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During recent years, we have witnessed a
major paradigm shift in distributed computing
principles, with a focus towards service
orientation, open standards integration,
collaboration, and virtualization. One particular
area of interest centers on the evolution of
grid computing principles into the mainstream
of distributed computing and Web services. In
this paper, we focus our analysis on this
evolution and the significance of achieving
some form of standardization of grid-
computing architecture principles. This paper
presents the technology standards that are
driving major grid initiatives and explains in
simple terms how these standards and
technologies are aligned with the IBM on
demand business concepts. In addition, we
discuss the recent Web services
specifications related to stateful resources
(i.e., resources whose behavior is defined with
respect to their underlying state) and how
these standards relate to grid computing.
We conclude with discussions exploring major
aspects of grid-computing adoption models
and some significant attributes that influence
the transformation, collaboration, and
virtualization features of these models.

A distributed system consists of a set of software
agents that work together to implement some in-
tended functionality. Because the agents in a distrib-
uted system do not operate in a uniform processing
environment, they must communicate by protocol
stacks that are intrinsically less reliable than direct
code invocation and shared memory. Grid-comput-

ing principles focus on large-scale resource sharing
in distributed systems in a flexible, secure, and co-
ordinated fashion. This dynamic coordinated shar-
ing results in innovative applications making use of
high-throughput computing for dynamic problem
solving.

In this paper, we analyze the core initiatives that will
enable grid computing to evolve into a service-ori-
ented computing platform. These initiatives are
based on the concepts of merging grid architectures
with service-oriented architectures (SOAs). Our ap-
proach is based on the emergence of open standards
platforms to build resource collaboration models,
combined with the ability to simply construct dy-
namic applications that leverage virtualized re-
sources. This approach allows for the implementa-
tion of well-defined grid adoption models and their
application in on demand business environments.

One of the basic requirements of a grid system is
the ability to provide the high-level quality of ser-
vice (QoS) needed for a satisfactory user experience.
Thus, QoS validation must exist as a basic feature
in any grid system, as measured by the available re-
source metrics. These metrics include response time
measurements, aggregated event performance mon-
itoring and measurements, security fulfillment, re-
source scalability, availability, autonomic features,
fail-over mechanisms, and networking services (in-
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cluding network circuit provisioning and event
correlation).

There are important architectural implications re-
lated to the grid adoption model, in light of the fact
that all distributed systems require developers (of
both infrastructure and applications) to consider the
unpredictable latency of remote access. This means
developers must take into account issues of concur-
rency and the possibility of partial failure.1 Grid com-
puting aims to resolve these complexities of distrib-
uted computing through a well-defined architecture
that is aligned with SOA, autonomic-computing prin-
ciples,2 and open standards for integration and
interoperability.

The remainder of the paper is structured as follows.
In the next section, we review grid architecture evo-
lution and its alignment with SOAs. We then detail
the standards that are driving this architecture plat-
form, especially as they relate to IBM�s on demand
business3 and grid4 initiatives. In the last section, we
discuss the grid adoption model, including the stan-
dards and attributes that are driving the capabilities
of this adoption model. Some material presented in
this paper was taken from Reference 5.

Evolution of grid architecture. In 1998, it was stated
that “a computational grid is a hardware and soft-
ware infrastructure that provides dependable, con-
sistent, pervasive, and inexpensive access to high-end
computational capabilities.”6 This definition was pri-
marily centered on the computational aspects of
grids. Later iterations broadened this definition with
more focus on coordinated resource sharing and
problem solving in multi-institutional virtual
organizations.7

The grid problem. Grid computing has evolved into
an important discipline within the computer indus-
try by differentiating itself from distributed comput-
ing through an increased focus on resource sharing,
co-ordination, manageability, and high performance.
The focus on resource sharing is called the grid prob-
lem, which can be defined as the set of problems as-
sociated with resource sharing among a set of indi-
viduals or groups. This sharing of resources, ranging
from simple file transfers to complex and collabo-
rative problem solving, is accomplished under con-
trolled and well-defined conditions and policies. In
this context, the critical problems are resource dis-
covery, authentication, authorization, and access
mechanisms. Resource sharing is further compli-
cated when a grid is introduced as a solution for util-

ity computing,8 where commercial applications and
resources become available as shareable and on-de-
mand resources. This concept of commercial on-de-
mand utility grid services adds new, more difficult
challenges to the already complicated grid problem
list,7 including service level features, accounting, us-
age metering, flexible pricing, federated security,
scalability, and open-ended integration.

Virtual organizations. A virtual organization (VO) is
a dynamic group of individuals, groups, or organi-
zations who define the conditions and rules for shar-
ing resources. The concept of the VO is the key to
grid computing. All VOs share some characteristics
and issues, including common concerns and require-
ments that may vary in size, scope, duration, soci-
ology, and structure. The members of any VO ne-
gotiate the sharing of resources based upon the rules
and conditions defined by the VO, and the members
then share the resources in the VO�s constructed re-
source pool.9

Assigning users, resources, and organizations from
different domains to a VO remains one of the key
technical challenges in grid computing today. This
task includes the determination of a definition of re-
source discovery mechanisms, such as identification
and application of appropriate resource-sharing
methods, specification and application of rules and
conditions for member assignment, security feder-
ation or delegation, and access control among the
participants.

Common characteristics typically exist among the
competing and sometimes distrustful participants
that contributed to the formation of the VO. These
may include the following:7

1. Concerns and requirements exist concerning re-
source sharing.

2. Resource sharing is conditional, time-bound, and
rules-driven.

3. The collection of participating individuals and/or
institutions is dynamic.

4. Sharing relationship among participants is peer-
to-peer in nature.

5. Resource sharing is based on an open and well-
defined set of interactions and access rules.

The above characteristics and requirements lead to
the definition of an architecture for VO establishment
and management and for resource sharing among par-
ticipants. We examine this architecture in the follow-
ing section, exploring its scope and characteristics.
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Grid architecture model. A new architecture model
and technology has been developed for the estab-
lishment and management of cross-organizational
resource sharing. This new architecture, called grid
architecture, identifies the basic components of a grid
system. The grid architecture defines the purpose and
functions of its components, while indicating how
these components interact with one another.7 The
main focus of the architecture is on interoperability
among resource providers and users in order to es-
tablish the sharing relationships. This interoperabil-
ity, in turn, necessitates common protocols at each
layer of the architectural model, which leads to the
definition of a grid protocol architecture as shown
in Figure 1.

This protocol architecture defines common mech-
anisms, interfaces, schema, and protocols at each
layer, by which users and resources can negotiate,
establish, manage, and share resources. Figure 1
shows the component layers of the grid architecture
and the capabilities of each layer. Each layer shares
the behavior of the underlying component layers.
The following describes the core features of each of
these component layers, starting from the bottom
of the stack and moving upward.

● Fabric layer—The fabric layer defines the inter-
face to local resources, which may be shared. This
includes computational resources, data storage,
networks, catalogs, software modules, and other
system resources.

● Connectivity layer—The connectivity layer defines
the basic communication and authentication pro-

tocols required for grid-specific networking-
service transactions.

● Resource layer—This layer uses the communica-
tion and security protocols (defined by the con-
nectivity layer) to control secure negotiation, ini-
tiation, monitoring, accounting, and payment for
the sharing of functions of individual resources.
The resource layer calls the fabric layer functions
to access and control local resources. This layer
only handles individual resources, ignoring global
states and atomic actions across the resource col-
lection pool, which are the responsibility of the col-
lective layer.

● Collective layer—While the resource layer manages
an individual resource, the collective layer is re-
sponsible for all global resource management and
interaction with collections of resources. This pro-
tocol layer implements a wide variety of sharing
behaviors using a small number of resource-layer
and connectivity-layer protocols.

● Application layer—The application layer enables
the use of resources in a grid environment through
various collaboration and resource access
protocols.

