
MyMED: A database
system for biomedical
research on
MEDLINE data

by K. N. Lewis
M. D. Robinson
T. R. Hughes
C. W. V. Hogue

MyMED is a database system that mirrors
MEDLINE™ data and that provides access to
the data locally, without the restrictions
involved in accessing the National Library of
Medicine Web site. The implementation of
MyMED is based on the IBM DB2 Universal
Database™, the DB2� XML Extender and the
DB2 Text Information Extender. The resulting
system supports advanced queries, including
wildcard searching abilities, proximity
searching, scoring functions, and capabilities
to build a thesaurus, and constitutes an
important research tool for text mining of
biomedical-citation data. The paper describes
the challenges encountered in the use of DB2
Extenders™ products, the methods used to
overcome these challenges, and the
implementation of MyMED. The benefits of
MyMED are illustrated through some use
cases, and directions for future work are
outlined.

The abundance of information contained in citations
to, and abstracts of, biomedical journal articles is so
great that text mining these data is becoming an es-
sential tool in the field of bioinformatics. The pri-
mary source of citation data for biomedical research
is MEDLINE**, a citations database from the National
Center of Biotechnology Information, a division of
the National Library of Medicine (NLM).1 Access to
MEDLINE, which is available to the public through
PubMed**, a Web-based database system, is limited
in terms of the number of daily requests allowed from
the same computer. Due to this restriction on ac-
cessing MEDLINE, text-mining tasks involving large

numbers of queries may take days, or even weeks,
to complete. MyMED, which was developed by the
authors within the Blueprint Initiative,2 is a data-
base system that mirrors MEDLINE data and that pro-
vides access to the data locally, without restrictions.
The implementation of MyMED is based on the IBM
DB2 Enterprise Edition Universal Database* (DB2,
for short) enabled for Extensible Markup Language
(XML), the DB2 XML Extender (or XML Extender, for
short) and the DB2 Text Information Extender (TIE).
Citation data in XML format are extracted from NLM-
supplied XML files using the XML Extender and
stored in the database, and then selected XML text
fields are indexed using TIE.

The resulting system supports advanced queries in-
cluding wildcard searching abilities, proximity search-
ing, scoring functions, and capabilities to build a the-
saurus, and constitutes an important research tool
for text mining of biomedical-citation data. Text-min-
ing algorithms can vary over a wide range, from sim-
ple (such as the recognition of specific terms in text),
to complex (such as identifying complex relationships
within sentences). An example of the latter is the
use of machine-learning techniques to identify ab-
stracts describing protein-protein interactions.3

Beyond removing the limitations in accessing MED-
LINE data through PubMed, MyMED has many ad-
ditional advantages. First, because the access is lo-

�Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

LEWIS ET AL. 0018-8670/04/$5.00 © 2004 IBM IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004756

cal, the response times are much improved. Second,
the confidentiality of the queries is assured. Third,
whereas access to MEDLINE data is limited by the
MEDLINE application programming interface (API),
no such limitation exists in MyMED. Thus, MyMED
incorporates additional functionality such as search-
ing with queries that produce very large result sets.
Fourth, through complex SQL (structured query lan-
guage) queries users can manipulate result sets di-
rectly at the database level rather than by the ad-
ditional step of post-processing the data obtained

from PubMed. Fifth, MyMED supports large auto-
mated batch queries and the return of very large re-
sult sets at the user�s convenience. Last, through the
use of XML and Extensible Stylesheet Language
Transformations4 (XSLT), MyMED allows the user
to create personalized views of the data on Web
pages and to render the result of a query in different
formats, rather than being limited to the formats
available from the MEDLINE API.

The data. MEDLINE consists of more than twelve mil-
lion biomedical bibliographic citations published
from the mid 1960s to the present and distilled from
more than 4600 biomedical journals published in
over 70 countries. The National Library of Medicine
leases MEDLINE citation data in XML format. MED-
LINE citations include bibliographic information such
as article title, abstract, author list, and journal in-
formation, but do not contain full-text articles. The
2003 baseline data contains all maintenance that was
performed in 2002, and all XML content conforms
to the November 2002 DTD (document type defini-
tion) version. It is available either on a Digital Lin-
ear Tape (DLT) or via File Transfer Protocol (FTP).
It consists of 11847524 records packaged in 396 XML
files and requires approximately 42.9 GB of disk
space.5

NLM makes updates to the baseline data available
five days a week via FTP. The updates contain new,
revised, deleted, and in-process records. NLM pro-

jected adding approximately 535 000 MEDLINE cita-
tions during 2003. Update files must be processed
in chronological order to ensure that the correct ver-
sion of any given record is obtained.

DB2 and the DB2 Extenders. DB2 is a relational da-
tabase management system that provides a secure
and efficient way to store and query data. To retrieve
or update the data in the database, one uses com-
mands formulated as SQL statements.

The XML Extender, which works in conjunction with
the database, provides additional data types and
functions that extend the capabilities of DB2 to in-
clude XML data. In particular, the XML Extender pro-
vides the XML Collection method and the XML Col-
umn method. Whereas the XML Collection method
stores the individual fields from an XML file into da-
tabase table columns, the XML column method stores
the entire XML document in a table column. These
methods make use of a document access definition
(DAD) file—an XML document that describes the ac-
cess and storage methods that the database is using.
It also contains the location of the DTD files and de-
scribes how the XML data map to the DB2 columns
in the tables.

