
Service domains

by Y.-S. Tan
V. Vellanki
J. Xing
B. Topol
G. Dudley

In this paper we introduce the concept of
service domain, to be used as a major
building block for implementing service-
oriented architectures in large computing
grids in which tens or hundreds of services
are offered to customers. A service domain
maps a collection of comparable or related
services to a single logical service. We
describe an architecture for service domains
that uses a set of policy rules for managing
the collection of services and that
automatically dispatches the “best” service
available to satisfy user requests. The
architecture has built-in autonomic properties
in that a service domain implementation
monitors the events within its control and
triggers adjustment actions in its member
services, including recovery from service
failure and handling of topology changes. We
describe a reference implementation of the
service domain architecture that is publicly
available as a development toolkit, and we
discuss its application in the implementation
of a large grid now in progress.

Service-oriented computing and the associated ser-
vice-oriented architecture1 (SOA) are based on ser-
vices as self-describing, open components that can
be used to build distributed applications. A service
is implemented by a software module that responds
to queries and commands by performing a specified
function.

There is a large degree of standardization in the op-
eration of Web services.2,3,4 Figure 1A illustrates the

Web-services model that includes a service requestor,
a service registry, and a service provider.

To assess the challenges involved in using Web ser-
vices in environments in which tens or hundreds of
services are offered to customers, consider exception
handling. If a service bound to a client fails, there
is no easy way for the client to switch to a compa-
rable service. The client has to be able to query the
service registry, locate an available service, establish
a new binding, back out from the point of failure,
and rerun the service request. It is also likely that
there are several service instances to choose from
and the client has to include the logic to select an
appropriate service instance. The logic becomes com-
plex and needs to be included in each client. The
situation may become unmanageable if hundreds of
services need to be handled this way.

Although recovery services and highly available plat-
forms are often provided on the service provider end,
clients are still required to handle exceptions. This
is so because SOA enables dynamic mixing and match-
ing of requestors and providers. If the service pro-
viders are independent businesses, the services pro-
vided may be viewed by the client as less reliable. In
addition to the possibility of disturbances such as
hacker attacks and network outages, additional fac-
tors such as business relationship and operation pol-
icy need to be considered as well. Availability will

�Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

TAN ET AL. 0018-8670/04/$5.00 © 2004 IBM IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004734

continue to be a critical consideration for stand-alone
service implementations.

Consider the issue of integration, which is present
in most modern IT systems. In today�s dynamic bus-
iness environment, Web services are ideal for im-
plementing either internal or external business func-
tions, such as inventory control and order processing.
When businesses are forming partnerships and al-
liances, the number of suppliers can grow as busi-
nesses are expanding. The characteristics of suppli-
ers can also become more diverse. For example in
a catalog sales scenario, the suppliers could special-
ize in different classes and categories of merchan-
dise, carry merchandise of different quality levels,
and adhere to different volume-discount agreements.
Suppliers may come and go, may fail on their de-
liveries, may have relationship constraints, and so
on. There is no fast and easy way to manage these
changes dynamically in real time. The main business
processes can be implemented as workflows, but
keeping the processes robust may depend on the per-
formance of specific suppliers. The logic becomes
unmanageable when tens and hundreds of suppli-
ers need to be managed. This could be one reason
why organizations tend to implement SOA with only
a small number of suppliers. We believe that envi-
ronments with hundreds of competing or collabo-
rating suppliers will be a common phenomenon of
the future. In order to achieve the full benefit of SOA
in such environments, new techniques to overcome
complexity are required.

A service domain (SD) maps a collection of compa-
rable or related services to a single logical service.
It is implemented as a service domain node consist-
ing of a service entry component, a rule-based pol-
icy component, a service catalog, and a service-ren-
dering component. In addition, an aggregation
engine contains node services, such as monitoring,
logging, error recovery, and so on. The SD presents
a single Web-services interface, describable by stan-
dard Web-services specifications, but it provides a
higher-level interface for managing a group of Web
services (a service may be an application, a software
function, a data access, or an IT resource used in a
solution implementation).

The SD aggregates and manages multiple service in-
stances as a single virtual service. It offers a SOA so-
lution that reduces the complexity of building bus-
iness applications because the applications need only
focus on the services and user interfaces (UIs) spe-

cific to the business while the SD provides most of
the enabling logic. Figure 1B illustrates the Web ser-
vices model with an SD replacing the individual ser-
vice provider. A client needs to find and bind once
to an SD. The SD hides the complexities involved with
using services: discovery, selection, exception han-
dling, and so on. Solution deployment is faster and
easier, and client access is simpler.

The SD model starts with what is available today and
builds a service management and brokering middle-
ware solution designed to address the previously
mentioned challenges. Its objective is not to define
new application programming interfaces (APIs) or
new standards, but to construct from the existing
components a new, higher-level structure that can
hide complexities from service users, simplify deploy-
ment for service suppliers, provide self-managing ca-
pabilities, and give administrators a set of tools for
managing the IT solution.

Figure 1 Web-service model (A) and Web-service model
 with a service domain (B)

TRANSPORT
MEDIUM

BIND

SERVICE
DISCOVERY

SERVICE
REQUESTOR

SERVICE
PROVIDER

PUBLISHFIND

TRANSPORT
MEDIUM

BIND

SERVICE
DISCOVERY

SERVICE
REQUESTOR

SERVICE
DOMAIN

SERVICE
PROVIDER

PUBLISHFIND

A

B

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 TAN ET AL. 735

The SD, which implements Web services and grid
concepts, is extendable to include new grid standards
that are still evolving. SDs often can be structured as
a logical hierarchy. For example, an SD that provides
portfolio management and purchase-ordering ser-
vices may direct requests to a descendant (child) SD
that provides services for executing the transactions
(e.g., the submission and processing of jobs). A fur-
ther descendant SD may provide resource-allocation
services, such as allocation of computing power, stor-
age capacity, and other execution-related resources
(similar to data and resource management in grid
computing). Such an implementation of an SD hi-
erarchy is a service grid.

The SD model enhances the Web services concepts
of proxy, interceptor, handler, gateway, mediator,
and broker by incorporating concepts of grid com-
puting5,6,7 and autonomic computing.8 Instead of im-
plementing individual functions for each service, such
as action selection, routing, failover, and change
management, the SD model provides a service grid,
a pool of dynamically assembled service instances.
The SD automatically dispatches the best service in-
stance corresponding to the user request through
built-in mechanisms for registering and discovering
service instances.

The SD model is based on the standards specified by
W3C**9 and OASIS.10 These include Web Services
Description Language11 (WSDL), Extensible Markup
Language12 (XML), Simple Object Access Protocol13

(SOAP), Hypertext Transfer Protocol14 (HTTP), Uni-
versal Description, Discovery, and Integration15

(UDDI), Web Services Inspection Language16 (WSIL),
and Web Services Invocation Framework17 (WSIF).

Kraft18 presents a Web services collection model that
can contain a group of abstract Web services objects.
This approach, which provides a convenient way to
group Web services, is useful for designing a distrib-
uted access-control mechanism because it facilitates
the management of authorization specifications and
meta-data and the composition and specialization
of Web services. This model does not support rule-
based automatic service aggregation.

The Global Grid Forum5 (GGF) defines a Service
Group port type as an interface to a collection of
grid services. The grouping model does not assume
any relationship among the member services in the
group. It also does not support rule-based automatic
service aggregation.

The emergence of the Web Services Resource
Framework19 (WSRF) and the associated WS-Noti-
fication are bringing together grid computing and
Web services.20 The Open Grid Service Architec-
ture21 (OGSA) defines key building-block services for
grid computing. These defined services are funda-
mental to IBM�s on demand operating environment22

that provides system management, autonomic com-
puting, data management and storage management,
knowledge management and collaboration, and busi-
ness-computing services. Given the independent na-
ture of its service abstraction (whether it is for a spe-
cific IT resource, system service, software solution,
or business-application function), the SD model could
become a key building block for the OGSA fabric as
well.

The rest of the paper is organized as follows. In the
next section on the architecture of SDs, we cover the
concepts of port-type aggregation and SD hierarchy,
we describe the structure of an SD node and its com-
ponents, and we discuss the handling of the state as-
sociated with a Web service. In the section that fol-
lows, “Implementation,” we describe our reference
implementation and its application to the implemen-
tation of a large grid now in progress. Next, in the
section “Implementation aspects,” we provide ad-
ditional implementation details by discussing setup
and deployment of services, failover and recovery,
and rule-based service selection. We conclude with
a summary of the paper and directions for future
work.

Architecture

The SD model allows the aggregation and sharing of
multiple WSDL-described Web services. Services from
various sources are virtualized as a single logical ser-
vice. An SD has a set of port types representing the
set of distinct services it offers. Each port type cor-
responds to a collection of similar service instances.
Rules are provided to manage and control the be-
havior of the aggregated services.

