A. Arsanjani

Empowering the business
analyst for on demand
computing

The tools, methods, and techniques used to create business architecture are often
quite different from those used in developing software architecture. This “impedance
mismatch™ or gap is aggravated by volatile business requirements that need to be
satisfied in operational systems. Bridging this gap not only allows a more seamless
transition and faster time to market, but also enables and empowers business analysts
to contribute their deep subject matter expertise at many phases of the software-
development life cycle, a critical aid in fruitful application development. This paper
presents a case study of a project with the U.S. Patent and Trademark Office (USPTO),
which explored the potential for reducing duplication of effort among patent offices by
sharing work products. IBM provided an innovative method to support the analysis,
the “business compiler,” a tool that implements Grammar-oriented Object Design
(GOOD). GOOD is a method for creating and maintaining dynamically reconfigurable
software architectures driven by business-process architectures. The business compiler
was used to capture business processes within real-time workshops for various lines

of business and create an executable simulation of the processes used.

The idea of using a process language to encode a
software process as a “process model,” and enacting
this by using a process-sensitive environment is now
well established. Over the past decade, a variety of
process languages have been defined and applied to
software-engineering environments, but their use
has been limited." The same is true of the use of
process languages to model business processes. This
is because although business process modeling and
IT (information technology) interact in practice,
suggesting that modeling in those areas should also
be done in parallel, surprisingly few works have

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

addressed the issue of the integrated modeling of
business processes and IT.?

Process modeling is often done with visual tools
(Visio, WBI Indexer, Rational Rose, etc.) and UML**
(Unified Modeling Language**). Processes can be
represented using activity diagrams or swimlane

©Copyright 2005 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/05/$5.00 © 2005 IBM

ARSANJANI

67



68

Q
22 &5
X
o L
oy, kg AT O
&
Um0\ " O
S
MO G K WP C\?\C’
W S
p\NN\(S\ g\,\oo OOQO S OO\\[\P&Q\)P\GE
==
& g
S
& €0
o k- MP/ZSQ
& 2) S
N ©
3 L.
& &
Figure 1

Grammar-oriented Object Design (GOOD) as the
intersection of several disciplines in computer science

diagrams3 (among other notations). In addition to
the symbols used in these diagrams, various other
symbols have been used by different vendors to
depict processing elements. Efforts have also been
made in the direction of simulation of the process
models.”” There are various standards in this area,
such as BPML (Business Process Modeling Lan-
guage) and ebXML (Electronic Business Extensible
Markup Language). BPML’ is a meta-language for
the modeling of business processes, just as XML is a
meta-language for the modeling of business data.
BPML provides an abstracted execution model for
collaborative and transactional business processes
based on the concept of a transactional finite-state
machine. “BPML represents business processes as
the interleaving of control flow, data flow, and event
flow, while adding orthogonal design capabilities for
business rules, security roles, and transaction
contexts.”” ebXML’ is a suite of specifications
designed to standardize the way businesses ex-
change messages, establish and manage trading
relationships, and define business processes.

In contrast with these approaches, the technique
presented here combines traditional business-proc-
ess modeling with service-oriented architecture
(SOA), domain-specific languages, and the use of
metamodels to create executable business process
specifications. These specifications can initially be
modeled using existing graphics-based tools, but can
later be translated into an underlying business

ARSANJANI

domain grammar that can be used not only at the
business level but at the IT level as well. This helps
bridge the gap between business and IT by having a
consistent representation of the process that can be
carried through into development efforts.

This technique augments the notion of use cases
with a “use case grammar” that describes the flow
and sequence of interactions within a use case by
using an executable language. In this way, use cases
are augmented with domain-specific languages that
allow a semi-formal specification of the domain to
be executed.

The GOOD (Grammar-oriented Object Design)
technique helps create business-driven dynamically
reconfigurable architectures, a significant departure
from current conventional thinking. Firstly, a
process is viewed as a domain-specific language in a
business domain rather than merely a set of partially
ordered activities that are drawn by using a graph-
ical design tool. Secondly, emphasis is given to how
process models are developed, used, and enhanced
over the duration of the software development life
cycle by using GOOD. In particular, the issue of
composing both new and existing model fragments,
consolidating modules of business processes that
are found to be common (common productions)
across business lines or between companies or
organizations, the achievement of consolidation
through the use of a metamodel, and process
verification through simulation via execution of the
metamodel are all central to our analysis and
development approach. This paper outlines these
features and gives the motivations behind them.

The development of GOOD started in 1984 as an
attempt to formalize valid interactions between
objects in an object model and to formalize
collaborations. This led to the augmentation of use
cases with use-case grammars, which was later
developed into an augmentation of OOAD (object-
oriented architecture and design) methods to sup-
port the alignment of business and IT through
creating a dynamically reconfigurable architectural
style.8 Key to this paradigm are the notions depicted
in Figure 1, including bridging the gap between
business and IT through a common specification by
representing business processes in a domain-specific
language, or metamodel. This specification enables
dynamic reconfiguration through the externalization
of manners (i.e., rules for how a model behaves) of
context-aware components (CACs). CACs are com-
ponents that understand the environment or context

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005



in which they are inserted. They are context-aware
rather than context-sensitive; they gain insight into
their environment rather than being tied to or
dependent upon it.