Like the XML Extender, TIE is also installed sepa-
rately and is enabled to work with the specified da-
tabase. It provides a number of functions for index-
ing fields, searching fields, building a thesaurus, and
updating indexes—resulting in full-text search capa-
bilities. The combination of these products results
in a database system that can perform complex text
queries for text-mining applications.

Challenges. Some of the challenges involved in de-
veloping MyMED arose from the data. In the MED-
LINE DTD files there are multiple formats for some
XML elements. For example, the journal issue pub-
lication date can be in the form �year, month, day�
or �year, season� or in MedlineDate format, a for-
mat used when the date of publication does not fit
into any other formats. This proved to be beyond
the ability of the XML Collection method (the inser-
tion of records into the database resulted in error).
An attempt to use the XML Column method for this
task led to the creation of a separate table for each
different format, which resulted in the creation of
a very large number of tables. Then, the queries in-
volved a large number of SQL joins which resulted
in slow response times.

MyMED not only removes
access limitations

to MEDLINE data,
but also improves

query response times.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 LEWIS ET AL. 757

The XML files use UTF-8 (8-bit Unicode Transforma-
tion Format), encoded in Unicode Normalized Form
C.5 The MEDLINE data contain citations from 49 dif-
ferent languages using many Unicode-encoded char-
acters. This caused errors when using the XML Ex-
tender functions until the codeset of the database
was explicitly set to UTF-8 encoding.

Challenges also arose from continuous changes to
the MEDLINE DTD files. The MEDLINE DTDs describe
approximately 112 elements, 21 entities, and 11 at-
tribute lists and are under constant revision. MED-
LINE records are associated with three DTDs: the
NLMMedline DTD, the NLMCommon DTD and the
NLMMedlineCitation DTD (the NLMMedline DTD
is the parent DTD6). The DTD files are structured so
that files created using previous DTD versions can
also be validated using the newest DTD available.

Changes to the MEDLINE DTD files by NLM include
the renaming, addition, and deletion of XML ele-
ments. The table definitions and DAD file in the Col-
lection or Column methods required constant up-
dating in such cases. Thus, changes in the DTD files
meant that at any given time the database contained
citations defined by multiple DTD versions. This
meant that the database system had to handle doc-
uments associated with more than one DTD version.

The MEDLINE baseline data gets updated once a year
to the most current DTD version. This means the
MyMED database is rebuilt once a year with a new
DTD version; thus, the database build needs to be
able to handle new DTD versions every year. Finally,
the daily updates to the database records mean that
these transactions (creating, updating, and deleting,
including text index updates) must have acceptable
execution times.

In principle, the DB2 XML Extender and DB2 TIE Ex-
tender should be straightforward to use. With third-
party data and DTD files that are controlled by other
organizations, we found that this configuration was
not sufficient to support the dynamic nature of MED-
LINE data. Experience revealed many exceptions that
these tools were not able to deal with, such as the
inability to process files containing a large number
of citations and incompatibilities with the MEDLINE
DTD details. The XML Extender is still not capable
of extracting 30000 citations from a file (the MED-
LINE baseline data is packaged as 390 XML files, each
containing exactly 30000 citations). Consequently,
the files must be preprocessed into smaller files, each
containing approximately 1000 citations (it was de-

termined that this was the largest number of entries
per file that could be processed without errors).

The next section describes the MyMED implemen-
tation, including the methods used to overcome the
challenges discussed earlier. In particular, it includes
a description of the “lower-level column method,”
a method developed to overcome the difficulties en-
countered in the direct application of the XML Ex-
tender. The section that follows describes the results
obtained through the use of MyMED and directions
for future work. The paper concludes with a short
summary.

Implementation

This section describes the implementation of
MyMED including the hardware and software used,
configuring the database, building the citation table,
building the text index, updating the database, and
the lower-level column method.

Software and hardware. The initial implementation
used an IBM RS/6000* M80 computer with 32 GB of
RAM, eight RS64 III 500 MHz CPUs, and the oper-
ating system AIX* v4.3. Other implementations in-
cluded a Sun Microsystems Enterprise 450 machine
with 1.5 GB of RAM, four UltraSPARC II 300 MHz
CPUs, and the Solaris** Version 8 operating envi-
ronment. The current implementation utilizes IBM
DB2 Enterprise Edition Version 7.2 with fixpak 10
and is installed on a Sun Microsystems SunFire**
V880 with 16 GB of RAM and eight UltraSPARC
III 900 MHz CPUs running the Solaris Version 9 op-
erating environment. All available fixpaks were in-
stalled along with the DB2 XML Extender Version 7
with fixpak 10 and the DB2 TIE with fixpak level 2.
An installation of Perl7 with the Perl Database In-
terface and DB2 modules also proved useful for some
query scripts. The XML Extender can operate on the
AIX, Linux**, Solaris, Microsoft Windows** 2000,
and Microsoft Windows NT** operating systems. Be-
cause the TIE supports AIX, Solaris, Windows NT, and
Windows 2000 systems only, to text-index documents
on a Linux operating system it is necessary to use
the IBM DB2 Net Search Extender*8 (NSE) rather than
the TIE. The NSE is the newest text extender product
from IBM. It incorporates the TIE and includes fur-
ther optimization abilities and scalability with query
load.

