lose their direct connection and traceability back to

the business models, processes, and goals that they

support. As the business changes with no explicit or

implicit connections to IT, maintaining the support of

the IT systems for new processes and business

capabilities becomes an overwhelming challenge to

IT departments. By designing not just object-oriented

or component-based systems, but those driven by a

business language that can be defined and main-

tained in conjunction with the business analysts, we

empower the business analysts to participate and

contribute their knowledge to the software-develop-

ment process. By having the business analysts

maintain the business language defined by a business

grammar, we can create executable models of busi-

ness systems. The business grammar is defined by the

business analyst and refined by the IT architect. The

engine executing the grammar (and its input) serves

as the role of the ‘‘controller’’ in the dynamic

controller architecture. This controller is written in

domain-specific language. The other roles of theMVC

model, namely, the ‘‘view’’ and ‘‘model,’’ followmore

traditional means of general-purpose languages such

as Java. These models of business domains can be

generalized into metamodels that reflect the com-

monality and variations within a domain. They can

be represented by a domain-specific business gram-

mar and used to simulate IT systems.

A grammar describes a (potentially infinite) set of

patterns in terms of a finite lexicon and a finite set of

rules or constraints that specify allowable combi-

nations of the elements in the lexicon. Similarly, a

business grammar consists of the lexicon (key

abstractions and relationships) for a business

domain along with the policies and rules of how the

lexicon elements should be combined into mean-

ingful operational constructs that reflect business

goals, processes, and imperatives. These combina-

tions represent the semantics of the structure as well

as the process flow of the operational systems

within the domain. This paradigm is based on a

combination of areas in computer science, including

domain-specific languages and component-based

architectures, service-oriented software computing,

business rules, patterns, analysis and design meth-

ods, creation of metamodels, and compilers, as

shown in Figure 1. Using GOOD, we empower the

business analyst to develop a business grammar that

then drives the specification and execution of the

application.

As an example of a business grammar describing the

processing of a business domain, consider account

management in a bank. Figure 2 shows a declarative

way of specifying functionality that can be aug-

mented with functional specifications. As shown in

the figure, account management consists of opening

accounts, performing transactions, and closing

accounts. We can consider each of these functional

elements as primitives of the language of banking

account management or refine each one into a more

detailed set of steps. Elements shown in the figure in

leading lowercase, such as ‘‘checkFunds,’’ or

‘‘debitSourceAccount,’’ are ‘‘atomic’’ elements or

Figure 2
A sample grammar for account management by the business analyst

AccountManagement = {Open, Transac t ions , C lose}
Transac t ions = {Login , Transac t ion, Logout}
Transac t ion = {{checkFunds, debi tAccount} | c redi tAccount | Transfer | quer yAcc tBalance}
Transfer = { fundTransferAl lowed, checkFunds, debi tSourceAccount , c redi tDest inat ionAccount}

ARSANJANI IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200570

terminals of the grammar; elements shown in

leading uppercase such as ‘‘Transfer’’ are elaborated

further in a subsequent (production) rule. ‘‘Trans-

fer’’ is a non-terminal symbol, and appears as the

‘‘lefthand side’’ or definition of another declarative

rule which indicates that before a transfer can be

performed, the atomic elements ‘‘fundTransferAl-

lowed’’ (to determine whether a transfer is allowed

for this account) and ‘‘CheckFunds’’ (to determine

whether there are sufficient funds for the transfer)

must be used. If these conditions are met, the source

account is debited and the amount is credited to the

destination account.

A more detailed, executable, account management

grammar with error handling added by the IT

architect to the initial flow provided by the business

analyst would look something like that shown in

Figure 3. The hash sign (#) represents a service call

to invoke a service at that point in the grammar.

Note that in the example shown in Figure 3, the

architect would take the grammar provided as the

initial specification by the business analyst and

augment it with details pertaining to handling of

errors, more detailed flow, and invocation of

required services to provide input into the next step

in the process. In other words, the ‘‘what’’ of the

specification is developed by the business analyst,

and the ‘‘how’’ or realization of the specification in

the design is done by the architect, taking the same

artifact and the grammar and adding more detail,

instead of creating totally new and different repre-

sentations for design and execution. Thus, the tools

and methods employed converge and are elaborated

rather than totally overhauled as we make the

transition from business to IT.