To illustrate the GOOD technique, we present a case
study involving business processes for patent
offices. The top three intellectual property offices, as
measured by the number of patents granted, are the
European Patent Office (EPO), the Japan Patent
Office (JPO), and the USPTO (United States Patent
and Trademark Office). A very high percentage of
patent applications are submitted to two or all three
of these offices, resulting in a great deal of duplicate
processing of the same invention. With the escalat-
ing growth of filings in all three patent offices and
the increasing difficulty in keeping up with the
demand for timely processing, workload reduction
may be achieved by processing a given application
in one office and sharing the results with the other
offices. (There are many legal issues that must be
resolved before work products can be shared; this
paper addresses only the technical issues).

Using this example, we discuss the experience
gained in applying GOOD to the problem of finding
commonality and variations in business processes,
for the purpose of workload reduction across
multiple geographic areas. In addition, we explore
the spectrum of applications of this paradigm,
including support for and realization of on demand
computing.

Problems and forces in the problem space

At a sufficiently abstract level, the functions and
processes in all of the patent offices mentioned
previously are very similar. The work products that
might ultimately be shared (patent applications and
correspondence between patent examiners and
applicants) and how they are processed, however,
reflect a wealth of low-level details that are quite
different from one office to the other. The three
patent offices agreed on a common XML vocabulary
for publishing patent applications and grants, as
well as for filing patent applications. In 2002, the
offices explored the use of XML for prosecution (i.e.,
the processes that take place between the filing of a
patent application and the granting of a patent).

The USPTO identified more than 300 distinct
standardized forms and components of correspon-
dence between applicant and examiner. JPO re-
ported nearly 300 forms, and EPO reported
approximately 3,000 (including many forms in

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

multiple languages). Determining which forms were
the best candidates for workload reduction and
exchange required some basic description of the
examination process at the three patent offices.

Prior business process reengineering at the USPTO
produced results in the form of process descriptions,
which reflected the idiosyncratic details of the
processing of patent applications at this office.
These results proved inadequate as a basis for
determining the commonalities of process among
the offices. No corresponding process descriptions
for the other offices were available. For this and
other reasons, the project was ultimately aban-
doned. Nevertheless, a number of results were
achieved in the course of applying GOOD to this
project that have proven useful in other contexts.
The process itself can be fully generalized and used
in other contexts.

Solution approach

A method was needed to capture from subject
matter experts (SMEs) a description of their func-
tions (elements of business functionality) and
processes (end-to-end activities aimed at a goal
based on business rules and policies) independent of
the details of any particular implementation. To
avoid excessive use of SME time, a permanent,
negotiated record of the descriptions was required.
Finally, a method was needed for transferring this
description to developers with minimal opportunity
for misinterpretation.

The first step of the project was the activity of
finding commonality between activities and artifacts
used by various offices. In order to do this, a
metamodel of the business processes had to be
created. However, this had to be a “scoped”
metamodel. We controlled the scope of the meta-
model by limiting it to high-impact correspondence
events (correspondence between an applicant and
the patent office). We decided to use GOOD for this
metamodel because we needed to capture the
processes in a near-natural language in order to run
and simulate the process for verification by many
SMEs. Looking at a sheet of paper for verification of
business processes and use cases was not feasible
for the dynamic environment of a workshop, where
the simulations were to be verified.

We used a tool (the “business compiler”9 [BC])
developed by IBM and based on GOOD to address
the challenges of this project. At the time, very few if
any tools were present that met all these require-

ARSANJANI

69



70

AccountManagement = {Open, Transactions, Close}

Transactions = {Login, Transaction, Logout}

Transaction = {{checkFunds, debitAccount} | creditAccount | Transfer | queryAcctBalance}
Transfer = {fundTransferAllowed, checkFunds, debitSourceAccount, creditDestinationAccount}

Figure 2

A sample grammar for account management by the business analyst

ments in an integrated manner. The tool’s graphical
user interface (GUI) was customized based on the
requirements and significant input of the USPTO,
and functionality was added by using the tool’s
plug-in development facility to incorporate new
requirements.

In the following sections, we give a brief overview of
the theoretical foundations of GOOD, explore the BC
tool itself along with its usage scenarios, and finally
discuss lessons learned from the application of
GOOD and the BC tool to this project.