Configuring the database. The buffer pool database
configuration is used to cache table and index pages

LEWIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004758

in memory and has a large impact on system per-
formance. Tuning this parameter has the greatest ef-
fect on performance. When a database is created,
one buffer pool is automatically defined. The default
page size for the buffer-pool configuration is 4 KB.
Because we calculated the optimal page size to be
16 KB, we created two additional buffer pools, each
with a 16 KB page size, one for temporary tablespace
data and one for regular and long tablespace data,
MedlineTEMP_Bufferpool and MedlineDATA_Buffer-
pool, labeled as Temporary Buffer Pool and Data
Buffer Pool in Figure 1.

A tablespace consists of one or more containers
(which can be either a file or some device used to
store data) used for distributing data evenly. There
are three distinct tablespace types: long tablespace
(for columns defined as character large objects
[CLOBs], or binary large objects [BLOBs]), temporary
data tablespace, and regular data tablespace. For the
MyMED database, four tablespaces, each with a 16
KB page size were created: one temporary ta-
blespace, MEDLINE_TEMPSPACE, two regular ta-
blespaces (one for data, CitationDATA_tbsp, and one
for index data, CitationINDEX_tbsp, consisting of one
container each), and one long tablespace—Citation-
LONG_tbsp—for the LOB (large object) data (con-
sisting of 15 containers) as shown in Figure 1.

MEDLINE XML data files use UTF-8 encoding; there-
fore, the database must be created with a codepage
equal to UTF-8.9 If this is not set correctly, the XML
Extender will fail to read and insert XML records into
the database due to the presence of characters in
the vernacular titles and author names that are not
English.

After the database is created, there are a number
of alterations to the database configuration as well
as the database manager configuration that are nec-
essary; some of these include changes to the default-
query heap size, the default-application heap size,
and the default log-file details. The MyMED data-
base cannot be built with the default values due to
the inadequate size of the files for insertion and the
large number of rows in the database.

Three tables were created—the citation table, the
update table, and the deletion table. Figure 2 shows
the columns and column types for each table in
UML**-style format10 (UML stands for Unified Mod-
eling Language). The citation table is composed of
four columns—citation, PubMed Unique Identifier
(PMID), status, and date. The citation column is de-
fined as type db2xml.XMLClob and contains an XML
fragment of one MEDLINE citation. Storing the data
as a CLOB eliminated problems that arose due to the

Figure 1 MyMED database organization

C1C1 C4C2

C1

C5C3

C8C6

C9C7

C14C10

C15

C12

C13

C11

CITATION_Data_tbsp

Citation
Table Data

Update
Table Data

Temporary Buffer Pool

MedlineTEMP_Bufferpool

MEDLINE_TEMPSPACE

Space for Temporary
Table Data

Data Buffer Pool

MedlineDATA_Bufferpool

Citation
Index

Citation
Table CLOBs

Update
Table CLOBs

CITATION_Index_tbsp CITATION_Long_tbsp

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 LEWIS ET AL. 759

dynamic length of citations—there is no enforced
limit to their length. The PMID is an integer of up
to eight digits in length that is present in all citations
and cannot have an empty value. Additionally, PMID
values are never reused after a record has been de-
leted. These attributes ensure the uniqueness of
PMID; therefore, it is selected as the primary key for
the citation table. The status column is stored as a
CHAR of size 1; when a citation is initially inserted
into the table, the status is set to “N” for new; if it
is marked for deletion, it is set to “D.” The date field
is of the DATE data type and contains the date of the
last change made to the corresponding record.

The update table is composed of two columns—ci-
tation and PMID. This table is used to temporarily
store the updated and new citations from the daily
update files before they are used to update the ci-
tation table. This table is necessary because the PMID
value is not known until a second pass through the
table with an SQL update statement that extracts it
and updates the corresponding rows. Then the PMIDs
can be compared to the citation table to determine
if the resulting update is a new or revised record.
Again, the citation column is of the type
db2xml.XMLClob, and the PMID is stored as an integer.

The deletion table is composed of one column—a
PMID column. This table is used to store the PMIDs
of records indicated for deletion from the database
as they occur in the daily update files.

Building the citation table. The files are used as in-
put to an SQL insert statement that contains the
db2xml.ExtractCLOB function—a defined function
used by the XML Extender. The XML Extender
proved to be unstable when processing files with a
large number of citations (30 000). By experiment-
ing with different record counts in the files, the op-

timum number of records per file to ensure inser-
tion was 5000. The preprocessing of all the large files
resulted in 2371 files of no more than 5000 citations
each. Inserting the entries in these files into the ci-
tation table required 2371 SQL insert statements.

These SQL insert statements use the XML Extender
function db2xml.ExtractCLOB that takes as input a
file name and a path and then extracts an XML frag-
ment found in the given path. Element paths can be
found in the DTD files. The entire citation was ex-
tracted for storage in the citation column. In the cur-
rent MyMED implementation, this initial insertion
of the baseline data took approximately 8.5 hours
on four parallel processors.

