
A Logger System based
on Web services

by B. Horn
H. Balakrishnan
B. T. Maniampadavathu
J. Warnes
D. A. Elko

The Logger System described in this article is
a general purpose set of component
interfaces for logging data in a distributed,
heterogeneous computing environment.
Fundamentally, it serves as an intermediary
between log artifact producers and log artifact
consumers. It is designed to virtualize existing
logging systems including the z/OS� System
Logger, Microsoft Windows� event logging,
and the UNIX� syslog facility. The Logger
System is outlined using the conventions
defined in the recently released Web Services
Resource Framework (WSRF) and provides an
example of how this framework might be
used to define a meta-OS (operating system)
for grid computing.

The Logger System described in this paper serves as
a manageable repository of log records. The term
log record refers to the atomic unit read or written
through the Logger System�s interfaces. Components
that write log records to the Logger System are re-
ferred to as log artifact producers or simply produc-
ers. Components that read from the Logger System
are referred to as log artifact consumers or simply con-
sumers. The Logger System serves as an intermedi-
ary, decoupling log artifact producers and log arti-
fact consumers. Log artifacts written by log producers
may or may not be read at a later time by log con-
sumers. A component that manages a Logger Sys-
tem is referred to as a log manager. Log managers
maintain the Logger System, performing a variety
of administrative functions such as creating new logs,
purging obsolete records, and managing retention
policies.

The paper has the following structure. First, we
summarize the logging requirements generated by
grid-based usage scenarios. We then use conventions
defined in WSRF (Web Services Resource Frame-
work)1,2 to describe the proposed Logger System and
interfaces. Finally we present our conclusions and
identify future work.

Requirements

The GGF (Global Grid Forum) OGSA-WG (Open Grid
Services Architecture Working Group) has docu-
mented several usage scenarios that require logging
services.3,4 These scenarios include those based upon
problem determination, metering resource consump-
tion, failure recovery, transaction processing, and se-
curity. In these usage scenarios, log artifact consum-
ers and producers place a number of requirements
on the Logger System. In the following subsections
we describe these requirements and provide a brief
discussion describing how our proposed Logger Sys-
tem addresses each requirement. The requirements
documented in these subsections represent the re-
sults of the analysis performed by the OGSA-WG fo-
cus session on logging.5 While the requirements in
this section are based on grid usage scenarios, they
are also applicable to distributed, heterogeneous
computing in general.

�Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 0018-8670/04/$5.00 © 2004 IBM HORN ET AL. 723

Legacy logger systems. To ensure the general ac-
ceptance of the basic log semantics and to enable
the exploitation of existing implementations, the
Logger System should support key features found
in existing logging implementations.6–9 We have ver-
ified that the interfaces presented later in this paper
represent a semantic superset of these key logging
implementations.

Persistency. One of the basic goals of any logging
system is to provide a mechanism to create persist-
ent log records. The retention period for a log record
should be determined by consumer requirements.
For example, in a real-time monitoring application,
data may become irrelevant in a very short time. In
contrast, data for an auditing program may be
needed for months or even years after it was gen-
erated. Some applications are best served by circu-
lar logs. Other applications depend on persistent log
records to recover their state in case of failure. As
discussed later in the section on specialized logs, the
Logger System should support a variety of persis-
tency qualities of service (QoS), including, for ex-
ample, circular logs or logs with policy-specified
record retention periods. We address the specifica-
tion of persistency QoS later in the log:Log interface
section.

Support for sequential writes. The Logger System
should support sequential writes at the granularity
of an individual record, with each record represent-
ing one log artifact. Writes always append a record
to the end of a log stream. Byte-level access is not
required. The semantics for log writes presented in
the log:LogConnection interface section meet this
requirement.

Stateful read cursor. The Logger System should per-
mit consumers to sequentially access the records in
a log stream using a stateful (having the capability
to maintain state) cursor that is not invalidated by
producer writes or reads from other consumers. The
system should provide an efficient mechanism to po-
sition the cursor by using the record time stamp or
a unique record identifier. The semantics for log
reads presented in the log:LogConnection interface
section also meet this requirement.

