
Towards
an information
infrastructure
for the grid

by S. Bourbonnais
V. M. Gogate
L. M. Haas
R. W. Horman

S. Malaika
I. Narang
V. Raman

In this paper we present our vision of an
information infrastructure for grid computing,
which is based on a service-oriented
architecture. The infrastructure supports a
virtualized view of the computing and data
resources, is autonomic (driven by policies) in
order to meet application goals for quality of
service, and is compatible with the standards
being developed in the technical community.
We describe how we are implementing this
vision in IBM today and how we expect the
implementation to evolve in the future.

Grid computing offers the power to address some
of the world�s most challenging problems; for exam-
ple, struggles to prevent cancer and cure smallpox,
to reliably predict earthquakes and global warming,
and many others. Computationally intensive analytic
applications could also benefit: accurate risk com-
putations could help investment companies minimize
losses; insurance companies could more rapidly de-
tect fraud. Two key benefits of grid computing would
enable these advances. First, grids harness hetero-
geneous systems together into a megacomputer, and
hence, can apply greater computational power to a
task. Second, a grid virtualizes these heterogeneous
resources, so that applications for the grid can be
written as if for a single, local computer, vastly sim-
plifying the development needed for such powerful
applications.

Of course, these wonderful applications depend not
only on computing power, but also on data—and of-
ten on vast volumes of heterogeneous, distributed
data, collected or generated by various groups, and

stored in diverse systems. The data sources might
be files, databases, or applications, and the data
might be structured (e.g., relational), semi-structured
(e.g., Extensible Markup Language—XML—docu-
ments) or unstructured content (e.g., images). For
the promise of grid computing to be fulfilled, not only
must we harness and virtualize multiple computing
resources, but we must also abstract and hide the
diversity and distribution of these various informa-
tion sources to provide applications with a single,
powerful virtual-information store for their virtual
computer.

In this paper, we propose an information infrastruc-
ture for grid computing that will meet this lofty goal.
This information infrastructure will have three key
characteristics; in particular, it will be:

● Virtualized—allowing a collection of distributed in-
formation resources to be shared and managed as
if they were a single information store, although
they may in fact remain fully distributed.

● Autonomic—ensuring that the interconnected in-
formation systems can be managed effectively and
efficiently through self-management just like the
human autonomic nervous system.

● Open—utilizing open interfaces and agreed-upon
standards to enable highly interoperable systems
and processes.

�Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 0018-8670/04/$5.00 © 2004 IBM BOURBONNAIS ET AL. 665

These characteristics will enable the information in-
frastructure to produce information on demand, in
the spirit of IBM�s on demand initiative. More spe-
cifically, they will help customers derive the benefits
they expect from a grid. Customer motivations for
using grid computing, besides the hope of meeting
some of the grand challenges outlined above, include
such pragmatic desires as:

● Enhanced collaboration within and across enter-
prises by rapid integration and sharing of distrib-
uted heterogeneous information

● Scalability by adding new copies of data to offload
swamped servers

● Faster response times by efficient processing of da-
ta-intensive queries

● Better availability through transparently exploit-
ing alternative copies of information

● Lower cost through leveraging existing resources
and easier administration

● Faster time to value by simplifying the task of ap-
plication development

These motivations have been echoed by numerous
customers in a range of industries, including life sci-
ence, finance, manufacturing and the scientific com-
munity. Our proposed infrastructure for information
will be the backbone the grid needs to meet these
demands.

An information infrastructure to meet these needs
requires a flexible architecture rich in function. We
believe these needs will best be met by a service-ori-
ented architecture in which each service is self-con-
figuring and self-maintaining, guided by user-pro-
vided policies. The services will, together and
individually, provide certain transparencies, or ab-
stractions, that shield applications from the complex-
ities of a distributed, heterogeneous environment.
Core services of this architecture include data ac-
cess and integration, discovery, meta-data, data
placement, change-publish (for publishing changes
to data), replication, and caching. Services can build
on (use) other core services as well as other grid ser-
vices such as registration, billing, policy management,
and so on. The architecture will be an open one, sup-
porting the existing and evolving grid standards1 so
that many implementations of individual services and
of the collective infrastructure will be possible.

This paper proposes a service-oriented, policy-driven
information infrastructure for the grid. We detail our
vision and the services required in the next section,
and illustrate how these services could be used to

facilitate data-intensive applications on the grid. In
the third section, we look at how these services are
being implemented today. The following section fo-
cuses on the likely future evolution of our implemen-
tation. Standards are critical to a service-oriented
architecture, and we describe the relevant standards
efforts in the section “The role of standards.”

An information infrastructure for the grid

For a large-scale, distributed grid to be successful,
the grid infrastructure should make application de-
velopment easy. Ideally, all the resources used in
computing—processors, storage, databases, applica-
tions—should be virtualized in such a way that the
application developers, administrators, and users are
shielded from the details and dynamics of how the
necessary services are provided. Specifically, a re-
questor of grid services should not be affected by the
number of data and computing resources, their lo-
cations, their failures, and their specific hardware and
software configurations.

The grid infrastructure should transparently provi-
sion the right data and computing resources for each
application. We also want application programmers
to be able to specify end-to-end goals for the quality
of the provisioning. Those goals, often referred to
as quality of service (QoS) goals, may include goals
for the system availability, response time, through-
put, number of concurrent users supported, currency
or accuracy of the data, and so on. The grid infra-
structure needs to support the definition of policies
that set QoS goals and define the conditions under
which they must be met.

Thus, our vision for the information infrastructure
consists of a set of services that individually and col-
lectively support a set of transparencies. By uphold-
ing these transparencies, the services virtualize the
underlying resources, simplifying application devel-
opment. A set of policies governs the functioning of
these services. This vision extends the work done in
the Global Grid Forum (GGF) on the Open Grid Ser-
vices Architecture2 (OGSA) to the information infra-
structure, building on the work being done in the da-
ta-oriented working groups of GGF (e.g., References
3 and 4). In this section, we first provide an example
of a grid scenario that we want the information in-
frastructure to handle. We then identify the set of
services we believe are required for the information
infrastructure, followed by a description of the trans-
parencies we expect our services to provide to ap-

BOURBONNAIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004666

plications and users. A fourth subsection provides
a brief overview of policies and illustrates their use
in our example scenario. Finally, we illustrate how
the services will interact to maintain transparencies
and meet policy goals.

An example. To understand the extent and power
of our information infrastructure, consider a world-
wide grid of hospital information systems, contain-
ing patient records such as hospital visits, medica-
tion history, doctor reports, x-rays, symptoms history,
genetic information, and so on. Transparent access
to such a grid with QoS guarantees could enable a
variety of useful tasks. We outline a few examples
below.

Patient Health Overview: Many health-related appli-
cations would benefit from an integrated view of
medical records for individual patients. Today these
records may be scattered across various hospitals and
doctors� offices. For example, a doctor planning sur-
gery could use such views to provide better, safer
care. If some of the records for the patient were un-
available at a given time, the doctor would still like
to get as many as possible to continue to plan the
surgery to the extent possible.

Computer-Aided Diagnostics: To diagnose diseases,
a doctor could compare a given patient�s symptoms
with those of other patients around the world. This
would be especially helpful for diseases that are un-
common in a region and therefore unfamiliar to the
local doctor. Again, a partial result set would be bet-
ter than no information although the doctor might
want even the partial results to span a representative
subset of the data. Further, when certain symptoms
are found, they may be propagated to the Centers
for Disease Control and Prevention (CDC) to allow
tracking of potential epidemics, or disseminated to
other physicians in the area to alert them to the in-
creased likelihood of a particular disease.

Pharmaceutical Research: A researcher could study
patients with common characteristics to study the ef-
ficacy of various treatments on classes of people. The
analysis would be both computation- and data-in-
tensive, but the data and computation would be
dynamically distributed among multiple nodes on a
grid. Further, the researcher would need to link data
about patients from hospital records with the phar-
maceutical companies� own experimental results. As
several researchers in a company may be working
on related areas, the researcher would also like to

be informed when new results on particular biolog-
ical or chemical substances are made available.

The challenge in performing these tasks is that med-
ical information systems are distributed, heteroge-
neous, and autonomously administered. Patient in-
formation is independently entered at different
hospitals, which bear responsibility for the security
and privacy of this data. Data sources may come and
go, due to events such as new medical centers join-
ing, hardware and software failures, or even pass-
word expiration; thus, it is very difficult for applica-
tion developers to program these tasks directly
against data sources. Because the proposed infor-
mation infrastructure presents a unified view of these
diverse data sources, application developers can write
their programs as if all the data were centrally lo-
cated and always available.

A set of services for the information infrastructure.
Figure 1 illustrates the set of services we imagine for
the information infrastructure for the grid. While no
system provides all of these capabilities today, pro-
totypes and even commercial versions of some ser-
vices do exist. Standards activities in GGF will ensure
that as more of the pieces are created, they can be
put together to form the information infrastructure
we envision here.

The information infrastructure provides applications,
such as those shown at the top of Figure 1, with trans-
parent access to heterogeneous, dispersed informa-
tion sources, like those that appear at the bottom of
the figure. To add an information source explicitly,
it is first registered via the Registration Services. This
step provides information pertaining to that source
to the Meta-data Services, which know about all
available sources and how they ought to be repre-
sented within a unified view to the consuming ap-
plications. Discovery Services can be used to auto-
matically identify possible information sources and
to help knit them into a unified view by depositing
the required meta-data into the Meta-data Repos-
itory (not shown) using Meta-data Services. A Dis-
covery Service might use a Registration Service to
enter sources it has found in the Meta-data
Repository.

Arguably the most essential of the services shown
are Data Services. Data Services handle requests for
information from applications or from other services.
A particular Data Service may represent one spe-
cific information source, for example, a file (mydata.
xls) or a relational database (a single Oracle** in-

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 BOURBONNAIS ET AL. 667

stance). However, it could also be implemented by
middleware that encapsulates and translates among
several data sources. Distributed file systems, gate-
ways, mediators, and federated systems are exam-
ples of such middleware. In this case the Data Ser-
vice represents the collection of information
accessible by the middleware that implements it. By
using the other services of the information infrastruc-
ture, it is possible to build a very sophisticated Data
Service that can handle complex queries, locate rel-
evant information sources for a query, and ensure
that QoS goals are met.