After all citations are inserted into the citation ta-
ble, the PMIDs are extracted and inserted for each
row because it is not possible to extract the CLOB
and an element from within the CLOB at the same
time. The PMID is extracted from each citation us-
ing the db2xml.ExtractInteger defined function. The
column name and path to be extracted are arguments
to the function, and the PMID is returned and inserted
into the appropriate column for each row in the ta-
ble. Duplicates resulting from human error, such as
starting and stopping an insert script, were identi-
fied and removed from the table. The PMID was then
set as the primary key, and the initial build of the
table was concluded.

Building and updating the text index. Most medical
abstract queries search for terms within the unstruc-
tured free text area—mostly the abstract and the ti-
tle fields of a citation. This requires advanced index-
ing techniques of free text fields. The Medical Subject
Heading11 (MeSH**) terms (the NLM-controlled vo-
cabulary thesaurus), abstracts, and titles were in-
dexed so that advanced queries could be made on

Figure 2 MyMED database tables

Citation (DB2XML.XMLCLOB)
InsertDate (date)
Status (char(1))

PK

Citations

PMID (BIGINT)

PMID (BIGINT)
Citation (DB2XML.XMLCLOB)

Updates

PMID (BIGINT)

Deletions

LEWIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004760

these fields. TIE allows a single index to be created
on a column and multiple XML element values to be
indexed in a db2xml.CLOB, and therefore, any fields
in the MEDLINE citation may be indexed. A docu-
ment model is created which defines tags of interest
using XML Path Language12 (Xpath) expressions; this
allows elements with the same name to be distin-
guished by the element�s full path. The document
model includes fields named “abstracts,” “titles,” and
“mesh.” Because a column can have only one text
index specified for it, all of these are included in the
same text index, but each text-indexed field can still
be accessed separately. For example, it is possible
to search for terms that occur in all of the indexed
elements in the column as well as only in the MeSH
section of the citations.

To create the index, the document model file needs
to be written, and the path to it is used as input in
the “create index” command. The directory paths
for the index and working directories are specified
as input as well. It is necessary to ensure that the
fenced user has appropriate permissions and that
they are part of the db2adm group in order for the
updates to work properly. Because at the time the
software could not handle this task, a manual change
was required—this became apparent after trouble-
shooting this problem with an IBM team. During the
“create index” command, it is also possible to spec-
ify the update frequency of the index. This can be
set to occur on a regular day and time of the week
or after a certain number of changes to the column.
Because data updates were available daily, updates
were set to occur regularly every evening. The “com-
mit count” is another feature that can be specified
during the creation of the index; it is the number of
inserts or updates on the text column after which an
intermediate commit statement is issued by DB2. This
feature may be useful for large tables because it can
avoid errors involving insufficient log space, but it
does slow down the index build and update consid-
erably. In this case, there was no commit-count value
specified; therefore, all records were updated and
committed for the whole table at once. The text in-
dex was created instantly. The “update index” com-
mand is used to build (in the initial call) and update
(in subsequent calls) the text index. The initial up-
date of the index for the 2003 baseline data took ap-
proximately 19 hours to complete for the current im-
plementation. Subsequent update times varied with
the number of records.

Updating the database. Update files are available
five days a week through the NLM FTP site. Update

files contain new, revised, in-process, and deleted ci-
tations. Details of the distribution of update records
over the past nine months are shown in Figure 3.
In-process records are not deemed complete records,
and MeSH terms are missing. Update files must be
processed in chronological order to ensure database
integrity.

Update files are downloaded and preprocessed sim-
ilarly to the baseline files. The citations are inserted
into the update table, and PMIDs are updated. A sec-
ond pass through the files inserts the deletion PMIDs
into the deletion table. Both insert statements use
the same XML Extender defined functions as the orig-
inal build. When a row in the citation table has a
PMID that matches a PMID in the update table, the
row is updated; all other rows in the citation table
are new records. All PMIDs in the deletion table are
deleted from the citation table. Lastly the text index
is updated at the scheduled time.

The lower-level column method. One of the largest
hurdles in the MyMED implementation was work-
ing with the XML Extender. As previously mentioned,
there are two access methods available for data in
a database enabled for the XML Extender—the Col-
umn method and the Collection method. Initially the
Collection method was attempted—this way every
XML element was mapped to a column in a table.
This resulted in many errors as there were some lim-
itations regarding elements with the same name but
different paths. The MEDLINE DTD contains numer-
ous logical OR statements in various elements due
to multiple formats for some fields such as author
name or date formats. Moreover, during the first year
that NLM released the XML data, the DTDs changed
three times, which required a revision of the DAD
file with every new release and the storage of doc-
uments following multiple DTD versions in the da-
tabase. All these compounded the difficulties in us-
ing the Collection method.

The second approach attempted was the Column
method. This method allows the insertion of the XML
document in its entirety into a column along with
the creation of side tables where element values can
be simultaneously inserted based on location path.
The column where the XML document is to reside
must be enabled for XML and then can be searched,
updated, and retrieved. Data in the side tables can
then be indexed for fast searching. Similar problems
were encountered based on the limitations that could
not handle all the specifications in the DTD and re-
sulted in a large number of side tables that slowed

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 LEWIS ET AL. 761

down query response time. Rules for the column DAD
file specified that values with multiple element types
must be in separate tables. This introduced an in-
creased number of SQL joins during queries, which
caused a slowdown in query response time and cre-
ated difficulties in normalizing the database. Fixpak
installations have updated and corrected various
problems or documented limitations as they have be-
come apparent, and these are available from the IBM
Web site.13

The current implementation abandons both the tra-
ditional Collection and Column methods as de-
scribed in the XML Extender administration and pro-
gramming documentation14 and invokes a type of
manual column method or low-level column method
that does not require a DAD file and is not as sen-
sitive to changes in the DTD. The yearly update of
the baseline data ensures that all the XML citations
are in the same format and use the most current DTD.