Ordering of log records. Logs are frequently used
to record a time-ordered sequence of events. At a
minimum, the Logger System should, for a given
write connection, permit consumers to efficiently
read (time-stamped) records in the same order that
they were originally written. Other implementations,

for example, globally ordered logs, may choose to
provide different ordering requirements. This re-
quirement represents a QoS underlying the log write
semantics presented later in the section describing
the log:LogConnection interface.

Standard schema for log records. A standard, struc-
tured log artifact schema facilitates effective inter-
communication among disparate applications. In
some cases, for example, when performance is par-
amount and interoperability is not a concern, less
structured artifacts are more appropriate. The re-
cently proposed Common Base Event10,11 is designed
to accommodate varying degrees of structure and is
an ideal candidate for representing a structured log
artifact. The details of this requirement are not ad-
dressed in this paper.

Decoupling of producers from consumers. The ul-
timate usage of a log artifact (for example, audit, sys-
tem management, problem determination) should
be determined, potentially at runtime, by the log ar-
tifact consumer, not by the log artifact producer. The
Logger System should enable the decoupling of the
log artifact producer from the log artifact consumer.
This requirement is closely related to the following
requirement.

Broker. The Logger System should support mech-
anisms that permit: (1) multiple producers to write
records into a log stream, and (2) multiple consum-
ers to read records from a log stream. Furthermore,
the system should be able to coordinate concurrent
reads and writes. This is a fundamental behavior sup-
ported by all production OS (operating system) log-
ger systems. This requirement and the requirement
that producers be decoupled from consumers are
both met by interfaces presented in this paper.

Filtering. Frequently the quantity of logging data gen-
erated is much greater than the quantity of data ac-
tually consumed. To reduce resource consumption,
the Logger System should provide filter mechanisms
for both read and write operations. A filter on the
write operation avoids the cost of storing filtered rec-
ords.TheLogConnection interfaceandtheLogBrowse-
Session interface satisfy this requirement.

Merged log. Some situations (for example, a high-
performance, merged log for a clustered system) re-
quire the logger to exploit underlying, hardware-as-
sisted merge mechanisms. These merge mechanisms
(for example, the zSeries* Coupling Facility) per-
mit multiple producers operating in separate OS im-

HORN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004724

ages to concurrently and efficiently write to a com-
mon (merged) log stream. Currently, hardware-
assisted merged log capabilities are used in
mainframe clusters composed of homogenous sys-
tems. In theory, however, such a capability could also
be built for clusters composed of heterogeneous sys-
tems. The Logger System should support the exploi-
tation of hardware-assisted merge mechanisms. In
our proposed set of interfaces, a hardware-assisted
merged log would be a QoS underlying the log:Log
interface described later in this paper.

Synchronous and asynchronous write semantics.
We have identified two required types of write be-
havior: ack and noack. For the ack type of behavior,
consumers require either that every record written
by a producer must be stored in the log or that the
producer must be explicitly informed and corrective
action taken. Such requirements are characteristic
of applications involving, for example, transactional
logs or metering for billing. Logger Systems support-
ing this requirement must acknowledge every write.
Some producers prefer to wait for an acknowledg-
ment from the Logger System (i.e., block) before ex-
ecuting any additional logic, whereas others may
prefer to continue execution, obtain the acknowl-
edgement using a callback mechanism, and then deal
with failure using separate recovery/notification logic.
The Logger System should support both of these ac-
knowledgement mechanisms. For the noack type of
behavior, characteristic of “fire and forget” behav-
ior for noncritical, information-only monitoring, con-
sumers do not require any acknowledgement. The
Logger System should support all of the preceding
write behavior patterns. We address write seman-
tics in the section describing the log:LogConnection
interface.

Deletion of log records. Log maintenance (for ex-
ample, cleanup) requires a mechanism for perform-
ing time-stamp-based deletions of existing log rec-
ords in a log stream. This requirement is met by the
semantics described in the log:LogConnection
interface.

Coexistence with the messaging fabric. Patterns for
the consumption of events vary according to the
needs of the consuming applications. In a distrib-
uted environment, reads on a log stream based on
RPC (remote procedure call) may not be the best
mechanism for consuming applications to access
events. For example, a real-time monitoring appli-
cation may need to be asynchronously notified when-
ever a high-severity artifact is logged (push mode).