Depending on the access patterns and locality of the
consuming applications, a Placement Management
Service can improve response time or availability by
creating caches or replicas. In effect, a Placement
Management Service automatically distributes cop-

ies of the data to optimize performance. The Place-
ment Management Service provides intelligence to
determine what data to copy to meet the QoS goals.
It relies upon Replication or Cache Services to ac-
tually do the work, creating the data copies, regis-
tering their existence with a Meta-data Service, and
then populating the copies. Of course, Replication
and Cache Services can also be used independent of
the Placement Management Service. For example,
an administrator might use a Replication Service to
ensure the availability of certain data for a disaster
recovery scenario. Change-Publish Services can de-
tect changes in data and deliver them to a consumer,
providing the ability to “publish” changes. A Rep-
lication Service might use a Change-Publish Service
to know when to propagate and apply changes for
a replica, or an application might subscribe to
changes in data it particularly cares about.

Figure 1 Services for an information infrastructure for the grid

EXISTING OPERATIONAL AND REFERENCE SYSTEMS WEB SERVICES EXTERNAL SYSTEMS

OTHER GRID SERVICESINFORMATION INFRASTRUCTURE

PLACEMENT
MANAGEMENT
SERVICES

CACHE
SERVICES

REPLICATION
SERVICES

CHANGE
PUBLISH
SERVICES

DATA
SERVICES

DISCOVERY
SERVICES

META-DATA
SERVICES

REGISTRATION
SERVICES

NOTIFICATION
SERVICES

POLICY
MANAGEMENT
SERVICES

APPLICATION

APPLICATION

BI TOOL WEB PORTAL CUSTOM CRM

CRM

DATA

CRM

DATA

CRM

DATA

DBMS

DATABASE

CRMUNSTRUCT

BOURBONNAIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004668

Finally, these services provided by the information
infrastructure can use other grid services as indicated
on the righthand side of Figure 1. For example, the
overall grid architecture2 provides a Notification Ser-
vice, which could be used to inform an autonomic
Meta-data Service of relevant changes in the state,
meta-data, or location of information sources. An-
other important grid service is the Policy Manage-
ment Service, which is used by most of the informa-
tion infrastructure services to discover what QoS
goals they must sustain.

We believe this set of services, working together as
described above, is an information infrastructure that
can fully support the needs of grid computing and
its users. In the next two sections we first discuss the
transparencies that we expect these services to pro-
vide, and then how policies are used by the services.
With that background, we present a scenario using
several of the services, elaborating on how they can
be used together in the grid context to provide these
transparencies and to meet QoS goals.

Transparencies needed for the information infra-
structure. We characterize the extent to which an
information infrastructure supports virtualization
through the notion of transparencies.5 There are a
number of different kinds of transparency that will
have to be provided before we realize a complete
information infrastructure for the grid. Each trans-
parency masks from the user some type of differ-
ence, idiosyncrasy, or implementation detail of the
underlying data sources.

The most fundamental type of transparency for the
grid is location transparency. Location transparency
shields the user from awareness of where data are
stored. Without location transparency, users must
make requests directly of a particular data source.
Location transparency is usually implemented via
some middleware (often called a mediator or bro-
ker) that is responsible for interpreting each infor-
mation request and directing it to the right location.
True location transparency is not really possible with-
out heterogeneity transparency. This transparency pro-
tects the user from the details of how data are stored
and accessed by the actual source systems, includ-
ing the language or programming interface sup-
ported by the data source (and the dialect the source
supports), how the data are physically stored, whether
the data are partitioned, or the networking proto-
cols used. The user should see a single uniform in-
terface, complete with a single set of error codes.

However, even with location and heterogeneity
transparency, users typically need to know the name
of the data they need. Replication transparency ex-
tends the concept further: one name can now be used
to access any of several copies, depending on which
is available or more cost-effective. Name transpar-
ency is a generalization of these transparencies that
suits the dynamic, large-scale, grid environment.
With name transparency, a user does not have to
know the name of the data, only the logical char-
acteristics or QoS properties. In the hospital grid ex-
ample, a pharmaceutical researcher may want to find
the records of all patients in a specific age group,
having a specific symptom. This researcher does not
know or care about the location of these patients,
or which medical facilities provide their records. The
researcher would like to qualify his request by only
the logical attributes of the desired patient records.
The alternative solution of hard-coding the tables
or documents in the query or application would mean
that every source entry, exit, or failure would result
in rewriting the query or recompiling the applica-
tion. With name transparency, the sources can be
migrated, cached, or replicated without changing the
applications because the application does not spec-
ify the data sources explicitly. As part of the data
access request, applications can specify QoS goals
such as proximity, staleness, and cost, and suitable
replicas are chosen automatically.

If grids are successful in the long term, they will
evolve to span organizational boundaries (as sug-
gested by the hospital grid example), and will involve
multiple autonomous data and computational re-
sources. As far as possible, applications should be
spared from separately negotiating for access to in-
dividual sources, whether in terms of access autho-
rization or in terms of resource usage costs. Own-
ership and costing transparencies address these needs.
This will require protocols beyond the scope of this
paper to address.

If our infrastructure is to autonomously meet QoS
goals, two other transparencies are needed. Paral-
lelism transparency gives applications processing data
on a grid the benefits of parallel execution over grid
nodes without explicit coding. The application should
only have to specify the dependencies among the
tasks it needs to execute and the policies that will
affect scheduling, such as priority of the job or re-
sponse time required. A workflow coordination ser-
vice should automatically orchestrate this workflow
in a parallel fashion, taking care of data movement,
node failures, and so forth, to meet the response time

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 BOURBONNAIS ET AL. 669

goals. In cases where the processing consists of tra-
ditional data management tasks like online transac-
tion processing or online analytical processing (OLTP
or OLAP), the system should automatically expand
(or shrink) by adding (or removing) nodes in re-
sponse to workload fluctuations to meet QoS goals
such as transaction throughput and response time.
Finally, applications should be able to maintain dis-
tributed data in a unified fashion, as if the data were
stored in one central place (distribution transparency).
This maintenance involves several tasks, such as en-
suring consistency and data integrity, auditing access,
taking backups, and so on.

Policies and autonomic computing in the informa-
tion infrastructure. “Policy” is a general concept,
used not only by the information infrastructure but
by many other grid services. For example, other as-
pects of system operation, such as workload man-
agement, are guided and constrained by policies. Fur-
ther, these other services interact with the
information infrastructure services to maintain the
system autonomically in accordance with these pol-
icies. In this section, we focus on the kinds of pol-
icies needed to govern the information infrastruc-
ture, and on how the information infrastructure
works with other services to comply with these pol-
icies autonomically.

A policy is a prioritized set of QoS goals. For the
information infrastructure, QoS goals have to do with
the availability and latency of data, with query per-
formance, replication throughput, and so on. QoS
goals have terms that must be met (also known as
criteria) and conditions that constrain the goal. A
service level agreement (SLA) is a formal contract (both
monetary and legal) that is struck between provider
and consumer. This contract specifies minimum ex-
pectations (or obligations), known as terms and con-
ditions, that the provider must meet. It usually in-
cludes penalties or refunds if the terms and
conditions are not met. Although the process for ar-
riving at the terms and conditions, that is, the ne-
gotiation among selected parties, as well as the pro-
cess for compliance monitoring, are both important
aspects of an SLA, they are no different for the in-
formation infrastructure than for other grid systems,
so we will not discuss them further. (As an example,
the WSLA project6 is an attempt to formalize this no-
tion for Web services.)

Figure 2 uses the Patient Health Overview scenario
introduced earlier to clarify the concepts of SLA,
terms and conditions, and policy. In this example,

the SLA contains two sets of terms and conditions,
or a policy with two goals. First, there is a response-
time goal of less than 5 minutes for 95 percent of
all reports, and second, there is the availability goal
of 96 percent of the stated Service Hours. These two
policy goals capture the QoS requirements of the
users of the Patient Health Overview application, and
in particular, the generation of health reports using
this application. Having come to an agreement on
these two policy goals, the service provider is obli-
gated to meet these goals or incur a penalty. More
formally:

A policy is a prioritized set of criteria for making deci-
sions that guides the operational behavior of a system.

A criterion is anything that can be used to help make
a decision or come to a judgment. In the example
of Figure 2, the criteria are the policy goals of avail-
ability and response time, together with the condi-
tions under which those goals are applicable, such
as the Service Hours. The grid services use these cri-
teria to guide their decisions on how to provision in-
formation automatically in response to consumer de-
mand. The final piece of the policy definition is
priority. The criteria themselves are prioritized, so
that trade-offs can be made when the system is un-
able to satisfy all goals due to limited resources. In
our SLA example, the availability goal has a higher
priority than the response-time goal; hence, the au-
tonomic system would favor keeping the Health Re-
porting function running and accessible over ensur-
ing most reports had a response time of less than 5
minutes. For example, the overhead of maintaining
a recovery strategy that would satisfy the availabil-
ity criterion may negatively affect the reporting sub-
system, resulting in only 85 percent of the reports
having a response time of less than 5 minutes.

Given these two high-level policy goals, expressed
in terms very relevant to the users of the Patient
Health Overview application, grid services are ob-
ligated to configure and manage data access as nec-
essary to satisfy the users� goals. There may be sev-
eral different ways to meet these goals, possibly
involving several different services. To meet a re-
sponse-time goal, for example, remote data might
be cached locally, or data might be hosted on stor-
age devices with appropriate performance charac-
teristics (e.g., striped across multiple disks for par-
allel access), or network bandwidth might be
increased to reduce delays. Note that satisfying these
goals is not up to the information infrastructure
alone. Other grid services that monitor for policy

BOURBONNAIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004670

compliance must detect potential violations and
choose the appropriate actions, then orchestrate the
response by calling the necessary services. In this case,
a workload management service might detect the ex-
ception and drive the need to improve response time.

Because a patient�s health overview is an integrated
view of medical records that may be scattered across
various hospitals, doctors� offices, and medical cen-
ters, response time for the Patient Health Overview
application could be unacceptable due to certain con-
gested segments of the network. The workload man-
agement service might conclude that the only viable
way of improving response time would be to cache
some or all of the data to avoid the congested seg-
ments, and invoke the Placement Management Ser-
vice to decide which data should be cached and
where. Given the response-time goal of 5 minutes,

the Placement Management Service could decide to
introduce a replica or cache close to the Patient
Health Overview application. It could then invoke
the appropriate service to configure and manage the
replica or cache in a manner consistent with the re-
sponse-time policy goal.

In summary, an autonomic grid will be driven by pol-
icies and SLAs. It will require the collaboration of
multiple grid services, some part of the core infor-
mation infrastructure, others part of the general grid
environment. Cooperation in this autonomic envi-
ronment will have a number of benefits for our in-
formation infrastructure, including:

● More elastic data repositories, that is, database
clusters that can grow and shrink automatically in
response to demand

Figure 2 A service level agreement for the Patient Health Overview application

Hospitals, Doctors’ Offices, Labs,
and Medical Centers

Geographically Dispersed

CRM

Medical Center

Service level agreement
...