GOOD
11

allows business analysts to capture the

requirements of structure and flow of a business

process. ‘‘Structure’’ refers to the composition of

more static elements in the domain such as patents,

examiners, first office action, etc. ‘‘Flow’’ refers to

the sequence of activities within a goal-oriented

business process, such as the patent examination

process. In addition, business analysts can accom-

plish this process specification and execution not in

a predefined executable language like Java,** but in

a business-domain-specific language (that they

themselves define) that helps convey requirements

of the structure and flow of business processes for

their domain (e.g., patent processing). Figure 4
shows a segment of the USPTO grammar.

Structured prose from the business domain was used

to craft the grammar shown in Figure 4. As a

grammar involves the formation of basic linguistic

units, a business grammar involves the formation of

business functions. Thus a business domain gram-

mar depicts the rules governing the formation of

valid sequences of use cases. This has been referred

to as a use-case grammar when applied to a single

use case.
11–13

Use-case models are created as part of

the analysis phase of a software project. Using

GOOD, use cases are augmented with a grammar that

Figure 3
Architect adds more detail to the grammar for account management

Account Mgt = {Login, Txns, Logout}
Login = {#displayLoginPage, login, #getUserIdAndPassword, #login, CheckLoginResult}
CheckLoginResult = {{success, DisplayMenu} | {invalidUserIdOrPassword, #displayInvalidUserError, Login} |
newError, #displayNewError, Login}
DisplayMenu = {displayMenu, #displayMenu, #getTxnType}
Txns = {Txn, DisplayMenu, Txns} | end
Txn = { {accountInfo, AccountInfo}| {debit, Debit}| {credit, Credit}| {transfer, Transfer}}
AccountInfo = {getAccount, #getAccount, #displayAccountInfo(account)}
Credit = {getCreditParameters, #getCreditParameters, #performCredit(srcAccount, amount)}
Debit = {getDebitParameters, #getDebitParameters, #getCustomerType, CheckFund, CheckFundResult}
CheckFundResult = {{success, #performDebit(srcAccount, amount), CheckTxnResult}
 | {invalidAmount, #displayAmtError}
 | {insufficientFund, #displayFundError}
 | {error, #displayGeneralError}
}
CheckFund = {regularCustomer, #checkFund(srcAccount, amount)| platinumCustomer,
#checkCredit(srcAccount.getBalance() -amount)}
CheckTxnResult = {{success, #displayDebitConfirmation}| {invalidDebitAmount, #displayDebitAmtError}| {error, #
displayGeneralError}}

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 ARSANJANI 71

defines the sequence, alternation, and repetition of

the composition of use cases. This dynamic inter-

action among use cases is currently missing from use

case analysis. The business processes are realized by

a set of use cases whose dynamic behavior is now

governed by the business-domain grammar.

A grammar is essentially a set of rules for describing

sentences. More formally, a grammar G is a

quadruple fN, T, S, Pg with the four components:

1. N—a finite set of nonterminal symbols

2. T—a finite set of terminal symbols

3. S—a special distinguished symbol, such as ‘‘goal’’

or ‘‘start’’

4. P—a finite set of production rules or, simply,

productions

This produces highly readable and understandable

specifications that are, at the same time, executable

on a virtual machine. The business-compiler tool

debugging and execution environment allows the

near-natural language capture of requirements that

can be debugged to ensure that they are executable.

The business compiler executes the grammar based

on events that are manually or programmatically

triggered during the execution of a program (or Web

service) or the simulation of the processes. The

business analyst can provide the initial grammar,

and the IT architect can addmore detailed design and

implementation aspects (such as the user interface,

access to existing systems, the invocation of external

services, etc.) to render the grammar executable.