A different example would be a consumer that polls
for metering data every 24 hours (pull mode). Expe-
rience has shown that these scenarios are better
served by systems such as Web Services Notification
(WS-Notification),12 which are specifically designed
to move messages in a distributed environment,
rather than by using the Logger System. However,
both of the above examples might require that a log
be kept of all events that flow through a messaging
broker. The Logger System should be designed such
that a WS-Notification broker can act as a logging
broker by implementing logger interfaces. The op-
erations presented later in our discussion of the Log-
ger System interfaces do not conflict with any of the
WS-Notification operations. However, the behavior
of a system implementing both log and messaging
broker interfaces is not addressed in this paper.

Support for multiple query expression types. As de-
scribed previously, basic log function requires only
a stateful read cursor and support for efficient ac-
cess using the record time stamp and record iden-
tifier. However, if a particular implementation sup-
ports other query semantics, then the Logger System
should expose them through an extensible query
mechanism. This requirement is addressed in the dis-
cussion of the log:LogBrowseSession interface.

Standard set of specialized logs. Different appli-
cations have different requirements for the features
and QoS associated with a log. To accommodate
these demands, the Logger System should support
a finite set of specialized logs that somehow span the
space of required features and QoS. The specifica-
tion of QoS is associated with the log:Log interface.

Specializations should include the following types:

Secure logs—Some applications (for example, me-
tering and authentication/authorization/account-
ing) require that logs be secure (for example, en-
crypted). OGSA Security mechanisms are currently
being discussed in the OGSA-SEC Working Group.13

Globally ordered logs—Some parallel, transaction-
oriented applications require merged logs that
maintain a global order based on a common clock.
Circular logs—For some applications it is prefer-
able to specify retention by using a space constraint
instead of a time constraint.
Duplexed logs—A log may offer a high reliability
QoS by duplexing all writes.
Compressed logs—Compressed logs trade perfor-
mance for space.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 HORN ET AL. 725

Logger System interfaces
This section outlines our Logger System design us-
ing Web services interfaces. The design is expressed
using the conventions and specifications established
by WSRF. WSRF defines the Web Services Resource
(WS-Resource) approach to modeling and manag-
ing state in a Web services context. WSRF consists
of:

1. A set of six new Web services specifications
2. A set of conventions for existing technologies

We use interfaces defined in three of the new Web
services specifications: Web Services Resource Prop-
erties (WS-ResourceProperties),14 WS-Notifica-
tion,12 and Web Services Resource Lifetime (WS-
ResourceLifetime),15 to describe some of the
semantics of the Logger System.

As part of the conventions for existing technologies,
WSRF introduces the so-called implied resource pat-
tern to describe how Web Services Addressing (WS-
Addressing)16 is used to associate a stateful resource
with a Web services interface (using the Web Ser-
vices Description Language (WSDL) 1.117 portType
element). Let wsa represent the WS-Addressing
namespace (a set of names that is defined according
to some naming convention). The implied resource
pattern requires that the wsa:EndpointReference el-
ement must include a wsa:ReferenceProperties child
element to identify the resource associated with the
address specified by the wsa:Address child element
of this EndpointReference (EPR). Essentially, the EPR
is a pointer containing, among other elements, an
address (wsa:Address) of the service and an opaque
expression of resource identity (wsa:ReferenceProp-
erty).

Instead of providing explicit WSDL, we have chosen
to outline the proposed design in terms of UML**
(the Unified Modeling Language).18 Specifically, we
use UML to express:

1. The definition of WSDL interfaces
2. The inheritance of WSDL interfaces, as defined

by WS-ResourceProperties
3. The XML (Extensible Markup Language) schema

for WS-ResourceProperties resource property
documents

4. The XML expression of a WS-Addressing End-
pointReference (EPR)

The UML conventions that we use are illustrated in
Figure 1. In this figure we show the myns:MyInter-