Figure 2 illustrates the aggregation of services and
the resulting port types. The SD node shows five ag-
gregated ports. Each port has a set of arrows indi-
cating the operations and message flows. There are
three service providers shown; provider 1 supports
port type 1, provider 2 supports port types 2 and 4,
and provider 3 supports port types 2 and 5. A re-
questor sends a request for port type 2 of the SD.
The request can be forwarded either to port type 2
of provider 2 or port type 2 of provider 3.

TAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004736

Each port type is associated with a set of service level
agreements (SLAs), each specifying a service level.
In order to offer a service to clients, the service pro-
vider registers the service with the SD, specifying the
port type and an SLA. The SD can then incorporate
that service into its own version of service. In the
scenario depicted in Figure 2, the SD matches the
user service level with the provider service level and
selects provider 2. The two service levels are com-
patible but need not be identical. By using SDs a ser-
vice broker is thus established that can manage a het-
erogeneous group of service suppliers in order to
provide virtual and additional value-add services to
consumers.23,24 The simplest SD is a single collection
of similar service instances, much like a customer

service desk in a store in which the service desk is
staffed with several attendants. Whereas a store may
have several customer service desks, an SD imple-
mentation may have a nested architecture consist-
ing of a hierarchy of SD nodes. In that case, a service
requestor interfaces with a single logical SD. The SD
implemented as a hierarchy of nested SDs allows the
creation of a large virtual business complex referred
to as a service grid.

The motivation behind the SD concept is to achieve
manageability when dealing with a large number of
services and service providers. Although we consider
how the SD can exploit existing standards, products,
and emerging technologies, the main focus is on re-

Figure 2 Service aggregation and the resulting port types

SD NODE

SLA
SLA

SLA
SLA

SLA
SLA

SLA
SLA SLASLA SLASLA

SLA

SERVICE PROVIDER 1 SERVICE PROVIDER 2 SERVICE PROVIDER 3

PORT (TYPE 1)1

1 2 3 4 5

REQUESTOR

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 TAN ET AL. 737

ducing the complex issues to simple Web service in-
vocations and thus view Web services as the ultimate
standard.

Here is a list of the SD-related terms used in this pa-
per:

● Two service instances are similar when they im-
plement the same functionality but provide a dif-
ferent API or different service level characteristics.

● Two service instances are compatible when they
implement functionalities that overlap.

● Two service instances are related when they im-
plement functionalities in the same category. They
may be disjoint and thus augment each other

● A virtual service is the service offered by an SD that
results from aggregating several service instances.

● A virtual port is the port visible to the SD clients,
which is implemented by a mapping to the port
of a service instance.

Service domain hierarchy. Figure 3 shows the to-
pology of a logical SD hierarchy. It is a simple to-
pology that consists of a main SD node and two sec-
ondary SD nodes: SD North and SD South. Service

instances of various types, such as portfolio analy-
sis, video applications, and life science applications,
are provided through the two secondary SD nodes.
The service instances that are similar are aggregated
on the main SD node and presented as virtual ports.
Each SD has a set of policy rules that governs its op-
erations and a service catalog (or registry) that stores
the information collected about its services. The SD
nodes and their services are distributed over a set
of hardware resources.

The clients interact with the SD through the main SD
node using the Web services client interface. Typ-
ically a client driver that includes a Web application
server mediates between the user browser and the
SD node. When a client calls the SD for a service,
e.g., portfolio analysis, the main SD consults the pol-
icy rules and dispatches the request to, say, SD North
for processing. SD North will in turn consult its own
policy rules to select a service instance to service the
request.

In this example SD North had been “registered” with
the main SD prior to the service dispatching. This
operation and other similar ones, such as setting of

Figure 3 Service domain topology

Web
Application

Administration
Client

service-1 Portfolio
Analysis

Video
Application

Life Science
Application

service-2

service-n

•
•

•

service-1 Portfolio
Analysis

Video
Application

Life Science
Application

service-2

service-n

•
•

•
•

•
•

User
Client

Client
Driver

Client
Driver

Client
Driver

Main SD

SD North

SD South

Policy
Rules

Service
Catalog

Policy
Rules

Service
catalog

Policy
Rules

Service
Catalog

TAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004738

policy rules, are managed by the administrator
through an administrative client. As an implemen-
tation note, a single administrative client can be set
up to control an entire logical hierarchy.

The topology of the SD hierarchy is self-configuring
because it supports automatic expansion or contrac-
tion of the tree, as SD nodes join or leave the SD hi-
erarchy. A service instance can be assigned to an SD
node at any level. Services that conform to a given
port type interface are logically aggregated into a vir-
tual port type that is surfaced at the main SD node
(at the highest nesting level of the topology).

Architecture of an SD node. Figure 4 shows the ar-
chitecture of an SD node. The main components are:
service entry, service catalog, Web services stacks and
standards (WSSS), service rendering, policy, and ag-
gregation engine.

The SD node is implemented as a J2EE**-instanti-
ated25 object in a platform such as WebSphere* Ap-
plication Server26 or Apache Tomcat.27 The object�s
behavior is similar to a simple Java** bean, and it
can be represented as a WSDL-described service. It

is built using grid and Web services standards such
as WSDL, OGSA, SOAP, XML, UDDI, WSIL, and WSIF.
All dependencies on these standards are limited to
the WSSS component so that the evolving nature of
the standards will not impact other SD node com-
ponents. This design of WSSS makes the SD node ar-
chitecture extendable and able to exploit OGSA de-
fined services28 and emerging Web services
standards29 as they mature.

As Figure 4 illustrates, three of these components
provide external interfaces to the SD node: service
entry, service rendering, and policy. The service-en-
try component provides standard Web services or
other means for accepting requests and returning re-
sponses. Aside from service requests from clients,
the service-entry component also supports admin-
istrative operations for managing the SD node. The
latter are viewed as operations directed to the
“home” port. For example, an administrative client
may send a register command in order to register a
service instance with the SD node. The information
entered is stored into the service-catalog component
using the “standard” registry service interfaces.

Figure 4 Architecture of an SD node

service-1

service-2

service-n

Service
Catalog

Client
Driver

Service
Entry

WS Stacks and Standards

Policy

Aggregation Engine

lookup discovery offload deploy

selection monitor failover logging

Service
Rendering

Provided
Services

•
•

•

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 TAN ET AL. 739

The service-rendering component provides an at-
tachment interface that supports any WSDL-described
Web service offered by a service provider. The at-
tachment interface allows the inclusion of informa-
tion beyond WSDL definitions; we refer to this infor-
mation as augmented information. The augmented
information consists of XML-specified service at-
tributes in a format that is consistent with current
standards such as the XML-defined nouns and ad-
jectives, J2EE conventions for object properties, and
the early grid specifications of service data elements.
These service attributes are useful for service dis-
covery and service aggregation. An example of such
an attribute is the service “origin” type used to sup-
port a variety of Web-services dispatching ap-
proaches, including SOAP, WSIF, grid, Microsoft
.Net,30 and document style,31 for the service in-
stances. It is stored in the service-catalog component
when a service instance is registered. The service-
rendering component uses the attribute to set up the
correct Web services client-proxy call to dispatch the
service instance.

The SD architecture does not impose any initial state
requirements or other restrictions on the services be-
yond conformance to WSDL standards. Any initial
state requirements are driven by the implementa-
tion of the specific services. A stock quotation, for
example, does not require the assignment of an ini-
tial state. A job-execution service, on the other hand,
is assigned an initial state of “ready.”

The service-catalog component provides an internal
mechanism to store the WSDL, service attributes, state
(operational or down), and status (collected statis-
tics) data in one place. Where it makes sense to have
constituent services sharing state and data, SD can
share its service catalog with the individual services.
The sharing uses the same “home” port operations
that SD provides to an administrative client. The ser-
vice catalog is built on top of a registry such as UDDI.
A service catalog can be shared by several SDs, as
illustrated in Figure 4.

The SD node stores the (static) WSDL information in
the registry. It stores the augmented information in
a supplementary data structure in memory, and it
stores the dynamic operational data (status) in per-
sistent storage (a file).

Administrative clients use the home port as a higher-
level interface that eliminates the need to deal with
low-level interfaces such as registry APIs and data
formats and enables operations for configuring and

managing registries. For example, a client can make
a simple call and obtain the list of registered service
instances without the need to specify the registry
used. If the registry is based on UDDI, this will be
shown as an attribute value that indicates the type
of registry.

Because the service-discovery function of the SD uses
real-time data, it is different from conventional reg-
istry queries. The discovery can include service fea-
tures, business relationships, and performance char-
acteristics. Both static and dynamic information are
maintained in its processing storage.

The policy component provides a policy interface
that allows configuration of all the operating rules
for the SD. A service policy is a set of XML rules that
includes service-level definitions and rules for han-
dling security, recovery, events, discovery, service se-
lection and routing, service mapping, and various
business considerations. The XML document is con-
structed and entered through a setPolicy command
to the service-entry component. When the command
is processed, the policy rules are entered into the pol-
icy component using a “standard” policy service
interface.