Thus ‘‘grammar-oriented’’ refers to the fact that the

grammar or vocabulary used by the business

architect or analyst is the basis for an executable

language that can be used in conjunction with object-

oriented or service-oriented analysis and design to

produce applications that are written in a combina-

tion of the traditional computer languages such as

Figure 4
Segment of USPTO grammar

USPTO Process = {F i l ing , Pre -examinat ion, Publ icat ion, Examinat ion<and Correspondence>, Post -
examinat ion }
F i l ing = {< deta i ls suppressed>}
Publ icat ion = {< deta i ls suppressed >}
Pre -examinat ion = {OIPE(of f ice of in i t ia l patent exam) or PCT(patent cooperat ion t reat y) -Operat ions}
OIPE or PCT- Operat ions = {Ass ign Ser ia l Number, Record Fees , Tentat ive Class i f icat ion, Screen For
Secur i t y, [e lec t ronic word search] , P ICS Scanning, L icens ing , Separate Regular From Secur i t y
Process ing , Adminis t ra t ive Examinat ion, Data Entr y, F i l ing Receipt Mai led, In i t ia l Data Capture , In i t ia l
Preparat ion and Elec t ronic Capture for Pr int ing and Issue, Pre l iminar y Amendments}
Ass ign Ser ia l Number = {paper-based | e lec t ronic-us ing-ePAV}
<etc .>

Figure 5
Syntax of EBDL

• Sequence
 – Process = {DoThisF I rs t , DoThisSecond, DoThisThi rd}
 – Example: USPTO Process = { F i l ing, Pre -examination, Publ icat ion,
 Examination, Post-examination }
• Condit ionals , Branching
 – Process = {DoThisF i rs t | YouMayDoThisF i rs t , DoThisSecond}
 – Example: Pre -examination = { OIPE Operat ions | PCT Operat ions}
• Loops
 – Example: Txns = {displayMenu, Txn, Txns} | doc received
• Comments
 – //This is a comment

ARSANJANI IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200572

Java and domain-specific languages that are de-

signed for particular industry domains.

The syntax of the executable domain-specific busi-

ness language (EDBL) used by the business compiler

is simple and is shown in Figure 5. Typically,

business analysts are able to start writing specifica-

tions using their own EDBLs in a few days, with a 2-

day workshop and some practice and assistance.

Although a picture is said to be worth a thousand

words, sometimes pictures with hundreds of boxes

and lines are less readable than plain text. To

address this, there are two input formats to the BC,

the textual language just described and an additional

method using graphical input such as UML activity

diagrams, as depicted in Figure 6. The BC trans-

forms the XML-based output of tools such as

Rational* XDE (Extended Development Environ-

ment) and creates an intermediate representation

that uses XSD (the XML Schema Definition lan-

guage). This same representation is generated from

the simple text input that can be imported as a

regular text file by the BC to generate its code. The

multiple input formats and the intermediate stand-

ard XML format are depicted in Figure 7.

RELATION WITH TRADITIONAL APPLICATION

ARCHITECTURES

In a model-view-controller view of an architecture

(see Figure 8), the language used to build the view,

controller, and model is a traditional third-gener-

ation computer language. Using GOOD, the con-

troller, as depicted in Figure 9, is written in a

business-domain-specific language that has been

defined by a business SME (a business analyst or

architect). This introduces a novel method of

empowering analysts to participate and contribute

their knowledge on an ongoing basis throughout the

application and architecture development and

maintenance cycles. The initial flow is provided by

the business analyst and then subsequently refined

through cooperation with the IT architect.

In this new architecture, the controller is imple-

mented at a higher level of abstraction in a business-

domain-specific language. The business compiler

assumes the role of a controller and executes the

steps described in the business language similarly to

steps or activities in a workflow. Alternatively, an

enterprise component can have an embedded busi-

ness compiler engine that can control the microflow

within the component or act as an orchestrating

Figure 6
Using activity diagrams

exception

Authenticate

DisplayLoginScr
/attempts=1

[invalidUser
 AND attempts < 3]

[invalidUser AND
attempts >= 3]

[validUser]

[transfer]

/transfer(src,dest)

/credit

/debit

[logout]

[getbalance]

[debit]

[credit]

Logout

[getbalance]

AcceptUserIDPwd

DisplayMenu

SelectAction

Transfer

Balance

Debit

Credit

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 ARSANJANI 73

Figure 7
GOOD business compiler tools

1 22 3 4 55 66 7 8

type=”terminal
”nonterminal”

symbol type=”nonterminal”

symbol type=”terminal
symbol type=”nonterminal”
symbol type=”nonterminal”

type=”nonterminal”
”nonterminal”

symbol type=”nonterminal”
symbol type=”nonterminal”
symbol type=”nonterminal”

symbol
 type=”nonterminal”

symbol type=”nonterminal”
symbol type=”nonterminal” symbol

type=”nonterminal”
type=”nonterminal”

symbol
type=”nonterminal”

”nonterminal”