face interface as extending the urns:UrInterface in-
terface. These interfaces are stereotyped as
��WSDL portType / Interface��, indicating that the
UML class represents the XML defining the WSDL port-
Type. Also, both of the interfaces are associated with
the WS-ResourceProperties resource property doc-
ument. The relationship is stereotyped as ��wsrp:
ResourceProperties��. WS-ResourceProperties re-
quires the cardinality on the resource property
document side of the association to be [0,1]; that is,
there is at most one resource property document per
WSDL portType. In this figure we also show how UML
is used to convey the XML schema for resource prop-
erty documents. The schema for the resource prop-
erty document associated with myns:MyInterface il-
lustrates the existence of three types of child
elements: myns:OneChildElementType, myns:Another-
ChildElementType, and wsa:EPR (wsa:EndpointRefer-
enceType). For associations between a parent el-
ementType and a child elementType, if no cardinality
is shown on the child side, then it is implied as [1]
(minOccurs�1,maxOccurs�1). Element attributes are
shown as UML class attributes. For example, myns:
MyInterfaceRPType has one attribute, myns:anAt-
tribute. The namespace of an attribute is not spec-
ified if it is the same as the parent element. In the
interest of clarity, we omit content that is not directly
relevant to our description. For example, the wsa:
EPR type has additional child elements types (for ex-
ample, wsa:ServiceName) that are not depicted. The
namespaces used in the interface descriptions are
shown in Table 1.

The proposed Logger System is composed of four
interfaces. They are:

1. The log:LogManager interface
2. The log:Log interface
3. The log:LogConnection interface
4. The log:LogBrowseSession interface

The portTypes supporting these interfaces and their
relationships are shown using UML in Figure 2 and
are described in the following subsections. The fig-
ure follows the UML conventions established above.
The new elements are shown on the bottom, and ex-
isting elements are shown on the top. This figure
should be referred to when reading the interface
descriptions.

The log:LogManager interface. The log:LogManager
interface is responsible for managing an instance of
the Logger System. The log:LogManager portType in-
herits from the wsrp:ResourceProperties,wsnt:Notifi-

HORN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004726

Table 1 Namespaces used in the interface descriptions

Prefix Namespace

xsd http://www.w3.org/2001/XMLSchema
log http://TBD/log
wsa http://schemas.xmlsoap.org/ws/2003/02/addressing
wsnt http://www.ibm.com/xmlns/stdwip/web-services/WS-Notification
wsrl http://www.ibm.com/xmlns/stdwip/web-services/WS-ResourceLifetime
wsrp http://www.ibm.com/xmlns/stdwip/web-services/WS-ResourceProperties

Figure 1 UML conventions used for expressing the WSRF-based design

<<xs:complexType>>
urns:UrInterfaceRPType

+urns:UrInterfaceRP

<<wsrp:ResourceProperties>>

<<wsrp:ResourceProperties>>

+myns:MyInterfaceRP

urOperation()

<<WSDL PortType / Interface>>
myns:MyInterface

<<WSDL PortType / Interface>>
wsrp:ResourceProperties

<<xs:complexType>>
myns:MyInterfaceRPType

<<xs:complexType>>
myns:AnotherChildElementType

+eleY +eleX

{1,choice}
{1,choice}

{2}

0..n

0..n
+someEPRs

attrA : xs:string = {256}

<<xs:complexType>>
wsa:Address

<<xs:complexType>>
wsa:EPR

<<xs:complexType>>
wsa:ReferenceProperty

urAttr

<<WSDL PortType / Interface>>
urns:UrInterface

getResourceProperty()
getMultipleResourceProperty()
setResourceProperties()
queryResourceProperties()

myOperation()

anAttribute : xs:string = {use:required}

attrB : xs:dateTime = use:required

<<xs:complexType>>
myns:OneChildElementType

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 HORN ET AL. 727

Figure 2 Overview of Logger System interfaces

0..n

+wsrn:NotificationProducerRP

<<wsrp:ResourceProperties>>

<<wsrp:ResourceProperties>>

+log:LogBrowseSessionRP

0..n0..n

0..n

+logConnections

+logs +logBrowseSessions

wsnt:Topics

<<xs:complexType>>
wsrn:NotificationProducerRPType

<<WSDL portType / Interface>>
wsrl:ImmediateResourceTermination

<<WSDL portType / Interface>>
wsrp:ResourceProperties

<<xs:complexType>>
log:LogManagerRPType

<<xs:complexType>>
wsa:EPR

<<wsrp:ResourceProperties>>

+log:LogConnectionRP

<<wsrp:ResourceProperties>>

+log:LogRPType

write()
delete()
deleteAIl()
offload()
writeWithNoAck()
createLogBrowseSession()
writeWithCallBack()