It is not necessary to enter or store the DTD, which
means that there is no validation of the XML data,
but it does allow one to extract and insert data in
the database using this method.

There were several advantages to storing documents
in columns as intact XML documents. First, informa-
tion is not lost when parsing specific fields out. Sec-
ond, any element can be accessed and retrieved in
the document using the XML Extender functions, for
example the title of a citation can be extracted using
the following SQL statement:

SELECT db2xml.extractVarChar (cita-
tion,‘/MedlineCitation/Article/Article
Title’) FROM medline.citation WHERE
pmid � 433569

Third, documents can be stored with different DTD
versions (this is necessary since only NLM has con-

Figure 3 NLM update files: November 2002 through July 2003

N
um

b
er

 o
f

R
ec

o
rd

s

NLM Update File Breakdown

0
50

00
0

10
0

00
0

15
00

00

20
00

00

25
00

00

30
00

00

Jul-03Jun-03May-03Apr-03Jan-03Dec-02 Mar-03Feb-03

51842

1671

65301

42431

149143
2501

41949

44009

47617

4711

65340

49901

47627

2402

24527

40380

47747

2564

37075

47881

52570

2694

35798

52651

3113

46694

50501

52021

4158

9961
45099

52764

3964

9960
50340

82941

Month

In-Process

Revised

New

Deleted

Nov-02

LEWIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004762

trol over baseline data and changes to the DTD ver-
sions). Finally, because it is necessary to put a limit
on column lengths when defining a table, this method
of storing the entire citation as a db2xml.XMLClob
type is sensitive only to the length of the entire ci-
tation, which can get as large as 2 GB without error.
This is useful because the element lengths are not
static and NLM does not provide character field-
length information. Our experience of estimating
field length resulted in fields (such as title or abstract)
that were too small, which resulted in truncation of
the field.

Using this new low-level column method as explained
earlier, we tried two different approaches: 1) extract-
ing the specific fields to text index, inserting them
into a separate table, and indexing the fields in sep-
arate indexes, and 2) keeping the XML in the col-
umn and indexing the citation based on the XML path.
To implement the first method, an embedded SQL
script was written that took as input a PMID range
and a commit-count value. One limitation was the
inability to extract values consistently from more than
1000 records at a time without error. This was over-
come by implementing a commit count in the em-
bedded SQL code enabling the build to be automated.
Three separate text indexes were created, meaning
that three model documents were necessary to up-
date and maintain three indexes. This method has
two drawbacks. First, returning an entire record
through text search required table joins that slowed
performance. Second, the addition of a table to store
the extracted indexed fields almost doubled the re-
quired disk space for the database. The preferred
implementation was the second one, which involved
having one main table with the citations in one col-
umn. It was simple, easy to build and maintain, and
took up much less disk space.

Results
The TIE has three defined search functions: CON-
TAINS, SCORE, and NUMBEROFMATCHES. The CON-
TAINS function returns the value 1 if a search argu-
ment is found in the specified text field and the value
0 if none is found. The SCORE function searches for
an argument in the specified text field and returns
a numerical value between 0 and 1 indicating how
well the document can be described by the search
argument.15 The NUMBEROFMATCHES function re-
turns an integer describing the number of times the
search argument is found in each document.

The search argument has many options including:

● Specifying a thesaurus to use if one has been
created,

● A return result limit,
● Boolean arguments or free text arguments,
● Section of the index to search,
● Proximity searching,
● Precise searching,
● Fuzzy searches,
● Stemmed searches, and
● Language specification.

The first query in Table 1 searches for the terms ‘car-
diovascular’ and ‘Disease’ in the index found for the
column CITATION in the MEDLINE.CITATIONS table.
For matching documents it returns the PMID and the
title. Selection of the title uses the XML Extender
function db2xml.extractVarchar �. The CONTAINS �
function in the where clause is a TIE function. More
example queries using the XML Extender functions
and TIE functions can be found in Table 1.

Queries containing 7970 aliases of gene names along
with the keywords “mouse” or “musculus” were per-
formed to create an index of PMIDs associated with
each gene represented by a spot on a microarray. A
total of 141 231 citations were found containing the
search terms in the abstract, title, or MeSH sections.
Citations with matching terms, occupying about 1.3
GB in disk space, were returned in tab-delimited for-
mat containing the PMID with the entire XML cita-
tion in approximately four hours of running eight
searches in parallel. The same aliases queried along
with keywords “human” or “sapiens” returned
1 424 588 citation matches. Due to the large num-
ber of matches, we returned the citation PMID with-
out the entire citation itself in approximately nine
hours running eight searches in parallel. In testing
we also found we could return entire citations in 21
hours. When PubMed was queried for a similar alias
list along with “yeast,” “saccharomyces,” or “cere-
visiae,” it took a few weeks to gather all the results
using several different IP addresses, given the restric-

An experiment that
resulted in more than a million

citation matches and took
21 hours on MyMED

would have taken several
weeks on PubMed.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 LEWIS ET AL. 763

tions implemented by PubMed. Given that the list
of aliases for “mouse” and “human” are even larger
than for “yeast,” it was projected that search time

would increase significantly. Using MyMED to query
MEDLINE citations proved to be a significant
improvement.