SERVICE HOURS
 *08:00 to 17:00 Monday thru Friday

RESPONSE TIME TARGETS-Priority 2
 95% of all reports in under 5 minutes

AVAILABILITY TARGETS-Priority 1
 96% of service hours

2.2 Application: Patient Health Overview
2.2.1 Health Reports

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 BOURBONNAIS ET AL. 671

● Improved access to data through caching or rep-
lication, automatically determined based on access
patterns, locality of consumers relative to provid-
ers, and locality of data relative to the processing
of the data

● More transparent access to heterogeneous, dis-
persed data sources (because automatic data cach-
ing hides the distribution and heterogeneity)

Autonomic management is essential to maintaining
the transparencies that we need for our information
infrastructure.

A scenario using the Information Infrastructure Ser-
vices. In this section we present a scenario using sev-
eral information infrastructure services, to give a bet-
ter understanding of how we envision these services
working and interacting. We focus on the critical
Data Services and Placement Management Services,
which are at the heart of our information infrastruc-
ture. We first introduce the notion of data equiva-
lence, which ties these two services together, then
comment briefly on the workings of both services,
and conclude this section with an illustration of how
the services work together.

Data Equivalence: The previous section provided an
example of how a Placement Management Service
could help realize response-time policy goals by op-
timizing the location of data in the distributed sys-
tem. The Placement Management Service could also
help achieve availability policies for information such
as those of hospitals that want their records avail-
able “24�7,” by creating and maintaining multiple
copies of the information on discrete physical ma-
chines. However, this will only help if the Data Ser-
vice that answers requests for information knows
about the copies and knows that they are sufficient
to answer a particular information request.

Thus, the Data Service needs a way to recognize
equivalent data sets and a means for choosing be-
tween equivalent data sets according to user poli-
cies. Likewise, the Placement Management Service
needs to be able to create equivalent data sets that
the Data Service will use. Data equivalence is the
knowledge by the information infrastructure services
that more than one copy of a data set exists and can
be used as an alternative for satisfying a data query
under a given set of runtime conditions and policies.
Examples of data sets include a set of rows resulting
from the execution of a query, a subset of a table,
or a document. To illustrate data equivalence, as-
sume there are two servers with a price list that is

usable for a given e-commerce application. It could
be that each price list is an exact copy of the other
and that they are updated simultaneously, or one
might be the master price list and the second could
be a subset maintained by replication that is suffi-
cient for this e-commerce application. Data equiv-
alence applies to the scope of a query and does not
imply content equivalence. As another example,
imagine the PATIENTS table contains one million rec-
ords, while another table PATIENT8 contains a sin-
gle record for the patient with an ID of ‘8’. Despite
the obvious differences between these two tables,
these two data sets are equivalent for the query
“where PATIENTID � ‘8’.” As a final example, tol-
erance for using an out-of-date copy of the data
would be specified as a policy of the application re-
questing the data. For an application willing to ac-
cept data less than an hour old, a cached copy of a
table that was last refreshed (updated from the mas-
ter version) 58 minutes ago is equivalent to the mas-
ter, regardless of how many updates have happened
at the master in the meantime.

This notion of equivalence shared by the Data Ser-
vice and the Placement Management Service allows
us to support location and name transparency. Ap-
plications do not need to modify their queries or con-
nect to a different database to benefit from data
placement. If the Placement Management Service
creates new copies of subsets of the data, they are
registered with the Meta-data Service, and applica-
tions will automatically benefit from these subsets
without having to be recompiled because the Data
Service uses the meta-data and discovery services
provided by the overall infrastructure to find and ex-
ploit data equivalences.

Data Service: The Data Service is, first and foremost,
a provider of information. It takes requests coming
from applications (or from other services), and re-
turns the information requested. Different Data Ser-
vices may specialize in different types of request. One,
for example, may handle only XQuery,7 another may
handle a subset of structured query language (SQL),
a third may only handle files. A simple Data Service
may encapsulate a single data store; whereas, a more
powerful Data Service may be able to access any of
several, and a yet more powerful Data Service may
integrate multiple other Data Services, providing a
uniform schema over all of them. We anticipate that
many, if not most, Data Services will have their own
local storage, which could hold some or all of the
data to which they provide access and could also be

BOURBONNAIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004672

used for processing requests or as a target for cach-
ing data.

The Data Service works with other services to pro-
vide the transparencies mentioned earlier, across the
set of information that it provides and by means of
the interface that it provides. Some will be able to
provide more transparency than others. Consider a
very simple Data Service: a local file system. This
service can provide only limited transparency; typ-
ically, users would be aware of exactly what oper-
ating system they are using and maybe even what
disk drive their file is on (think of Microsoft Win-
dows**). However, a distributed file system such as
the Andrew File System (AFS*) may provide much
greater transparency by providing a single name-
space for files from several different systems, and,
with the use of aliasing, even name transparency may
be achieved. Likewise, a simple Data Service that
encapsulates a single relational database by means
of an SQL interface can be easily imagined, and again,
provides limited transparency: users must be aware
of which database system and even sometimes which
version they are using, to which database name they
should connect, and which client they must have in-
stalled. Yet, once the user is connected, the relational
database provides most of the transparencies—
within its limited domain. The Meta-data Service can
be implemented as the relational catalog, and the
Data Service itself as the relational database man-
agement system (RDBMS); views can be used to cre-
ate logical domains to support name transparency;
policies are met by self-tuning or (not so autonom-
ically) by adding resources.

At the other extreme, a powerful Data Service pro-
viding information from a dynamically growing (and
shrinking) set of data sources needs much assistance
to maintain the transparencies. A more powerful
Meta-data Service will be needed to provide map-
pings between sources and the unified schema; Cach-
ing, Replication, and Placement Management Ser-
vices may be needed to meet policy goals, as well as
a Workload Management Service to monitor com-
pliance and then call the appropriate service—or
that could be built into the Data Service or the Place-
ment Management Service (different implementa-
tions for each of these are clearly possible; in the
section, “Implementing an information infrastruc-
ture for the grid: Today,” we will look at concrete
implementations as they appear today in IBM�s
products).

Placement Management: The Placement Manage-
ment Service is concerned with the location and
movement of data within the information infrastruc-
ture, to deliver a QoS that meets the policies of an
SLA. Placement management functions address the
need for improved response time by reducing net-
work costs in remote geographies, say, or by precom-
puting queries into an equivalent data set. They also
support high availability (by allowing the use of an
equivalent table when a primary source is unavail-
able) and increased scalability (by, say, offloading a
server before it gets saturated and distributing its
datatoapoolofperhapslessexpensiveservers).Work-
load characteristics, system and user policies, avail-
able hardware and software resources, and security
considerations determine the type of placement:

1. Caching (on-demand transient copy),
2. Replication (synchronized long-lived copy),
3. Extracting and transforming (on demand copy,

typically long-lived, possibly with transforma-
tions),

4. Federation (access in place, no copy), or
5. Archiving (move to long-term storage).

The difference between a cache and a replica is sub-
tle and needs some explanation. The creation of a
cache is primarily an optimization decision; a cache
is a transient copy by nature, and applications should
never be aware of or depend on the existence of a
cache beyond their QoS requirements. The creation
of a replica is primarily an availability decision; a rep-
lica is generally long-lived and static, and applica-
tions can be aware of its existence. However, rep-
lication technologies also provide data movement
mechanisms that may be used for a Cache Service,
such as changed data capture. Other implementa-
tions of a Cache Service that do not use replication
are also possible, of course, and, likewise, if we had
a pre-existing caching capability, we might be able
to use it to build replication. This independence is
one reason we believe there should be separate ser-
vices for these tasks.

Figure 3 illustrates the relationship between the
Placement Management Service and the Data Ser-
vice in our grid information infrastructure. The
Placement Management Service may cooperate with
several Data Service instances. In the figure, the mas-
ter copy for a PATIENTS table resides in the local store
for Data Service5. (Note that because our infrastruc-
ture upholds heterogeneity transparency, we do not
know what the actual system is that provides the data.
It might be a DB2* for z/OS* database, IMS*, an XML

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 BOURBONNAIS ET AL. 673

table, or an SAP** system. In fact, each of the Data
Services shown might be a different system “un-
der the covers.”) At the start of the action, a partial
copy of the PATIENTS table (for patients in three west-
ern states—California, Oregon, and Washington) re-
sides in Data Service3, and requests coming in for
patients from those states from the applications to
Data Service1 (1) are being routed to Data Service3
(2) (we assume that Data Service1 has previously dis-
covered that Data Service3 can satisfy these
requests).

Then Data Service1 receives a request for data for
patients from Nevada and California. Nevada data
is not available at Date Service3, so Data Service1
asks the Meta-data Service where it can go for the
answer (3). The Meta-data Service provides Data

Service1 with a list of Data Services. The list pro-
vides patient data, along with sufficient information
on the granularity and currency of each Data Ser-
vice so that Data Service1 can determine whether
a Data Service is equivalent to the request in its
query. In this case, Data Service1 finds that the best
alternative is to go to the master copy of the PATIENTS
table at Data Service5 (4). (It could have chosen to
“union” data on patients in Nevada from Data Ser-
vice2 with California data from Data Service3, but
that requires multiple requests, and perhaps the cur-
rency of the data at Data Service2 is insufficient for
this application.)

However, Data Service5 is heavily loaded and soon
cannot keep up with the requests coming in from
Data Service1, which is now in danger of violating

Figure 3 Patient Health Overview application: Interactions among services

DATA SERVICE1

DATA SERVICE2

APPLICATIONS

1

5

3

4

7

7
7

7

6

2

DATA SERVICE3

DATA SERVICE4

META-DATA
SERVICE

PLACEMENT
MANAGEMENT
SERVICE

QUERY/DATA REQUEST
SERVICE REQUEST
DATA MOVEMENT

PATIENTS
(VIEW)

CACHE
SERVICE

DATA SERVICE5

META-DATA
REPOSITORY

PATIENTS
(MASTER)

PATIENTS
(CA, OR, WA)

PATIENTS
(CA, OR, WA)

PATIENTS
(CA+NV)

LOCAL
DATA

LOCAL
DATA

LOCAL
DATA

LOCAL
DATA

LOCAL
DATA

BOURBONNAIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004674

its SLA with its application. Therefore, Data Service1
might ask the Placement Management Service for
help (5). The Placement Manager analyzes the re-
quests with which Data Service1 is dealing and finds
that most of them are for patients in California or
Nevada. It therefore requests the Cache Service to
cache data for those states at Data Service1 (6). The
Cache Service works with Data Service5, Data Ser-
vice1, and the Meta-data Service to create and pop-
ulate the cache (7), possibly using a Replication Ser-
vice not shown, and to record the information on
the new cache in the Meta-data Repository. Once
the initial population of the cache is complete, Data
Service1 can satisy its application locally.