<<WSDL portType / Interface>>
log:LogBrowseSession

<<WSDL portType / Interface>>
 log:Log

createLog()

<<xs:complexType>>
log:LogRPType

<<xs:complexType>>
log:LogConnectionRPType

<<xs:complexType>>
log:LogBrowseSessionRPType

<<WSDL portType / Interface>>
wsnt:NotificationProducer

<<wsrp:ResourceProperties>>

+log:ManagerRP

FixedTopicSet destroy()

topPathExpression

getResourceProperty()
getMultipleResourceProperty()
setResourceProperties()
queryResourceProperties()

subscribe()
getCurrentMessage()
pause()
resume()

<<WSDL portType / Interface>>
log:LogManager createLogConnection() readCursor()

readRecord()
reset()

<<WSDL portType / Interface>>
log:LogConnection

logName
duplexPolicy
deletionPolicy
retentionPeriod
concurrentConnectionsSupported
name
type

readFilter
writeFilter

browseFilter
cursorPosition
queryExpressionType[]

HORN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004728

cationProducer, and wsrl:ImmediateResourceTermina-
tion portTypes. The createLog operation of the log:
LogManager portType acts as a factory for log:Log
resources. This operation may be able to instantiate
logs with different QoS (i.e., those outlined previ-
ously in the description of specialized logs). For ex-
ample, if the underlying system supports a hardware-
assisted merge facility and the log:LogManager
implementation exposes this capability, then a log
with merge capability may be instantiated. The home
collection of all log:Log instances created by an in-
stance of the log:LogManager interface is stored as
wsa:EPR child elements in its log:LogManager re-
source property document. If there are no active con-
nections to any logs managed by a log:LogManager
resource, then that resource may be explicitly de-
stroyed with the wsrl:ImmediateResourceTermination
portType destroy operation. An explicit destroy of a
log:LogManager resource implicitly destroys all the
underlying log:Log resources. A sequence diagram
illustrating the creation of a log:Log is shown in Fig-
ure 3.

The Logger System is an important system and must
be managed accordingly. It is necessary not only to
monitor its performance but also to deal with stor-
age space thresholds, low-space or insufficient-space
conditions, periodic purging, access control, and
many other management facets. Management events
related to an instance of log:LogManager may be

monitored using the inherited wsnt:NotificationPro-
ducer portType. All management-related events re-
lated to an instance of the Logger System are sur-
faced through this mechanism.

The log:Log interface. The log:Log portType inher-
its from the wsrp:ResourceProperties portType and the
wsrl:ImmediateResourceTermination portType. A rel-
atively long list of parameters defines the behavior
of a particular log service instance. For example, the
log resource state could be characterized by the fol-
lowing: duplex policy, deletion policy, retention pe-
riod, and support for concurrent connections. Al-
though not specified in this paper, it is envisioned
that, when appropriate, the setResourceProperties op-
eration of the wsrp:ResourceProperties portType
would be used to change the policy of an existing
log. Also, technologies related to the specification
and deployment of policy could assist in the man-
agement of logs in a distributed environment com-
posed of a large number of systems.19 The create-
LogConnection operation of the log:Log portType acts
as a factory for log:LogConnection resources. The
home collection of all log:LogConnection instances
created by an instance of log:Log is stored as wsa:
EPR child elements in its resource property docu-
ment. User-specified read and write filters may be
set for log:LogConnection instances. If there are no
active connections to a log:Log resource, then the log
may be explicitly destroyed with the wsrl:Immedia-

Figure 3 Setting up a log

LogAdministrator:

ServiceRequestor

createLog()

<<wsrf>>

:log:LogManager :log:Log

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 HORN ET AL. 729

teResourceTermination portType destroy operation. If
a log:Log resource is destroyed, then all log records
associated with the log are lost.