Table 2 Query statistics for BIND database

Interaction Data Details Count Homodimers

All protein-protein interactions 16546 8052
Protein-protein interactions involving two S.Cerevisiae proteins 507
Protein-protein interactions involving two mammalian proteins 4986 2335
Protein-protein interactions from mammalian protein subset

that involved two human proteins
2653 1419

Table 1 MyMED example queries

Searching for terms in
any sequence

SELECT PMID, db2xml.extractVarchar(citation, ‘/MedlineCitation/Article/ArticleTitle’)
FROM MEDLINE.CITATIONS
WHERE CONTAINS (CITATION, ‘(“cardiovascular”, “Disease”)’) � 1

Searching for terms in
fixed sequence

(SELECT PMID, db2xml.extractVarchar(citation, ‘/MedlineCitation/Article/ArticleTitle’)
FROM MEDLINE.CITATIONS
WHERE CONTAINS CITATION, ‘(“cardiovascular disease”)’) � 1

Searching for terms in
the same sentence

SELECT PMID, db2xml.extractVarchar(citation, ‘/MedlineCitation/Article/ArticleTitle’)
FROM MEDLINE.CITATIONS
WHERE CONTAINS (CITATION, ‘“Cardiovascular” IN SAME SENTENCE AS “Disease”’) � 1

Fuzzy searches SELECT PMID, db2xml.extractVarchar(citation, ‘/MedlineCitation/Article/ArticleTitle’)
FROM MEDLINE.CITATIONS
WHERE CONTAINS (CITATION, ‘FUZZY FORM OF 70 “Cardiovascular”’ � 1

Precise searches SELECT PMID, db2xml.extractVarchar(citation, ‘/MedlineCitation/Article/ArticleTitle’)
FROM MEDLINE.CITATIONS
WHERE CONTAINS (CITATION, ‘PRECISE FORM OF “Coronary Disease”’ � 1

Stemmed searches SELECT PMID, db2xml.extractVarchar(citation, ‘/MedlineCitation/Article/ArticleTitle’)
FROM MEDLINE.CITATIONS
WHERE CONTAINS (CITATION, ‘STEMMED FORM OF “Mouse” & “Coronary”’ � 1

Searching with wildcard
(%)

SELECT PMID, db2xml.extractVarchar(citation, ‘/MedlineCitation/Article/ArticleTitle’)
FROM MEDLINE.CITATIONS
WHERE CONTAINS (CITATION, ‘“%ronary”’) � 1

Searching for one
character (_)

SELECT PMID, db2xml.extractVarchar(citation, ‘/MedlineCitation/Article/ArticleTitle’)
FROM MEDLINE.CITATIONS
WHERE CONTAINS (CITATION, ‘”_oronary”’) � 1

Searching with Boolean
(OR)

SELECT PMID, db2xml.extractVarchar(citation, ‘/MedlineCitation/Article/ArticleTitle’)
FROM MEDLINE.CITATIONS
WHERE CONTAINS (CITATION, ‘”Coronary” “Disease”’) � 1

Searching for both
terms (AND)

SELECT PMID, db2xml.extractVarChar(citation, ‘/MedlineCitation/Article/ArticleTitle’)
FROM MEDLINE.CITATIONS
WHERE CONTAINS (CITATION, ‘”Coronary” & “Disease”’) � 1

Searching the number
of matches

SELECT PMID, NUMBEROFMATCHES(CITATION, ‘”disease”’)
FROM MEDLINE.CITATIONS
WHERE NUMBEROFMATCHES(CITATION, ‘”disease”’) � 0

Searching and returning
the score

WITH T1(PMID, SCORE) AS (SELECT PMID, SCORE(CITATION, ‘”Disease”&”Coronary”’)
FROM MEDLINE.CITATIONS)
SELECT * FROM T1 WHERE SCORE � 0 ORDER BY SCORE DESC

Searching for terms in
two sections

SELECT PMID
FROM MEDLINE.CITATIONS
WHERE CONTAINS (CITATION, ‘SECTIONS (“abstracts, titles”) “coronary disease”’) � 1

LEWIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004764

Though originally developed to work with the MED-
LINE data, this methodology has been applied to
other XML data, such as BIND16 interaction data and
BioMed Central17 article data. From the BIND data,
16 546 BIND XML records were selected and inserted
into a relational table as XML CLOBs (Table 2). Next,
specific interaction fields were extracted using XML
Extender functions and inserted into another table
where relational queries could be applied to the data.
Statistics resulting from such queries can be seen in
Table 2. The BIND DTD is more complex, and it was
encouraging to find that we could successfully ex-
tract all interaction data from these records. The
BioMed Central Bioinformatics article DTD is a sim-
ple DTD with approximately 96 elements and 33 at-
tribute list items. At the time there were 2895 full
text articles available ranging in size from 4 KB to
695 KB. We successfully created and built a data-
base in approximately eight minutes and indexed
these article abstract and body sections in an addi-
tional eight minutes.