Thus far, our discussions have focused on the grid
problem in the context of a virtual organization and
the proposed grid computing architecture as a sug-
gested solution to this problem. This architecture is
designed for controlled resource sharing with im-
proved interoperability among participants. In con-
trast, emerging architectures help the earlier-defined
grid architecture quickly adapt to a wider (and stra-
tegically important) technology domain.

SOA model. A service-oriented architecture (SOA)
is a specific type of distributed system framework
which maintains agents that act as “software ser-
vices,” performing well-defined operations. We de-
fine a SOA as a loosely coupled architecture with a
set of abstractions relating to components granular
enough for consumption by clients and accessible
over the network with well-defined policies as dic-
tated by the components.

Thus, a service acts (in some manner) as a user-fac-
ing software component of an application or re-
source. This paradigm of functionality enables the
users of that application (or resource pool) to be con-
cerned only with the operational description of the
service. In addition, SOA stresses that all services have
a network-addressable interface and communicate
via standard protocols and data formats called
messages.

Figure 1 The layers of the grid architecture and its  
  relationship to the Internet Protocol architecture
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The Web Services Architecture (WSA) helps to en-
able and define SOA, where services interact by ex-
changing XML (Extensible Markup Language) mes-
sages, as shown Figure 2. The main characteristics
of the WSA are:

● It is based on XML technologies such as XML In-
formation Model,10 XML Base, and XML Schema.11

● It is independent of the underlying transport pro-
tocols (e.g., HTTP [HyperText Transfer Protocol]
or SMTP [Simple Mail Transfer Protocol]) and the
transport selected as a runtime binding
mechanism.

● It uses XML message exchanges, while providing
the extensibility model for this message exchange
pattern to adapt to various message interchange
requirements (e.g., security, reliability, correlation
and privacy.) These interoperable messages could
be created using Simple Object Access Protocol12

(SOAP) and SOAP extensions. SOAP extension
mechanisms and XML information models are used
to construct Web services extensions.

● Service capabilities are described using descrip-
tion languages such as Web Services Description
Language (WSDL).

● It uses the service discovery, workflow choreog-
raphy, and transaction/state management that are
built on the XML capabilities and lower-layer spec-
ifications in the architecture layer.

The emergence of the SOA concept helps grid re-
sources to advertise their capabilities through stan-
dard interfaces defined as part of their service ex-
tensions. This enables grid users to integrate the
resources through open-standards interfaces. In ad-
dition, the operational functions of each layer in the
grid architecture can be abstracted to enable easier
integration across all the layers. This service abstrac-
tion of each layer of the grid architecture is shown
in Figure 3.

In the next section, we discuss the architectural stan-
dardization initiatives for the alignment of the SOA
and the grid architecture. This discussion focuses on
how these architectures complement each other and
on the major open standards that assist this coor-
dination and its evolution.

Defining an open-standards platform for grid com-
puting. In order to achieve true distributed resource
sharing across heterogeneous and dynamic VOs, grid-
computing technologies require several improve-
ments in alignment with other computing technol-
ogies. In the early days of grid computing, a number
of custom middleware solutions were created to solve
the grid problem, but this resulted in non-interop-
erable solutions and problematic integration among
the participants. As stated earlier, the new wave of

Figure 2 The Web Services Architecture (WSA) and the respective layers in the WSA framework
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grid computing focuses on the easier integration, se-
curity, and QoS aspects of resource sharing.

Foster et al.13 described the Open Grid Services Ar-
chitecture (OGSA) as a solution to the above prob-
lem. This architectural concept is a result of the align-
ment of existing grid standards with emerging SOAs,
as well as with the Web. OGSA provides a uniform
way to describe grid services and define a common
pattern of behavior for these services. It defines grid-
service behavior, service description mechanisms,
and protocol binding information by using Web ser-
vices as the technology enabler. This architecture
uses the best features from both the grid-computing
community and the Web-services community.

OGSA architecture and goal. OGSA is a layered ar-
chitecture, as shown in Figure 4, with clear separa-
tion of the functionalities at each layer. As seen in
the figure, the core architecture layers are the Open
Grid Services Infrastructure (OGSI) and OGSA plat-
form services. The platform services establish a set
of standard services including policy, logging, ser-
vice level management, and other networking ser-
vices. High-level applications and services use these
lower-layer platform core components to become a
part of a resource-sharing grid.

The Global Grid Forum14 (GGF) has adopted the
OGSA platform. There have been many activities in
the GGF to define the use cases and core platform
services, but there has been little activity related to
the platform binding and resource modeling and pro-
filing areas. A detailed discussion of OGSA, infrastruc-

ture, and platform services can be found in Refer-
ence 5.

The IBM vision of the OGSA is summarized in Figure
5. This is a layered architecture, with the lowest layer
comprising the basic IT resources, such as servers,
storage, and network services. This includes the hard-
ware and corresponding software support for oper-
ating systems, subsystems, and the components that
control them.

The layer above the IT resources handles functions
such as security, workflow, databases, file systems,
directories, and messaging software. These are typ-
ically implemented as general-purpose middleware
components. This middleware generally exploits the
lower layer of physical resources and provides func-
tions that can be abstracted and “virtualized” as
services.

Grid services standardization

A grid service is (in practice) a Web service that con-
forms to a particular set of coding practices, namely,
a set of XML coding conventions in the form of stan-
dards. For example, grid services can be defined in
terms of standard XML-based WSDL, with perhaps
some minor XML language extensions. These grid
services can now take advantage of standard Web
services binding technologies (for messaging, reli-
ability, transactions, and security), such as SOAP, WS-
ReliableMessaging (Web Services Reliable Messag-
ing), WS-Transaction (Web Services Transaction)
and WS-Security (Web Services Security). Grid ser-

Figure 3 Service-oriented grid architecture with service  
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vices indeed look like Web services, especially from
a programmatic view.

As stated earlier, all of the resources (physical or log-
ical) in OGSA are modeled as services. These services
are built on top of the SOA, and more specifically
the WSA. This enables a grid service to use the ca-
pabilities of the message model, service descriptions,
and discovery. Web services standards have evolved
to enable these services to extend capabilities for se-
cure and reliable transactions. In the next section,
we explore the evolution of Web services standards
and the fundamental principles behind these plug-
gable extended standards.

Evolution of Web services standards. Standards are
critical to interoperability within a distributed com-
puting platform, especially an advanced platform that
provides a service-oriented, loosely coupled, cross-
platform programming model. Standards enable
platform services to more simply integrate with the
middleware and infrastructure. This, in turn, also
helps to reduce the complexity of heterogeneous and
cross-enterprise orchestration and integration.

Figure 6 illustrates some of the evolving standards
supported by industry leaders such as IBM and Mi-
crosoft.15 These standards share the following ele-
ments:

1. The XML data model— As defined by W3C**
(the World Wide Web Consortium), the XML

data model, or XML information set, forms the
core of all XML specifications, including SOAP and
WSDL. This common base allows more adaptable
tools and XML processors to be created.

2. Modularity—SOAP provides an enveloping and
processing mechanism for XML messages to be
exchanged. SOAP provides a transport-indepen-
dent data format for the transfer of XML mes-
sages based on the SOAP encoding format as
specified by the SOAP specification or by using
XML schema. Messages encoded by using the
XML schema are recommended and are often
referred to as document/literal messages.

3. Decentralization and federation—A constraint
agreement is a regulatory agreement between a
Web services client and a service provider on the
format of message to be exchanged. Constraint
agreements exist between the parties involved
in any Web services integration. The parties
agree on the syntax and semantics of the mes-
sages being exchanged although they may dis-
agree on the software accepting the messages.
They may also disagree on the programming lan-
guages used to build the system, the operating
systems used, and the databases used. This is a
benefit as it does not force issues of configura-
tion conformance on all participants.