”terminal symbol

type=”terminal
”nonterminal” symbol

 right
production

 production

symbol type=”nonterminal” symbol
left

symbol type=”terminal
symbol type=”nonterminal” symbol
symbol type=”nonterminal”

 type=”nonterminal” symbol
”nonterminal”

symbol
symbol type=”nonterminal”
symbol type=”nonterminal”
symbol type=”nonterminal”

symbol
symbol type=”nonterminal” symbol
symbol type=”nonterminal” symbol
symbol type=”nonterminal” symbol

 type=”nonterminal”
type=”nonterminal”

symbol
 type=”nonterminal” symbol

production

”nonterminal” symbol
left

”terminal symbol

UML Activity Diagram
[Easy to visualize and [[
create first iterations]

XML Representation
of Grammar
[Appropriate for [[
computer processing]

Textual Representation
of Grammar
[Easy to maintain][[

1 22 3 4 55 66 7 8

ARSANJANI IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200574

mechanism between components. The latter be-

havior is akin to that of a BPEL4WS
14

engine. In

GOOD the grammar, or more precisely the parser, is

the controller of the architecture. Changes can be

made to the grammar, and the flow will thus be

altered. The domain-specific language used can be

translated into a BPEL4WS representation to be run

on tools such as the IBM Process Choreographer.

Prototyping is made possible by allowing the

executable flow of the application to be defined at a

high level of abstraction.

Usage scenarios for executable metamodels

using the GOOD paradigm

GOOD and the business compiler can help address a

spectrum of issues or problems ranging from busi-

ness architecture applications to software engineer-

ing activities. Business architecture activities

include the executable specification of business

processes, their simulation, their re-engineering and

consolidation, and the finding of commonalities and

variations among them. Using GOOD, we can create

a metamodel of multiple business processes across

business lines or organizations to serve various

objectives, including harmonization of different

operational and business models to promote coop-

eration.

Another usage scenario involves assisting in soft-

ware development. The BC was used to create a

simulation of patent processing including bringing

up screens of actual applications. This was found to

have applicability in training new patent examiners

and personnel in using existing systems as well as

understanding the processes underlying them.

Solution implementation
GOOD methods were used to capture the business

process flow in the interviews with SMEs in near-

English prose, a process which was much faster and

more participatory than diagramming the flow. The

intent was to capture the flow of patent application

processing which reflects the business processes

involved and to record them in a manner that is not

only readable by humans but also executable as a

simulation and that can be integrated seamlessly

into an application.

The business compiler supports many aspects of the

business-modeling process and that of creating

metamodels. This includes requirements gathering,

Figure 8
MVC Architecture

General Purpose
Language General Purpose/

3rd or 4th Generation
Language

Imprecise
GUI Tools
Class Libraries
Frameworks

Business
Language

Enterprise JavaBeans**
Common Object Model
Web Service

Architecture

Language

Precision

Model

Model

Business Compiler

Model
Database

View 3

View 2

View 1

Controller

**Trademark of Sun Microsystems, Inc.

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 ARSANJANI 75

simulation, verification, and testing of the business

processes outlined within the scope of the meta-

model mentioned previously. The solution approach

(shown in Figure 10) was to create a metamodel of

business processes, uncover information on

commonalities and variations, and feed this infor-

mation back into the initiatives relating to

standardization of DTDs (data type definitions)

among patent offices. The initial set of elements of

the DTD standards for correspondence between an

applicant and the patent office would be matched

against the business use cases coming out of the

business-process modeling activities. These would

serve to support the identification of commonalities

by examining use cases which lead to the creation of

common work products. This would in turn benefit

the workload reduction and harmonization effort.

A METAMODEL OF THE GAP BETWEEN BUSINESS

AND IT
The gap between business and IT is primarily due to

the different terminology, levels of granularity,

varied models, approaches, tools, and methods that

each employ. In order to support the emerging on

demand computing paradigm, this gap must be

bridged, and common (or at least partially common)

models and representations can aid in this effort.