Rules are the centerpiece of the SD model. They dif-
ferentiate the model from other service management
middleware such as registry, grouping, proxy, gate-
way, and intermediaries. These rules are interrelat-
ed; for example, the selection rules are related to
the service level definitions and service mapping; se-
lection errors are resolved by the recovery rules; busi-
ness-relationship-based selections depend on other
miscellaneous rules.

When the service-entry component receives an in-
coming request, it uses WSSS to interact with the ag-
gregation engine. Within the aggregation engine the
lookup subcomponent is called first to identify ser-
vice instances available to process the request. Then
the selection subcomponent is called to identify the
best service instance for this request.

The service-entry component then calls the service-
rendering component to invoke the specified service
instance. On completion a response message is re-
turned to the service-entry component, which for-
wards it to the requestor.

The aggregation engine obtains policy rules from the
policy component and uses them to enforce specific
behaviors in the various subcomponents on the re-

TAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004740

quest processing path. For example, the lookup sub-
component communicates with the deployment sub-
component to obtain information about registered
service instances. The monitor subcomponent col-
lects various metrics and tracks appropriate thresh-
olds, whose values may affect the selection factors
used by the selection subcomponent.

The aggregation engine also contains subcompo-
nents for handling exceptions. When the ability of
the SD to handle additional incoming requests be-
comes limited, the offload subcomponent can redi-
rect further requests to peer SDs. Similarly, when a
service instance fails, the failover subcomponent can
dispatch another service instance by calling service
rendering. When a shortage of service instances is
detected on a virtual port, the SD can query and ac-
quire service instances from other SDs. All these ac-
tions are controlled by policy rules.

Stateless and stateful Web services. The SD node
maintains a session for each active client. If the ser-
vice selection rule is set to a “transaction history”
directive, the client request is routed to the same ser-
vice instance. For example, stock quotation requests
from user A are routed to the financial service that
serviced A’s previous request for a stock quotation.
There are other directives, such as “designated” and
“fixed” directives, that are associated with the user
and extend across sessions. For example, financial
requests from user A are routed only to those ser-
vice instances in which A has an account.

When a failure occurs, the state can be recovered
in a client-transparent way if the failure affected a
single invocation of a service, in which case the SD
node dispatches another service instance for handling
the failed request. If the client invokes a transaction
sequence that is not under the control of a trans-
action manager and a failure occurs, the transaction
manager is not able to handle the recovery. Ideally,
such a sequence should be handled by a workflow
service that the client can invoke and that is able to
handle recovery as part of its logic. The recovery can
be handled by a rule that listens for a workload-ser-
vice-exception event and then invokes a back-out ser-
vice to reverse the sequence.

In general, individual service requests can be state-
less (have no memory of previous requests), but be-
cause most services maintain their own states, the
result is a stateful application (an application that
keeps track of the state of interactions). The SD does
not interfere with application-managed state,

whether managed by a simple client or by a work-
flow service, as suggested above. For example, a re-
quest for a travel reservation leads to relevant in-
formation being saved by the service instance. In a
follow-on transaction involving the same service in-
stance, the reservation leads to a purchase.

There are situations in which several service instances
need to share state information. Consider, for ex-
ample, a financial service that aggregates stock quo-
tations from three independent service providers:
DOW JONES**, NASDAQ**, and FTSE.** Creating
such a service that allows the client to monitor a list
of stocks using all three service providers requires
shared state. Although we have not yet implemented
this type of state sharing, it is not hard to achieve.
A service request to monitor a specified list of stocks
is sent to all three services. Because the SD node pres-
ents common interfaces to these services, it is able
to compose the individual responses into a single re-
sponse to the client. Thus, the SD node controls the
sharing of information without the need for sharing
among the service instances.

For more information on SDs, see References 32–37.

Implementation
Our reference implementation of the SD architec-
ture is packaged as a toolkit that can be used in pilot
projects. The toolkit includes three major compo-
nents: (1) node objects, (2) service objects, and (3)
the user interface. There are four node objects in
the toolkit, each associated with a type of SD node
and spanning a range of node capabilities. The ser-
vice-objects component supports internal node func-
tions. The user-interface component includes a cli-
ent driver that includes a Web application server.
The toolkit provides HTML, J2EE, Java, and Web-ser-
vices interfaces. A version of this toolkit is publicly
available as Service Domain Technologies in the
Emerging Technology Toolkit24 (ETTK) at the IBM
alphaWorks* Web site.

The use of the toolkit involves the following tasks:

● WSDL-defined services are created.
● The offered services are attached (plugged in) to

SD node objects in the SD hierarchy.
● A client driver is prepared—the client driver in-

cluded in the toolkit may be used, or a custom-
ized one may be built as a Web-services interface
client that accesses the main SD node and inter-
acts with end users.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 TAN ET AL. 741

● The presentation layer is built on top of the client
driver layer using JavaServer Pages**38 (JSP**),
servlets, beans, portlets,39 or other suitable
technology.

Reference implementation. The SD node provides
a number of administrative functions, which are
mostly used by the administrator, although some can
also be used by clients or suppliers. These can be
viewed as operations addressed to a special port, the
home port. The administrative functions include:

● Register/Unregister: Support the addition or re-
moval of a service instance.

● setPolicy/getPolicy: Support setting up a registered
service instance or the selection of a service in-
stance. The setPolicy function requires a number
of XML-encoded parameters that include an SLA
(the contract), service selection rules, recovery
rules, and so on. A service supplier selects a “sup-
plier service level” when entering in a contract with
the SD at service registration time. A user profile
system determines “user service levels” for user
contracts with the SD and assigns them to a ser-
vice requestor at login time.

● setServiceInfo/getServiceInfo: Support (1) the cre-
ation or querying of SDs, and (2) the setting or que-
rying of registration data for service instances. Spe-
cifically, data and attributes associated with the SD
(e.g., performance metrics), and data and at-
tributes associated with individual service instances
(e.g., SLA) can be queried or updated through these
operations.

● Login/Logout: Start or end a session. The SD uses
the session to monitor the state of service execu-
tion for a client.

● InvokeOperation: Process a service request and for-
ward the request to the appropriate service
instance.

The degree of aggregation (the nesting level) of the
SD determines the form of the SD node object. The
simplest SD node object supports an arbitrary col-
lection of service instances without aggregation. The
next level up—a single level hierarchy—is an SD node
that aggregates similar service instances, which are
presented to the user as a virtual port. Next we can
have a two-level hierarchy, and so on.

There are six steps involved in operating an SD node
object: (1) creating the SD node object, (2) deploy-
ing the node object as a Web service, (3) preparing
and activating XML-encoded policy rules, (4) regis-
tering service instances, (5) having clients join a user

group registered at the SD, and (6) becoming
operational.

Step 1 represents the initialization of an SD node ob-
ject with Java interfaces. Step 2 deploys the object
as a Web service by using a WebSphere Application
Server. Step 3 involves the invocation of the setPolicy
operation. At Step 4, the Register operation is in-
voked through the administrative client. Step 5 in-
volves assigning user service levels of SD to user
groups by using existing user management systems.
Users invoke the Login operation in order to access
the SD node. The login operation contacts the user
management system and obtains the user service
level. At Step 6, the operations setServiceInformation/
getServiceInformation, setPolicy/getPolicy, and Invoke-
Operation are invoked repeatedly in the course of
normal operation. Solution developers provide ap-
plication-specific service instances, such as finance,
trade, and travel, to form and extend the service grid.

As an example, a stock portfolio management ser-
vice can be established by instantiating a base SD
node object, registering individual service providers
(e.g., stock quotation service provider), and setting
up the selection rules for various groups of users.
The stock portfolio management service could be ex-
tended by also enrolling market information and
analysis services as secondary providers. Customers
see an integrated offering from a single service. The
service owner has the flexibility to enter into part-
nerships with other businesses.

Toolkit service objects are core building blocks cor-
responding to subcomponents of the aggregation
engine. Their design is modular and provides a cus-
tomization and migration path to future environ-
ments when Web-services and grid standards mature.
As shown in Figure 4, discovery, selection, logging,
monitoring, and lookup are in this category. A base
SD node object provides the linkage interface to add
and delete the SD service objects to the SD node ob-
ject. For example, the Register operation of an SD
node object is composed by adding the “registry” ser-
vice to the SD node object. The actual implemen-
tation of the “registry” service can be customized fur-
ther to support a third-party-provided registry.

The administrative client driver included in our ref-
erence implementation is ODSG (On Demand Ser-
vice Grid). ODSG enables the administrator to per-
form SD control and configuration tasks. In addition,
ODSG provides additional views for users, service pro-
viders, and the SD owner. The users can view the list

TAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004742

of services available on the SD. The service provid-
ers can register their services with the SD.