Note that there is a close collaboration between the
Data Service, which makes routing decisions (selects
the source or equivalent data set) and the Placement
Management Service. The latter analyzes the work-
load and acts according to the placement policy rules.
The Placement Management Service might, for ex-
ample, automatically set up replication or archive
data. Data placement can be used to support mul-
tiple distributed scenarios. For example, a medical
group with several different locations might have a
centralized computing facility. To offload the cen-
tralized server allowing better scalability, they could
deploy several Data Services and Cache Services, one
at each site, to act as mid-tier caches for data ac-
cessed from both their facility and those of other
medical groups on the grid.

In this section, we have presented our vision for an
information infrastructure for the grid. The infra-
structure we envision consists of a set of core infor-
mation services that cooperate to maintain an im-
portant set of transparencies and meet a set of policy
objectives. They work with and depend on other grid
services as well. Many implementations of each ser-
vice are possible. In the next two sections, we dis-
cuss an implementation for the infrastructure de-
scribed earlier. The first section describes the current
state of our implementation as manifested in our
products. We present the various services, as well as
our overall autonomic capability, and show which
transparencies are supported. Although our infra-
structure already provides rich capabilities for the
grid, there are still areas that need work before our
vision is fully realized. In the following section, we
first discuss the evolution that is needed to make the
infrastructure more dynamic and scalable, and then
revisit a few key services to show how they may
change moving forward.

Implementing an information infrastructure
for the grid: Today
IBM has long been concerned with providing infor-
mation virtualization. Products such as DB2 Data-
Joiner*8 and research projects such as Garlic9 pi-
oneered federated database technology nearly ten
years ago. Today, DB2 Information Integrator*10 is
taking further steps towards full virtualization, bring-
ing together federation, replication, transformation,
publish, and search technologies into a powerful plat-
form for information integration. Many of the ca-
pabilities we imagine for the grid information infra-
structure exist at least in part in DB2 Information
Integrator and other DB2 products today, though not
always accessible via services—yet.

We will describe DB2 Information Integrator�s ca-
pabilities using the framework of the service-oriented
architecture introduced in the previous section. We
will use the term “service” loosely, here, to indicate
the relevant capability, and indicate which of these
capabilities is actually accessible as (Web) services
in the text. All are accessible via programming in-
terfaces, so they can be called from another program,
at least. In the following, we focus on each of the
services in turn, starting with the Data Service and
the placement-related services that are at the core
of our infrastructure.

The Data Service. A key component of DB2 Infor-
mation Integrator is its federation engine, which we
will look to as our Data Service. This federation en-
gine is a query-processing engine (built on the DB2
Universal Database* technology) that provides trans-
parent access to a number of heterogeneous, distrib-
uted data sources. It provides location and hetero-
geneity transparency, and even some amount of
replication transparency today. Even though the data
sources are distributed, the federated system looks
to the application developer like a regular (rela-
tional) database management system. Users can run
queries to access data from multiple sources, join-
ing and restricting, aggregating and analyzing the
data at will, with the full power of SQL (including
SQL/XML11). While access to individual data sources
is also provided by Java** Database Connectivity
(JDBC**), Open Database Connectivity (ODBC), Mi-
crosoft** ActiveX Data Objects (ADO), and so forth,
federated systems allow correlation of values in dif-
ferent sources (e.g., cross-source joins), without any
work in the application. Users can also update data
for some sources if they have the appropriate per-
missions at the sources. Yet the data sources in a
federated system need not be databases at all, but

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 BOURBONNAIS ET AL. 675

in fact could be anything ranging from sensors to flat
files to application programs to XML documents, and
so on. The data in these heterogeneous sources are
modeled as tables, and specialized capabilities of the
sources are modeled as functions.

A typical query in a federated system architecture
is illustrated in Figure 4. Applications can use any
supported interface (including ODBC, JDBC, or a Web
services client) to interact with DB2 Information In-
tegrator. When an application submits a query to DB2
Information Integrator, the federated engine iden-
tifies the relevant data sources and develops a query
execution plan for obtaining the requested data. The
plan typically breaks the original query into frag-
ments that represent work to be delegated to indi-
vidual data sources, as well as additional processing
to be performed by the federated engine to further

filter, aggregate, or merge the data. (For the exam-
ple in Figure 4, the federated engine would have to
calculate the distance after the join.) The ability of
the federated engine to further process data received
from sources allows applications to take advantage
of the full power of the query language and any func-
tions defined at the engine, even if some of the in-
formation that they request comes from data sources
with little or no native query-processing capability,
such as simple text files. The federated engine has
a local data store to cache data or query results, if
desired, as well as to provide temporary storage for
partial results during query processing.

In Figure 4, the federated engine accesses diverse
data sources that are shown on the right: a traditional
database system such as Oracle, a specialized appli-
cation, such as the Documentum** document man-

Figure 4 A federated query performed by DB2 Information Integrator

Query: Display the lab report and distance
between customers who had a CAT scan
and the hospital where they had the scan

SQL API,
JDBC,
ODBC,
WS, ...

HOSPITALS

LAB_REPORTS

PATIENTS, VISITS, TESTS

<doc>
 <patient id=‘123’>
 <name>...</name>
 <address>...</address>
 <visit>
 <date>...</date>
 <test quant=1>
 <desc>...</desc>

 ...
 </visit>

 ...
</doc>

SELECT P.name, R.report,
 GSE.ST_DISTANCE (
 geocode(P.address),
 geocode(H.address), ‘mile’)
FROM Patients P, Visits V,
 Tests T, Hospitals H, Lab_Report R
WHERE P.cid=V.cid
 AND V.oid=T.oid
 AND T.desc=‘CAT scan’
 AND T.oid=R.oid
 AND V.sid=H.sid

Relational
Data
Source

Database
Application

Federated
Engine

Global
Catalog Data

Data

Data

Application

Wrappers

BOURBONNAIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004676

agement software, and an XML file. A single feder-
ated query can perform a join between hospital data
stored in Oracle, patient and visit information main-
tained in the XML file, and test results in the Docu-
mentum data source.

The federated engine communicates with the data
sources by means of wrappers. A wrapper is a piece
of code, packaged as a shared library, which can be
loaded dynamically by the federated server when
needed. Often, a single wrapper is capable of access-
ing several data sources, as long as they share a com-
mon or similar application programming interface
(API). The wrapper serves to translate between the
federated engine�s data model and internal data
structures and the interfaces and data models of the
data source. Once wrappers are written, applications
can seamlessly integrate data from relational data-
bases, application programs, and even XML data
sources, without consideration of the details of data
formats and programming interfaces in each
source.12 Hence, the wrappers provide heterogene-
ity transparency for our Data Service.

DB2 Information Integrator provides a wide range
of wrappers to structured and unstructured sources.
One important wrapper for our service-oriented grid
infrastructure is a wrapper that allows data to be in-
corporated from Web services. As the grid standards
for data access (DAIS13) solidify, the Web services
wrapper will be used as the basis for a grid services
wrapper. DB2 Information Integrator also includes
a Web services provider, which allows the federated
engine to be invoked via a Web service. Thus our
Data Service is ready to plug into a service-oriented
information infrastructure today, using Web services.
In fact, all of the DB2 database products are simi-
larly enabled. As more and more commercial data
sources provide similar capabilities, it will be easy
for our Data Service to reach out to them
transparently.

A key feature of DB2 Universal Database, and one
that is inherited by DB2 Information Integrator, is
the ability to define materialized views, called Ma-
terialized Query Tables (MQTs) in DB2. The query
compiler understands these views and can automat-
ically substitute them for use in a query in place of
the base tables, providing a measure of replication
transparency for our Data Service. (In essence, the
view definitions serve as data equivalences for the
query-processing engine). Materialized views are
particularly powerful when used by our federation
engine to materialize distributed, heterogeneous

data, as they can greatly speed up query processing.
Materialized views can be simple selections or pro-
jections on a single base table, or they can be com-
plex aggregations and joins.

The Placement Management Service. The 2004 re-
lease of DB2 Information Integrator includes our first
implementation of some intelligence around data
placement. The Design Advisor14 has, as one of its
features, an MQT advisor that can recommend what
data to materialize, given a workload of queries and
priorities. In its first release, the Design Advisor will
only give advice; but it will provide all the commands
needed for a human (or program) to implement that
advice. Hence, we can build a Placement Manage-
ment Service based on this intelligence, which, given
a workload of queries, will be able to recommend
and create materialized views that the federated en-
gine will recognize and use.

The Cache Service. It is possible to use MQTs to build
a simple declarative cache for individual tables by
creating an MQT defined as a simple select-project
query on that table and maintaining the MQT by us-
ing replication. For example, assume PATIENTS is the
local nickname for a table at a remote server. The
SQL statement ‘create table CACHEPATIENTS as se-
lect * from PATIENTS’ defines an MQT for caching rows
from that remote table. When compiling a query that
references the remote table PATIENTS, the query pro-
cessor looks for a materialized version that could be
substituted based on existing MQT definitions. If an
application issues the query, “select name from pa-
tients where name like ‘Bou%’,” this query will be
executed against the CACHEPATIENTS MQT defined
above. No remote access is required. Of course, any
MQT can be used as a cache in the same way, but
when the MQT is a materialization of an aggregation
or a join over several source tables (especially ta-
bles from different sources), it is maintained by do-
ing a full extract and load. (Simple aggregations from
a single source can also be maintained via replica-
tion if desired.)

To use an MQT as described, the application must
indicate a willingness to tolerate potentially stale
data. In DB2 Information Integrator, the policy on
staleness is specified with the REFRESH AGE param-
eter. REFRESH AGE is a binary parameter: an appli-
cation either tolerates arbitrary data staleness, or
none. It is the responsibility of the system admin-
istrator to ensure that the MQT is properly loaded
with data at the right time as per the definition (pos-
sibly using replication as described above). Data

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 BOURBONNAIS ET AL. 677

writes against MQTs are always redirected to the data
source. Since refresh of the cached data is asynchro-
nous, subsequent reads in the same transaction may
not see their own updates. The mechanism for rout-
ing a query to an MQT, or substituting a table or nick-
name specified in this query with an MQT, is a com-
pile time decision. That decision is made by
comparing the cost of executing the query against
the actual data source table or tables to the cost of
executing the query using the MQT. As such, it does
not actually take into account availability of the data
source. In other words, if the query would execute
faster against the actual data source, that is the ex-
ecution strategy which will be chosen. If the source
happens to be down at that moment, the query will
fail, even though a local copy exists. Still, for most
situations, local data will be preferred; therefore,
MQTs do provide for more availability as well as bet-
ter response times and scalability. Another issue that
arises due to the compile-time routing decision is that
the query engine cannot always prove that the cache
has all the rows needed for the query. For example
if a query uses parameter markers to select a subset
of the table rows and the MQT is a proper subset of
the table, the query engine does not have sufficient
information to decide, and so must conservatively
use the actual data source.