The on demand paradigm requires an organization

to be agile and adaptive, to ‘‘. . . respond to any

opportunity or threat,’’
15

and to maintain IT systems

that support business process and model changes in

‘‘right-time’’ (i.e., not necessarily real time). For this

goal, it is essential to acquire the ability to define the

‘‘configuration’’ of a business (as in its value net)

and an IT system (as in the static and dynamic

aspects of system operation). After this is done, it is

necessary to represent the interdependence between

the two, such that the IT configuration supports the

business model and can change accordingly when

that model needs to be changed. This adaptive

capability entails the ability to reconfigure a busi-

ness architecture’s value net and the components,

Figure 9
Dynamic controller architecture

Controller

General Purpose
Language

General Purpose/
3rd or 4th Generation
Language

Imprecise
GUI Tools
Class Libraries
Frameworks

"Business Grammar":
Formal
Language

Enterprise JavaBeans
Common Object Model
Web Service

Architecture

Language

Precision

<<Model>>
Legacy System

<<Model>>
EJB

<<Model>>
Web Services

A Business Grammar
Orchestrating Flow of
Applications

Domain-specific
Language

<<Model>>
Database

Manners

View 3

View 2

View 1

Context-Aware
Enterprise
Components

Context-Aware
Enterprise
Components

ARSANJANI IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200576

services, composition, and flow of a software

architecture.

Standards and their implementations, such as

BPEL4WS, are a step in that direction. They allow

the creation of composite service-oriented applica-

tions from a set of underlying published services.

One key differentiator between GOOD and

BPEL4WS is that in GOOD, the domain’s language

with its structural and functional ramifications

remains a first-class construct. The structure and

flow defined by a domain grammar drives the

collaboration and choreography of services.

Figure 11 depicts a metamodel of the concepts

relating to the problem and a solution to the gap

between business and IT. Going from the top to the

bottom of the figure, we see an emerging need for a

new computing paradigm that offers agile respon-

siveness to changes in requirements. On the one

hand (on the left), we have a business model or

business architecture comprised of the business

processes, their goals and objectives: the decom-

position of the value chain into functional areas that

work together within the context of a business

process to bring value to the business. On the other

hand, we have software architecture in which

applications are compositions of components. Both

business and software architecture need to be

reconfigured as new opportunities, threats, mergers,

and acquisitions occur. The applications offer

services to provide functionality supporting the

business.

The gap can be bridged by bringing these two

traditionally diverging architectures into a conver-

Figure 10
Proposed solution approach

Extract commonality and standardize
elements to reduce workload based on
common metamodel

Elements
Inventory forms
Form paragraphs

Office Applicant
Correspondence

Business
Use Cases/Events

When is a form or paragraph
used? What triggers it (business
process)?

Conceptual
Model

Business
Processes/Workflow

Identify specific variations
for examination
use cases and forms

Timing

JPO EPO USPTO

Variation Variation Variation

Variations

DTDs

Prioritize and scope based on usage/potential savings
Determine forms
Determine elements

Identify business objects
Determine elements

Identify key business
Process
Prioritize

Commonality

Metamodel

Identify commonalities
in terms of examination
use cases and forms

2.2

2.1

2.0

1

Traceability

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 ARSANJANI 77

gent path. This can be accomplished through

providing each with the ability to be dynamically

reconfigured; that is, business value chains can be

reconfigured to leverage new markets, forge new

partnerships, and offer new products and services.

This must be synchronized with the ability of the

software architecture to adapt and reconfigure its

composition and business rules to support these

new partnerships, products, and services, and to do

so under the constraints within which they must

operate to be profitable. At the same time, the

business must maintain the newly forged service-

level agreements within this new value chain,

delegating this responsibility to the software archi-

tecture and the applications, components, and

services running on it.

To enable dynamic reconfiguration, the software

architecture must handle variations in business

context. It can do so through the design and

implementation of CACs, whose functionality is self-

optimized for the context in which they are used. To

implement context-awareness without sacrificing

wide-range applicability in multiple areas, the

component must use a set of rules and policies to

determine how it should behave in different

contexts. These variations in context are external-

ized and stored by the designer in configurations for

the component. Manners are properties of CAC

services that can adapt to changes in their business

context based on policies and externalized varia-

tions. The semantics of CACs and services are thus

externalized in their manners.
16

Figure 12 depicts the behavior of CACs. After the

component’s internal flow and external collabora-

tions have been defined by using the business

grammars, these can be externalized into the

configurable profile as metadata that can be loaded

and executed. The typical internal behavior of CACs

is shown in Figure 12 as follows. When an event or

message is received, the CAC checks its context and

state (often passed to it with the event or message).