Future Directions
Future work includes the development of an API sim-
ilar to the Seqhound API18 that can be used to access
the database either locally or remotely, from other
computers within the organization. This would rep-
resent a user-friendly layer that avoids the need to
interact directly with the DB2 Extenders. SQL stored
procedures have been built to accept as input the
search argument and the element to be searched.

Searching through MeSH terms can be made more
powerful. The MeSH terms are available in a hier-
archical structure that allows for either general or
specific levels of searching. For example, when
searching for ‘abdomen’—a very general term—all
subunits in the abdomen branch of the tree could
also be included, or everything under the branch such
as ‘abdominal cavity’, ‘abdominal wall’, ‘groin’, ‘in-
guinal canal’, and ‘umbilicus,’ as shown in Figure 4.
This hierarchical information can be incorporated
into the table, and recursive SQL can be used for
searching through the MeSH terms. This can also
be implemented by using code that preprocesses the
MeSH queries before creating the SQL statements.

Using XSLT, customized views of MEDLINE data can
be created in different formats, such as the formats
in MEDFILE. These may be used as input for various
bibliography software packages. The interface for a
Web submission form for MEDLINE searches and its
resulting matches can be customized using XSLT
stylesheets.

An implementation that makes use of the newest ver-
sion of DB2—the newly released Version 8 and the
NSE rather than the TIE—is planned once the XML
Extender is available to be installed with DB2 Ver-
sion 8. It would be interesting to implement this tool
and see how it compares to the performance of the
TIE.

Conclusions
The MyMED database project arose from the need
to make complex queries on MEDLINE citations that
return large result sets. Such queries are generated
during text-mining investigations for biomedical re-
search, such as the PreBIND project. During the
MyMED implementation, which uses DB2, XML Ex-
tender, and Text Information Extender, we have de-
veloped an alternative method to insert and query
XML documents using a low-level XML Extender col-
umn technique. The same methodology has proved
successful with other XML data with varying DTD
complexity.

There were many challenges that arose and, through
trial and error, methods were discovered to overcome
these limitations. In addition, trial fixes were made
available by IBM, or work-around solutions were de-
veloped for each problem. These methods provide
a stable relational database implementation of the
MEDLINE data. The resulting MyMED database ef-
fectively mirrors the MEDLINE database, can be built

Figure 4 MeSH hierarchy example

Body Regions [A01]

Abdomen [A01.047]

Back [A01.176]

Breast [A01.236]

Extremities [A01.378]

Head [A01.456]

Neck [A01.598]

Pelvis [A01.673]

Perineum [A01.719]

Thorax [A01.911]

Viscera [A01.960]

Abdominal Cavity [A01.047.025]

Abdominal Wall [A01.047.050]

Groin [A01.047.365]

Inguinal Canal [A01.047.412]

Umbilicus [A01.047.849]

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 LEWIS ET AL. 765

in a reasonable amount of time, can be queried in
a reasonable amount of time, and allows text min-
ing of MEDLINE citations with unrestricted access.

Acknowledgments

We would like to thank Ramiz Baykara, Angel
Reyda, and Juergen Metter for many useful discus-
sions and suggestions. The Blueprint Initiative is sup-
ported by the Canadian Institutes of Health Re-
search, the Ontario Government�s Research and
Development Challenge Fund, Genome Canada,
and industry partners Sun Microsystems, MDS Pro-
teomics, and Foundry Networks.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds, Mi-
crosoft Corporation, United States National Library of Medicine,
Object Management Group, Inc., or Sun Microsystems, Inc.

Cited references

1. United States National Library of Medicine, National Institutes
of Health, http://www.nlm.nih.gov/.

2. The Blueprint Initiative, http://www.blueprint.org/.
3. I. Donaldson, J. Martin, B. De Bruijn, C. Wolting, V. Lay,

B. Tuekam, S. Zhang, B. Baskin, G. D. Bader, K. Michal-
ickova, T. Pawson, and C. W. Hogue, “PreBIND and Tex-
tomy—Mining the Biomedical Literature for Protein-Protein
Interactions Using a Support Vector Machine,” BMC Bioin-
formatics 4, No. 1, (March 27, 2003).

4. XSL Transformations (XSLT), World Wide Web Consortium
(W3C), http://www.w3.org/TR/xslt.

5. MEDLINE Characters, United States National Library of
Medicine, http://www.nlm.nih.gov/databases/dtd/medline
_characters.html.

6. Documentation for Distribution of 2003 Baseline MEDLINE
Database, United States National Library of Medicine, http://
www.nlm.nih.gov/bsd/licensee/2003_baseline_doc.html.

7. The Perl Directory—perl.org, The Perl Foundation, http://www.
perl.org/.

8. DB2 Net Search Extender—Product Overview—IBM Software,
IBM Corporation, http://www-3.ibm.com/software/data/db2/
extenders/netsearch/index.html.

9. Unicode Home Page, Unicode Inc., http://www.unicode.org/.
10. UML, Object Management Group, http://www.uml.org/.
11. Medical Subject Headings—Home Page, United States Na-

tional Library of Medicine, http://www.nlm.nih.gov/mesh/
meshhome.html.

