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The goal of IBM’s autonomic computing
strategy is to deliver information technology
environments with improved self-management
capabilities, such as self-healing, self-
protection, self-optimization, and self-
configuration. Data correlation and inference
technologies can be used as core
components to build autonomic computing
systems. They can also be used to perform
automated and continuous analysis of
enterprise-wide event data based upon user-
defined configurable rules, such as those
intended for detecting threats or system
failures. Furthermore, they may trigger
corrective actions for protecting or healing the
system. In this paper, we discuss the use of
ontologies as a high-level, expressive,
conceptual modeling approach for describing
the knowledge upon which the processing of
a correlation engine is based. The
introduction of explicit models of state-based
information technology resources into the
correlation technology approach allows the
construction of autonomic computing systems
that are capable of dealing with policy-based
goals on a higher abstraction level. We
demonstrate some of the benefits of this
approach by applying it to a particular IBM
implementation, the eAutomation correlation
engine.

The increasing complexity of information technol-
ogy (IT) systems demands a correspondingly greater
effort for systems management. Today, many systems

management tasks such as system configuration, per-
formance analysis, performance tuning, error han-
dling, and availability management are often per-
formed manually. This work can be time-consuming
and error-prone. Moreover, it requires a growing
number of highly skilled personnel, making IT sys-
tems costly. IBM�s autonomic computing initiative,1

which is a core element of IBM�s e-business on de-
mand* strategy,2 addresses this problem by devel-
oping and providing powerful concepts for self-man-
agement, including new self-healing, self-protecting,
self-optimizing, and self-configuring capabilities. The
goal is to reduce the burden associated with the man-
agement and the operation of IT systems. Autonomic
computing systems should simply work, repairing and
tuning themselves as needed. This requires that such
systems be able to protect themselves, to identify up-
coming problems, and to make required reconfigu-
rations dynamically in order to resolve problems.

As one important step toward a vision of autonomic
computing systems, IBM has developed several cor-
relation engines.3,4 These include ABLE (Agent
Building and Learning Environment), AMIT (Active
Middleware Technology), eAutomation, TEC (Tivoli
Enterprise Console*), Yemanja, and ZCE (Zurich
Correlation Engine). Correlation engines are auto-
nomic core components that perform continuous au-
tomated analysis of enterprise-wide, normalized,
real-time event data based on user-defined configu-
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rable rules. These rules can be used to detect threats,
complex attack patterns, or system failures, and to
initiate a corresponding reaction.

Today IBM�s correlation engines are being used suc-
cessfully in many application domains. Examples in-
clude the eAutomation correlation engine in System
Automation for OS/390*5 and System Automation
for Multiplatforms,6 and the Zurich Correlation En-
gine for router fault isolation and for intelligent mon-
itoring capabilities.

In this paper we propose the application of formal
ontologies7,8 as the conceptual backbone for corre-
lation engines. In philosophy an ontology is a theory
about the nature of existence and, in particular, about
what types of things can exist; ontology as a disci-
pline studies such theories. Artificial intelligence and
Web researchers have adopted this term for their
own purposes. For them an ontology describes a for-
mal, shared conceptualization of a particular domain
of interest.7 Thus, ontologies provide a way of cap-
turing a shared understanding of a domain that can
be used both by humans and systems to aid in in-
formation exchange and integration. The use of on-
tologies has several advantages.

First, ontologies can facilitate interoperability be-
tween correlation engines by providing a shared un-
derstanding of the domain in question. In this way
problems caused by structural and semantic heter-
ogeneity of different models can be avoided. Struc-
tural heterogeneity results when different correla-
tion engines store their data in different schemes.
Semantic heterogeneity involves similar problems in
the content and intended meaning of information.
Ontologies provide an effective means for explicat-
ing implicit design decisions and underlying assump-
tions at system build time. This makes it easier to
reason about the intended meaning of the informa-
tion interchanged between two systems. Hence, inter-
operability is a key benefit of the application of on-
tologies, and many ontology-based approaches to
information integration have been developed.9

Second, ontologies provide a formalization of shared
understanding which allows machine processability.
Machine processability in turn forms the basis for
the next generation of the World Wide Web, the so-
called Semantic Web,10,11 which is itself based on us-
ing ontologies for enhancing (annotating) content
with formal semantics. This will enable autonomic
agents to reason about Web content and to carry out
more intelligent tasks on behalf of the user.