DESIGNING AN EXECUTABLE METAMODEL

WITH GOOD

GOOD is the application of business-domain-specific
languages to objects, components, and services to
implement context-aware software components that
are business-driven and facilitate the creation of
dynamically reconfigurable business-driven archi-
tectures (BDAs).10 In many cases, IT systems often
lose their direct connection and traceability back to
the business models, processes, and goals that they
support. As the business changes with no explicit or
implicit connections to IT, maintaining the support of
the IT systems for new processes and business
capabilities becomes an overwhelming challenge to
IT departments. By designing not just object-oriented
or component-based systems, but those driven by a
business language that can be defined and main-
tained in conjunction with the business analysts, we
empower the business analysts to participate and
contribute their knowledge to the software-develop-
ment process. By having the business analysts
maintain the business language defined by a business
grammar, we can create executable models of busi-
ness systems. The business grammar is defined by the
business analyst and refined by the IT architect. The
engine executing the grammar (and its input) serves
as the role of the “controller” in the dynamic
controller architecture. This controller is written in
domain-specific language. The other roles of the MVC
model, namely, the “view” and “model,” follow more

ARSANJANI

traditional means of general-purpose languages such
as Java. These models of business domains can be
generalized into metamodels that reflect the com-
monality and variations within a domain. They can
be represented by a domain-specific business gram-
mar and used to simulate IT systems.

A grammar describes a (potentially infinite) set of
patterns in terms of a finite lexicon and a finite set of
rules or constraints that specify allowable combi-
nations of the elements in the lexicon. Similarly, a
business grammar consists of the lexicon (key
abstractions and relationships) for a business
domain along with the policies and rules of how the
lexicon elements should be combined into mean-
ingful operational constructs that reflect business
goals, processes, and imperatives. These combina-
tions represent the semantics of the structure as well
as the process flow of the operational systems
within the domain. This paradigm is based on a
combination of areas in computer science, including
domain-specific languages and component-based
architectures, service-oriented software computing,
business rules, patterns, analysis and design meth-
ods, creation of metamodels, and compilers, as
shown in Figure 1. Using GOOD, we empower the
business analyst to develop a business grammar that
then drives the specification and execution of the
application.

As an example of a business grammar describing the
processing of a business domain, consider account
management in a bank. Figure 2 shows a declarative
way of specifying functionality that can be aug-
mented with functional specifications. As shown in
the figure, account management consists of opening
accounts, performing transactions, and closing
accounts. We can consider each of these functional
elements as primitives of the language of banking
account management or refine each one into a more
detailed set of steps. Elements shown in the figure in
leading lowercase, such as “checkFunds,” or
“debitSourceAccount,” are “atomic” elements or

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005



Account Mgt = {Login, Txns, Logout}

Login = {#displayLoginPage, login, #getUserldAndPassword, #login, CheckLoginResult}

CheckLoginResult = {{success, DisplayMenu}
newError, #displayNewError, Login}

| {invalidUserldOrPassword, #displaylnvalidUserError, Login} |

DisplayMenu = {displayMenu, #displayMenu, #getTxnType}

Txns = {Txn, DisplayMenu, Txns} | end

Txn = { {accountInfo, Accountinfo}| {debit, Debit}| {credit, Credit}| {transfer, Transfer}}

Accountinfo = {getAccount, #getAccount, #displayAccountinfo(account)}

Credit = {getCreditParameters, #getCreditParameters, #performCredit(srcAccount, amount)}

Debit = {getDebitParameters, #getDebitParameters, #getCustomerType, CheckFund, CheckFundResult}
CheckFundResult = {{success, #performDebit(srcAccount, amount), CheckTxnResult}

| {invalidAmount, #displayAmtError}
| {insufficientFund, #displayFundError}
| {error, #displayGeneralError}

CheckFund = {regularCustomer, #checkFund(srcAccount, amount)| platinumCustomer,

#checkCredit(srcAccount.getBalance()-amount)}

CheckTxnResult = {{success, #displayDebitConfirmation}

displayGeneralError}}

Figure 3

{invalidDebitAmount, #displayDebitAmtError}| {error, #

Architect adds more detail to the grammar for account management

terminals of the grammar; elements shown in
leading uppercase such as “Transfer” are elaborated
further in a subsequent (production) rule. “Trans-
fer” is a non-terminal symbol, and appears as the
“lefthand side” or definition of another declarative
rule which indicates that before a transfer can be
performed, the atomic elements “fundTransferAl-
lowed” (to determine whether a transfer is allowed
for this account) and “CheckFunds” (to determine
whether there are sufficient funds for the transfer)
must be used. If these conditions are met, the source
account is debited and the amount is credited to the
destination account.

A more detailed, executable, account management
grammar with error handling added by the IT
architect to the initial flow provided by the business
analyst would look something like that shown in
Figure 3. The hash sign (#) represents a service call
to invoke a service at that point in the grammar.
Note that in the example shown in Figure 3, the
architect would take the grammar provided as the
initial specification by the business analyst and
augment it with details pertaining to handling of
errors, more detailed flow, and invocation of
required services to provide input into the next step
in the process. In other words, the “what” of the
specification is developed by the business analyst,
and the “how” or realization of the specification in
the design is done by the architect, taking the same
artifact and the grammar and adding more detail,
instead of creating totally new and different repre-

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

sentations for design and execution. Thus, the tools
and methods employed converge and are elaborated
rather than totally overhauled as we make the
transition from business to IT.

GOOD'" allows business analysts to capture the
requirements of structure and flow of a business
process. “Structure” refers to the composition of
more static elements in the domain such as patents,
examiners, first office action, etc. “Flow” refers to
the sequence of activities within a goal-oriented
business process, such as the patent examination
process. In addition, business analysts can accom-
plish this process specification and execution not in
a predefined executable language like Java,** but in
a business-domain-specific language (that they
themselves define) that helps convey requirements
of the structure and flow of business processes for
their domain (e.g., patent processing). Figure 4
shows a segment of the USPTO grammar.