The log:LogConnection interface. All accesses (read
or write) to the records in a log are made through
the log:LogConnection interface. The log:LogConnec-
tion portType inherits from the wsrp:ResourceProp-
erties portType and the wsrl:ImmediateResourceTer-
mination portType. The log:LogConnection portType
contains the write operation, which is the basic mech-
anism for writing a log record. The writeWithCallback
and the writeWithNoAck operations support the re-
quirements outlined in our previous discussion of
synchronous and asynchronous write semantics re-
quirements. The delete operation deletes a range of
log records from a log. All records older than the
specified record are deleted. The deleteAll operation
is used to delete all the log records from a log. The
offload operation forces any cached log records to

be written to a permanent store. The createLog-
BrowseSession operation of the log:LogConnection
portType acts as a factory for log:LogBrowseSession
resources. A user-specified read filter may be set for
a LogBrowseSession instance. The home collection
of all log:LogBrowseSession instances created by an
instance of log:LogConnection is stored as wsa:EPR
child elements in its resource property document. A
log:LogConnection resource may be explicitly de-
stroyed with the wsrl:ImmediateResourceTermination
portType destroy operation; any log:LogBrowseSes-
sion resources in the home collection will also be de-
stroyed. A sequence diagram illustrating the life cy-
cle of a log:LogConnection is shown in Figure 4.

The log:LogBrowseSession interface. The log:Log-
BrowseSession interface is used to read log records
from a log. The log:LogBrowseSession portType in-
herits from the wsrp:ResourceProperties portType and
the wsrl:ImmediateResourceTermination portType. Each

Figure 4 Writing to a log

The list of
available logs
is exposed as
a Resource
Property Repeat as long

as there is data
to write

LogProducer:

ServiceRequestor

getResourceProperty()

<<wsrf>>

createLogConnection()

write()

destroy()

:log:LogConnection

:log:LogManager :log:Log

HORN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004730

LogBrowseSession instance maintains a cursor in its re-
source properties for navigating its corresponding log.
On creation, a custom read filter may be set for an
instance of a LogBrowseSession interface. Reads are
filtered by both the LogBrowseSession filter and the
LogConnection read filter. The LogBrowseSession
portType readRecord operation accesses records ei-
ther by record identifier or by record time stamp.
The readCursor operation reads a sequence of one

or more records from the current cursor position.
The reset operation resets the cursor position to ei-
ther the oldest or youngest record in the log. As dis-
cussed previously, a browse session may support ad-
ditional query mechanisms. A log:LogBrowseSession
resource may be explicitly destroyed with the wsrl:
ImmediateResourceTermination portType destroy op-
eration. A sequence diagram illustrating the life cy-
cle of a log:LogBrowseSession is shown in Figure 5.

Figure 5 Reading from a log

:log:LogManager

The list of
available logs
is exposed as
a Resource
Property

LogConsumer:

ServiceRequestor

getResourceProperty()

readCursor()

createLogConnection()

createBrowseSession()

readRecord()

destroy()

destroy()

:log:Log

:log:LogConnection

Sequential
Access to Log
Records

Read a
specific record

:log:LogBrowseSession

<<wsrf>>

<<wsrf>>

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 HORN ET AL. 731

Conclusion and future work
In this article we have outlined how the interfaces
for a meta-OS Logger System that satisfies the re-
quirements established in the OGSA-WG might be ex-
pressed by using the conventions and standards dic-
tated by WSRF. It is our hope that the current work
will help drive discussions surrounding the standard-
ization of a WSRF-based Logger System. While we
have addressed many of the requirements exposed
by the OGSA-WG and documented in this paper, some
require additional investigation. In particular, secure
logging is an important topic that still needs to be
studied. We also note that efficient local bindings for
WSDL, specifically bindings much more efficient than
SOAP over HTTP (Simple Object Access Protocol over
HyperText Transfer Protocol), are required for prac-
tical implementations, particularly for log writes. We
expect that such optimized bindings will become
common in the not-too-distant future.