To recapitulate, today DB2 Information Integrator
includes the ability to cache individual tables or com-
plex query results in MQTs. Routing is done at com-
pile time and does not take into account changes in
data sources, such as availability. Caches are declar-
atively loaded and maintained either by change-cap-
ture replication or by full refresh. Writes are trans-
parent to the cache, meaning that applications might
not see their own update if a subsequent read is di-
rected to the MQT.

The Replication Service. DB2 Information Integra-
tor includes a replication engine (formerly DB2 Data
Propagator). This replication capability addresses
scenarios where data needs to be provisioned to a
variety of applications, often across geographies, al-
lowing users to maintain copies of the data across
heterogeneous database systems. Several topologies
are supported; for example: data distribution from
a primary server to several distributed servers; data
consolidation from distributed servers to a primary
server; master/slave configuration, where a named
master server prevails in the case of conflicts; and
peer-to-peer, where servers can each update the
same data. Changes to a database are captured from
the database recovery log (or by using triggers for

non-DB2 databases) and staged into relational tables,
from which they are applied to one or several rep-
licas (by using federation for non-DB2 tables). This
architecture has interesting advantages: staging the
data into relational tables allows transformations via
SQL by using database triggers, stored procedures,
or SQL statements, and the data changes only need
to be inserted once into the staging area for delivery
to several targets.

In 2004, a high throughput, low-latency replication
engine joined the set of replication alternatives, also
as part of DB2 Information Integrator. Initially lim-
ited to the DB2 database family, this new engine also
captures changes from the database recovery log and
puts the changes onto a queue for delivery to the
target, using point-to-point messaging. At the tar-
get, the changes received from the queue can be ap-
plied in parallel, using multiple agents. Conflict de-
tection and resolution are also much improved over
earlier technology.

In addition, to address disaster recovery scenarios
IBM is developing High Availability Data Replica-
tion (HADR), a feature that is already available for
IBM Informix* Dynamic Server databases. This rep-
lication solution addresses the need to maintain a
standby server for failover in case of a disaster when
the primary server is disabled. With HADR, the
database recovery log records are sent to the
standby server via TCP/IP (Transmission Control
Protocol/Internet Protocol) when a transaction is
committed. As log pages are received at the second-
ary server, database recovery logic is executed to ap-
ply the changes and maintain consistency. Synchro-
nization between the two servers can be ensured. The
secondary database must have the same physical
structure as the primary database, and because it is
performing recovery on the database, it cannot be
used for queries until a failover occurs. HADR tol-
erates intermittent loss of connectivity between the
two servers. When the connection is lost, the primary
server stops sending log records to the secondary
server until the connection is restored, at which point
the secondary server requests missed log records
from the primary server, and a resynchronization
takes place.

The Change-Publish Service. Our Change-Publish
Service uses the same framework as the new, queue-
based replication previously described. This publish-
ing function makes it possible for an application to
subscribe to data changes that will be delivered as
XML messages over an MQSeries* message queue.

BOURBONNAIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004678

The use of the replication log capture mechanism
ensures that a change is delivered only after it has
been committed to the database. The changes are
captured and the messages sent asynchronously, so
that publishing does not impact the response time
of the application committing changes to the data-
base. A subscriber can be connected to the server
intermittently: changes will be accumulated in the
MQSeries queue while a connection is unavailable.
Changes from a variety of sources including the DB2
family, but also IMS and VSAM*, can be captured.

The Meta-data Service. Today, the federated en-
gine�s catalog stores the operational meta-data
needed by the various services described above. By
querying the catalogs, information about remote
sources, tables, caches, and subscriptions can be re-
trieved. New in 2004, we are adding support for an
XML Meta-data Repository (based on the XML Reg-
istry15) as well, where, for example, XML artifacts
used in application development may be stored and
queried.

The Registration Service. To register a new object
to the DB2 Information Integrator, new entries must
be placed in the Meta-data Repository. These en-
tries can be made via a graphical user interface and
saved in scripts for later replay. Programmatic in-
terfaces are also available for many object types. Typ-
ical objects that might be registered include wrap-
pers (the code modules that connect the federation
engine to a particular type of data source), sources
themselves, data sets from a source (where a data
set is a unit of data that will be modeled as a table
to the federated system), replication subscriptions,
and so on.

The Discovery Service. Today, we have only the ru-
diments of a Discovery Service—but even those ru-
diments may be lifesavers for users of the federa-
tion engine. Today our discovery capability is only
available through the control center, the graphical
user interface for administering the Data Service,
and only for tables and data source instances. The
user has to explicitly specify what type of source to
look for; the Discovery module returns instances of
that source type and data sets at that source. For ex-
ample, if the user indicates an interest in XML files,
the Discovery module can present the user with a
list of possible files. Once the user picks a file of in-
terest, Discovery can parse that file, and pick out the
element types and their definitions that could be
modeled as tables to the federated engine.16

Summary: The information infrastructure today. To
summarize, DB2 Information Integrator already pro-
vides many of the capabilities needed for our infor-
mation infrastructure, albeit not all are available as
services today. The federated engine (our Data Ser-
vice) provides heterogeneity transparency and loca-
tion transparency. It understands some types of data
equivalences, and hence also supports a degree of
replication transparency. While not fully autonomic
as yet, there is the basis for a Placement Manage-
ment Service (the Design Advisor), and the means
to accomplish placement, namely, replication and
caching. Publishing capability is being built on the
change-capture capability used for replication. Sub-
stantial meta-data is captured in catalogs that can
be queried, and new objects can be registered or dis-
covered, causing entries to be made in the same
catalogs.

Powerful though this infrastructure is, it still needs
improvement. The infrastructure described does not
yet provide all the transparencies we believe are
needed. One key limitation is that there is no name
transparency; applications have to explicitly name
the individual data sets (modeled as tables) that they
wish to query (unless an administrator defines views
to cover them—and even then, the views must be
explicitly named and maintained). Thus, applications
(or view definitions) may need to change when the
set of data sources changes. For example, if a new
hospital joins our grid, a query looking for patients
does not find this hospital�s data unless the query is
modified to look at the new hospital�s sources. Like-
wise, failure or removal of data sources along with
the data sets they provide may require rewriting que-
ries to omit the missing site�s sources so that the que-
ries do not fail. Another issue has to deal with ease
of registration: data sources must be explicitly reg-
istered to the federated engine, along with their
wrappers; this constrains the frequency of source ad-
dition and removal, and hence the system�s ability
to exploit new data in a timely fashion. We have al-
ready mentioned the need for a services interface
(Web today, grid tomorrow) for some of the imple-
mentations just described. Some of the individual ser-
vice implementations also need more function. In
the next section, we look at how we expect the in-
frastructure to evolve to better support the needs of
the grid.

The information infrastructure in the future
To create the ideal information infrastructure for the
grid, the implementation just described will need to

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 BOURBONNAIS ET AL. 679

be enhanced in an number of ways. All services need
to evolve to be more directly policy-based and au-
tonomic. They need to be made more dynamic. Al-
though we will not give details here, all the services
of the information infrastructure need to exploit the
general grid services for policy, billing, security, and
so on. Many also need additional work to support
the scaling required by large grid environments and
to allow more heterogeneity.

One key area that must be enhanced to ease admin-
istration and increase performance is support for
data equivalence. This will require changes to a num-
ber of our services. The Discovery Services, Meta-
data Services, Data Services, and Placement Man-
agement Services will all need to cope with a richer
set of equivalences. Discovery Services will need to
find and recognize them, Meta-data Services will
need to represent them, understand their character-
istics and allow them to be examined, Placement
Management Services will need to maintain them
dynamically and automatically, and Data Services
will need to choose which one to use, also dynam-
ically and automatically.

Evolution of the Data Service. The key areas of fo-
cus for the Data Service will be ease of administra-
tion (autonomic configuration and management),
enhanced performance and scalability, and exploi-
tation of a richer set of data equivalences. In all of
these areas, the Data Service will rely on other ser-
vices to help. The Discovery Service will allow the
Data Service to automatically find sources for a
query, for example. The Placement Management
Service will move or copy data to improve query per-
formance or scalability and will create and maintain
the data equivalences that the Data Service relies
on. Enhancements to the Data Service federation
engine itself will give it more ways to execute que-
ries including more join methods, more asynchrony,
and the ability to exploit the parallel potential of a
grid for query processing (parallelism transparency).
Most important, the Data Service will need to be ex-
tended to recognize more equivalences, being sen-
sitive to more characteristics, such as distance in
terms of access time, online status, and the user�s
requirements for equivalence (based on more com-
plex queries).

It will also be critical for virtualization to make run-
time decisions about which data set to use. Research
is underway for augmenting the routing mechanism
of the Data Service with runtime decisions. Exam-

ples of policies and workloads that require a run-
time routing decision are:

● Data staleness policies that require data to be up
to date within a small time interval (the age of the
data needs to be verified when the query is
executed)

● Tolerance to partial results (e.g., getting any avail-
able information on the current patient, because
some information is better than none)

● Use of partial dynamic caches that are loaded on
demand, based on workload (the contents of the
cache need to be verified when the query is
executed)

● Queries with dynamic SQL and parameter mark-
ers where the match between query and cache can-
not be determined until runtime, even for stati-
cally declared caches

● Selection of a data source based on the result of
a user-defined function (UDF) invocation

● Dynamic negotiation of access speeds and
throughputs with autonomous sources

We want the federation engine to be able to pick an
alternate data source, as per the policies, if at run-
time the source selected during query compilation
is not available or no longer adequate for fulfilling
the requested QoS.

A method proposed in Reference 17 consists of in-
corporating a probe, in the form of an SQL opera-
tion, as part of the query access plan, to test whether
a particular data set has the properties required for
the query. For example, suppose a query searches
for information on some patients in intensive care,
and there is a policy that when information for a par-
ticular hospital unit is in a cache, the information
for all patients of this unit is also in the cache. Then
testing that a single row is present in one equivalent
table (a copy of hospital unit information) can be
sufficient to determine that an entire group of re-
lated rows (intensive care patients) is also present
in other equivalent tables (those related to patients).
The system ensures the integrity of the overall cache
according to a policy set by an administrator. To in-
corporate this probe into the query access plan at
compile time, the SQL query compiler generates two
data access plans; one is the plan that accesses the
actual objects specified in the query (this would nor-
mally be the only plan generated for the query); the
second plan is a copy of the first one, where each
object has been substituted with an equivalent (lo-
cal) object, if one qualified. The two plans are re-
tained for the final executable and combined into a

BOURBONNAIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004680

single query access plan, called a Janus plan, where
they are connected by the probe. At runtime, the
probe is executed first, to decide which of the two
plans is executed.