This concept of decentralization allows the
parties involved to make their own decisions on

Figure 5 OGSA architecture with Web services-enabled service interface
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all aspects of message processing, including
security, policy requirements, and processing.
At the same time, the concept of federation
allows these parties to exchange information
in meaningful formats. For example, parties can
exchange messages even though they disagree
on internal security implementation mecha-
nisms.

4. Application and transport neutrality—This is a
binding-level decision between the service and
the requestor. This binding agreement is inde-
pendent of the message being exchanged. The
application neutrality comes from the fact that
the parties are not defining any specific message
exchange protocol but instead are defining stan-
dards-based XML messages that need to be
exchanged.

5. Open standards—Most of the specifications
and standard protocol definitions mentioned
here are being submitted to various standards
authorities, including OASIS (Organization for
the Advancement of Structured Information
Standards) and W3C. Later in this paper, we dis-
cuss some of the standards bodies that are play-
ing a major role in the grid standardization
process.

As seen in Figure 6, the major building blocks iden-
tified by these plug-and-play extension standards in-
clude the facilities for message-level security, ex-
changing transaction-aware messages, message
exchange coordination among participants, and re-

liable message exchange patterns. Other facilities in-
clude addressing mechanisms, service and message
policies for proper message handling, meta-data in-
formation exchange, and a notification framework
for consumers and producers exchanging messages.

In the following section, we focus our attention on
grid services and explore the standards that play a
major role in this area.

Grid services as Web services. There are two core
standards that are available in the grid standardiza-
tion area. These are OGSI and Web Services Re-
source Framework (WSRF).

The OGSI standard. The base component of the
OGSA architecture is OGSI. This is a grid software in-
frastructure standard based on the emerging Web
services standards. The goal of OGSI is to provide
maximum interoperability among OGSA software
components. Based on the OGSI specification,17 a grid
service instance is a Web service that conforms to
a set of conventions expressed by WSDL as service
interfaces, extensions, and behaviors. A grid service
provides the controlled management of the distrib-
uted and often long-lived state that is commonly re-
quired in sophisticated distributed applications.

Figure 7 shows the layering of the OGSI components
in a Web service with new interfaces and behaviors.
The most notable point is the extension of WSDL to
provide additional state data description mecha-
nisms. In addition to this, the specification is a set
of behaviors and interfaces to support service life-

Figure 6 Web services extensions
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cycle stages: for example, service-level management,
collection management, state-change notifications,
service creation mechanisms, and instance-reference
management.

Message-level interoperability is a key feature of this
standard, and it is achieved by using XML as the core
message format and schema. One of the require-
ments of the services defined by OGSI is the ability
to describe the concepts of state data, life-cycle prop-
erties, and instance behaviors using an OGSI descrip-
tion model, which is in fact a combination of WSDL
and the OGSI GWSDL5,16 (Grid Web Services Defi-
nition Language).

The WSRF standard. WSRF is a collection of speci-
fications to support grid services or other stateful re-
sources (resources whose behavior is defined with
respect to their underlying state) and is comparable
to OGSI. There are many motivations behind the
WSRF specifications.17 As seen in Figure 8, the most
notable contribution is the intersection of grid com-
puting and Web services standards and their align-
ment with SOA principles.

This alignment will continue to help define open
standards through interoperable and compatible
plug-and-play service extensions to the grid archi-
tectures, thereby increasing acceptance and facili-
tating integration. Through this alignment with the
Web services stack, grid services can use existing Web
services standards, such as WS-Notification,18 WS-
Addressing,19 and WS-Security,20 and build exten-

sions for extended capabilities such as service state
data, lifetime, grouping, and reference management.

In the previous discussion, we described grid services
as service representations of resources. These re-
sources could be stateful or stateless (a resource
whose behavior is not affected by stored behavior).
Normally, grid services are assumed to represent
some resources that have state. In the following sec-
tions, we will suggest how to manage the context in
the case of a stateful resource. This discussion in-
troduces aspects of the WS-Resource standard and
the new modeling concepts relating to these
resources.

Introduction to WSRF
There are many motivations behind the WSRF spec-
ifications. The most notable contribution of WSRF is
to bring grid and Web services standards together.
This requires the alignment of WSRF with SOA prin-
ciples. This alignment helps to further define open-
standards, interoperable, and plug-and-play service
extensions to the grid architecture. It has been noted
that the OGSI specification, as opposed to WSRF, tends
to be more object-centric, as a complex set of con-
cepts with an overutilization of XML schemas; some
argue that its extensibility features are not well suited
for existing Web services tools.21

Another motivating factor is the convergence of grid
services to align with existing languages, program-
ming models, tools, and technology directions in Web
services, systems management, and on demand com-
puting. Some of the best examples of this conver-

Figure 7 Open Grid Services Infrastructure (OGSI)  
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gence are in Web Services Distributed Management
(WSDM) and in IBM�s on demand infrastructure vir-
tualization areas.

The WSRF specifications are built on top of the im-
plied resource pattern, as described in the following
section. These extended sets of specifications now
enable a stateful resource to manage its lifetime, send
and receive notification on state changes, expose
state data as XML documents, and manage faults.

Implied resource pattern for stateful resources. The
implied resource pattern22 addresses the relation-
ship between Web services and stateful resources
through a set of conventions expressed through com-
posable Web services technologies such as the WS-
Addressing standard. (By “composable,” we refer to
the Web services set of extensibility points, which
enables composing multiple Web services specifica-
tions to enable more advanced features.) The re-
questor identifies a stateful resource through the WS-
Addressing mechanism called the endpoint reference
(EPR). The EPR contains enough information to dis-
patch the correct endpoint through the EPR prop-
erties. This is a pattern of message exchange with
the implicit resource identifier in the context of mes-
sage (using WS-Addressing reference properties) to
uniquely identify the resource with which to com-
municate. A stateful resource that is taking part in
this implied resource pattern is called the
WS-Resource.

WS-Addressing. This capability provides transport-
neutral mechanisms for locating Web services.19 It
is provided by the specification, utilizing the follow-
ing constructs: a flexible and extendable EPR descrip-
tion model, a set of SOAP message headers (SOAP

features), and rules to map these reference elements
to the SOAP header elements.

Normally, Web services are invoked by the service
endpoint information that is provided by the WSDL.
For example, a WSDL service port has a location ad-
dress, which identifies the endpoint. This informa-
tion is suitable in most cases, with the exception of
stateful Web services and cases that add more dy-
namic information to the address (instance informa-
tion, policy, complex binding, and so on). This re-
quires a client or runtime system to uniquely identify
a service at runtime, based on this runtime informa-
tion. This binding-specific information may include
a primary key, unique identifier, and so on. Currently,
there is no standard way by which this information
can be exchanged and then mapped to the runtime
engine while the service is accessed. The WS-Ad-
dressing specification addresses this problem by pro-
viding a lightweight mechanism for identifying and
describing the endpoint information and mapping
that information into the SOAP message headers.

The WS-Addressing specification standardizes the
representation of the address of a Web service de-
ployed at a given network endpoint, provides a WS-
Addressing EPR that is an XML serialization of a net-
work-wide pointer to a Web service, and provides
an EPR that contains a service address (wsa:Address),
meta-data associated with the Web service (such as
service description information [WSDL]), policy in-
formation related to the usage of the service, and
reference properties (wsa:ReferenceProperties),
which can be used to identify a specific stateful re-
source instance associated with the Web service at
the endpoint address.

WS-Resource. This is a stateful resource such as disk
storage, a computer system, an operating system, or
a shopping cart. Resources are identified as Web ser-
vices resources by participating in the implied re-
source pattern (i.e., conforming to the defined pat-
tern of interactions for stateful objects). The WS-
Resource represents both the stateful resource and
an associated Web service.

A WS-Resource has a network-wide EPR to identify
the Web service and a set of reference properties to
uniquely identify the specific resource through the
WS-Addressing reference properties. For example,
Figure 9 shows three computer system resources. It
shows a service facade Web service with a network-
wide endpoint. Each computer system is identified
by using the reference properties in WS-Addressing.