Figure 5 shows the architecture of ODSG. It includes
task servlets, task beans, user JSPs, and administra-
tive JSPs. User and administrative JSPs invoke the ap-
propriate user or administrative task servlets. The
task servlets then send requests to the SD ports. The
response JSPs include the task beans associated with
the result of the service calls in order to get related
information for navigating the tasks. For example,
a user portfolio-management service-invocation JSP
drives an “invocation task” servlet to issue the “get
my portfolio” service operation. The result from “get
my portfolio” is packaged by the “invocation task”
servlet as a task bean in the portfolio-management
service-result JSP, which automatically executes the
bean to generate the HTML page for display.

Administrative tasks include invoking control ac-
tions, activating policy rules, configuring service level
definitions, registering suppliers, handling supplier
and user contracts, and monitoring status. User tasks
include listing active service ports and launching ser-
vices. Further navigation of service interactions af-
ter the launching can be controlled by a user client
driver that can be built by extending the adminis-
trative client driver.

Figure 6 illustrates a client driver with access through
a portal and the use of the WebSphere Portal Serv-
er39 (WPS) in lieu of plain JSPs to gain access to the
services provided by an SD. Customer portlets inter-

act with existing client driver servlets and beans,
which in turn access the SD node.

Setting up a service grid involves coordination among
grid owners and administrators, solution develop-
ers, and system developers. Grid owners and admin-
istrators use the ODSG UI to configure the service grid,
set operating rules, and register secondary nodes and
service instances. The grid owner defines the WSDL
interfaces of the port types to which the service in-
stances need to conform. The administrator oper-
ates the service grid using an administrative UI. End
users access services through a UI that allows access
only to services that they are authorized to use. So-
lution developers focus on implementing services,
coding policy rules, and functionally enhancing the
service grid. System developers focus on implement-
ing and customizing SDs.

Customer use cases. The reference implementation
is being tested with several pilot projects. These pi-
lots will help us understand whether the concept of
“letting services manage services” has merit and
whether the SD model can make it “fast and easy”
for customers to implement new business applica-
tions. Early experience and preliminary data are
promising.

The China Education and Research Grid (China
Grid) is such a pilot project. IBM and China�s Min-
istry of Education announced in October 2003 that
they had begun using grid technology to enable uni-
versities across China to collaborate on research, sci-

Figure 5 ODSG architecture

User JSP

Get values
for display

Submit action

Administration
JSP

Task Bean

Task Servlet

Request

Response

Service
Domain

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 TAN ET AL. 743

entific, and educational projects.40 China Grid is one
of the world�s largest implementations of grid com-
puting, in which untapped application, data, and
computing resources from different computing sys-
tems are made available where and when they are
needed, resulting in a single, virtual system.

When the project is completed, the China Grid will
link more than 200 000 students and faculty mem-
bers at nearly 100 universities across China. When
Phase 1 of the project is completed in 2005, the grid
will perform more than 6 teraflops, or trillions of cal-
culations per second, and eventually will be capable
of more than 15 trillion calculations per second.

The grid relies on a technology preview (experimen-
tal version) installed on WebSphere Application
Server 5.02, which implements the SD concept and
exploits OGSA standards. It will simplify how students
and researchers access educational and computing
resources across China. Universities will be con-
nected to a common virtual hub that automatically
finds the appropriate application resources, from life
science research to video courses and e-learning. Chi-
na�s university system will save on development costs
because each school can focus on its area of exper-
tise—e-learning or life science, for example—and
tap into other applications as needed via the grid.

The first applications deployed on the China Grid
include a life science application that runs complex
computation tasks such as protein structural anal-
ysis, a “video course on demand” application that
provides students with speedier access to video
courses by distributing information through distrib-
uted servers, and an e-learning application that en-
ables students to practice Mandarin through an in-
tegrated learning portal. In the next section, we
provide a more thorough description of the video

course application, as it exemplifies a common SD
usage pattern for integrating legacy applications.

Figure 7 illustrates a video course application de-
ployed on an SD node. The servers that host the ap-
plication (also referred to as data servers) are rep-
resented as devices labeled RealCourse. The
application is presented to the SD node as a set of
service instances that are registered at the node and
attached through the service-rendering component.
A client browser accesses the application through a
Web interface by requesting service from the SD (this
step is labeled in the figure as 1). The SD must select
a service to forward the request to. Because the video
course application is a legacy application with ex-
isting data server selection logic, the SD node allows
it to be plugged in as custom selection logic and in-
vokes it for service lookup and selection. Starting at
the lookup step labeled “A,” the lookup component
calls a customized selection directive, which calls the
existing selection logic to return a service instance
representing a data server. In the service-rendering
step “B,” the SD passes the selected service instance
to its service-rendering component. The service-ren-
dering component invokes the service instance to
hand over the request to the data server. In step 2,
the instance simply launches the data server and ex-
its. The data server then interacts directly with the
client browser.

A total of nine universities were attached to the grid
by the end of 2003. The SD software was deployed
and tested in a matter of days. The application-port-
ing time, which involved the customized directive
component and the Web service wrappers (depicted
in Figure 7 as “new code”) was also quite low.

We have used our implementation in additional in-
ternal company and customer-proof-of-concept en-

Figure 6 Client driver with portal access

SERVLET

SERVLET TASK

WebSphere Application Server

WPS

REQUEST

DATA OBJECT

SD
NODE

JSP

JSP

PORTLET

USER

TAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004744

gagements. All have shown that the SD model can
have a wide applicability to SOA-based solutions. The
SD model provides a repeatable solution pattern that
starts with WSDL service definitions, followed by ser-
vice deployment to SDs, and finally the creation of
policy rules and GUI implementation. With this pat-
tern, a solution can be quickly developed and de-
ployed and then successfully maintained.

Ease of deployment, ease of use, continuous oper-
ation, and nondisruptive refinement are the notable
characteristics of this solution pattern. We tested this
pattern at a prototype level successfully, using an in-
ternal laboratory experiment environment. The types
of services deployed included a diversity of high-per-
formance computing tasks, Internet commercial and
information services, system-oriented services, and
data-oriented services. We built service grids for our
sister labs across the oceans and registered them to
our service grid at Raleigh. Service instances were
discovered, aggregated, and shared immediately ac-
cording to the operating rules we set up.

Implementation aspects
In the following sections we use application scenar-
ios to illustrate the details of the implementation fo-
cusing on three aspects of the SD model. We discuss
setup and deployment of services, failover and re-
covery, and rule-based service selection.

Setup and deployment of services. In this scenario,
a number of financial services are deployed within
an SD hierarchy consisting of a main SD and two sec-
ondary SDs. We focus here on three steps: the reg-
istration of service instances, the configuration of pol-
icy rules, and service discovery.

Registration of service instances. An SD owner cre-
ates the WSDL service interfaces with which all ser-
vice providers must comply. The SD administrator
defines the set of SLAs to be associated with each ser-
vice interface. Service instances offered by various
service providers are deployed by registering them
with specific SD nodes. The functions provided by a
service instance need not cover the entire service in-
terface specification; moreover, each service instance
may have different performance characteristics. The
only requirement is that the functions supported and
the performance characteristics comply with the SLAs
(in the policy rules) committed to the SD.

Figure 8 depicts a service grid for financial applica-
tions. The SD owner, United Financing (UF), has a
number of partners: United Business Consulting
(UBC) provides three services (stock quotations, on-
line trading, and personal loan services); whereas,
US Portfolio Management (UPM) provides four ser-
vices (stock quotations, online-trading, personal in-
vestment banking, and commodity-trading services).
The SD topology reflects these relationships: the main

Figure 7 A video course application deployed on an SD node

CUSTOMIZED DIRECTIVE
CUSTOMER’S
PROGRAM

SERVICE
ENTRY

LOOKUP

SERVICE DOMAIN NODE

A B

SERVICE
RENDERING

2

CLIENT 1

WEB-SERVICE WRAPPER

WEB-SERVICE WRAPPER

Existing logic
and code

Main path
SD components

New
code

REALCOURSE

REALCOURSE

REALCOURSE

REALCOURSE

REALCOURSE

WEB-SERVICE WRAPPER

WEB-SERVICE WRAPPER

WEB-SERVICE WRAPPER

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 TAN ET AL. 745

SD node, which is labeled UF and represents the log-
ical aggregation of services, has two descendants la-
beled UBC and UPM.

As a result of the aggregation, UF supports five vir-
tual service ports to clients; whereas, UBC supports
four ports, and UPM supports three ports (see Fig-
ure 8). It is of no consequence to UF how the lower-
level services are implemented. As shown in the fig-
ure, the UBC and UPM services are implemented as
aggregations of lower-level services by business
partners.