Structured prose from the business domain was used
to craft the grammar shown in Figure 4. As a
grammar involves the formation of basic linguistic
units, a business grammar involves the formation of
business functions. Thus a business domain gram-
mar depicts the rules governing the formation of
valid sequences of use cases. This has been referred
to as a use-case grammar when applied to a single
use case.' ' ® Use-case models are created as part of
the analysis phase of a software project. Using
GOOD, use cases are augmented with a grammar that

ARSANJANI

71



72

USPTO Process = {Filing, Pre-examination, Publication, Examination<and Correspondence>, Post-

examination }
Filing = {< details suppressed>}
Publication = {< details suppressed >}

Pre-examination = {OIPE(office of initial patent exam) or PCT(patent cooperation treaty)-Operations}
OIPE or PCT- Operations = {Assign Serial Number, Record Fees, Tentative Classification, Screen For
Security, [electronic word search], PICS Scanning, Licensing, Separate Regular From Security
Processing, Administrative Examination, Data Entry, Filing Receipt Mailed, Initial Data Capture, Initial
Preparation and Electronic Capture for Printing and Issue, Preliminary Amendments}

Assign Serial Number = {paper-based | electronic-using-ePAV}

<etc.>

Figure 4
Segment of USPTO grammar

defines the sequence, alternation, and repetition of
the composition of use cases. This dynamic inter-
action among use cases is currently missing from use
case analysis. The business processes are realized by
a set of use cases whose dynamic behavior is now
governed by the business-domain grammar.

A grammar is essentially a set of rules for describing
sentences. More formally, a grammar G is a
quadruple {N, T, S, P} with the four components:

1. N—a finite set of nonterminal symbols

2. T—a finite set of terminal symbols

3. S—a special distinguished symbol, such as “goal”
or “start”

4. P—a finite set of production rules or, simply,
productions

This produces highly readable and understandable
specifications that are, at the same time, executable

« Sequence

on a virtual machine. The business-compiler tool
debugging and execution environment allows the
near-natural language capture of requirements that
can be debugged to ensure that they are executable.
The business compiler executes the grammar based
on events that are manually or programmatically
triggered during the execution of a program (or Web
service) or the simulation of the processes. The
business analyst can provide the initial grammar,
and the IT architect can add more detailed design and
implementation aspects (such as the user interface,
access to existing systems, the invocation of external
services, etc.) to render the grammar executable.
Thus “grammar-oriented” refers to the fact that the
grammar or vocabulary used by the business
architect or analyst is the basis for an executable
language that can be used in conjunction with object-
oriented or service-oriented analysis and design to
produce applications that are written in a combina-
tion of the traditional computer languages such as

—  Process = {DoThisFlirst, DoThisSecond, DoThisThird}
— Example: USPTO Process = { Filing, Pre-examination, Publication,

Examination, Post-examination }
- Conditionals, Branching

—  Process = {DoThisFirst | YouMayDoThisFirst, DoThisSecond}
— Example: Pre-examination = { OIPE Operations | PCT Operations}

e Loops

— Example: Txns = {displayMenu, Txn, Txns} | doc received

« Comments
— //This is a comment

Figure 5
Syntax of EBDL

ARSANJANI

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005



/attempts=1

DisplayL.oginScr AcceptUserlDPwd
[invalidUser
AND attempts < 3]
Authenticate
S exception
[invalidUser AND
attempts >= 3] 1
[logout] ) '
i ogou
[validUser] SelectAction gl
[getbalance] [getbalance]
Balance
DisplayMenu )
i [debit] . /debit
Debit
[credit] . /credit
Credit
/transfer(src,dest)
Transfer
[transfer]

Figure 6
Using activity diagrams

Java and domain-specific languages that are de-
signed for particular industry domains.

The syntax of the executable domain-specific busi-
ness language (EDBL) used by the business compiler
is simple and is shown in Figure 5. Typically,
business analysts are able to start writing specifica-
tions using their own EDBLs in a few days, with a 2-
day workshop and some practice and assistance.

Although a picture is said to be worth a thousand
words, sometimes pictures with hundreds of boxes
and lines are less readable than plain text. To
address this, there are two input formats to the BC,
the textual language just described and an additional
method using graphical input such as UML activity
diagrams, as depicted in Figure 6. The BC trans-
forms the XML-based output of tools such as
Rational* XDE (Extended Development Environ-
ment) and creates an intermediate representation
that uses XSD (the XML Schema Definition lan-
guage). This same representation is generated from
the simple text input that can be imported as a
regular text file by the BC to generate its code. The
multiple input formats and the intermediate stand-
ard XML format are depicted in Figure 7.