Acknowledgments

We would like to acknowledge the suggestions of the
members of the OGSA-WG who reviewed and re-
reviewed the requirements described in this paper.
Comments by Dave Berry, Abdeslem Djaoui, An-
drew Grimshaw, Hiro Kishimoto, Takashi Kojo, Fred
Maciel, Takuya Mori, Jeff Nick, Andreas Savva,
Frank Siebenlist, David Snelling, Ravi Subraman-
ian, Junichi Toyouchi, Jem Treadwell, and Jeffrin
Von-Reich were particularly helpful. Jem Treadwell
also helped us establish some of the specific require-
ments for the Logger System. Hany Salem, Mike Wil-
liams, and Bob Abrams have helped with require-
ments motivated by problem determination. In
addition to helping with semantics, Jeff Frey provided
much guidance on the use of WSRF. Benny Roch-
werger helped author the initial logging submissions
to the OGSA-WG logging focus session. Sylvain Rey-
naud and Jean-Pierre Prost also provided helpful re-
views of these submissions. Finally, we would like to
thank the anonymous reviewers for their suggestions
and corrections.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Object Management
Group, Inc.

Cited references

1. I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D.
Ferguson, F. Leymann, M. Nally, I. Sedukhin, D. Snelling,
T. Storey, W. Vambenepe, and S. Weerawarana, Modeling

Stateful Resources with Web Services, Version1.1, http://
www-106.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf.

2. OASIS Web Services Resource Framework TC, http://www.
oasis-open.org/committees/tc_home.php?wg_abbrev�wsrf.

3. Open Grid Services Architecture Working Group, http://
forge.ggf.org/projects/ogsa-wg.

4. OGSA Working Group Usecase Documents, https://forge.
gridforum.org / docman2 / ViewCategory.php?group_id�42&
category_id�351.

5. OGSA Working Group Logging Focus Session, https://forge.
gridforum.org/docman2/
ViewCategory.php?group_id�42&category_id�468.

6. C. Lonvick, The BSD syslog Protocol, RFC 3164, http://www.
ietf.org/rfc/rfc3164.txt.

7. Microsoft Windows Event Logging, Microsoft Corporation,
http://msdn.microsoft.com/library/default.asp?url�/library/
en-us/debug/base/about_event_logging.asp.

8. Systems Programmer�s Guide to: z/OS System Logger, SG24-
6898-00, IBM Corporation (January 2004), http://publib-
b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/
sg246898.html.

9. J. Treadwell, EVM: The Tru64 UNIX Event Management Sys-
tem, Compaq White Paper, Compaq Corporation (July 2000).

10. XML Schema for IBM Common Base Event, V 2.0 (October,
2003), http://xml.coverpages.org/CBE-SchemaV20.html.

11. D. Ogle, H. Kreger, A. Salahshour, J. Cornpropst, E. Laba-
die, M. Chessell, B. Horn, and J. Greken, Canonical Situation
Data Format: The Common Base Event ACAB.BO0301.2.0 (Oc-
tober 2003), http://xml.coverpages.org/CommonBaseEvent
SituationDataV210.pdf.

12. S. Graham, P. Niblett, D. Chappell, A. Lewis, N. Nagarat-
nam, J. Parikh, S. Patil, S. Samdarshi, S. Tuecke, W. Vam-
benepe, and B. Weihl, Web Services Notification (WS-Noti-
fication), Version 1.0 (January 2004), http://www-106.ibm.com/
developerworks/library/ws-resource/ws-notification.pdf.

13. Open Grid Services Architecture Security Working Group,
http://forge.gridforum.org/projects/ogsa-sec-wg.

14. S. Graham, K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey,
F. Leymann, T. Maguire, N. Nagaratnam, M. Nally, T. Sto-
rey, I. Sedukhin, D. Snelling, S. Tuecke, W. Vambenepe, and
S. Weerawarana, Web Services Resource Properties, Version
1.1 (March 2003), http://www-106.ibm.com/developerworks/
library/ws-resource/ws-resourceproperties.pdf.

15. J. Frey, S. Graham, K. Czajkowski, D. F. Ferguson, I. Foster,
F. Leymann, T. Maguire, N. Nagaratnam, M. Nally,
T. Storey, I. Sedukhin, D. Snelling, S. Tuecke, W. Vam-
benepe, and S. Weerawarana, Web Services Resource Lifetime
(WS-ResourceLifetime), Version 1.1 (March 2004), http://
www-106.ibm.com/developerworks/library/ws-resource/ws-
resourcelifetime.pdf.