The aggregation process associates each service in-
stance with the appropriate port type automatically

by inspection of its interface definition. This process
also applies filter control and generates a virtual end-
point address for every new port type created. For
example, Bob�s Online Trading (BOT) is registered
with World Finance Services (WFS), which in turn
is registered with UBC. John�s Online Trading (JOT)
is registered with UPM. As previously mentioned, UBC
and UPM are registered with UF. As a result UF of-
fers a virtual port that accepts stock-quotation re-
quests and forwards these requests to one of the two
available service instances, BOT and JOT. Only the
virtual port of the main SD node is visible to clients.

Configuring policy rules. Policy rules enable an SD
owner to perform administrative tasks such as ag-

Figure 8 A service grid for financial applications

stock-quote

stock-quote

stock-quote

online-trading

online-trading

online-trading

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

UPM

UF

JOT

BOT

WFS

UBC

TAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004746

gregating services with different interfaces, function,
and quality-of-service characteristics. The SD owner
defines a set of service levels and then configures the
operating rules that control the runtime behavior of
the SD node, that is, service selection and recovery,
provider relationship management, SD peer interac-
tion, service discovery, event management, and so
on. Providers declare the service levels they support
at registration time. Clients in turn select a set of
service levels that governs their interactions with the
service grid.

As an example, UF can offer all the services aggre-
gated from UBS and UPM to users under one “plat-
inum” package: stock quotation, online trading, per-
sonal loan, personal investment banking, and
commodity trading. It can also offer a “trial” pack-
age that consists only of stock quotation and online
trading. Users can use only the services they subscribe
to. UF could set the following operating rules to dif-
ferentiate the services received by clients with dif-
ferent subscriptions:

● For platinum users, enable the UBC service, which
provides multiple quotations, data analysis, and
overseas portfolio-tracking operations related to
a stock quotation service.

● For trial users, enable the UPM service, which of-
fers a simple stock quotation service.

● For online trading operations, select either the UBC
or the UPM service to process requests.

Furthermore, the SD model allows for selection logic
that uses the user profile information to determine
the appropriate service instances to invoke. For ex-
ample, if user Joe has accounts with financial-ser-
vice companies A and B, the administrator can
choose to route requests for stock quotations to ei-
ther A or B and other companies; whereas, stock pur-
chase requests are routed to only A or B.

Service discovery. Registration of new service in-
stances changes the SD topology dynamically by add-
ing leaves to the SD hierarchy. The SD topology is
dynamically adjusted by the service discovery pro-
cess, which uses a coordinated iterative polling al-
gorithm. The discovery process identifies all service
instances that can be used to respond to client re-
quests. The polling process is initiated periodically
by the top SD node. Each intermediate node responds
to its parent node with information about the active
ports that are hosted either by the node itself or by
one of its descendants. The top SD node publishes
the virtual ports surfaced at its level. These ports be-

come the (external) ports in the SD WSDL. Their end-
point addresses point to the top domain node with
enough information for that node to dispatch to a
local service instance or to an immediate-child node;
likewise, the immediate-child node dispatches locally
or to one of its immediate children (optionally, the
top domain node could also publish the WSDL for
each port type individually).

Figure 9 illustrates the service discovery process,
which starts at the main SD node at the highest level
of the hierarchy labeled L1 and terminates at a ser-
vice instance. There are three paths illustrated, each
one corresponding to such a selection process. The
service instances are attached to various levels of the
SD hierarchy, and thus the path lengths may vary.
For example, the path that leads to service Y passes
only through the first two levels of the SD hierarchy.

Failover and recovery. An SD has some failover ca-
pability built in by nature of its service virtualization
feature. For example, an SD that selects among com-
parable service instances by using a simple round-
robin algorithm can, in case of service failure, trans-
fer the request to the next service instance, the
requestor remaining unaware of any problems.

The state of service execution is monitored for each
individual client session. The SD node monitors ex-
ceptions, records the response time between the is-
suing of the request and the arrival of the response
at the client, tracks time-out values, records the num-
ber of requests received in a monitoring interval,
tracks the percentage of requests received while ser-
vice is not available, and records the history of ser-
vices used and operations invoked for each client ses-
sion. This abundance of information is available
because all service requests and responses flow
through the SD node. From the service instance side,
the SD also provides an interface for a service instance
to record a small amount of state data.

Figure 10 shows a recovery scheme involving “per-
colation” of the error through the SD hierarchy, which
consists of Main SD at the root and its three descen-
dants. When SD A detects the failure of service in-
stance Y, instead of dispatching service instance X
(the course of action if a round robin algorithm were
applied), A notifies Main SD. Main SD selects C to
handle the request. C applies a fixed selection order
algorithm that leads to the selection of service in-
stance W to handle the service request.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 TAN ET AL. 747

The decision at A not to select X for recovery may
have been based on the likelihood that the selection
of X would also generate an exception condition. For
example, assume the exception at Y occurred due
to insufficient capacity at the service provider. More-
over, assume that the provider of X is known to have
similar capacity limitations. Then, policy rules at SD
A would correctly infer that the selection should tar-
get a provider that is known to have spare capacity.

Recovery from failure of a service instance. In this sec-
tion, failover processing is described more fully by
using a credit-check service as an example. In this
scenario, an SD node detects a problem with one
credit-check service provider and automatically
switches to a different provider. When a lower-level
SD node becomes unavailable, Main SD uses a global
problem determination mechanism to tap into avail-
able service instances from a backup SD node.

Using Figure 11 as an illustration, we assume a
“credit check” port type is configured in the Main
SD node. The port is implemented by mapping cor-
responding ports in two secondary SD nodes, A and

C. Service instances X, Y, V, and W are registered
as credit-check services at their respective SDs. The
SDs in this scenario are configured to percolate er-
ror exceptions to Main SD. A personal-loan business
that needs to verify the credit status of the loan re-
questor addresses its request to the credit-check port
of Main SD. The failure of service instance X is per-
colated upward to Main SD, and then to SD C for
handling the recovery.

The failure of X could be caused by a connection
failure, by a service-unavailable condition (such as
“unregistered”), and so on. Whereas some failures
are detected when they occur, the detection of other
failures may depend on a time-out value or on a fixed
polling cycle. Until the next polling cycle, Main SD
will still consider SD A to be capable of handling cred-
it-check service requests and will continue to send
it requests for processing even though its service col-
lection is empty. SD A can be viewed as being in a
“stand-by” mode; although for the time being, A may
not be able to provide service, it is advantageous to pre-
serve its state in order to restart service quickly when
service instances become available.

Figure 9 Service discovery

Port Type Port Type Port Type

L2 L3 Ln

Service
Instances

X

Y

Z

W

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

L1

TAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004748

Components such as SDs that have self-healing ca-
pabilities can recover from failure without external
intervention. A problem-determination framework
such as the autonomic computing track of ETTK is
useful when communication between components
is needed for global error recovery. This is described
in more detail in the next section, which deals with
a scenario in which the credit-check port of Main SD
becomes unavailable.

Recovery from virtual port failure. Figure 11 illustrates
the processing of a virtual port failure in an SD hi-
erarchy consisting of Main SD and two descendants,
A and C. At step 1, credit-check service W in SD C
is taken out of service (unregister command) for
maintenance purposes. A credit-check request ar-
rives at Main SD at step 2. Main SD discovers service
instance X and dispatches the request to SD A, to
which X is attached. At step 3, the failure of X is
detected by A, and A notifies Main SD. At step 4,
Main SD redispatches the request to SD C. C detects
an exception condition at service instance W, and at
step 5, it notifies Main SD. With no remaining ser-
vice instances available to process the pending re-
quest, Main SD throws a “credit-check port excep-
tion” at step 6.

If an SD becomes unavailable, its parent SD (i.e., the
domain to which the SD is registered) initiates the
failover process by using another SD. When the fail-
ing SD is the main SD, however, normal recovery is
not possible. In this case, a global problem-deter-
mination mechanism may be able to provide recov-
ery. A global algorithm can correlate events from
multiple components to pinpoint the cause of error
and initiate proper recovery actions. For example,
the SD may be down due to a communication link
failure. In this case, the failing SD would not be able
to generate an event. However, the hardware and
business-process error events generated can help
identify the cause of the error and trigger a recovery
action to correct the link failure or connect the bus-
iness process to a new SD.

As illustrated in Figure 11, the exception could be
caused by the loss of all available service instances.
(The SD detects loss of a service instance if the ser-
vice does not respond to a request within a specified
interval or an exception is detected when contacting
the service instance. The time-out value—an at-
tribute of the individual service on the SD—either
can be set by the administrator or can be determined
by the business policy.) Under this circumstance, the

Figure 10 Error percolation

next selection

Main SD

Service
Instance

X

Service
Instance

Z

Service
Instance

V

Service
Instance

W

Service
Instance

Y

Error
handling

path

Error
handling
path

• • • • • •

SD CSD BSD A

Figure 11 Processing of a virtual port failure

Credit-Check
Service W

Credit-Check
Service X

4. Redispatch

5. Exception

1. Unregister
 credit-check
 service W

2. Credit-check
 request

6. Credit-check
 port exception

• • • • • •

Disp
at

ch

3.
 E

xc
ep

tio
n

SD CSD A

Main SD

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 TAN ET AL. 749

SD generates a “service feature unavailable” event
to a global recovery framework. The framework can
then correlate this event with related business-pro-
cess error events and trigger a recovery action that
would enable some spare instances to be allocated
to the virtual port.