Figure 9 A relationship model showing the WS-Resource
 and associated Web service
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The content of the identity information for the WS-
Resource is binding-specific, and the service re-
questor should not interpret that content. This iden-
tity information, which is supplied along with the
SOAP header, is used by the Web service facade to
identify the correct resource. A WS-Resource may
implement multiple interfaces and can associate mul-
tiple Web services facades with different EPRs.

The state data of the stateful resource can be exposed
to the service requestor through resource property
documents (XML document views). Each stateful re-
source has a life cycle with a well-defined semantics
association for its creation and destruction. The iden-
tity of a resource is attached to it when it is created.

WS-Notification. This is the event-driven interaction
pattern that is commonly used for interobject com-
munications.18 Examples exist in many domains, for
example, in publish/subscribe systems provided by
message-oriented middleware vendors, or in system
and device management domains. This notification
pattern is being more widely used in a Web services
context.

The WS-Notification standard is a family of related
white papers and specifications that define a stan-
dard Web services approach for message notifica-
tion, using a topic-based publish/subscribe pattern.
It includes standard message exchanges to be imple-
mented by service providers that wish to participate
in notifications, standard message exchanges for a
notification-broker service provider (allowing pub-
lication of messages from entities that are not them-
selves service providers), operational requirements
expected of service providers and requestors that par-
ticipate in notifications, and an XML model that de-
scribes topics (i.e., items of interest for subscriptions.)

The WS-Notification family of documents includes
a white paper (see Reference 18) as well as three
normative specifications: WS-BaseNotification,23

WS-BrokeredNotification,24 and WS-Topics.25 WS-
BaseNotification defines the Web services interfaces
for notification producers and notification consum-
ers. This includes standard message exchanges to be
implemented by service providers that wish to act in
these roles, along with operational requirements ex-
pected of them. WS-BrokeredNotification defines the
Web services interface for the notification broker.
A notification broker is an intermediary, which,
among other things, allows publication of messages
from entities that are not themselves service provid-
ers. It includes standard message exchanges to be

implemented by notification-broker service provid-
ers, along with operational requirements expected
of service providers and requestors that participate
in brokered notifications. WS-Topics defines a mech-
anism to organize and categorize topics. It defines
three topic expression dialects that can be used as
subscription expressions in “subscribe request” mes-
sages and other parts of the WS-Notification system.
It further specifies an XML model for describing
meta-data associated with topics.

The implied resource pattern is used to describe a
stateful resource interaction. This scenario is shown
in Figure 10 and involves the following steps:

1. Create a stateful resource with a specific iden-
tity26 and a service interface.

As shown in the specific scenario in Figure 10,
we have identified three computer systems,
which are stateful with codified state elements
such as memory, CPU version, bus speed, and so
on. These resources are stateful in nature and
their identities are assigned by the runtime man-
ager during their creation. In addition, there is
a Web service for these resources with unique
endpoint information (codified in WS-Address-
ing). The identity of each resource is unique in
the domain of the associated Web service, and
there is no need for it to be globally unique.

2. Service requestors interact with the stateful re-
sources through implied resource patterns.

A service requestor can interact with a stateful
resource through the context established by WS-
Addressing and its reference properties. The
WS-Addressing EPR contains the network ad-
dress (logical or physical) of the resource Web
service, and the EPR reference properties (wsa:
ReferenceProperties) contain the additional
context information about the resource.

The above pattern of interaction with the resource
is implicit. That is, the requestor does not provide
the identity of the resource as an explicit parameter
in the body of the request message; instead, the con-
text is established through message headers, as in-
dicated by the EPR reference properties. The result-
ing SOAP message is shown in Figure 11.

Figure 1227 shows the convergence of grid and Web
services standards. The technology gap and the pro-
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gramming model differences are narrowing through
a standards convergence model that is moving
towards a common framework. This has been noted
in key areas such as Web services extension spec-
ifications, WSDL, and WSRF.

In the following, we describe the new set of standards
that have been recently introduced to describe grid
services, using the above implied resource patterns

for stateful resources. The WSRF specifications that
are of interest for our discussion are WS-Resource
Properties, WS-ResourceLifetime, and WS-Service-
Group. We examine these new standards in detail
and discuss their relationships to the concept of grid
services.

WS-ResourceProperties. Every grid resource has
some form and state associated with it. This form

WSDL

WS-Resource

Computer 
System Service A 

Computer 
System 1

Computer 
System 3

Runtime Environment

Web Service

Figure 10 Scenario showing the implied resource pattern associated with a WS-Resource

<wsa:EndpointReference>
<wsa:Address>
http://test.org/ComputerSystemService
</wsa:Address>
<wsa:ReferenceProperties>
            <tns:resourceID>
                      C2
            </tns:resourceID>
</wsa:ReferenceProperties>
</wsa:EndpointReference> 

Endpoint reference containing  
a WS-Resource context

<wsa:EndpointReference>
<wsa:Address>
http://test.org/ComputerSystemService
</wsa:Address>
</wsa:EndpointReference>

Endpoint reference

Disk Storage

Client

1

2

Computer 
System 2

Figure 11 A SOAP message with a WS-Resource identity

<soap:Envelope>
               <soap:Header> 
               <wsa:Action> …… </wsa:Action>  <!— The action to perform e.g., operation name to invoke - ->
               <wsa:To> http://test.org/ComputerSystemService </wsa:To> <!— Web service  end-point - -> 
               <tns:resourceID> C </tns:resourceID> <!—resource identifier - ->
               </soap:Header>
   <soap:Body>

… some message
   </soap:Body>
</soap:Envelope>
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and state specification constitutes a message schema
that defines and exposes these properties of a re-
source, as part of the Web services interfaces, to
other resources. These properties may be a part of
the resource�s state (both logical and physical). Meta-
data about the resource and stateful information may
be presented upon request.

This specification does not dictate exactly how the
values of these properties are constructed. These val-
ues may in fact be in the resource, or they may be
from external sources. They are exposed to the re-
questor as XML documents. In addition, this spec-
ification defines a set of standard message exchange
patterns that allow the requestor to query, insert, and
update the properties of a resource. As shown in Fig-
ure 13, the computer system resource exposes its
state information through a well-defined set of in-
terfaces, as defined by the exposed port types. A cli-
ent could use these exposed operations to find, ac-
cess, and modify the resource properties.

As shown in the XML code fragment of Figure 14,
the “ComputerSystem” resource exposes a property
called “current_memory.” This property is defined
as a part of the global XML schema element (e.g.,
“GetComputerSystemMemory”) and referenced as
part of the WSDL:portType open attribute content.

A service requestor can retrieve this property from
the resource at runtime as an XML document view
by using the “GetResourcePropertyRequest” or
“GetMultipleResourcePropertiesRequest” opera-
tions associated with the Web service. The GetRe-
sourcePropertyRequest message is shown in the XML
code fragment of Figure 15. This request is inter-
preted by the Web service, which in turn retrieves
the necessary resource property value from the un-
derlying resource. A service requestor can insert, de-
lete, or update a resource property with a new value.
The response is returned to the requestor, as shown
in the XML code fragment of Figure 16.

Finally, this specification provides facilities for que-
rying, by sending query expressions to retrieve frag-
ments of resource properties. The format of this type
of query expression is shown in the XML code frag-
ment of Figure 17. The dialect attribute defines the
query expression language of choice, such as XPath,
XQuery, or SQL, and the query expression defines
the query to be applied to the resource properties.

It is possible for a service requestor to request no-
tification of changes (e.g., updates, deletions, and in-

sertions) made to values of one or more resource
property elements of a given WS-Resource. The re-
questor is able to take part in this notification pro-
cess through the Web service associated with the
WS-Resource.