Finally, the explicit representation of the semantics
of data through ontologies will enable correlation
engines to provide a qualitatively new level of ser-
vices, such as verification, justification, and gap anal-
ysis, as we discuss later in this paper. These engines
will be able to weave together a large network of hu-
man knowledge and will complement this capability
with machine processability. Various automated ser-
vices will then aid users in achieving their goals by
accessing and providing information in a machine-
understandable form. It is important to note that on-
tologies not only define information, but also add
expressiveness and reasoning capabilities. Ontology
rules provide a way to define behavior in relation to
a system model.

The focus of this paper is on the third, most ambi-
tious benefit that can be achieved by using ontolo-
gies in autonomic computing, namely the providing
of new levels of services. To illustrate this benefit
we will use the eAutomation correlation engine tech-
nology and its resource relationship model.

This paper is organized as follows: the next section
establishes the terminology of correlation technol-
ogy through the definition of a reference model. We
then discuss the basic concepts of the Semantic Web.
In the following section we combine these two dif-
ferent technologies by using an ontology as a model
for the eAutomation engine. The practicability of this
approach is emphasized as we then describe the ben-
efits of the ontological approach. After a discussion
of related efforts, we conclude by outlining directions
for future work.

A reference model for correlation engines

This section defines the basic concepts required for
describing and reasoning about correlation technol-
ogy. We then introduce a correlation-engine refer-
ence model, which provides a layered structure of
corresponding elements. It also allows identification
of technology building blocks and of the different cor-
relation patterns required for the design of auto-
nomic systems.

Autonomic computing systems constantly monitor
and gather the data they need to react to or act upon,
according to their management tasks and targets.
This data is elaborated and organized through the
notion of events, which we define more formally in
a later section. Events in turn are typically mean-
ingful in a certain context when correlated with other
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events. Correlation technology can then be used for
the following types of analyses:

● Data filtering
Example: The system detects a network-down fail-
ure but suppresses subsequent redundant notifi-
cations regarding this particular problem.

● Thresholding
Example: If the restart of an application fails more
than twice, the application is considered to have
a severe problem.

● Sequencing
Example: If a door to a secure area opens and does
not close within a certain time interval, an alert
is sent.

The output of such analyses can be newly created
events describing the occurrence of a potentially in-
teresting (for example, dangerous, valuable, or im-
portant) situation that has been identified. This new
event can then be fed to other correlation rules as
input. An additional layer of correlation rules is re-
quired to trigger concluding actions based both on
the input and on other domain-specific data. For ex-
ample, events can be related to resource state
changes, and such state changes may in turn be cor-
related to other related resources and their respec-
tive current states. The eAutomation correlation en-
gine described later is an example of such an
autonomic computing system.

In general, autonomic computing systems based
upon correlation technologies are able to:

1. React to a problem that happens in the defined
problem space (e.g., if a server fails, direct re-
quests to other servers).

2. Use predictive methods to discover potential
problems in order to achieve better results and
eliminate problems (e.g., if utilization of a par-
ticular server is high, direct requests to other
servers).

These tasks require a deep knowledge of the prob-
lem space (i.e., the scope of possible problems) of
a particular systems management discipline, such as
availability or performance, because the problem can
be resolved systematically only by analyzing and ex-
ploiting the interdependencies among components
or IT resources.

Correlation engines can be used as key components
to build a MAPE (Monitor, Analyze, Plan, Execute)
model,1 which breaks management architecture

down into four common functions: (1) collecting
data, (2) analyzing data, (3) creating a plan of ac-
tion, and (4) executing the plan. By monitoring (M)
behavior and analyzing (A) data, planning (P) the
actions that should be taken, and executing (E) them,
a kind of a control loop is created.

The MAPE model assumes the existence of a com-
mon knowledge element1 that represents the knowl-
edge about a problem space that is shared among
the four components of the MAPE model. This shared
knowledge includes such aspects as topology infor-
mation, system logs, performance metrics, and pol-
icies that are relevant to the problems that can be
resolved with a correlation engine. However, the
MAPE model does not provide guidelines regarding
how to represent the knowledge about a certain man-
agement discipline, how to acquire data about prob-
lems in a domain, and how to use that information
for resolving problems without the need for a high
level of human intervention. Consequently, each cor-
relation engine has its own knowledge model, as il-
lustrated in Reference 12. To solve the resulting
problems of data integration, we have defined a gen-
eral reference model for correlation engines by ab-
stracting and describing knowledge hidden in the
knowledge element on the conceptual level. This
model is shown in Figure 1. It is obtained from the
MAPE model by considering the data processed by
a correlation engine rather than the steps in that
processing.