12. XML Path Language (Xpath), World Wide Web Consortium
(W3C), http://www.w3.org/TR/xpath.

13. DB2 XML Extender—Download—IBM Software, IBM Cor-
poration, http://www-3.ibm.com/software/data/db2/extenders/
xmlext/downloads.html.

14. XML Extender Administration and Programming Version 7,
IBM Corporation, (1999, 2000), pp. 131–147.

15. Text Information Extender Administration and User�s Guide
Version 7.2, IBM Corporation (1995, 2001), pp. 99–105.

16. G. D. Bader and C. W. Hogue, “BIND—A Data Specifica-
tion for Storing and Describing Biomolecular Interactions,

Molecular Complexes and Pathways,” Bioinformatics 16, No.
5, 465–77 (2000).

17. BioMed Central  About Us  Data Mining Research, Biomed
Central Ltd., http://www.biomedcentral.com/info/about/
datamining/.

18. K. Michalickova, G. D. Bader, M. Dumontier, H. Lieu, D.
Betel, R. Isserlin, and C. W. Hogue, “SeqHound: Biological
Sequence and Structure Database as a Platform for Bioin-
formatics Research,” BMC Bioinformatics 3, No. 1, (2002).

Accepted for publication June 30, 2004.

Kimberly N. Lewis (kimberlynina@hotmail.com). Kimberly
Lewis is currently working as an independent contractor in bioin-
formatics development in Singapore. Research for this paper was
conducted while she was an employee of the Blueprint Initiative.
She received a B.Sc. degree in computer science from the Uni-
versity of Victoria in 2000 and a B.Sc. degree in biology from the
University of Western Ontario in 1996. She also attended the Ca-
nadian Bioinformatics Workshops where she obtained a Certif-
icate in Bioinformatics. Before joining the Blueprint Initiative in
2002 as a bioinformatics database developer, she worked as a soft-
ware developer at MDS Proteomics.

Mark D. Robinson Banting and Best Institute, 112 College Street,
Toronto, Ontario M5G 1L6, Canada (mrobinson@mdsp.com).
Mark Robinson is currently a Bioinformatics Associate at MDS
Proteomics. He received a B.Sc. in applied mathematics and sta-
tistics from the University of Guelph in 1999 and a M.Sc. in sta-
tistics from the University of British Columbia in 2001. He worked
as a statistician in the laboratory of Dr. Timothy Hughes at the
Banting and Best Department of Medical Research at the Uni-
versity of Toronto for two years and has been working at MDS
Proteomics since July 2003.

Timothy R. Hughes Banting and Best Institute, 112 College
Street, Toronto, Ontario M5G 1L6, Canada (t.hughes@utoronto.ca).
Dr. Hughes received his Ph.D. in cell and molecular biology from
Baylor College of Medicine and did his postdoctoral work at Ro-
setta Inpharmatics (now a subsidiary of Merck). He is now an
Assistant Professor in the Banting and Best Department of Med-
ical Research at the University of Toronto, and holds a Canada
Research Chair. Dr. Hughes has extensive experience in the man-
ufacture and use of DNA microarrays, and is well known for in-
novative approaches in functional genomics. He played a key role
in the development of a new microarray technology in which oli-
gonucleotides are synthesized in situ by delivering phosphoramid-
ite microdroplets with ink-jet printer heads. He also authored one
of the first manuscripts formally demonstrating that microarray
expression patterns can be used to distinguish hundreds of cel-
lular states, facilitating both characterization of novel genes and
identification of the activities of poorly characterized drugs. His
laboratory is focused on developing and applying new DNA mi-
croarray methods and new approaches to the analysis and uti-
lization of genome-based experimental data.

Christopher W.V. Hogue Samuel Lunenfeld Research Institute,
Mount Sinai Hospital, 600 University Avenue, Room 1060, Toronto,
Ontario M5G 1X5, Canada (hogue@mshri.on.ca). Dr. Hogue is
a scientist at the Samuel Lunenfeld Research Institute of Mount
Sinai Hospital and is an Assistant Professor in the Department
of Biochemistry at the University of Toronto. Dr. Hogue has been

LEWIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004766

developing bioinformatics applications since 1986, working in both
the commercial sector and in academic software development,
and since that time he has published over 40 scientific articles
and six patents. He is involved in the training of undergraduate
and graduate students and in the University of Toronto Proteom-
ics and Bioinformatics program. Dr. Hogue earned his B.Sc. de-
gree from the University of Windsor and his Ph.D. from the Uni-
versity of Ottawa, both located in Ontario, Canada. He was a
GenBank Fellow during his postdoctoral term at the U.S. Na-
tional Institutes of Health in the National Center for Biotech-
nology Information (NCBI). At NCBI Dr. Hogue helped develop
a new 3-dimensional structure database and wrote a widely used
program for visualizing biological molecules called Cn3D. He has
published 30 papers in the field of bioinformatics since 1987, but
also has several well-cited publications including work in the fields
of protein engineering, semi-enzymatic chiral synthetic methods,
methods for detecting protein interactions, lanthanide lumines-
cence, and protein structure-function studies using fluorescence
spectroscopy. Hogue has received several major grants for his re-
search, including a CDN $29 million effort to build the BIND
database, making him one of the top-funded biological scientists
in the world. He was selected as one of Canada�s Top 40 under
40 in 2001.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 LEWIS ET AL. 767