WS-ResourceLifetime. A grid service may be tran-
sient, created with a specified lifetime. This stateful
resource�s lifetime could be negotiated and con-
trolled by its clients. This helps to provide a con-
trolled clean-up mechanism for resources. The spec-
ification defines a set of standard message exchange
patterns for time-based immediate destruction of a
service. This service lifetime management offers ex-
plicit destruction capabilities to a service requestor
or a specific service. In addition, it provides the ca-
pability for scheduled destruction at a future time.
The semantics of destruction of a service are con-
trolled by the security and service container policies.
The interaction model ensures that once the resource
is destroyed, the resource EPR is no longer valid and
the requestor will not be able to connect to the re-
source using the same EPR.

This specification defines a set of service properties
and two types of service destruction message pat-
terns. The properties of a service that are used to
manage its lifetime are InitialTerminationTime, Cur-
rentTime, and TerminationTime. The identified ser-
vice destruction message exchange patterns for life-
time management capabilities are:

Figure 12 Standards convergence graph

WSRF
WSDL 2

WSDM
WS
SOAP 1.2

WSDL 1.1
SOAP 1.1

OGSI
GWSDL

RPC
CORBA

SOAP 1.0

1998 2002 2003 2004

CMM

Technology 
standard gap

Reprinted with permission from Ian Foster  
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1. Immediate destruction—A resource that is tak-
ing part in the implied resource pattern could
send a message (DestroyRequest) to the service,
in order to immediately destroy the resource.
This message could be of the format shown in

Figure 18. The Web service that accepts this mes-
sage may destroy the implied resource, or it
could return an exception.

2. Scheduled destruction—The resource that is tak-
ing part in the implied resource pattern (by im-

Figure 13 A computer system WS-Resource with WS-ResourceProperties interfaces

Delegation

Resource 
Properties

GetResourceProperty

SetResourceProperties

WS-Notification
<<PropertyChange>>

GetMultipleResourceProperties

QueryResourceProperties

Facade

Computer 
System C1

Service 
Requestor

Currentmemory
SetResource
Properties
(portType)

QueryResource
Properties
(portType)

GetResource
Property
(portType)

GetMultiple
Resource 
Properties
(portType)

Computer System
Service
(Web Service)

Figure 14 A WSDL message with a portType attribute

<xsd:element  name="GetComputerSystemMemory"   xmlns:tns="http://test.org/computersystem" >
<xsd:element ref="tns:current_memory" />

</xsd:element>
<xsd:element name="current_memory"  value="xsd:integer" />

<wsdl:portType name="ComputerSystem"  wsrp:ResourceProperties="tns:GetComputerSystemMemory">
<operation name="start" .../>
</wsdl:portType>

Figure 15 A WS-ResourceProperties message with a GetResourcePropertyRequest operation

<wsrp:GetResourcePropertyRequest xmlns:tns="http://test.org/computersystem"  >
 tns:current_memory <!—name of the property to retrieve - -> 
</wsrp:GetResourcePropertyRequest>
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plementing the scheduledTermination interface)
could accept a message (SetTerminationTime-
Request) to destroy the resource after a spec-
ified period of time as indicated in the message.

The time synchronization in a distributed applica-
tion is complex. The WS-ResourceLifetime speci-
fication provides a capability through which the ser-
vice requestor could get the current time of a service
(using the CurrentTime resource property).

In addition to the above capabilities, the Web ser-
vice associated with the WS-Resource could be a no-

tification producer (as defined in the WS-Notifica-
tion specification). Notification producers provide
notification topics to allow service requestors to sub-
scribe for notification about the destruction of a
resource.

WS-ServiceGroup. In some cases, it may be required
to aggregate a set of Web services. This may be in
order to provide a domain-specific solution, or as a
simple collection of services for indexing and other
discovery enablement scenarios. The WS-Service-
Group specification describes a “by-reference” col-
lection of Web services, where these Web services

Figure 16 A WS-ResourceProperties message return with a GetResourcePropertyRequest operation

<wsrp:GetResourcePropertyResponse xmlns:tns="http://test.org/computersystem"  >
           <tns:current_memory>  <!—an XML view of the resource property- ->
              512 
           </tns:current_memory>  
</wsrp:GetResourcePropertyResponse>

Figure 17 A WS-ResourceProperties message to query, send query expressions, and retrieve fragments of resource properties

<wsrp:QueryResourcePropertiesRequest>
<wsrp:QueryExpression dialect="http://www.w3.org/TR/1999/REC-xpath-19991116">

                              //current_memory
                </wsrp:QueryExpression>
</wsrp:QueryResourcePropertiesRequest>

Figure 18 A SOAP message involved in a lifetime destroy management function 

<soap:Envelope>
  <soap:Header> 
                <wsa:Action>  http://test.org/ComputerSystemService/Destroy</wsa:Action>
                <tns:resourceID>  <!—the identity of the resource to destroy- ->

    C1
</tns:resourceID> 

  </soap:Header>
  <soap:Body>

<wsrl:DestroyRequest/>
  </soap:Body> 
</soap:Envelope>
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may constitute a WS-Resource. It also provides key
manageability interfaces to better manage entries in
the group (e.g., add, delete, and modify).

Although any Web service can become a part of this
collection, the service group manages its individual
entries as WS-Resources. It accomplishes this
through the use of other standards for Web services,
and WS-Resource standards such as those concern-
ing notification, lifetime, properties, and addressing.

In the next section, we compare the existing OGSI
specification with the concepts introduced by WSRF.

Comparison of WSRF with OGSI. Table 127 shows
a one-to-one mapping of OGSI-related concepts to
WSRF solutions. The most noticeable aspects of the
comparisons shown are:

● The implied resource pattern introduces the con-
cept of a stateful resource (WS-Resource), and this
pattern replaces the mandatory interface GridSer-
vice, as defined by the OGSI specification. This en-
ables all stateful resources, including grid services,
to be handled through a common set of Web ser-
vices tools.

● The Grid Service Handle (GSH) and Grid Service
References (GSR) concepts introduced by the OGSI
specification are replaced by the Web services stan-
dard WS-Addressing. GSH and GSR are encoded
in the WS-Addressing specification, using EPR and
reference properties. This is the most notable con-
tribution of the WSRF.

● The WSRF introduces a standard notification
framework for Web services. This enables all Web
services and grid services to share notification pat-
terns (i.e., standard and brokered notifications) as
introduced by the specification. This in turn en-
ables the messaging providers to define a common
set of interfaces and facilities.

From our observations thus far, the remaining con-
cepts that have been introduced are more specific
to the grid services concept of stateful resources and
their management than to Web services. We predict
that these composable specifications will help ser-
vice providers to make a selection of the most suit-
able choices for their services.

Grid adoption models

Grid computing falls into the domain of several dif-
ferent research communities, depending on how the
question, “What is a grid?” is answered. These grid
communities include the “compute-centric,” peer-
to-peer, utility, data and applications, and collabo-
ration areas. Each of these communities may use a
different model for the adoption of grid technology
(i.e., a different “grid adoption model”).

The concept of grid computing is relatively new to
commercial industry. A major focus area surrounds
infrastructure virtualization while dealing with re-
sources as utilities. Grid computing is one of the stra-
tegic technologies for IBM.

Grid adoption (in the commercial industries) de-
pends on the ability of this technology to deliver
increased business value. In this section, we focus
our attention on the models for grid adoption and
describe their basic attributes and the standards that
facilitate the grid adoption process. The business is-
sues related to the grid adoption model include key
factors, such as leveraging existing hardware invest-
ments and resources, reducing operational expenses,
creating a scalable and flexible infrastructure, accel-
erating development time, improving time to mar-
ket, and increasing customer satisfaction and bus-
iness productivity. Figure 19 shows the major factors
that are influencing grid adoption.

Table 1 Comparison of OGSI and WSRF concepts.