The reference model consists of three layers:

1. The resource layer
2. The event layer
3. The rule layer

A resource can be almost anything, including both
real-world entities, such as a specific piece of hard-
ware (a CPU) or software (a database), and virtual
entities, such as business applications or logical IT
services. The resource model is central to represent-
ing what is being managed. An event represents a
significant change in the state of a resource (e.g. fail-
ure of a CPU), and it is generated to provide noti-
fication about resource changes or problems. An au-
tomated response to an event is typically triggered
by either correlation rules or action rules. Correla-
tion rules try to discover a problem, for example, by
translating several dependent events into one mean-
ingful event. Action rules trigger actions that try to
resolve a problem, for example, by executing ded-
icated programs.
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The layered reference model for correlation engines
enables the separation of:

● What has to be managed
● Why management is required (monitoring)
● How to manage (decision logic)

Consequently, correlation engines are able to:

● Capture and select important events and update
key characteristics (states) of the managed
resources

● Detect changes or problems based on knowledge
of state changes

● Initiate actions to correct any behavior not in line
with a desired goal

In the rest of this section, we first describe the re-
sources that have to be managed. We then provide
a classification of the events that can trigger the man-
agement process. Finally, we describe the rules that
represent automated responses to events.

Resources. Unless each resource in a system can
share information with every other part and contrib-
ute to some overall system awareness, the goal of
autonomic computing will not really be reached.

Figure 1 Reference model for correlation engines
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Thus, a common data model is needed that can be
used to represent all resources.

Currently the most frequently used data models ap-
ply the basic structuring and conceptualization tech-
niques of the object-oriented paradigm.13 The fol-
lowing characteristics are key components of such
models:

● The object constitutes the central modeling con-
struct and carries an object identity.

● Types can be specified for objects, with all objects
of one type having the same structure.

● The state of an object is defined by the values of
a set of properties. These properties can be either
attributes of the object or relationships of the ob-
ject to other objects.

The possibility of organizing resources into a hier-
archy is very important. This accelerates model de-
velopment and increases the readability and main-
tainability of a model because inheritance allows the
construction of models that are compact and with-
out redundancy. Inheritance is particularly valuable
for modeling domains that contain numerous types
of similar resources, such as computers, internet-
working devices, and databases. It allows manage-
ment applications to treat resources generically, ig-
noring their specific details when they are not
relevant to the problem at hand. For example, the
resource Cisco 827-4V router is a specialized instance
of the resource Cisco 800 series router. It inherits all
the properties of the Cisco 800 series router. More-
over, it can add new properties or modify the inher-
ited ones.

The capability of expressing resource dependencies
explicitly is of paramount importance because a cor-
relation engine involves multiple decisions that en-
tail interactions among resources. Thus, the resource
model has to emphasize relationship properties that
capture the dependencies among managed re-
sources. Relationship properties represent such in-
formation as the fact that a TCP (Transmission Con-
trol Protocol) connection is layered over a particular
IP (Internet Protocol) link, that a client is using the
services of a particular server, or that an application
ran on a particular computer. The knowledge of such
relationships is essential for almost all autonomic
management functions. Furthermore, it is not suf-
ficient just to establish the relationships among re-
sources. The semantics of these relations are also
important because without knowing the explicit

meaning of a particular type of relationship, reso-
lution of a problem is not possible.

Events. An event is a special kind of a message gen-
erated by a resource in the domain that indicates a
change of state of that resource. For example, in a
managed network, incidents such as component fail-
ures, congestion, or a network element reverting to
a backup system may cause a change of state that
generates an event.

Analyzing event data is difficult if the data is not nor-
malized into a common, complete, and consistent
model. This entails not only reformatting the data
for better processing and readability, but also break-
ing it down into its most granular pieces. It includes
filtering out unwanted information to reduce ana-
lytical errors or misrepresentations. It can even in-
volve acquiring more information from outside the
scope of the original event data, for example, from
the operating system on which an event source is
running.

Moreover, different management disciplines require
different types of events. In telecommunications sys-
tems events are described in International Telecom-
munications Union (ITU) standards documents, but
are different from one network type and protocol to
the next. Therein lie the challenges for the model
designer—to allow virtually any type of event to be
defined and to provide maximum infrastructure for
supporting event handling.

Indeed, the prerequisite for meaningful analysis of
an event is that information about that event be prop-
erly organized and interpreted. Thus, it is important
to express information about events in a common
and uniform way, which implies in turn that a model
of events is necessary. The role of such a model is
to describe what happened, why it happened, when
it happened, and what the cause was. Additional sup-
port information for decision making may also be
incorporated, such as cost analysis, prioritization, and
asset allocation information. This additional data en-
ables a thorough analysis, but, in order to separate
the monitoring logic and the decision logic, this
model must not contain information about how the
event should be resolved.