An alternative approach that we are exploring is to
use a metawrapper module that resides between the
query optimizer and the wrappers to the equivalent
(remote) tables. The metawrapper mediates in the
optimization process to allow cost-based selection
of the best equivalent table based upon the infor-
mation known at compile time. (We assume that ei-
ther standard MQT routing or the probe approach
is used to deal with local caches.) At runtime, the
metawrapper can also change the equivalent-table
selection to adapt to changes in the availability, stale-
ness, and speeds of the equivalent tables, or to take
run-time query parameters such as host variables and
parameter markers into consideration.

Placement management evolution. The Placement
Management Service must also grow significantly to
enable the future information infrastructure. Today,
the Placement Management Service does static anal-
ysis of a workload and recommends a set of views
to be materialized at the Data Service federation en-
gine. The recommendations do not cover latency
characteristics or other desired properties of a ma-
terialized view, only the set of data to be copied.
Those recommendations must then be executed by
an administrator.

In the future, this will change in four ways. First, the
Placement Management Service will be invoked au-
tomatically when policies are violated (for example,
when response times are not within the limits set).
Second, the Placement Management Service will be
able to recommend materializations at other loca-
tions, perhaps at one of the sources (a simple Data
Service, not the federation engine). For example, it
might be wise to cache data from assorted hospitals
about a new epidemic at the CDC, even though que-
ries about symptoms and cases may be coming from
Data Services in regional research labs. The alter-
native, caching that data at each research lab, could
be expensive in terms of storage and maintenance.
Third, the Placement Management Service will be
able to define characteristics of the recommended
copies, such as the type of cache to make, latency
of the data, and so on. Fourth, the Placement Man-
agement Service will be able to invoke other services
to automatically create and maintain the recom-
mended caches or replicas.

Cache Service evolution. Today, the Cache Service
supports a single type of static (or declarative) cache,
but in the future, we foresee many types of cache
being needed. We believe the Cache Service (or var-
ious Cache Service instances) will support several
levels of materialization, each level characterized by
the amount of precomputation provided, and con-
sequently, by its reusability (or generality). For ex-
ample, at the top, materializing the result of an SQL
query or a Web service requires much precompu-
tation (making queries against the cache exception-
ally quickly) but might be reusable only if the exact
query is reissued by the same application, with the
same parameters. This full-query caching can be op-
timal when results are expensive to retrieve and que-
ries repetitive. At the bottom, caching a subset of a
table from a single data source is most general but
requires recomputing each query, albeit over now-
local data. This single-table cache can be optimal
when queries are varied and mostly key-based data
retrievals. The materialization of a view is a trade-
off between these two extremes, and it will be pos-
sible to define such view materializations on top of
other materializations. A task of the Placement Man-
agement Service will be to determine which types of
cache will be of most benefit for a given set of work-
load characteristics and policies.

We would also like to support more policies for cache
load, maintenance, and data integrity. Cache load
policies include:

● Declarative—Data is preloaded as per a static def-
inition; that is, by using a select statement, such
as ‘select name, condition from patients’. This is what
our information infrastructure supports today.

● On Demand—Data is loaded when first used. This
is common in page-based (operating) systems or
on the Web where there are naming conventions
for what constitutes a page, but harder to do for
a service that must cache data from multiple data
sources with no ready equivalent of a page and no
agreed-upon naming conventions to define what
data are cached. Semantic constraints might be
used to identify a group of related data to be
prefetched into the cache as a single unit when a
datum of the group is first used.

● Query Results—Query results are materialized, also
on demand, and reused when the same query is
re-executed under the same conditions and envi-
ronment, which generally means by the same user,
with the same arguments and the same isolation
level, as, for example, in DB2 Query Patroller V7.18

But the cache can also be implemented so that it

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 BOURBONNAIS ET AL. 681

can be used to satisfy queries that return a subset
of a previously executed query. Because the en-
tire query is cached, it is easy to determine what
data are in the cache for routing decisions. This
type of cache is particularly useful to support asyn-
chronous delivery and delivery to third parties—
both important concepts for grid computing.

Cache maintenance policies include:

● Time-To-Live (TTL)—Keep data in the cache for
a preconfigured amount of time, and then inval-
idate the data (does not detect changes to the orig-
inal data source version of the data). We use a
modified form of this today when we blindly re-
fresh a cache at certain time intervals.

● Change-Invalidate—Changes in the data source are
detected and used to invalidate data in the cache.
This is not supported today.

● Change Replication—Changes in the data source
are captured and applied to the data in the cache.
This can be supported for simple caches today.

Data integrity policies include:

● Transparent Write—Make changes directed against
the federated Data Service at the data source, but
not to the cache. If Change Replication (or TTL)
is the maintenance policy, then the application can-
not see its own updates immediately and must wait
for the replication (or refresh) process to pick up
the change from the source and apply it to the
cache. This is supported today.

● Write-Through—Update the cache and the data
source in the same transaction. This requires a two-
phase commit between the federated Data Ser-
vice and the data sources, which can be expensive.

● Write-Deferred—Update the cache, and asynchro-
nously update the data source. This policy is also
required for supporting updates in disconnected
modes.

Our first priority for expansion is to support on de-
mand caches. Coupling the ability to load caches
dynamically with a Data Service that provides query
processing over heterogeneous environments allows
the information infrastructure to supply powerful
mid-tier caches that provide for QoS for grid appli-
cations. Scalability will be achievable by distributing
the query workload among a pool of Data Service
instances based on data affinity. As each Data Ser-
vice recognizes that it does not have data locally (a
cache miss), it will request the Cache Service to pro-
vide the required data. This will effectively partition

the cached data, improving both the probability for
the data to be in the cache for the queries and the
likelihood that the cache will stay small and within
budget constraints. In contrast, dispatching transac-
tions randomly between servers will generally result
in loading the data required for all types of trans-
actions into each cache, thus creating larger, poorly
performing caches.

As an example, assume the following workload man-
agement decision for our medical grid: “Create a new
Data Service dedicated to urgent care patients to im-
prove QoS for these patients,” where the existing
Data Services are already servicing requests from all
patients. Figure 5 illustrates this scenario in which
the Workload Management Service sets up the new
Data Service and invokes the Cache Service to con-
figure a cache for this service. The new cache (on
the right, at Data Service2) can be configured ex-
actly like the existing caches at Data Service1. Spe-
cifically, with on demand cache loading, there is no
need to explicitly declare that the new cache is for
urgent care patients, only that it is enabled for cach-
ing patients. The query dispatcher can immediately
start sending customer queries to this service based
upon their status, which perhaps it looks up from a
dispatching table (patient status) using Data
Service4.

In summary, a Cache Service causes data to be
cached in the Data Service�s local store. This allows
QoS goals to be met without explicit application in-
tervention. In the future, the application�s ability to
tolerate stale data and the options for data move-
ment will be recorded as policies. These policies will
determine what type of copies the Placement Man-
agement Service creates and which copies the Data
Service selects from the equivalent data sets known
to the Meta-data Service. Future work will focus on
dynamic or on demand caches first, as well as on
looking at alternative policies for cache maintenance
and data integrity.

Evolution of the Replication and Change-Publish
Services. We noted above that replication and
changed data capture and publish are highly related
technologies: Replication copies portions of a da-
tabase, often in a preplanned way, and provides syn-
chronization across the copies at intervals over a long
period; Change-Publish captures changed data, for-
mats the data as an XML message, and puts the data
on a queue for distribution to other data sources or
applications.

BOURBONNAIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004682

In future versions of the information infrastructure
for the grid, we see these separate technologies and
services being subsumed by a more general frame-
work for data movement. This framework will pro-
vide a great deal of flexibility to a subscriber in terms
of specifying rules for data of interest, transforma-
tions, dynamic generation of lists of consumers, and
so on. It will support highly heterogeneous sources
and targets, and meta-data about copies, subscrip-
tions, publications, and so on, will be made available
to the Meta-data Service to serve as the source of
information on data equivalences for the Placement
Management and Data Services.

In the envisioned framework, the data movement
process is divided into four basic components: data

publication, data subscription, event and data prop-
agation, and event and data consumption.

Data publication occurs at the Data Service that acts
as the logical source of data. The data publication
rules may include whether and what data is to be
published and information about the publisher. Data
publication specifications include rules such as “pub-
lish this data only to subscribers ages 18 years and
older,” auditing, and nonrepudiation requirements.

Data subscription occurs at the Data Service that acts
as the logical data target. A data subscription spec-
ifies a rule or a set of rules that match data of in-
terest to the subscriber with information about the
subscriber. Data subscription specifications include

Figure 5 Query dispatching and on demand data caching: An example

DATA SERVICE1
DATA SERVICE2

DATA SERVICE3

CACHE SERVICE3

APPLICATION
SERVER

APPLICATION
SERVER

SERVICE REQUESTS

SERVERS FOR NORMAL CASES

NORMAL CASENORMAL CASENORMAL CASE
NORMAL CASENORMAL CASENORMAL CASE

NORMAL CASENORMAL CASENORMAL CASE
NORMAL CASENORMAL CASENORMAL CASE

SERVER FOR URGENT CASES

DATA SERVICE4

PATIENTS'
STATUS

zOS
DB2

LOCAL
DATA

OTHER
RDBMS

LOCAL
DATA

Policy: ‘Cache
patients and
their records
for the last 3
months’

DISPATCHER

APPLICATION
SERVER

NORMAL CASENORMAL CASENORMAL CASE
NORMAL CASENORMAL CASEURGENT CASE

QUERY/DATA REQUEST
SERVICE REQUEST
DATA MOVEMENT

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 BOURBONNAIS ET AL. 683

rules such as “deliver data that is published only by
certified publishers,” auditing, and nonrepudiation
requirements.

Event and data propagation rules define how to prop-
agate events and data to a consumer. The consumer
may be a client or another Data Service, such as a
Broker. These rules include propagation protocols
and auditing and retention requirements and may
also include specifications of how published data is
to be delivered and to whom.

Event and data consumption rules define how the con-
sumer consumes events, changed data, and data.
These rules include, for example, auditing and re-
tention requirements. Rules are based on the un-
derlying data model query language, such as SQL for
relational data services. The composition of these
components can support efficient, reliable, and asyn-
chronous information dissemination in the informa-
tion infrastructure for the grid.

IBM Almaden Research Center has used this frame-
work to prototype a Grid Data Movement and Rep-
lication Service (GMR) based on the Globus Tool-
kit. GMR can replicate data between heterogeneous
data sources, such as PostgreSQL to Oracle and vice
versa. Currently GMR supports replication of SQL
query result sets and files. As a proof of concept, the
GMR is deployed by the Geosciences Network
(GEON) Grid19 at San Diego Supercomputing Cen-
ter (SDSC) to replicate geosciences meta-data across
geographically distributed GEON nodes.