OGSI WSRF

Grid service reference WS-Addressing endpoint reference
Grid service handle WS-Addressing endpoint reference
HandleResolver portType WS-RenewableReferences
Service data definition and access WS-ResourceProperties
GridService lifetime management WS-ResourceLifeCycle
Notification portType WS-Notification
Factory portType Factory pattern concept
ServiceGroup portTypes WS-ServiceGroup
Base fault type WS-BaseFaults

Reprinted with permission of Ian Foster
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An organization may do business with other orga-
nizations within the enterprise or with external or-
ganizations. As a result, grids may involve only in-
ternal partners or both internal and external partners.
The complexity of the business requirements of such
an integration depends on the virtualization require-
ments, business impact, trust relationships, security
considerations, globalization, and time-to-market re-
quirements of the enterprises involved. Based on dif-
fering levels of complexity, grids for the enterprise
can be categorized as one of the following types:

● Infra-grid—This grid architecture enables optimiz-
ing resource sharing within departments in one di-
vision of an organization. This is a very controlled
environment with well-defined business policies,
integration, and security requirements. Because
the management issues are contained within a sin-
gle management domain, the focus can be kept
primarily on gaining technical experience. These
types of grids are sometimes called “cluster grids.”

● Intra-grid—This more complex grid implementa-
tion is a scenario for resource integration by us-
ing the computing and data/storage resources of
various divisions within an organization. These

types of grids need well-defined policies for the
sharing of resources within the enterprise, and
valuable experience can be gained in dealing with
the more complex security, data-sharing and re-
source-sharing policies required. However, be-
cause the resources are within the same enterprise,
the primary focus can still be on the technical im-
plementation of the policies defined. These types
of grids are sometimes called “enterprise grids”
or “campus grids.”

● Extra-grid—These grids deal with sharing of re-
sources, including those belonging to a trusted ex-
ternal partner with whom a business relationship
has already been established. These types of grids
are also known as “partner grids.” Because these
grids extend outside the management domain of
a single enterprise, mutual or shared partner
agreements and service-level objectives on re-
source utilization are required. Establishing these
agreements provides valuable experience in writ-
ing, maintaining, and managing access according
to grid service-level agreements.

● Inter-grid—An inter-grid enables the sharing of
computing and data/storage resources across a

Figure 19 Grid adoption factors
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public Web in collaboration with other enterprises,
potentially selling excess capacity (for example).
This is more of an on-demand utility conception
of a grid, with inherent complexities in managing
service-level requirements, security federation, and
integration. Its requirements will, in part, build
upon the experiences and critical skills gained from
the previous grid implementation types.

The above discussion and Figure 19 accentuate the
complexity of considerations potentially encountered
within any line of business and the requirements of
grids involving complex business patterns such as
partner integration. More is known about the left
side of the continuum of the abscissa of Figure 19,
as opposed to the far right side of the continuum,
simply due to industry experience in grid computing
to date.

A major factor that determines the adoption rate of
grid models is the complexity of the IT infrastruc-
ture required to implement a grid. In this section,
we address the topic of integration of grid resources,
including grid adoption in various technology do-
mains. The complexity of IT integration across het-
erogeneous environments is a real challenge. There
are various factors we need to take into consider-
ation, including enabling grid resources in homoge-
neous and heterogeneous environments, enabling re-
sources as services to grid partners, and enabling
virtualized applications to grid partners. These re-
quirements at the IT level enable us to classify grids
into various categories, with varying degrees of com-
plexity at the integration level, such as:

1. Grids designed to optimize infrastructure
2. “Computing grids” with virtualized processing
3. “Data grids” with virtualization of data and

storage
4. “Service grids” with virtualized services to en-

able easier integration
5. Virtualized applications enabled by composing

resources from various partner applications
through service interfaces

Figure 19 shows the levels of IT and organizational
complexity of various grids and the specific factors
that prompt moving from one stage to the next in
the grid adoption process.

The combination of business and technical aspects
mentioned previously gives rise to the grid adoption
model framework. By considering both the techni-
cal and business requirements within each cell of the

framework, clients considering grid implementations
can better anticipate and prepare for their challenges.
The grid adoption framework reveals two significant
transition points. At the outset, projects primarily
focus on IT and increasing sophistication of IT man-
agement capabilities. However, the transition from
internal implementations to those involving exter-
nal partners represents a significant advance and ne-
cessitates the involvement of not only the IT orga-
nization, but also the rest of the business.

The grid architecture and global standards have a
major role in governing the adoption of the grid in
the commercial world. Because these standards are
still evolving and are not sufficiently mature to sup-
port the latter stages suggested by the adoption
framework, the framework itself will also have to
evolve. These same standards will also restrict the
speed with which these latter stages can be attained.
However, grid computing and on demand business
environments have been implemented in several ver-
tical industries (e.g., finance, education, life science,
telecommunications), and these implementations
seem to validate the stages suggested. The primary
benefit of the framework is to clearly articulate what
capabilities, both in business and IT, are required be-
fore an organization can successfully attain its vir-
tualization goal.

Clearly, the success of grid computing depends on
integration and services orientation. The ability of
applications to decompose their capabilities and then
expose themselves as services is also important for
strengthening the SOA. In addition, a key to success
in grid adoption is creating virtualized applications
to solve specific VO problems by choreographing the
business functions exposed through services. This is
where global standards and architecture frameworks
will help.

The standards for Web services and WSRF, aligned
with OGSA, assist in this integration. The availability
of technology implementations to facilitate such stan-
dardization is important. This includes middleware
application platforms, resource virtualization en-
gines, workflow models, messaging and correlation
systems, and tool frameworks. Figure 20 shows a
high-level framework view of an IBM on demand op-
erating environment. The figure shows the required
infrastructure services such as systems, applications,
and business processes at the lower layer, and ap-
plication services at the higher level.

JOSEPH, ERNEST, AND FELLENSTEIN IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004640



Grid standards in the on demand operating
environment
An on demand business is an enterprise whose bus-
iness processes—integrated end-to-end across the
company and with key partners, suppliers, and cus-
tomers—can respond with flexibility and speed to
any customer demand, market opportunity, or threat.
Our strategic intent is to assist clients in achieving
virtualization of on demand services and to increase
IBM’s market share in this area.

When an enterprise begins to virtualize on demand
business services, the complete involvement of the
affected business organizations is always required.
As a result, systems development is no longer under
the complete control of the IT organization, and col-
laboration of various departments within an orga-
nization is critical. Similarly, before the virtualiza-
tion of specific on demand business services is
started, the projects involving business services are
largely under the control of the IT organization.

The on demand operating environment is based on
the concept of an SOA. The on demand business mod-
els are built upon open standards, intended to de-
fine business, applications, and systems at various lev-
els within a department, across an enterprise, or
spanning an entire industry.

Each element of the SOA is a service, and together,
these services implement the operating environment

capabilities. These services communicate over a
shared enterprise service bus (as shown in Figure 20),
which provides messaging, mediation, transforma-
tion, integration, and correlation capabilities. This
integration fabric of components is shared across de-
partments, enterprises, and partners. The system-
level components are integrated through virtualized
resources and services.

SOA is an area where grid computing is beginning to
play a major role. The grid adoption rate may vary
depending on the environment�s integration require-
ments, for example, whether it operates within an
enterprise or includes external partners. Also signif-
icant is the virtualization complexity, which is pro-
portionate to, and dependent on, the grid applica-
tion�s complexities.

Focus areas for grid standards

This section highlights some of the aspects of grid
computing that still require some form of stan-
dardization. This discussion also describes some of
the existing standards that could be precursors to
this standardization process. Table 2 identifies and
describes the focus of some of the important
organizations that are playing a major role in the
Web services standardization area, including
those related to the grid and systems manage-
ment domains. These standardization efforts, as
listed in Table 3, should be aligned with aspects of

Figure 20 A high-level view of the on demand operating environment
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SOA and with the Web services standards, as sug-
gested earlier.

Conclusions
There is a natural convergence of grid services and
Web services. This convergence is occurring right
now, and it is happening in all industries. It can be
observed in the evolutionary thinking of those peo-
ple who are members of VOs and are participating
in this transformation.