16. A. Bosworth, D. Box, E. Christensen, F. Curbera, D. Fer-
guson, J. Frey, C. Kaler, D. Langworthy, F. Leymann, B. Lov-
ering, S. Lucco, S. Millet, N. Mukhi, M. Nottingham,
D. Orchard, J. Shewchuk, T. Storey, and S. Weerawarana,
Web Services Addressing (WS-Addressing) (March 2004),
ftp://www6.software.ibm.com / software / developer / library /
ws-add200403.pdf.

17. E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana, Web Services Description Language (WSDL), Ver-
sion 1.1 (March 2001), http://www.w3.org/TR/wsdl.

18. Unified Modeling Language, http://www.omg.org/uml.
19. D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langworthy, A.

Nadalin, N. Nagaratnam, M. Nottingham, C. von Riegen, and
J. Shewchuk, Web Services Policy Framework (WSPolicy), Ver-

HORN ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004732

sion 1.01 (June 2003), ftp://www6.software.ibm.com/software/
developer/library/ws-policy.pdf.

Accepted for publication June 7, 2004.

Bill Horn IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(hornwp@us.ibm.com). Dr. Horn is a member of the Scalable Sys-
tems Group at the IBM Thomas J. Watson Research Center. He
received a Bachelor of Nuclear Engineering degree from the
Georgia Institute of Technology, an M.E. degree in mechanical
engineering from Cornell University, and a Ph.D. degree in en-
gineering from Cornell University. Dr. Horn�s current research
interests include architectural issues related to distributed com-
puting and, more specifically, architectural issues related to com-
ponent transaction monitors. He also has an interest in the de-
sign and realization of commercial IT deployments that exploit
distributed systems. His many years of engineering experience
cover a wide variety of disciplines including projects in nuclear
engineering, computational fluid dynamics, and product life-cycle
management. More recent interests include visual and geomet-
ric computations.

Hariharan Balakrishnan IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (bharihar@in.ibm.com). Mr. Balakrishnan is a software en-
gineer at the IBM India Software Laboratories in Bangalore. He
is currently on an international assignment at the Watson Re-
search Center working on emerging technologies such as Web
and grid services and on demand infrastructure development.

Biju T. Maniampadavathu IBM Research Division, Thomas
J. Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (mbiju@in.ibm.com). Mr. Maniampadavathu is a soft-
ware engineer at the IBM India Software Laboratories in Ban-
galore. He is currently working as an international assignee in
the Scalable Systems Group at the Watson Research Center, fo-
cusing on the logging and metering aspects of on demand infra-
structure development. He received his B.S. degree in physics from
Kerala University and a Master of Computer Applications de-
gree from the National Institute of Technology in Calicut. His
current work is on developing a distributed logging component
for the IBM Virtualization Engine�.

James Warnes IBM Systems and Technology Group, 2455 South
Road, Poughkeepsie, NY 12601 (warnes@us.ibm.com). Mr. War-
nes is a member of the Advanced System Infrastructure Devel-
opment Group at IBM Poughkeepsie. He received a Bachelor
of Mathematics degree from Canisius College. His current in-
terests lie in the area of on demand computing with a specific
focus on logging. He has spent a significant amount of his career
in z/OS� architecture, design, and development focusing on clus-
tering technologies and shared message queues.

David A. Elko IBM Systems and Technology Group, Austin Pro-
gramming Lab, 904-3F18, Austin, Texas, 78758 (elko@us.ibm.com).
Dr. Elko is a member of the IBM Systems and Technology Group
working in server technology and system architecture. He received
his Bachelor of Mathematics degree from Indiana University of
Pennsylvania (1976), and M.S. (1978) and Ph.D. (1984) degrees
in mathematics from the University of Notre Dame, where his
research interest was in algebraic topology. Dr. Elko joined IBM
in 1980 working in the MVS� operating system development or-
ganization. He later moved to the System/390� architecture de-
partment where he was a principle architect of the Parallel Sys-
plex� Coupling Facility. He received two corporate awards for
his work on Parallel Sysplex, in 1994 and again in 2004. He has
also worked on POWER� architecture and memory compres-
sion techniques. He is a co-inventor on over 30 patents associ-
ated with high-end server architectures.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 HORN ET AL. 733