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

RELATION WITH TRADITIONAL APPLICATION
ARCHITECTURES

In a model-view-controller view of an architecture
(see Figure 8), the language used to build the view,
controller, and model is a traditional third-gener-
ation computer language. Using GOOD, the con-
troller, as depicted in Figure 9, is written in a
business-domain-specific language that has been
defined by a business SME (a business analyst or
architect). This introduces a novel method of
empowering analysts to participate and contribute
their knowledge on an ongoing basis throughout the
application and architecture development and
maintenance cycles. The initial flow is provided by
the business analyst and then subsequently refined
through cooperation with the IT architect.

In this new architecture, the controller is imple-
mented at a higher level of abstraction in a business-
domain-specific language. The business compiler
assumes the role of a controller and executes the
steps described in the business language similarly to
steps or activities in a workflow. Alternatively, an
enterprise component can have an embedded busi-
ness compiler engine that can control the microflow
within the component or act as an orchestrating

ARSANJANI

73



74

A

initial symbaol = Start

1
7]
3 Start = {start, #initTestData, USPTC Process, Epilogue}
4
Textual Representation 2 USPTO Process = {Filing, Pre-examination, Publication, Examination, Post-examination
of Grammar ; Filing = {(#msg(Filing), #msg([we don't have details]) }
[EGS)/ to maintain] 3 Pre-examination = { OIPE Operations | PCT Operations,
10
n Pre-examination
12
13 PCT Operations = {#msg(PCT Operations placeholder) }
14 OIPE Operations = {
15 Manual Serial Number Assignment,
16 Response From Applicant Arrives,
17 Post Fees to RAM,
18 Document Preparation,
12 Scan and Index, |
20 Tentative Classification,
21 Screen for Security Sensitive Contents,
%2 Separate Regular From Security Processing
)
24
25 Separate Regular From Security Processing = {
. . 26 Review Security Status,
UML ACtIVIty Dlagram 27 {notSecurityOK, make paper copy, destroy electronic documents, file secure
[Easy to visualize and %g | {securityOK, Continue Regular OIPE Processing
create first iterations] 30
attempie=1 32 Continue Regular OIPE Processing = {
S DispajtoginSa = AcceptliserDPwd 33 [Raw Sequence Listing]’
34 Licensing,
Shvhiliser l 35 Formalities Review,
AND atterots < 3] 36 Initial Data Capture,
;— Autheriticate
—— exception —
finvalidUser AND \
attempts >= 3] ‘
- [logout]) —
LaliaUser] SelectAction FOUL
I getbalance) Ba“ar " {getbatance)
_ / debiy S Jaes
‘ [eredit] == Jexedit y
Credit _b‘ '
I Jranster(sicdest) s
Transfer
[transfer]
|———|-—— lesde=ckaodrecdzoqpodbodrscitadroctadr=cl==cr== ==
58 <right>
57 <symbol type="terminal”>next</symbol>
58 <symbol type="nonterminal”>OIPE or PCT- Operations</symbol>
59 <right>
50 </production>
61 <production>
62 <left>
63 <symbol type="nonterminal”> OIPE or PCT- Operations</symbol>
64 </left>
65 <right>
66 <symbol type="terminal”>next</symbol>
67 <symbol type="nonterminal”>Assign Serial Number</symbol>
68 <symbol type="nonterminal”>Record Fees</symbol>
59 <symbol type="nonterminal”>Tentative Classification</symbol>
70 <symbeal type="nonterminal”>Screen For Security Sensitive
Contents</symbol>
71 <symbol type="nonterminal”>PICS Scanning</symbol>
72 <symbol type="nonterminal”>Licensing</symbol>
i 73 <symbol type="nonterminal”>Separate Regular From Security
XML Representation Processing</symbol>
74 <symbol type="nonterminal”>Administrative Examination</symbol>
of Grammar ;5 <symbol type="nonterminal”>Data Entry</symbol>
H 5 <symbol type="nonterminal”>Filing Receipt Mailed</symbol>
[Appropr/ate for 77 <s§mbo| t;ge=”nonterminal">lnhiégl Data PCapture</syrynbo\>
Computerpfocessjng] 78 <symbol type="nonterminal”>Initial Preparation and Electronic
Capture for Printing and issue</symbol>
79 <symbel type="nonterminal”>Preliminary Amendments</symbol>
80 <Jright>
81 </production>
82 <production>
83 <left>
84 <symbol type="nonterminal”>Assign Serial Number</symbol>
gg </left>
. <right>
Flgure 7 87 ¢ <symbeol type="terminal>next</symbol>

GOOD business compiler tools

ARSANJANI

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005



Architecture

View 1

View 2

View 3

General Purpose
Language

Language

Imprecise

GUI Tools
Class Libraries
Frameworks

Precision

**Trademark of Sun Microsystems, Inc.

Figure 8
MVC Architecture

Business Compiler

Business
Language

Model

Model

Controller

Model
Database

General Purpose/
3rd or 4th Generation
Language

Enterprise JavaBeans**
Common Object Model
Web Service

mechanism between components. The latter be-
havior is akin to that of a BPELAWS* engine. In
GOOD the grammar, or more precisely the parser, is
the controller of the architecture. Changes can be
made to the grammar, and the flow will thus be
altered. The domain-specific language used can be
translated into a BPEL4WS representation to be run
on tools such as the IBM Process Choreographer.
Prototyping is made possible by allowing the
executable flow of the application to be defined at a
high level of abstraction.