These types of change-capture and event propaga-
tion features are invaluable in a grid environment.
They can be used to provision data to applications,
to maintain copies of data at a desired degree of cur-
rency, or to disseminate information, potentially trig-
gering additional computations and events. Today,
most replication engines work on database data only
(including, however, nonrelational data), but some
are already being extended to work with arbitrary
data sources, including file systems and applications.
These developments will greatly improve the virtu-
alization provided by the grid�s information
infrastructure.

Meta-data, Registration, and Discovery Service
Evolution. The Meta-data Service will have to change
dramatically to support the needs of the informa-
tion infrastructure in the future. It will need to store
a much richer set of meta-data, including not only
information on objects (such as tables, MQTs, and

subscriptions) as it does today, but also information
on the relationships among various objects, such as
mappings from one schema to another, or informa-
tion on transformations between objects. Likewise,
it will need to provide a richer set of services or in-
terfaces to its users, including services to explore
meta-data and to create mappings and the means to
realize those mappings (transformations). Because
it is unlikely that all the meta-data for a grid will be
stored in a single repository, the Meta-data Service
will have to be distributed; that is, Meta-data Ser-
vices, each managing a portion of the grid�s meta-
data, will have to cooperate to help users (or other
services) work with meta-data.

Another major change we foresee in this area is the
virtual disappearance of a data-specific registration
service. In the future, we expect that the Discovery
Service can autonomically discover information ob-
jects and data sources, as well as relationships among
objects, transformations, and so on, recording its
findings with the Meta-data Service. While Discov-
ery will still be guidable by users, they should rarely
if ever have to locate the data of interest themselves
and explicitly register it.

Summary: The future information infrastructure. In
this section, we describe the information infrastruc-
ture for the grid that we are working towards. The
infrastructure will be an open, flexible, extensible set
of services accessed through well-defined and stan-
dardized interfaces, the result of work described in
the section on standards below. The information in-
frastructure we imagine will be policy-driven, and
highly autonomic. Placement management will play
an enormous role in ensuring that grid applications
receive the QoS they require and will make use of
greatly enhanced caching and data movement ser-
vices to effect the necessary shifting of data. An even
more powerful Data Service will exploit the equiv-
alent data sets created by the Placement Manage-
ment Service and will make more dynamic decisions
about which copy to use, relying on the enhanced
Discovery Service and Meta-data Service capabili-
ties. This more dynamic and autonomic information
infrastructure will use other standardized grid ser-
vices and be used by them. In short, the information
infrastructure for the grid will, in this future incar-
nation, support the transparencies identified earlier.

The role of standards
In order to fulfill the goals of our information in-
frastructure for the grid, in particular interoperabil-

BOURBONNAIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004684

ity, we must standardize grid-services interfaces.
There is considerable activity towards standardizing
various interfaces for the grid in the GGF.1 The ob-
jective of GGF working groups is to produce docu-
ments describing best practices, technical specifica-
tions, user experiences, and implementation
guidelines for distributed and grid-computing envi-
ronments, with a particular emphasis on interoper-
ability and technology reuse. In order to be indepen-
dent of programming language, many of the GGF
specifications describe interfaces in terms of WSDL
(Web Services Description Language) and XML
Schemas. The GGF Open Grid Services Architecture
(OGSA) Working Group2 provides a context for struc-
turing grid components and for identifying appro-
priate Web-services interfaces between components.
Various GGF groups work on describing the service-
oriented interfaces for grid components in more de-
tail. An OGSA Data Architecture activity is under-
way that is influenced by a number of sources
including the OGSA Data Services paper.3 The OGSA
Data Architecture will identify the key interfaces that
should be supported by providers of systems that
manage data in order to be part of the OGSA infra-
structure. These interfaces are likely to include data
access, data management, and data properties (data
description). Further documents will drill down into
the interface descriptions for data access, manage-
ment, and distribution in more detail. They include
documents for databases in general, relational da-
tabases, XML databases, and files. There is much in-
terest in other data sources, such as streams, and in
event and data publishing for moving data (infor-
mation dissemination).

Data access and data virtualization. To achieve data
virtualization in heterogeneous environments, we
need to agree on common mechanisms for access-
ing heterogeneous resources. Producing specifica-
tions that describe how heterogeneous data sources
should be accessed through data services is the pri-
mary activity of the GGF DAIS-WG13 (Database Ac-
cess and Integration Services Working Group). This
group focuses on how SQL, XPath,20 and XQuery re-
quests should be submitted to relational and XML
databases and how the query results should be de-
livered. Other areas of interest include file access and
result delivery and result transformations. The DAIS
Working Group strives to ensure that common data
sources are supported through data services. In other
words, it should not be necessary to modify an ex-
isting data management system implementation to
enable it to support data services, although of course
by enhancing a resource manager, data services

might execute more efficiently or could support ad-
ditional functionality. Requirements that this group
is trying to satisfy include the ability to name results
for subsequent use, to handle multiple result formats,
to return results in chunks, and to deliver results later
or to a third party.

There are many relationships between the DAIS
Working Group and existing standards activities, in-
cluding American National Standards Institute/
International Organization for Standardization
(ANSI/ISO) SQL and SQL/XML, W3C XPath, XQuery,
XQueryX (for expressing queries in XML), and Ex-
tensible Stylesheet Language Transformations
(XSLT) and XQuery Serialization (for expressing
XSLT and XQuery results in XML). There is an em-
phasis on expressing queries and results in XML.
However, there is also a GGF working group21 that
is defining a way to describe non-XML data with an
XML notation, where it is undesirable to return XML
results. OGSA-DAI22 software implements the DAIS
interfaces and provides data service access to DB2,
MySQL**, Oracle, and Xindice. The OGSA-DAI imple-
mentation currently relies on the Globus toolkit**,23

which provides a grid infrastructure used by OGSA
components and is available with the Globus toolkit
as well as independently.

Standards in support of autonomic data manage-
ment. We have stressed the importance of autonomic
computing for the grid information infrastructure,
and there are standards to help in this area as well.
The Distributed Management Task Force24 (DMTF),
a non-profit collaborative body, has defined a model
known as CIM (Common Information Model) to de-
scribe the characteristics of computer resources in
support of management interfaces. CIM enables het-
erogeneous management tools to take a common ap-
proach to managing heterogeneous resources. The
GGF working group called the CIM-based Grid
Schema Working Group4 (CGS-WG) has started col-
laborating with the DMTF to extend the CIM model
to incorporate grid constructs that are necessary to
support data access and management and ultimately
to enable an autonomic approach to data. The WSDM
(Web Services Distributed Management) Technical
Committee in OASIS25 (Organization for the Ad-
vancement of Structured Information Standards) is
also getting involved with the GGF in the area of man-
agement. The collaboration between the three
groups provides a helpful step for defining interfaces
for interoperable management tools in support of
autonomic data provisioning and management.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 BOURBONNAIS ET AL. 685

Replication, caching, and change-publish stan-
dards. There are no standards yet for placement
management (a unique and powerful part of our vi-
sion). Nor are there many standards for the data
movement and change-publish technologies. As a re-
sult, it is difficult for third-party database tools to pro-
vide replication or caching support for heteroge-
neous data sources, and applications need to be
tailored to particular event-publishing mechanisms
as well. Standards in this area will be a core part of
the necessary information infrastructure for the grid.
An Information Dissemination Working Group has
been formed in GGF. The group will define interfaces
for publishing data, subscribing to data changes, and
propagating and consuming changes. As with the
standards described in the earlier sections; the In-
formation Dissemination Working Group effort will
likely build on some existing standards, for exam-
ple, Web Services Notification in the Web services
area and on prior work such as the Grid Data Dis-
tribution (GDD) model.26

Data properties (standards for meta-data and data
discovery). Standards for describing the properties
of data enable an information infrastructure to de-
termine whether particular data resources are suit-
able for particular applications. This makes it pos-
sible to build components that advertise and discover
appropriate data in generic ways. XML notation is
used for describing data properties. Data property
definition takes place in a variety of GGF working
groups:

● DAIS-WG—XML and relational database proper-
ties are exposed in the DAIS-WG specifications.
These properties focus mainly on structural infor-
mation, for example, tables in relational databases,
collections in XML databases, and data types.

● CGS-WG—This working group has started extend-
ing the database model to incorporate properties
needed by database systems in grid environments.

● Meta-data—There have been attempts to start a
meta-data research group to review options for
managing meta-data in heterogeneous environ-
ments. Readily available meta-data would be very
helpful to data discovery operations.

All these groups are working towards keeping their
data property descriptions consistent across the
groups and consistent with other standards
organizations.

Bringing the standards together. A common thread
across all these standardization efforts is the need

to provide an environment where requests are ex-
ecuted with a guaranteed QoS (through SLA nego-
tiation), and where resource managers adhere to var-
ious policies. Standards activities are beginning to
appear in the areas of agreement27 and policies for
Web services28 that attempt to unify computing re-
sources, software, and QoS in a general way. Projects
such as the WSLA project6 address SLAs and man-
agement issues in a Web-services environment. Like-
wise, the data-oriented standards just described will
need to be extended to allow specification of QoS
and policies. For example, standardizing a common
set of terms for data placement policies may be
desirable.

Current focus areas in the GGF data area with much
activity and discussion include:

● Increased relationships with other standards bod-
ies, for example, with the DMTF for management
and with OASIS for Web services and Web-services
management.

● Agreed-upon ways for naming bodies of data
across data resource managers. There are ongo-
ing discussions on this topic. The resolution may
influence how data equivalence issues are handled.

● Handling streams and files; for example, a work-
ing group devoted to files is looking at file direc-
tory structures and naming, and a working group
for file access is proposed.

Areas that are likely to gain interest and focus in the
data area in GGF include meta-data, security, trans-
actions, policies, and provenance, possibly through
collaborations with other GGF working groups or
standards organizations.

These activities are essential for enabling the sort of
information infrastructure for the grid that we imag-
ine, and especially, for allowing multiple vendors to
participate in building that infrastructure. For a more
detailed description of data standards for the grid,
see Reference 29.