The grid architecture and global standards serve a
major role in determining the adoption rate of grids
in the commercial world. These standards are still
evolving.

Grid-service conventions are nontrivial in their func-
tions; they solve (in a new way) some of the funda-
mental issues in distributed computing. These issues
relate to the naming, creation, discovery, monitor-
ing, and management of the lifetime of stateful ser-
vices. More specifically, these conventions support
very important distributed computing areas, includ-

ing named service instances, a two-level naming
schema that facilitates traditional distributed system
transparencies, a base set of service capabilities, in-
cluding rich discovery facilities, and explicitly state-
ful services with lifetime management capabilities.

Will the intersections of services and standards that
we have discussed in this paper continue to be ac-
complished in the way that is currently prevalent?
Our approach enables a transformation by applying
the full power of traditional distributed systems to
grids, including naming and binding techniques,
across the widest possible set of Web services. The
grid adoption models provide an innovative means
for accomplishing this transformation, while short-
ening the time required to deliver grid computing
and other capabilities of grid services.

Clearly, the emergence of grid services is an impor-
tant milestone in the development of global Web ser-
vices. Grid services are important because they pro-
vide uniformity and consistency for many vital
distributed system functions. The ability to apply the

Table 2 The major grid standards organizations.

Organization Standards Activities Web Site

Global Grid Forum (GGF) Grid computing, distributed computing,
and peer-to-peer networking

http://www.ggf.org

World Wide Web Consortium (W3C) World Wide Web, XML, Web services,
Semantic Web, XML, mobile, and voice

http://www.w3c.org

Organization for the Advancement of
Structured Information Standards
(OASIS)

Electronic commerce, systems
management and Web services
extensions (WS), BPEL4WS, and portals

http://www.oasis-open.org/

Web Services Interoperability
Organization (WS-I)

Interoperable solutions, profiles, best
practices, and verification tools

http://www.ws-i.org

Distributed Management Task Force
(DMTF)

Systems management http://www.dmtf.org

Internet Engineering Task Force (IETF) Network standards http://www.ietf.org

European Computer Manufacturers
Organization (ECMA), International
Organization for Standardization
(ISO)

Language standards (C��, C#) http://www.iso.org
http://www.ecma-international.org

Object Management Group (OMG) Model-Driven Architecture (MDA),
Unified Modeling Language (UML**),
Common Object Resource Broker
Architecture (CORBA**), real-time
system modeling

http://www.omg.org

Java Community Process (JCP) Java standards http://www.jcp.org
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Table 3 Grid standards and requirements.

Area Requirements Existing Standards

Policy and service-
level agreements

� Policy-based negotiation to establish grid service
integration

OGSA Policy, WS-Policy, and WS-
Agreements Advance Reservation
Application Programming
Interfaces

� Service-level agreement (SLA) management across
heterogeneous grid providers

� Advance reservation mechanisms based on customer
requirements for QoS

Job management � Identification of individual schedulable entities Resource Specification Language
(RSL), Job Submission Description
Language (JSDL), Job Submission
Information Model (JSIM), and
Business Process Execution
Language (BPEL4WS)

� Definition of a common information model for job
execution requirements, workflow characteristics

� Definition of scalable and extendable mechanisms for job
descriptions

Grid scheduling � Scheduling and executing individual jobs, workflow
management

Grid local scheduling,
Meta-scheduling, and
Unified scheduler� Meta-scheduler interfaces with capabilities for resource

discovery, provisioning, resource scheduling, and job
execution

� Creating a unified scheduler that acts as a provider for all
the grid resources in a virtual organization and as a meta-
scheduler for execution of jobs

Grid service
security

� Sandbox (protected domain that places tight controls
around the execution of downloaded code) security model
for grid service execution

WS-Security, WS-Trust, WS-
Federation, Grid Security
Infrastructure (GSI), and Generic
Security Service extensions� Federation of security across heterogeneous resource

providers
� Trust model and certificate management in a federated

environment

Grid management
model

� A common management model to describe and interact
with heterogeneous resources

Common Management Model
(CMM), Grid Monitoring
Architecture (GMA), and Web
Services Distributed Management
(WSDM)

� A standards-based monitoring system with systems
management capabilities.

� Performance management to meet SLA requirements for
resources

� Alignment with systems management concepts

Grid data
management

� Access to and integration of structured and semi-
structured data across grid

DAIS (Grid Data Access and
Integration), XQuery, Virtual File
System, Directory Service (VFSD),
Grid File System (GFS), Local
replica catalog services, and
GridFTP

� Discovery and storage of multitudes of data
� Enhanced data mining for global information exchange
� Virtual file system directory service and grid file system
� Replica management

Grid and network � Handling varying load on the network infrastructure due
to heterogeneity of resources and policies applied to
resources.

Grid High-Performance Network
(GHPN) and Open Service
Gateway Initiative (OSGi)

� Handling the varying type data stream and its impact on
the network

� Managing dynamic network conditions
� Managing the SLAs among customers and service

providers
� Aligning with emerging network standards such as IP-V6
� Utilizing mobile network standards

Grid architecture
and
programming
models

� Defining an open architecture model for the grid Open Grid Services Architecture
(OGSA), Open Grid Services
Infrastructure (OGSI), Web
Service Resource Framework
(WSRF), Java** Network Initiative
(JNI), Semantic Grid, and New
Productivity Initiative (NPI)

� Aligning the architecture with the existing/emerging
programming models and standards

� Defining use cases, interoperable solutions and best
practices for grid adoption
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grid adoption models described in this paper serves
a vital need in efforts for on demand business life-
cycle planning.

Acknowledgments

The authors wish to thank George Galambos and
John Helmbock for their work in the IBM grid adop-
tion model. We also thank Ian Foster of the Argonne
National Lab and Steven Tuecke of the Globus**
Alliance for their work in the grid and WSRF areas.
Finally, the authors would like to thank the review-
ers for their thoughtful comments relating to an early
draft of this paper.

**Trademark or registered trademark of Massachusetts Institute
of Technology, Sun Microsystems, Inc., Object Management
Group, Inc., or the University of Chicago.

Cited references and notes

1. J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, A Note on
Distributed Computing, Sun Microsystems Technical Report
SMLI TR-94-29 (November 1994), http://research.sun.com/
techrep/1994/smli_tr-94-29.pdf.

2. IBMAutonomicComputing,http://www-3.ibm.com/autonomic/
index.shtml.

3. IBM On Demand Business, http://www-3.ibm.com/e-business/
index.html.

4. IBM Grid Computing, http://www-1.ibm.com/grid/.
5. J. Joseph and C. Fellenstein, Grid Computing, IBM Press,

Pearson Education Publishing, Pearson Technology Group
(2003).

6. I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann Publishers, San
Francisco, CA (1998).

7. I. Foster, C. Kesselman, and S. Tuecke, The Anatomy of the
Grid—Enabling Scalable Virtual Organizations, The Globus
Alliance, http://www.globus.org/research/papers/anatomy.pdf.

8. Utility computing can be defined as the network delivery (by
service providers) of IT and business process services.

9. A resource pool is a collection of dynamically created phys-
ical and logical resources such as servers, processors, and net-
works.

10. XML Information Set, WorldWide Web Consortium (Feb-
ruary 2004), http://www.w3.org/TR/xml-infoset/.

11. XML Schema, WorldWide Web Consortium, http://
www.w3.org/XML/Schema.

12. XML Protocol Working Group, WorldWide Web Consortium
(2004), http://www.w3.org/2000/xp/Group/.

13. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, The Phys-
iology of the Grid—An Open Grid Services Architecture for Dis-
tributed Systems Integration, The Globus Alliance (June 2002),
http://www.globus.org/research/papers/ogsa.pdf.

14. Global Grid Forum, http://www.ggf.org.
15. D. Box, Global XML Architecture (2002), http://whitepapers.

zdnet.co.uk/0,39025945,60063919p-39000542q,00.htm.
16. Final OGSI Specification V1.0 (July 2003), https://forge.

gridforum.org /docman2/ViewProperties .php?group_id�
43&category_id�392&document_content_id�347.