An example of a message is, ‘‘An order for a

platinum wholesale customer is being processed,

and we are in a secure, authenticated, authorized

transactional context.’’ (Steps 1 and 2)

The appropriate policies (‘‘rules about which rules

to apply’’) are selected. For example, ‘‘For platinum

and wholesale clients, we need to access the policies

and select the appropriate rules, based on customer

type, order type, account type, and transaction

type.’’ (Steps 3 and 4)

After the policy is selected and the rules to be

applied are determined, access to the state of the

incoming message is again needed to actually

Figure 11
Dynamic reconfiguration, using GOOD, to bridge the business/IT gap

Business model/architecture Software architecture
(service-oriented)

Business value net:
composed of

Applications:
composed of

Requires support of

Needs to dynamically reconfigure Needs to dynamically reconfigure

Business / IT gap

Widen

business processes

services

processes

Dynamic changes in requirements

Manners Context-aware componentsflow

objectives

goals

ARSANJANI IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200578

perform the rule check. The policies and rules are

applied (Step 5). Based on the result, a service may

be invoked and may participate in an orchestrated

macroflow, or an exception may be generated

through message-oriented middleware capabilities if

an error condition arises. (This is shown in Steps 6A

and 6B, which are conducted in parallel.) At this

point the order has been received, the method of

payment applied, and the processing of the cus-

tomer’s fulfillment will follow.

A workflow is then initiated to manufacture or pick

and ship the products ordered, and a message is sent

to the client (Step 7). If the result of the rule check is

negative, an exception may need to be handled (Step

8). Also, after a service has been invoked or a

workflow initiated, an exception may occur which

needs to be handled.

CONCLUSIONS
In the USPTO implementation, using the business

compiler entailed an initial learning period of a few

days, followed by periodic interactions (several

hours a week) for a few weeks. Applying GOOD

through using the business-compiler tool helped

capture business processes in a dynamically updat-

able manner, one which was amenable to larger

workshop sessions where each SME contributed a

small portion of the overall process. The process

could be executed and the decision points evaluated

by all participants. This led to the identification of

the commonalities among business processes.

For many users, writing a business grammar in the

form of an outline seems a less daunting task than

learning an entirely new tool or notation, such as

UML or WBI-Modeler. Others may prefer to rely on

the business analyst for design and use tools like

UML for maintenance purposes.

This paradigm allows participation of the business

analyst in the development life cycle in such a way

as to complete and augment the traditional roles of

architect and developer through the provision of an

executable specification of the business model and

flow. This approach contrasts with runtime textual

documents that typically cannot be interpreted and

thus are vague and challenging to use as a basis for

structuring IT solutions supporting changing busi-

ness needs in an on demand world. When business

processes are broken down, they ultimately de-

compose into messages communicated between

knowledge workers. As a result, the standardization

of those messages, such as in the current USPTO

efforts, is critical.

Figure 12
Behavior of CACs for order entry scenario

Configurable
profile

(meta-data)

1

2

3, 4

Process order event

5 77

88

6A, B

Check
context

Check
state

Select
policies

Handle/generate
exceptions

Initiate workflow

Invoke service

Filter and check
rules

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 ARSANJANI 79

ACKNOWLEDGMENTS
The author would like to thank Bruce B. Cox of the

United States Patent and Trademark Office for his

contributions and insight into this paper and his

management, cooperation, and contributions to the

project, without which this project would not have

been implemented or refined. Thanks go to Thomas

Moewe and David Ng as well, for their contributions

to the project.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

CITED REFERENCES AND NOTE
1. B. C. Warboys, D. Balasubramaniam, R. M. Greenwood,

G. N. C. Kirby, K. Mayes, R. Morrison, and D. S. Munro,
‘‘Collaboration and Composition: Issues for a Second
Generation Process Language,’’ Proceedings of the 7th
European Software Engineering Conference Held Jointly
with the 7th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (October 1999) pp.
75–90.

2. B. Curtis, M. I. Kellner, and J. Over, ‘‘Process Modeling,’’
Communications of the ACM 35, No. 9, pp. 75–90
(September 1992).

3. A swimlane is a visual region in an activity diagram that
indicates the element that has responsibility for action
states within the region.