Usage scenarios for executable metamodels
using the GOOD paradigm

GOOD and the business compiler can help address a
spectrum of issues or problems ranging from busi-
ness architecture applications to software engineer-
ing activities. Business architecture activities
include the executable specification of business
processes, their simulation, their re-engineering and
consolidation, and the finding of commonalities and
variations among them. Using GOOD, we can create
a metamodel of multiple business processes across
business lines or organizations to serve various
objectives, including harmonization of different

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

operational and business models to promote coop-
eration.

Another usage scenario involves assisting in soft-
ware development. The BC was used to create a
simulation of patent processing including bringing
up screens of actual applications. This was found to
have applicability in training new patent examiners
and personnel in using existing systems as well as
understanding the processes underlying them.

Solution implementation

GOOD methods were used to capture the business
process flow in the interviews with SMEs in near-
English prose, a process which was much faster and
more participatory than diagramming the flow. The
intent was to capture the flow of patent application
processing which reflects the business processes
involved and to record them in a manner that is not
only readable by humans but also executable as a
simulation and that can be integrated seamlessly
into an application.

The business compiler supports many aspects of the

business-modeling process and that of creating
metamodels. This includes requirements gathering,

ARSANJANI

75



76

Architecture

<<Model>>
Context-Aware Manners Web Services
Enterprise
Components
Vi <<Model>>
iew 1 EJB
<<Model>>
Controller Legacy System
View 2
A Business Grammar <<Model>>
View 3 Orchestrating Flow of Database
Applications
Language General Purpose General Purpose/
Language Domain-specific 3rd or 4th Generation
Language Language
Precision Imprecise "Business Grammar": Enterprise JavaBeans
GUI Tools Formal Common Object Model
Class Libraries Language Web Service
Frameworks
Figure 9

Dynamic controller architecture

simulation, verification, and testing of the business
processes outlined within the scope of the meta-
model mentioned previously. The solution approach
(shown in Figure 10) was to create a metamodel of
business processes, uncover information on
commonalities and variations, and feed this infor-
mation back into the initiatives relating to
standardization of DTDs (data type definitions)
among patent offices. The initial set of elements of
the DTD standards for correspondence between an
applicant and the patent office would be matched
against the business use cases coming out of the
business-process modeling activities. These would
serve to support the identification of commonalities
by examining use cases which lead to the creation of
common work products. This would in turn benefit
the workload reduction and harmonization effort.

A METAMODEL OF THE GAP BETWEEN BUSINESS
AND IT

The gap between business and IT is primarily due to
the different terminology, levels of granularity,

ARSANJANI

varied models, approaches, tools, and methods that
each employ. In order to support the emerging on
demand computing paradigm, this gap must be
bridged, and common (or at least partially common)
models and representations can aid in this effort.

The on demand paradigm requires an organization
to be agile and adaptive, to “... respond to any
opportunity or threat,”15 and to maintain IT systems
that support business process and model changes in
“right-time” (i.e., not necessarily real time). For this
goal, it is essential to acquire the ability to define the
“configuration” of a business (as in its value net)
and an IT system (as in the static and dynamic
aspects of system operation). After this is done, it is
necessary to represent the interdependence between
the two, such that the IT configuration supports the
business model and can change accordingly when
that model needs to be changed. This adaptive
capability entails the ability to reconfigure a busi-
ness architecture’s value net and the components,

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005



Extract commonality and standardize

DTDs

elements to reduce workload based on

common metamodel Metamodel
. i . Identify commonalities
Identify specific variations in terms of examination
for examination o Commonality use cases and forms
use cases and forms Variations
Variation Variation Variation -
. Traceability
Timing
22 JPO EPO USPTO
. Identify key business
Business Proce?; Y Conceptual Identify business objects
Processes/Workflow 5.0 o Model Determine elements
2.1 When is a form or paragraph
Business used? What triggers it (business
Use Cases/Events process)?
2.0 : : Prioritize and scope based on usage/potential savings
Office Applicant Determine forms
Correspondence Determine elements
1 Inventory forms
Elements Form paragraphs
Figure 10

Proposed solution approach

services, composition, and flow of a software
architecture.

Standards and their implementations, such as
BPEL4AWS, are a step in that direction. They allow
the creation of composite service-oriented applica-
tions from a set of underlying published services.
One key differentiator between GOOD and
BPEL4AWS is that in GOOD, the domain’s language
with its structural and functional ramifications
remains a first-class construct. The structure and
flow defined by a domain grammar drives the
collaboration and choreography of services.

Figure 11 depicts a metamodel of the concepts
relating to the problem and a solution to the gap
between business and IT. Going from the top to the
bottom of the figure, we see an emerging need for a

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

new computing paradigm that offers agile respon-
siveness to changes in requirements. On the one
hand (on the left), we have a business model or
business architecture comprised of the business
processes, their goals and objectives: the decom-
position of the value chain into functional areas that
work together within the context of a business
process to bring value to the business. On the other
hand, we have software architecture in which
applications are compositions of components. Both
business and software architecture need to be
reconfigured as new opportunities, threats, mergers,
and acquisitions occur. The applications offer
services to provide functionality supporting the
business.