Figure 12 illustrates a global recovery scenario that
involves nodes Main SD and Spare SD and a “global
problem determination and recovery” component
(GPDR). At step 1, Main SD detects the loss of all
available service instances for one of its virtual ports,
and it percolates the exception event to GPDR as a
“service feature unavailable” event. At step 2, GPDR
correlates this event with previously received events,
determines that this event is related to another busi-
ness-process error event, and invokes a recovery ac-
tion to add service instances from Spare SD. At step
3, the recovery action is carried out and results in
the allocation of additional service instances from
the spare domain. As a result, Main SD is now able
once again to accept service requests from the bus-
iness process.

The recovery action in this scenario consists of ser-
vice discovery and registration updating, which are
simple functions in the SD model. In fact, the im-
plementation of this scenario, including the integra-
tion of a WebSphere Portal Server portlet to con-
trol its flow and execution, was completed in two
weeks. Without the SD framework, the effort would
take longer as it involves managing multiple provid-
ers, handling failure recovery, providing backup con-
nections, and so on. In this scenario, it is not suf-
ficient to just bring several providers together. The
implementation needs to ensure that the addition
and removal of providers is dynamic and the rout-
ing selection can be easily managed. It also needs
to cope with different interfaces and establish a
backup site.

Rule-based service selection. BLAST**41 (Basic Lo-
cal Alignment Search Tool) is a set of similarity
search programs used in life science to explore all
of the available sequence databases to find a spe-
cific protein or DNA. We describe a scenario involv-
ing the BLAST application to illustrate how to con-
figure SD policy rules. Figure 13 illustrates an SD for
BLAST services. The typical request has the form run
(sequence, database) where sequence is a character
string and database the name of the database to be
used. Because the databases are large, application
providers usually support only subsets of all the da-
tabases. For example, service instance B has data-
base 1 and 2 installed, but service instance A has only
database 1 installed. Normally, a user would be re-
quired to select the provider that supports a partic-
ular database.

BLAST appears to be suited to the SD model. Cur-
rently, the database name is a parameter passed to

Figure 12 Global problem determination and recovery

2. Trigger
 action

1. Percolate
 exception
 events

Main SD

Service instance

3. Allocate spare
 service instances

Spare SD

Global Problem
Determination
and Recovery

Figure 13 An SD for BLAST services

CLIENTS SERVICE
INSTANCES

1

1
BLAST SD

2

2

3

P

Q

R

A

B

X

Y

TAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004750

the command-line call operation. Conventional wis-
dom suggests the routing and selection logic could
be implemented by logic that checks the parameter
value, but this would be time consuming and inflex-
ible. Even worse, if the logic depended on the mes-
sage content, opening every message envelope would
be required.

Use of the SD model in this case obviates the need
to write code. It provides a comprehensive set of pa-
rameters for rule configurations by administrators.
One possible solution would be to create different
port types that associate BLAST commands with spe-
cific databases. For example, service instance B could
supply two port types (for databases 1 and 2) while
instance A could supply one port type (for database
1). However, there could be many databases, and it
may not be realistic to create a port type for each
one. Other configuration options are possible. We
discuss next several ways to set up an SD for BLAST
services: (1) create a different port type for each da-
tabase, (2) create user and supplier service levels for
each database, (3) use a different operation for each
database, (4) select service by content, (5) use your
own custom selection logic, (6) evolve the SD topol-
ogy over time, and (7) design selection rules based
on performance criteria.

Create a different port type for each database. Cre-
ating a different port type for each database is the
simplest possible option but is perhaps the most work
for the administrator and the least flexible for cli-
ents. Service instances are registered under the port
types based on the database they support. Users use
a specific port type to get to the desired database.
In this example, BLAST1, BLAST2, and BLAST3 are cre-
ated as three port types with registered service in-
stances A and B under BLAST1, service instances B
and X under BLAST2, and service instance Y under
BLAST3.

A user request to BLAST1, for example, is routed to
A or B randomly by default. Instance B needs to im-
plement two versions of its Web services because it
has “hard bindings” with two databases. This is a good
option for a small number of databases and providers.

Create user and supplier service levels for each
database. A second possible solution would be to
wrap BLAST into a Web service that mimics the com-
mand-line interface. Keeping sequence and database
parameters leads to BLAST1 as a single common port
type. Using this option, the administrator would cre-
ate user and supplier service levels as follows:

1. Create one user service level for each database.
For example, using the color scheme of Figure
14, create three user service levels: UserBlue,
UserGreen, and UserRed. Subscribe all users
of database 1 to UserBlue, all users of database
2 to UserGreen, and all users of database 3 to
UserRed.

2. Create one supplier service level for each da-
tabase: supplier levels ServerBlue, ServerGreen,
and ServerRed. Register service instances un-
der specific supplier levels, for example, service
instances A and B under ServerBlue, service in-
stances B and X under ServerGreen, and ser-
vice instance Y under ServerRed.

3. Set up service maps to map user service levels
to supplier service levels. For example, map Us-
erBlue users to ServerBlue suppliers.

When a user of the UserBlue service level sends a
BLAST request, for example, the request will be
routed randomly to either A or B. This approach can
be used if the databases used by distinct user groups
can be mapped to the databases supported by pro-
viders almost one to one.

Use a different operation for each database. Very
likely most users and suppliers would be interested
in multiple databases. Defining service levels for all
the possible combinations could be unrealistic. A
third possible solution is to introduce new Web ser-
vices operations that associate BLAST with specific
databases. For this scenario, the operation names
would be used as a selection factor in service selec-

CLIENTS SERVICE
INSTANCES

Figure 14 Refinement of selection rules for BLAST

BLAST2
SD

BLAST3
SD

BLAST1
SD

1

1 2

2

3

3

BLAST
SD

P

Q

R

A

B

X

Y

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 TAN ET AL. 751

tion; the Web services wrapper would be constructed
and the rules would be configured as follows:

1. Implement an operation for each database used.
For example, implement three operations: run-
Blue, runGreen, and runRed. Implementations
for the three operations are the same. Internally,
each performs the same task, but the database
parameter is set to a specific database.

2. Create one supplier service level for each da-
tabase. For example, create supplier levels Ser-
verBlue, ServerGreen, and ServerRed. Register
service instances under specific supplier levels,
that is, service instances A and B under Server-
Blue, server instances B and X under Server-
Green, and server instance Y under ServerRed.

3. Create three selection rules using SD-defined
affinities and variables:

a. Rule 1: (AllDay, runBlue, ServerBlue, Round
Robin).

b. Rule 2: (AllDay, runGreen, ServerGreen,
Round Robin)

c. Rule 3: (AllDay, runRed, ServerRed, Round
Robin)

Rule 1, for example, represents a selection pol-
icy that applies throughout the day; if the opera-
tion specified is runBlue, then supplier Server-
Blue is selected. If more than one service instance
is available for service, a simple round-robin al-
gorithm is used to select a service instance.

For this option, users choose specific operations as-
sociated with the databases. The user service level
is not needed. When a user requests BLAST for the
runBlue operation, for example, the request will be
routed to A or B randomly by default. This option
can be used if the databases used by the users are
random, that is, not always limited to the databases
supported by specific suppliers.

The SD owner has the option not to create the ac-
tual Web services wrapper for adding the three op-
erations: runBlue, runGreen, and runRed. Instead,
he or she can include the operations in the SD WSDL
and use a transformation utility to transform the op-
erations to a generic BLAST Web service with the re-
quired parameter settings. The generic BLAST Web
service maps identically to the command-line inter-
face. For example, the runBlue operation is trans-
formed to the run operation of the BLAST Web ser-

vice with a database parameter value of database 1
in the input message. The Web service will invoke
the BLAST command-line interface to run the appli-
cation against database 1.

Content-based selection. This is used on the main
domain to select an appropriate secondary domain
to receive incoming requests. For this solution, there
is a trade-off between improved manageability and
the small performance loss associated with examin-
ing the message content. However, there is no need
to examine the content at each lower-level node; in-
stead, a value representing the message content is
inserted into a request context object that is passed
from node to node. Using this approach, the admin-
istrator instructs the SD to look at specific message
parameter values. For example, a rule can be cre-
ated that is applicable only if the second argument
in the message matches ‘database1’. This option
should be used if the number of databases and BLAST
service instances are expected to grow to large num-
bers that can be better organized into secondary do-
mains for manageability.

Use your own custom selection logic. As a last resort
when all other options are unsatisfactory, the domain
owner can write a custom directive implementation
class to specify the selection logic. This approach may
be a common choice for the traditional solution
model, but it is least attuned to the on demand
environment.