4. W. J. Kettinger and J. T. C. Teng, ‘‘Business Process
Change: A Study of Methodologies, Techniques, and
Tools,’’ MIS Quarterly 21, No. 1, 55–80 (March 1997).

5. M. A. Ould, Business Processes: Modeling and Analysis for
Re-engineering and Improvement, John Wiley & Sons,
Chichester (1995).

6. BPML, http://www.bpmi.org/bpml.esp.

7. ebXML—Enabling a Global Electronic Market,
www.ebxml.org.

8. A. Arsanjani, ‘‘Explicit Representation of Service Seman-
tics: Towards Automated Composition Through a Dy-
namically Reconfigurable Architectural Style for On
Demand Computing,’’ Proceedings of the International
Conference on Web Services (ICWS 2003) (2003), pp. 34–
37.

9. A. Arsanjani, ‘‘Business Compilers: Towards Supporting
a Highly Reconfigurable Architectural Style for Service-
Oriented Architecture,’’ Proceedings of the IEEE Interna-
tional Conference on Software Maintenance (ICSM 2002),
Montreal, Canada (2002), pp. 287–289.

10. A. Arsanjani, ‘‘A Domain-Language Approach to Design-
ing Dynamic Enterprise Component-Based Architectures
to Support Business Services,’’ Proceedings of the 39th
International Conference and Exhibition on Technology of
Object-Oriented Languages and Systems (TOOLS39)
(2001), pp. 130–142.

11. A. Arsanjani, ‘‘Introduction to Special Issue on Enterprise
Components and Services,’’ Communications of the ACM
45, No. 10, pp. 30–34 (2002).

12. A. Arsanjani, J. J. Alpigini, and H. Zedan, ‘‘Externalizing
Component Manners to Achieve Greater Maintainability

through a Highly Re-Configurable Architectural Style,’’
Proceedings of the IEEE International Conference on
Software Maintenance (ICSM 2002), Montreal, Canada
(2002), pp. 628–639.

13. K. Levi, A. Arsanjani: ‘‘A Goal-Driven Approach to
Enterprise Component Identification and Specification,’’
Communications of the ACM 45, No. 10, 45–52 (2002).

14. BPEL4WS—Business Process Execution Language,
http://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=wsbpel.

15. S. Palmisano, The New Agenda, IBM General Webcasts
(October 2002), http://www-306.ibm.com/webcasts/
WCPGateway.wss?jadeAction=WEBCAST_
BROWSETIER2_HANDLER&WCP_NAV_ID_KEY=0403.

16. A. Arsanjani, ‘‘Grammar-Oriented Object Design: Creat-
ing Adaptive Collaborations and Dynamic Configurations
with Self-Describing Components and Services,’’ Pro-
ceedings of the 39th International Conference and
Exhibition on Technology of Object-Oriented Languages
and Systems (TOOLS39) (2001), pp. 409–414.

GENERAL REFERENCES
G. M. Giaglis, R. J. Paul, and A. Serrano, ‘‘Reconciliation of
Business and Systems Modeling via Discrete Event Simulation
(December 1999),’’ Proceedings of the 31st Conference on
Winter Simulation: Simulation—A Bridge to the Future–
Volume 2, pp. 1403–1409.

G. M. Giaglis, R. J. Paul, and Georgios I. Doukidis,
‘‘Simulation for Intra- and Inter-Organisational Business
Process Modelling,’’ Proceedings of the 28th Conference on
Winter Simulation, pp. 1297–1304 (December 08–11, 1996),
Coronado, California.

Accepted for publication September 6, 2004

Ali Arsanjani
IBM Global Services/Application Management Services, 1804 A
Padmavani Lane, Fairfield IA 52556 (arsanjan@us.ibm.com).
Dr. Arsanjani is a Senior Technical Staff Member and
Executive IT Architect with 21 years of experience in software
consulting, development, and architecture. He is a chief
architect in the IBM Global Services SOA and Web Services
Center of Excellence. His areas of expertise include service-
oriented and component-based software architecture,
patterns, and methods. He has written extensively on
patterns, service-oriented architecture (SOA), component-
based development and integration, business rules, and
dynamically reconfigurable software architecture. He is also
an Adjunct Associate Professor of Computer Science at
Maharishi University of Management in Fairfield, Iowa. &

ARSANJANI IBM SYSTEMS JOURNAL, VOL 44, NO 1, 200580

Internet publication January 10, 2005.