The gap can be bridged by bringing these two
traditionally diverging architectures into a conver-

ARSANJANI

77



78

Dynamic changes in requirements

Widen

f—/%

Business model/architecture

Business / IT gap

Software architecture
(service-oriented)

Requires support of

Needs to dynamically reconfigure

Business value net:
composed of

business processes

flow Manners

goals

objectives

Figure 11

Needs to dynamically reconfigure

Applications:
composed of

Context-aware components

services

processes

Dynamic reconfiguration, using GOOD, to bridge the business/IT gap

gent path. This can be accomplished through
providing each with the ability to be dynamically
reconfigured; that is, business value chains can be
reconfigured to leverage new markets, forge new
partnerships, and offer new products and services.
This must be synchronized with the ability of the
software architecture to adapt and reconfigure its
composition and business rules to support these
new partnerships, products, and services, and to do
so under the constraints within which they must
operate to be profitable. At the same time, the
business must maintain the newly forged service-
level agreements within this new value chain,
delegating this responsibility to the software archi-
tecture and the applications, components, and
services running on it.

To enable dynamic reconfiguration, the software
architecture must handle variations in business
context. It can do so through the design and
implementation of CACs, whose functionality is self-
optimized for the context in which they are used. To
implement context-awareness without sacrificing
wide-range applicability in multiple areas, the
component must use a set of rules and policies to
determine how it should behave in different
contexts. These variations in context are external-
ized and stored by the designer in configurations for
the component. Manners are properties of CAC

ARSANJANI

services that can adapt to changes in their business
context based on policies and externalized varia-
tions. The semantics of CACs and services are thus
externalized in their manners."®

Figure 12 depicts the behavior of CACs. After the
component’s internal flow and external collabora-
tions have been defined by using the business
grammars, these can be externalized into the
configurable profile as metadata that can be loaded
and executed. The typical internal behavior of CACs
is shown in Figure 12 as follows. When an event or
message is received, the CAC checks its context and
state (often passed to it with the event or message).
An example of a message is, “An order for a
platinum wholesale customer is being processed,
and we are in a secure, authenticated, authorized
transactional context.” (Steps 1 and 2)

The appropriate policies (“rules about which rules
to apply”) are selected. For example, “For platinum
and wholesale clients, we need to access the policies
and select the appropriate rules, based on customer
type, order type, account type, and transaction
type.” (Steps 3 and 4)

After the policy is selected and the rules to be

applied are determined, access to the state of the
incoming message is again needed to actually

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005



Process order event 1

Check
context
2
Check he Select
state policies

Figure 12
Behavior of CACs for order entry scenario

Configurable
profile
(meta-data)

6A, B
Invoke service
. 7
Filter and check N
ulles Initiate workflow
8

Handle/generate
exceptions

perform the rule check. The policies and rules are
applied (Step 5). Based on the result, a service may
be invoked and may participate in an orchestrated
macroflow, or an exception may be generated
through message-oriented middleware capabilities if
an error condition arises. (This is shown in Steps 6A
and 6B, which are conducted in parallel.) At this
point the order has been received, the method of
payment applied, and the processing of the cus-
tomer’s fulfillment will follow.

A workflow is then initiated to manufacture or pick
and ship the products ordered, and a message is sent
to the client (Step 7). If the result of the rule check is
negative, an exception may need to be handled (Step
8). Also, after a service has been invoked or a
workflow initiated, an exception may occur which
needs to be handled.

CONCLUSIONS

In the USPTO implementation, using the business
compiler entailed an initial learning period of a few
days, followed by periodic interactions (several
hours a week) for a few weeks. Applying GOOD
through using the business-compiler tool helped
capture business processes in a dynamically updat-
able manner, one which was amenable to larger
workshop sessions where each SME contributed a

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005

small portion of the overall process. The process
could be executed and the decision points evaluated
by all participants. This led to the identification of
the commonalities among business processes.

For many users, writing a business grammar in the
form of an outline seems a less daunting task than
learning an entirely new tool or notation, such as
UML or WBI-Modeler. Others may prefer to rely on
the business analyst for design and use tools like
UML for maintenance purposes.

This paradigm allows participation of the business
analyst in the development life cycle in such a way
as to complete and augment the traditional roles of
architect and developer through the provision of an
executable specification of the business model and
flow. This approach contrasts with runtime textual
documents that typically cannot be interpreted and
thus are vague and challenging to use as a basis for
structuring IT solutions supporting changing busi-
ness needs in an on demand world. When business
processes are broken down, they ultimately de-
compose into messages communicated between
knowledge workers. As a result, the standardization
of those messages, such as in the current USPTO
efforts, is critical.