Evolve the SD topology over time. The main guide-
lines for providing rules are: define configurable pat-
terns, avoid the need to examine the message con-
tent, and avoid custom code. To achieve on demand
objectives, a customer needs a robust set of building
blocks such that solutions can be composed and mod-
ified quickly and easily. The options suggested ear-
lier are not exclusive. Customers can build and re-
fine a set of configuration rules at their own pace.
As an example, Figures 13 and 14 illustrate that a
customer can initially use the simplest but least flex-
ible “one port type per database” configuration ap-
proach, but later refine the configuration to use a
more flexible multi-operations BLAST SD as the bus-
iness expands. The configuration illustrated is also
an alternative way for organizing service instances
in multiple overlapping groups of suppliers to achieve
simpler manageability.

Selection rules based on performance criteria. Selec-
tion factors can be based on service features and QoS
characteristics. Features are the business functions

TAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004752

that an application offers, such as financial service
calls, information subscriptions, human-resource ser-
vices, travel planning, and so forth. The QoS per-
formance characteristics are fairly traditional but of-
fer a different point of view that might be helpful to
workload distribution. Not all SDs need very detailed
metrics for the fine-grained load-balancing function
of transaction throughput and response times; such
a function belongs to the operating-system platforms
such as WebSphere Application Server, z/OS*,
Linux**, and so on. SD metrics are task-oriented and
can determine which provider should receive the next
service request. For example, an SD could distribute
requests to its providers based on the observed queue
length of outstanding requests. All things being
equal, a provider running on a cluster of four ma-
chines should display a shorter queue length than a
provider running on a single machine and can thus
service more requests than the other.

Discussion and conclusion
The SD�s SLA enforcement of dynamic service-level
mapping can be viewed as a self-adapting feature of
an autonomic system. Specifically, in service-level
mapping user SLAs are associated with pools of ser-
vice instances based on the SLA commitments made
by the provider at registration time. As runtime in-
formation, such as the distribution of request types,
service availability, and turnaround time, becomes
available, the pools can be reconfigured based on
this information.

Foster suggests that a grid is a system that coordi-
nates resources that are not subject to central con-
trol, using standard, open, general-purpose proto-
cols and interfaces, to deliver nontrivial qualities of
service.42 SDs satisfy this definition. The resources
managed in an SD are WSDL-defined service instances
from multiple providers and are not subject to cen-
tral control. The providers have their own policies
and implementations. SDs are built on Web services
and XML standards, and they can also be imple-
mented using the Globus Toolkit**.43 SDs can be ex-
tended to exploit additional OGSA standards. By ne-
gotiating with the constituent service instances, the
SD node produces a service capability that is supe-
rior to the mere collection of services. Selecting a
service instance to process a service request can be
performed in a variety of ways that range from sim-
ple to complex, according to rules that can be based
on the states of the requestor and the service pro-
vider, the request load, the business relationships be-
tween participants, and so on.

Leymann et al.44 describe a workflow model that ap-
plies Web services to business process management
and includes a flow definition language and a pro-
cess choreography engine. The workflow model can
be applied to SD nodes directly. In addition the SD
model provides simplicity, robustness, and oppor-
tunities for lightweight workflow engines. It also al-
lows multiple simple services to be composed into
a complex service; in this case, the complex service
would be associated with a single port type, and a
service requestor would be unaware that the service
was actually a composition of simpler services.

SD supports utility computing45 by generating me-
tering records, enabling usage-based fees to be as-
sociated with SLAs, and supporting third-party bill-
ing. A hosting manager interface isolates SDs from
platform-specific user-management, security, instru-
mentation, and problem-determination subsystems.
The interface provides access to local contracting,
identity, and metering services. Dynamic-resource-
provisioning technologies, such as IBM Tivoli Intel-
ligent ThinkDynamic* Orchestrator and IBM Tivoli
Provisioning Manager, augment the capabilities of
SDs with respect to resource provisioning.46

Although the examples used in this paper assume
no interaction among the SD constituent services, the
SD approach also applies to middleware and system
functions. Constituent service instances can use SDs
for peer communication and state sharing. Dynamic
discovery capability between peer SDs can be imple-
mented by policy rules. The SD hierarchy is a logical
concept although it could be built from a physical
peer-to-peer network.

We believe that environments with tens and hun-
dreds of competing or collaborating suppliers will
be a common phenomenon of the future. In order
to achieve the full benefit of SOA in such environ-
ments, new techniques to overcome complexity are
required. In this paper, we showed how the SD model
can help reap the benefits of Web services, grid com-
puting, and autonomic computing and provide ro-
bust SOA solutions.

Analogous to the concept of grid computing as a
hardware resource balancer and job scheduler, the
SD manages multiple software sites as a grid:

● Service providers offer services under terms and
conditions, and their services are accessed via ap-
plication calls and not at the hardware level. Ex-
amples are life science, stock-portfolio manage-
ment, financial services, and weather forecasting.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 TAN ET AL. 753

● The SD acts as broker for different service provid-
ers and provides a single, logical image that re-
duces complexity for the users of the service.

● The SD, in a simplified form, is:
—An interface definition for a service (e.g., WSDL)
—A set of instances that implement the service
—A set of policies for directing an operation on

the logical service to one of the instances of
which it is composed.

The SD handles services as commodities. The incom-
ing service requests are the “bids,” and the registered
service providers are the “offers.” A service domain
“clears” the market for all.

Service domains can also exploit a hardware-grid
environment when one is available. The SD pilot
projects are the first steps to establishing manage-
able IT service brokerage, thus enabling widespread
deployment of on demand solutions.

The journey of SOA from Web services to grid com-
puting has begun. The SD concept, which we believe
is key to on demand computing, has manifested it-
self in recent IBM product announcements.

Future work will be directed to helping the adop-
tion of products that exploit WSRF, system- and data-
oriented domains, and cross-domain orchestration,
to conducting more customer engagements, and to
enhancing existing standards. Work is also planned
to develop additional tools that are needed for im-
plementing robust and efficient domains with min-
imal effort. In addition, we see a continuing need to
enhance the performance of the system, improve
problem determination collaboration across multi-
ple service sources, and push for the pervasive use
of the SD model. With enhancements such as these,
we expect that SDs will become the cornerstone of
on demand service integration. The future is chal-
lenging but also exciting.

Acknowledgments

We gratefully thank Dr. George Wang, Vice Pres-
ident, System Performance, and former Director of
IBM China Software Development Lab and his grid-
computing team for their enthusiasm and dedication
in support of the customer-engagement pilot projects
for service domains in China.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Massachusetts Institute
of Technology, Sun Microsystems, Inc., Dow Jones & Company,
Inc., National Association of Security Dealers, Inc., The Finan-
cial Times Ltd. and the London Stock Exchange, Linus Torvalds,
the National Library of Medicine, or the University of Chicago.

Cited references

1. Communications of the ACM 46, No. 10 (October 2003), Spe-
cial Section: Service-Oriented Computing.

2. Web Services Activity, World Wide Web Consortium (W3C),
http://www.w3.org/2002/ws/.

3. SOA and Web Services, developerWorks, IBM Corporation,
http://www.ibm.com/developerworks/webservices/.

4. WS-I, Web Services Interoperability Organization, http://www.
ws-i.org/.

5. Global Grid Forum (GGF), http://www.gridforum.org/.
6. The Globus Alliance, http://www.globus.org/.
7. IBM Grid Computing, IBM Corporation, http://www.ibm.

com/grid/.
8. Autonomic Computing, IBM Research, IBM Corporation,

http://www.research.ibm.com/autonomic/.
9. The World Wide Web Consortium (W3C), http://www.

w3.org/.
10. Organization for the Advancement of Structured Informa-

tion Standards (OASIS), http://www.oasis-open.org/.
11. Web Services Description Language (WSDL), World Wide Web

Consortium (W3C), http://www.w3.org/TR/wsdl.
12. W3C—Extensible Markup Language (XML), World Wide Web

Consortium (W3C), http://www.w3.org/XML.
13. SOAP Version 1.2 Primer, World Wide Web Consortium

(W3C), http://www.w3.org/TR/2003/REC-soap12-part0-
20030624/.

14. HTTP - Hypertext Transfer Protocol, World Wide Web Con-
sortium (W3C), http://www.w3.org/Protocols/.

15. OASIS UDDI Specifications TC—Committee Specifications,
Organization for the Advancement of Structured Infor-
mation Standards (OASIS), http://www.oasis-open.org/
committees/uddi-spec/doc/tcspecs.htm#uddiv3.

16. T. Appnel, An Introduction to WSIL, O�Reilly & Associates
(October 16, 2002), http://www.onjava.com/pub/a/onjava/
2002/10/16/wsil.html.