17. K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham,
I. Sedukhin, D. Snelling, S. Tuecke, and W. Vambenepe, The

WS-Resource Framework (March 2004), http://www-106.ibm.
com/developerworks/library/ws-resource/ws-wsrf.pdf.

18. Publish-Subscribe Notification for Web Services (March 2004),
http://www-106.ibm.com/developerworks/library/ws-pub-
sub/.

19. A. Bosworth, D. Box, E. Christensen, F. Curbera, D. Fer-
guson, J. Frey, C. Kaler, D. Langworthy, F. Leymann, S.
Lucco, S. Millet, N. Mukhi, M. Nottingham, D. Orchard, J.
Shewchuk, T. Storey, and S. Weerawarana, Web Services Ad-
dressing (WS-Addressing) (March 2003), http://msdn.
microsoft.com/ws/2003/03/ws-addressing/.

20. B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-
Baker, J. Klein, B. LaMacchia, P. Leach, J. Manferdelli, H.
Maruyama, A. Nadalin, N. Nagaratnam, H. Prafullchandra,
J. Shewchuk, D. Simon, and C. Kaler, Web Services Security
(WS-Security) (April 2002), http://www-106.ibm.com/
developerworks/library/ws-secure/.

21. K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham,
T. Maguire, D. Snelling, and S. Tuecke, From Open Grid Ser-
vices Infrastructure to WS-Resource Framework: Refactoring
& Evolution (March 2004), http://www-106.ibm.com/
developerworks/library/ws-resource/ogsi_to_wsrf_1.0.pdf.

22. I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D.
Ferguson, F. Leymann, M. Nally, I. Sedukhin, D. Snelling,
T. Storey, W. Vambenepe, and S. Weerawarana, Modeling
Stateful Resources with Web Services (March 2004), http://
www-106.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf.

23. S. Graham, P. Niblett, D. Chappell, A. Lewis, N. Nagaratnam,
J. Parikh, S. Patil, S. Samdarshi, I. Sedukhin, D. Snelling,
S. Tuecke, W. Vambenepe, and B. Weihl, Web Service Base
Notification (WS-BaseNotification) (March 2004), ftp://www6.
software.ibm.com/software/developer/library/ws-notification/
WS-BaseN.pdf.

24. S. Graham, P. Niblett, D. Chappell, A. Lewis, N. Nagarat-
nam, J. Parikh, S. Patil, S. Samdarshi, I. Sedukhin, D. Snel-
ling, S. Tuecke, W. Vambenepe, and B. Weihl, Web Service
Brokered Notification (WS-BrokeredNotification) (March
2004), ftp://www6.software.ibm.com/software/developer/
library/ws-notification/WS-BrokeredN.pdf.

25. S. Graham, P. Niblett, D. Chappell, A. Lewis, N. Nagarat-
nam, J. Parikh, S. Patil, S. Samdarshi, I. Sedukhin, D. Snel-
ling, S. Tuecke, W. Vambenepe, and B. Weihl, Web Service
Topics (WS-Topics) (March 2004), ftp://www6.software.ibm.
com/software/developer/library/ws-notification/WS-Topics.
pdf.

26. The endpoint creates the reference properties in the EPR
and uses these properties to express enough information to
dispatch the appropriate state of the resource.

27. I. Foster, WS-Resource Framework—Globus Alliance Perspec-
tives, http://www.globus.org/wsrf/foster_wsrf.pdf.

Accepted for publication June 4, 2004.

Joshy Joseph IBM Software Group, A0-3A, Building K, Pough-
keepsie, New York 12601 (joshy@us.ibm.com). Mr. Joseph is cur-
rently working with IBM Software Group�s On Demand Archi-
tecture and Development team, which is responsible for the
development of IBM�s on demand incubator projects. His main
focus is on business integration and business performance man-
agement and grid computing. In his current position, he is work-
ing as the development lead for the Enterprise Component Bus-
iness Architecture (ECBA) pilot projects. Prior to joining this
group, he was working on the IBM Systems Group grid comput-
ing architecture initiatives. Mr. Joseph is actively involved with

JOSEPH, ERNEST, AND FELLENSTEIN IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004644



IBM�s contribution to the OGSI standard and the Globus Grid
software programming model. Previously, he contributed to IBM�s
WebSphere� Catalog Manager and Commerce Integrator teams.
He is an architect and programmer with primary skills and expe-
rience in the areas of distributed computing, grid computing, work-
flow models, and advanced Web services. Mr. Joseph is the co-
author of a book on grid computing. He has received a number
of performance and publication awards. He has approximately
20 patents pending in the U.S. Patent Office, over 15 inventions
with “file” status within IBM, and a number of invention pub-
lications. He has also published a number of articles for IBM de-
veloperWorks in the areas of grid computing, business processes,
and Web services. Prior to joining IBM, Mr. Joseph worked for
Bell Atlantic Science and Technology and People�s Bank and was
involved in numerous projects in the areas of mobile computing,
distributed computing, performance management, and Internet
computing. He is an expert in the .NET and J2EE� program-
ming models.

Mark Ernest IBM Global Services/Integrated Technology Services
800 N. Frederick Ave., Gaithersburg, Maryland 20879
(lernest@us.ibm.com). Mr. Ernest�s primary focus over the past
four years has been the leadership of the team responsible for
the development, evolution, and application of IT optimization
methodology. In that role, he helped develop assessment and
adoption methods for both grid and autonomic computing. Cur-
rently, he holds a position within the Global ITS Organization
as the Chief Technology Officer for operational efficiency. In ad-
dition, he is a member of the ITS Technology Council and serves
on the core teams of the IT optimization, enterprise systems man-
agement, IT cost and value, and e-business infrastructure com-
munities of practice. Collectively, these groups are responsible
for creating many of IBM�s IT consulting-related work products,
tools, and techniques. Mr. Ernest joined IBM at the Washington
Systems Center 26 years ago and was asked to become a found-
ing member of IBM�s IT consulting competency in 1992. He was
named a Distinguished Engineer by the Corporate Technology
Council in April 2001.

Craig Fellenstein IBM Global Services/Strategic Outsourcing,
6 Hunting Ridge Road, Brookfield CT 06804-3710
(cfellen@us.ibm.com). Mr. Fellenstein has served for many years
as a Global Chief Architect for the IBM Corporation. His pri-
mary skills and experience are in the areas of technical support
and large-scale Internet commerce infrastructure design, tradi-
tional infrastructures, electronic commerce transformations, and
telecommunications, including development and deployment of
global enterprise-wide architectures. Mr. Fellenstein is also a lead-
ing member of the IBM Global Services Invention Evaluation
Team, helping evaluators in complicated evaluations for many
IBM patents being submitted to the U.S. Patent Office. Mr. Fel-
lenstein has held chair assignments on the IBM Corporate Tech-
nology Council chaired by Lou Gerstner, solving difficult tech-
nology challenges within IBM. He is currently IBM�s Global Chief
Architect and Senior Executive Consultant. During the late 1990s,
Mr. Fellenstein helped IBM establish its full line of hosting ser-
vices, which were instrumental in the IBM Service Delivery Cen-
ter deployment strategy and worldwide architecture. Mr. Fellen-
stein has several publications, including four books, in advanced
areas of computer science, most illustrating an emphasis in sys-
tems design, technical architectures, grid computing, on demand
business strategies, patents, and artificial intelligence. He currently
has over 80 patents pending for IBM, plus other awards for pat-

ents on file with the U.S. Patent Office. He is a disabled veteran
of the Vietnam era and a retired member of the U.S. Air Force
Tactical Air Command, where he was an aerospace weapons de-
livery specialist on the A7-D fighter-bomber aircraft.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 JOSEPH, ERNEST, AND FELLENSTEIN 645