ARSANJANI

79



80

ACKNOWLEDGMENTS

The author would like to thank Bruce B. Cox of the
United States Patent and Trademark Office for his
contributions and insight into this paper and his
management, cooperation, and contributions to the
project, without which this project would not have
been implemented or refined. Thanks go to Thomas
Moewe and David Ng as well, for their contributions
to the project.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

CITED REFERENCES AND NOTE

1. B. C. Warboys, D. Balasubramaniam, R. M. Greenwood,
G. N. C. Kirby, K. Mayes, R. Morrison, and D. S. Munro,
“Collaboration and Composition: Issues for a Second
Generation Process Language,” Proceedings of the 7th
European Software Engineering Conference Held Jointly
with the 7th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (October 1999) pp.
75-90.

2. B. Curtis, M. L. Kellner, and J. Over, “Process Modeling,”
Communications of the ACM 35, No. 9, pp. 75-90
(September 1992).

3. A swimlane is a visual region in an activity diagram that
indicates the element that has responsibility for action
states within the region.

4. W. J. Kettinger and J. T. C. Teng, “Business Process
Change: A Study of Methodologies, Techniques, and
Tools,” MIS Quarterly 21, No. 1, 55-80 (March 1997).

5. M. A. Ould, Business Processes: Modeling and Analysis for
Re-engineering and Improvement, John Wiley & Sons,
Chichester (1995).

6. BPML, http://www.bpmi.org/bpml.esp.

7. ebXML—Enabling a Global Electronic Market,
www.ebxml.org.

8. A. Arsanjani, “Explicit Representation of Service Seman-
tics: Towards Automated Composition Through a Dy-
namically Reconfigurable Architectural Style for On
Demand Computing,” Proceedings of the International
Conference on Web Services (ICWS 2003) (2003), pp. 34—
37.

9. A. Arsanjani, “Business Compilers: Towards Supporting
a Highly Reconfigurable Architectural Style for Service-
Oriented Architecture,” Proceedings of the IEEE Interna-
tional Conference on Software Maintenance (ICSM 2002),
Montreal, Canada (2002), pp. 287-289.

10. A. Arsanjani, “A Domain-Language Approach to Design-
ing Dynamic Enterprise Component-Based Architectures
to Support Business Services,” Proceedings of the 39th
International Conference and Exhibition on Technology of
Object-Oriented Languages and Systems (TOOLS39)
(2001), pp. 130-142.

11. A. Arsanjani, “Introduction to Special Issue on Enterprise
Components and Services,” Communications of the ACM
45, No. 10, pp. 30-34 (2002).

12. A. Arsanjani, J. J. Alpigini, and H. Zedan, “Externalizing
Component Manners to Achieve Greater Maintainability

ARSANJANI

through a Highly Re-Configurable Architectural Style,”
Proceedings of the IEEE International Conference on
Software Maintenance (ICSM 2002), Montreal, Canada
(2002), pp. 628-639.

13. K. Levi, A. Arsanjani: “A Goal-Driven Approach to
Enterprise Component Identification and Specification,”
Communications of the ACM 45, No. 10, 45-52 (2002).

14. BPEL4WS—Business Process Execution Language,
http://www.oasis-open.org/committees/tc_home.
php?wg_abbrev = wsbpel.

15. S. Palmisano, The New Agenda, IBM General Webcasts
(October 2002), http://www-306.ibm.com/webcasts/
WCPGateway.wss?jadeAction = WEBCAST _
BROWSETIER2_HANDLER&WCP_NAV_ID_KEY = 0403.

16. A. Arsanjani, “Grammar-Oriented Object Design: Creat-
ing Adaptive Collaborations and Dynamic Configurations
with Self-Describing Components and Services,” Pro-
ceedings of the 39th International Conference and
Exhibition on Technology of Object-Oriented Languages
and Systems (TOOLS39) (2001), pp. 409-414.

GENERAL REFERENCES

G. M. Giaglis, R. J. Paul, and A. Serrano, “Reconciliation of
Business and Systems Modeling via Discrete Event Simulation
(December 1999),” Proceedings of the 31st Conference on
Winter Simulation: Simulation—A Bridge to the Future-
Volume 2, pp. 1403-1409.

G. M. Giaglis, R. J. Paul, and Georgios I. Doukidis,
“Simulation for Intra- and Inter-Organisational Business
Process Modelling,” Proceedings of the 28th Conference on
Winter Simulation, pp. 1297-1304 (December 08-11, 1996),
Coronado, California.

Accepted for publication September 6, 2004
Internet publication January 10, 2005.

Ali Arsanjani

IBM Global Services/Application Management Services, 1804 A
Padmavani Lane, Fairfield IA 52556 (arsanjan@us.ibm.com).
Dr. Arsanjani is a Senior Technical Staff Member and
Executive IT Architect with 21 years of experience in software
consulting, development, and architecture. He is a chief
architect in the IBM Global Services SOA and Web Services
Center of Excellence. His areas of expertise include service-
oriented and component-based software architecture,
patterns, and methods. He has written extensively on
patterns, service-oriented architecture (SOA), component-
based development and integration, business rules, and
dynamically reconfigurable software architecture. He is also
an Adjunct Associate Professor of Computer Science at
Maharishi University of Management in Fairfield, lowa. H

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005