17. M. J. Duftler, N. K. Nirmal, A. Slominski, and S. Weer-
awarana, “Web Services Invocation Framework (WSIF),”
OOPSLA 2001 Workshop on Object-Oriented Web Services,
ACM, New York (2001), http://www.research.ibm.com/
people/b/bth/OOWS2001.html.

18. R. Kraft, “Designing a Distributed Access Control Processor
for Network Services on the Web,” Proceedings of the ACM
Workshop on XML Security, Nov. 22, 2002, ACM, New York
(2002).

19. I. Foster, WS-Resource Framework: Globus Alliance Perspec-
tives, Presented at Globus World, San Francisco, CA, Jan-
uary 20, 2004, http://www.globusworld.org/.

20. D. Sabbah, Bringing Grid and Web Services Together, Presented
at Globus World, San Francisco, CA, January 20, 2004, http://
www.globusworld.org/.

21. I. Forster, C. Kesselman, J. M. Nick, and S. Tuecke, “The
Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems,” The Globus Alliance, http://www.
globus.org/research/papers/ogsa.pdf.

22. The IBM On Demand Operating Environment, IBM Corpo-
ration, http://www.ibm.com/software/info/openenvironment/
index.html.

TAN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004754

23. Y.-S. Tan, B. Topol, V. Vellanki, and J. Xing, “Business Ser-
vice Grid, Part 1: Introduction,” developerWorks, IBM
Corporation (February 1, 2003), http://www.ibm.com/
developerworks/library/gr-servicegrid/index.html.

24. Emerging Technologies Toolkit, alphaWorks, IBM Corpora-
tion, http://www.alphaworks.ibm.com/tech/ettk.

25. J2EE Tutorials and Code Camps, Sun Microsystems, http://
java.sun.com/j2ee/learning/tutorial/index.html.

26. D. F. Ferguson and R. Kerth, “WebSphere as an e-Business
Server,” IBM Systems Journal 40, No. 1, 25–45 (2001).

27. The Apache Software Foundation, http://www.apache.org.
28. OGSA-WG, Open Grid Services Architecture, Global Grid

Forum (GGF), http://forge.gridforum.org/projects/ogsa-wg/
document/draft-ggf-ogsa-spec/en/13.

29. D. F. Ferguson, T. Storey, B. Lovering, and J. Shewchuk, “Se-
cure, Reliable, Transacted Web Services: Architecture and
Composition,” IBM Corporation, http://www.ibm.com/soft-
ware/solutions/webservices/pdf/SecureReliableTransacted-
WSAction.pdf.

30. Microsoft .NET, Microsoft Corporation, http://www.
microsoft.com/net/default.asp.

31. J. McCarthy, Reap the Benefits of Document Style Web Ser-
vices, developerWorks, IBM Corporation, http://www.ibm.
com/developerworks/webservices/library/ws-docstyle.html.

32. Y.-S. Tan, B. Topol, V. Vellanki, and J. Xing, “Business Ser-
vice Grid, Part 2: Implementing a Business Service Grid,”
developerWorks, IBM Corporation, http://www.ibm.com/
developerworks/library/gr-servicegrid2/index.html.

33. Y.-S. Tan, B. Topol, V. Vellanki, and J. Xing, “Business Ser-
vice Grid, Part 3: Setting up Rules,” developerWorks, IBM
Corporation, http://www.ibm.com/developerworks/grid/
library/gr-servicegrid3.html.

34. Y.-S. Tan, B. Topol, V. Vellanki, and J. Xing, “Business
Service Grid, Part 4: Service Domain Deployment,” de-
veloperWorks, IBM Corporation, http://www.ibm.com/
developerworks/library/gr-servicegrid4/index.html.

35. Y.-S. Tan, B. Topol, V. Vellanki, and J. Xing, “Business Ser-
vice Grid, Part 5: Setting up Contracts,” developerWorks,
IBM Corporation, http://www.ibm.com/developerworks/grid/
library/gr-servicegrid5.html.

36. Y.-S. Tan, B. Topol, V. Vellanki, and J. Xing, “Business Ser-
vice Grid, Part 6: In Operation,” developerWorks, IBM Cor-
poration, http://www.ibm.com/developerworks/grid/library/
gr-servicegrid6.html.

37. Y.-S. Tan, B. Topol, V. Vellanki, and J. Xing, “Business Ser-
vice Grid, Part 7: Keeping Informed,” developerWorks, IBM
Corporation, http://www.ibm.com/developerworks/library/gr-
servicegrid7/index.html.

38. JavaServer Pages Technology - White Paper, Sun Microsystems,
http://java.sun.com/products/jsp/whitepaper.html.

39. R. Will, S. Ramaswamy, and T. Schaeck, “WebSphere Por-
tal: Unified User Access to Content, Applications, and Ser-
vices,” IBM Systems Journal 43, No. 2, 384–419 (2004).

40. IBM and China�s Ministry of Education Launch “China Grid”,
IBM Press Release (October 13, 2003), http://www.ibm.com/
grid/grid_press/pr_1013.shtml.

41. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, “Basic Local Alignment Search Tool,” Journal of Mo-
lecular Biology 215, No. 3, 403–10 (October 5, 1990).

42. I. Foster, “What is a Grid? A Three Point Checklist,” Grid
Today 1, No. 6 (July 22, 2002), http://www.gridtoday.com/02/
0722/020722.html.

43. The Globus Toolkit, The Globus Alliance, http://www-unix.
globus.org/toolkit/.

44. F. Leymann, D. Roller, and M.-T. Schmidt, “Web Services
and Business Process Management,” IBM Systems Journal 41,
No. 2, 198–211 (2002).

45. IBM System Journal 43, No. 1 (2004), Special Issue: Utility
Computing.

46. E. Manoel, S. C. Brumfeld, K. Converse, M. DuMont, L.
Hand, G. Lilly, M. Moeller, A. Hemati, and A. Waisanen,
Provisioning On Demand: Introducing IBM Tivoli Intelligent
ThinkDynamic Orchestrator, IBM Redbooks (2004), SG24-
8880-00, http://publib-b.boulder.ibm.com/Redbooks.nsf/
RedbookAbstracts/sg248888.html?Open.

Accepted for publication July 5, 2004.

Yih-Shin Tan IBM Software Group, 4205 South Miami Boule-
vard, Durham, NC 27709 (ystan@us.ibm.com). Yih-Shin Tan, a
Senior Technical Staff Member, is the lead architect for Web ser-
vices and grid computing in the System House Design and Tech-
nology Group. He pioneered the concept of the service domain
and played a key role in developing the service domain compo-
nent of the Emerging Technology Toolkit on the IBM alpha-
Works� Web site and in applying this technology to several cus-
tomer pilot projects. He is an IBM Master Inventor and a member
of the IBM On Demand Operating Environment Architecture
and Technology team.

Vivekanand Vellanki IBM Software Group, PO Box 12195, 3039
Cornwallis Road RTP, NC 27709 (vellanki@us.ibm.com). Dr. Vel-
lanki is involved in advanced technology projects in the areas of
Web services, grid computing, and autonomic computing. He re-
ceived a Ph.D. in computer science from the Georgia Institute
of Technology in 2001. His interests include distributed comput-
ing, Web servers, and peer-to-peer computing.

Jie Xing IBM Software Group, PO Box 12195, 3039 Cornwallis
Road RTP, NC 27709 (jiexing@us.ibm.com). Dr. Xing, an advis-
ory software engineer, is currently involved in advanced technol-
ogy projects in the areas of Web services, grid computing, and
autonomic computing. He received a Ph.D. in operations research
and computer science from North Carolina State University in
2000. His interests include multiagent systems, distributed sys-
tems, and workflows.

Brad Topol IBM Software Group, 4205 South Miami Boulevard,
Research Triangle Park, North Carolina 27709 (btopol@
us.ibm.com). Dr. Topol received B.S. and M.S. degrees in math-
ematics and computer science from Emory University in 1993 and
a Ph.D. degree in computer science from the Georgia Institute
of Technology in 1998. He joined IBM in 1998. As a member of
the SWG System House Design and Technology Group, his cur-
rent focus is on integrating IBM software products within IT so-
lutions. He is also involved in advanced technology projects in
the areas of autonomic computing and Web services. In 2000, he
received an IBM Outstanding Technical Achievement Award for
contributions to the WebSphere Transcoding Publisher product.
He is an IBM Master Inventor and a member of the IBM Au-
tonomic Computing Architecture Board.

Gary Dudley IBM Software Group, PO Box 12195, 3039 Corn-
wallis Road RTP, NC 27709 (dudleyg@us.ibm.com). Mr. Dudley
holds a B.S.E degree from Duke University and an M.S. degree
from North Carolina State University, both in electrical engineer-
ing. Prior to joining the IBM Software Group, he worked in stor-
age systems and networking architecture. Currently, he is actively
involved in advanced technology projects in the areas of Web ser-
vices, aspect-oriented programming, and autonomic computing.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 TAN ET AL. 755