Conclusions
Grid computing offers many potential benefits within
and across enterprises. We envision an information
infrastructure for grid computing, consisting of a
number of interrelated services that cooperate to vir-
tualize information and to meet QoS goals. This in-
frastructure will be realized by middleware technol-
ogies, such as federation and consolidation of data,
that together provide the virtualization of data re-

BOURBONNAIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004686

sources on the grid. We described existing technol-
ogies to instantiate our services and presented our
vision for their future evolution. DB2 is well posi-
tioned to play a leading role in the information in-
frastructure for the grid. DB2 Information Integra-
tor includes technologies such as federation of
heterogeneous, distributed, and autonomous data
sources, replication, change-publish and caching,
data placement advice, and meta-data storage and
discovery. A complete realization of our informa-
tion infrastructure vision will require enhancements
to the technology in order to (1) make individual
technologies more dynamic and autonomic, (2) in-
corporate a general policy mechanism that will be
used by all technologies to understand QoS goals and
guide their actions towards meeting those goals, and
(3) fit all technologies into a standards-compliant ser-
vices architecture. Other enhancements are needed
to individual services (for example, to expand the
types of caching available). The net result will be that
applications can access the data from diverse and
distributed data sources as if from a single virtual
data store.

We are actively engaged in standards activities, in
technology development, and in working with cus-
tomers to understand their need for this infrastruc-
ture. Whereas we have focused on the core technol-
ogies needed for the information infrastructure for
the grid, future work will further enrich this infra-
structure. Research is ongoing, for example, in the
areas of privacy, automatic discovery of meta-data,
large-scale efficient meta-data search, information
quality, and exploitation of native XML stores for con-
solidation of data from diverse data sources.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of EMC Corporation, Mi-
crosoft Corporation, MySQL AB, University of Chicago, Oracle
Corporation, SAP, or Sun Microsystems, Inc.

Cited references and note

1. Global Grid Forum (GGF), http://www.ggf.org/.
2. GGF OGSA-WG (Open Grid Services Architecture), http://

www.ggf.org/ogsa-wg/.
3. GGF OGSA Data Services, https://forge.gridforum.org/

projects/dais-wg/document/OGSA_Data_Services/en/1.
4. GGF CGS-WG (CIM-based Grid Schema), https://forge.

gridforum.org/projects/cgs-wg.
5. V. Raman, I. Narang, C. Crone, L. Haas, S. Malaika, T. Mukai,

D. Wolfson, and C. Baru, “Services for Data Access and Data
Processing on Grids,” Proceedings of GGF5, Edinburgh, July
2002. Updated for Proceedings of GGF7, Tokyo, March 2003.
See https://forge.gridforum.org/projects/dais-wg/document/Services
_for_Data_Access_and_Processing_on_Grid-GGF7/en/1.

6. WSLA (Web Service Level Agreement Project), http://www.
research.ibm.com/wsla/.

7. XQuery 1.0: An XML Query Language, http://www.w3.org/TR/
xquery/.

8. P. Gupta and E. T. Lin, “DataJoiner: A Practical Approach
to Multi-Database Access,” Proceedings of the International
IEEE Conference on Parallel and Distributed Information Sys-
tems, IEEE, New York (1994).

9. V. Josifovski, P. Schwarz, L. Haas, and E. T. Lin, “Garlic:
A New Flavor of Federated Query Processing for DB2,” Pro-
ceedings of ACM SIGMOD Conference on the Management
of Data, ACM, New York (2002).

10. DB2 Information Integrator, IBM Corporation, http://www-
306.ibm.com/software/data/integration/db2ii/.

11. ISO/IEC 9075-14:2003 Information Technology—Database
Languages—SQL—Part 14: XML-Related Specifications
(SQL/XML), International Organization for Standardization,
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?
CSNUMBER�35341&ICS1�35.

12. L. M. Haas, E. T. Lin, and M. A. Roth, “Data Integration
Through Database Federation,” IBM Systems Journal 41, No.
4, 578–596 (Dec 2002).

13. GGF DAIS-WG (Data Access and Integration), http://www.
gridforum.org/6_DATA/dais.htm.

14. D. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Gar-
cia-Arellano, and S. Fadden, “DB2 Design Advisor: Inte-
grated Automatic Physical Database Design,” Proceedings of
the International Conference on Very Large Databases 2004
(VLDB 2004), Toronto, August 2004, Morgan Kaufmann
Publishers, San Francisco (2004).

15. “XML Registry,” alphaWorks, IBM Corporation, http://www.
alphaworks.ibm.com/tech/xrr.

16. V. Josifovsky, S. Massmann, and F. Naumann, “Super-Fast
XML Wrapper Generation in DB2: A Demonstration,” Pro-
ceedings of the 19th International Conference on Data Engi-
neering, Bangalore, India, March 2003, IEEE, New York (2003).

17. M. Altinel, C. Bornhövd, S. Krishnamurthy, C. Mohan, H.
Pirahesh, and B. Reinwald, “DBCache: Middle-Tier Data-
base Caching for Highly Scalable e-Business Architectures,”
Proceedings of Federated Computer Research Conference
(FCRC) 2003, San Diego, California, June 9–12, ACM, New
York (2003).

18. DB2 Query Patroller, IBM Corporation, http://www.ibm.com/
software/data/db2/querypatroller/.

19. Geosciences Network (GEON), http://www.geongrid.org/.
20. XML Path Language (XPath) 2.0, http://www.w3.org/TR/

xpath20/.
21. GGF DFDL-WG (Data Format and Definition Language),

https://forge.gridforum.org/projects/dfdl-wg/.
22. GGF OGSA DAI (Data Access and Integration) Open Source

Implementation, http://www.ogsadai.org.uk/.
23. The Globus Alliance Toolkit, http://www-unix.globus.org/tool-

kit/.
24. DMTF (Distributed Management Task Force), http://www.

dmtf.org/home.
25. OASIS WSDM (Web Services Distributed Management) Tech-

nical Committee, http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev�wsdm.

26. GGF Data Distribution in the Grid Environment, https://forge.
gridforum.org/docman2/ViewCategory.php?group_id�
49&category_id�517.

27. GGF WS-Agreement Specification, https://forge.gridforum.org/
docman2/ViewCategory.php?group_id�71&category_id�210.

28. OASIS WS-Policy Specifications, http://xml.coverpages.org/
ni2003-06-04-a.html.

IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004 BOURBONNAIS ET AL. 687

29. Standards for Databases on the Grid, SIGMOD Record (Sep-
tember 2003), http://www.acm.org/sigmod/record/issues/0309/
IS16.Grid.pdf.

Accepted for publication June 22, 2004.

Serge Bourbonnais IBM Software Division, Silicon Valley Lab-
oratory, 555 Bailey Avenue, San Jose, California 95141
(bourbon@us.ibm.com). Mr. Bourbonnais is a product architect
in the Information Integration development group where he works
on technologies for data placement, replication, and XML data
stores. He holds a Master’s degree in computer science from the
University of Waterloo.

Vitthal M. Gogate IBM Research Division, Almaden Research
Center, 650 Harry Road, San Jose, CA 95120
(gogate@almaden.ibm.com). Mr. Gogate is an advisory software
engineer in the Computer Science Department at the Almaden
Research Center where he works on data grid technologies. He
received his B.S. and M.S. degrees in electronics from Shivaji Uni-
versity, Kolhapur, India in 1991 and 1994 respectively. He started
his career with Center for Development of Advance Computing
(C-DAC), a research organization in super-computing where he
developed parallel algorithms in image and signal processing on
the first Indian supercomputer, PARAM. For his work on DB2
DataLinks technology at IBM Almaden Research Center, he re-
ceived a Special Contribution Award.

Laura M. Haas IBM Software Division, Silicon Valley Labora-
tory, 555 Bailey Avenue, San Jose, California 95141
(lmhaas@us.ibm.com). Dr. Haas is a Distinguished Engineer and
the manager of DB2 Information Integrator development. Pre-
viously, Dr. Haas was a research staff member and manager at
the IBM Almaden Research Center. She is best known for her
work on the Starburst query processor (from which DB2 UDB
was developed), and on Garlic, a system that supports federation
of heterogeneous data sources, a key technology for DB2 Infor-
mation Integrator. Dr. Haas is Vice President of the VLDB En-
dowment Board of Trustees.

Randy W. Horman IBM Data Management Division, IBM
Toronto Lab, 8200 Warden Ave, Markham, Ontario, L6G 1C7
(horman@ca.ibm.com). Mr. Horman is a Senior Technical Staff
Member on the DB2 Universal Database development team at
the IBM Toronto Lab. He received a B.A. degree in mathemat-
ics, computer science, and economics, as well as an M.Math de-
gree in computer science from the University of Waterloo in 1994
and 1995, respectively. He subsequently joined IBM to work on
DB2 Parallel Edition. Recently, Mr. Horman has focused his at-
tention on database manageability, and in particular the appli-
cability of autonomic technology. Mr. Horman is a member of
the Association for Computing Machinery and the Computer So-
ciety of the Institute of Electrical and Electronics Engineers.

Susan Malaika IBM Software Group, 17 Skyline Drive, Haw-
thorne, NY 10532 (malaika@us.ibm.com). Ms. Malaika is a Sen-
ior Technical Staff Member with the DB2 Information Integra-
tor development group. She works in the area of grid computing,
is active in the Global Grid Forum and is co-author of a number
of GGF specifications and documents. She has also worked on
Web services and XML integration in DB2, DRDA, SQL/PSM,
and transactions. She also co-edited and co-authored a book en-

titled, “Web Gateway Tools.” She is a member of the IBM Acad-
emy Technology Council.

Inderpal Narang IBM Research Division, Almaden Research
Center, 650 Harry Road, San Jose, CA 95120 (narang@us.ibm.com).
Mr. Narang is a Distinguished Engineer in the Computer Sci-
ence Department at IBM Almaden Research Center and a mem-
ber of the IBM Academy of Technology. In his earlier career in
IBM, he worked on the multisystem clustering of DB2 and
OS/390�, also known as DB2 data sharing. He made fundamen-
tal contributions to the architecture and algorithms of IBM�s cou-
pling facility and DB2 data sharing for which he received IBM
corporate and innovation awards. He has published several pa-
pers and holds many patents in these areas. He is the inventor
of the DataLinks technology for which he received an Outstand-
ing Innovation Award. Currently he is leading the On Demand
Information Systems Group in the IBM Research Division.

Vijayshankar Raman IBM Research Division, Almaden Re-
search Center, 650 Harry Road, San Jose, CA 95120
(ravijay@us.ibm.com). Dr. Raman is a research staff member in
the Computer Science Department at IBM Almaden Research
Center. His main interests are in query processing and optimi-
zation and distributed systems. Dr. Raman received his Ph.D de-
gree from the University of California at Berkeley. In his thesis
he developed several new interactive query-processing algorithms,
including the idea of State Modules, which are used extensively
in the university�s Telegraph adaptive dataflow system. Dr. Ra-
man also developed the open-source data cleansing and trans-
formation tool Potter�s Wheel A-B-C. He has been awarded a
Microsoft Fellowship and an AT&T Asia-Pacific Leadership
Award.

BOURBONNAIS ET AL. IBM SYSTEMS JOURNAL, VOL 43, NO 4, 2004688