Rules. As noted previously, rules can be divided into
two categories based upon their roles in autonomic
computing systems: (1) correlation rules and (2) ac-
tion rules. We describe these types of rules in the
next two sections.
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Correlation rules. One task of the correlation engine
is to reduce the number of events shown, for exam-
ple, to the system administrator, and to enrich the
meaning of the events. Ideally, the correlation en-
gine should be able to condense the received events
into a single event directly indicating a problem (i.e.,
a situation event) in the managed system. For ex-
ample, a rule might specify that the administrator
is to be notified only if three memory problems oc-
cur within an hour.

Correlation rules can be divided in two types:

● Stateless rules consider events in isolation. They
perform passive filtering on the attribute values
of an incoming event. For example, a specific state-
less rule detects a system failure when a file sys-
tem has crashed or an IP address has failed.

● State-based rules are critical for analyzing events
over time. They allow the same or repeating events
to be distilled into a single event, regardless of the
frequency of occurrence. For example, a rule might
require that the administrator be alerted if an IP
address is involved in five separate attacks on dif-
ferent parts of the network over a 6-month period.

Thus, stateless correlation rules operate on a single
current event, whereas state-based correlation rules
rely on a history of events.

Action rules. Preprocessing, filtering, and correlat-
ing events before they are passed to the next level of
autonomic manager or directly to the operating staff
minimizes the time spent on repairs, provides more
specific alarm information, and clarifies fault corre-
lation. However, in order to automate corrective ac-
tions, additional inference rules and designated ac-
tion rules might be needed. These rules are used to
reduce a system administrator�s work in two ways:

● By triggering automatic remedy actions
● By gathering additional monitoring data to obtain

a detailed view of the current exceptional state of
resources; this additional information should re-
duce the efforts a system administrator must make
to decide how to treat an affected resource. For
example, in the case of a printer jam, action rules
can be used to restart the printer or to inform the
administrator about the printer failure.

The Semantic Web
The main goal of the Semantic Web is to be able to
express the meaning of resources that can be found
on the Web.11 In order to achieve that objective, sev-
eral layers of representational structures are need-
ed.10 The subset of these layers that is relevant for
our discussion is presented in Figure 2.

These layers have the following roles:

● The XML (eXtensible Markup Language)14 layer
represents the structure of data.

● The RDF (Resource Definition Framework)15 layer
represents the meaning of data.

● The ontology layer represents the formal common
agreement about the meaning of data.

● The logic layer enables intelligent reasoning with
meaningful data.

● The proof layer supports the exchange of proofs
in an interagent communication, enabling com-
mon understanding of how the desired informa-
tion is derived.

It is worth noting that the real power of the Seman-
tic Web will be realized when many systems are cre-
ated that (1) collect Web content from diverse
sources, (2) integrate and process the information,
and (3) exchange the results with other human or
machine agents. Thus, the effectiveness of the Se-
mantic Web will increase drastically as more ma-
chine-readable Web content and more automated
services become available. This level of interagent
communication will require the exchange of proofs
to ensure common understanding among these
agents.

Two important technologies for developing the Se-
mantic Web are already in place, namely XML and
RDF. XML lets users create their own tags to anno-
tate Web pages or sections of text on a page. Sys-
tems can make use of these tags in sophisticated ways,
but to do so a systems programmer must know what
the page author intended by each new tag. In other

Figure 2 Layers of the Semantic Web architecture
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words, XML allows users to add arbitrary structure
to their documents, but says nothing about what the
structures mean.16 Typically the meaning of XML doc-
uments is intuitively clear to humans because the se-
mantic markup and tags use terms that are common
in the particular domain. However, computers do
not have intuition. Tag names do not in and of them-
selves provide semantics.

Document type definitions (DTDs) are a possible ap-
proach to providing structure for the content of the
documents. However, structure and semantics are
not always aligned; they can be orthogonal. There-
fore, a DTD is not an appropriate formalism to de-
scribe the semantics of an XML document. The same
holds for XML Schema,17 which also only define struc-
ture, although with a richer language. In essence,
XML lacks a semantic model. It has only a surface
model, or tree. Thus, XML is not the solution for
propagating semantics throughout the Semantic
Web. It can only play the role of a transport mech-
anism as a readily machine-processable data format.

RDF17 provides a means for adding semantics to a
document. RDF is an infrastructure that enables en-
coding, exchange, and reuse of structured meta-data.
Principally information is stored in the form of RDF
statements, which are machine-understandable.
Search engines, intelligent agents, information bro-
kers, browsers, and human users can understand and
use that semantic information. RDF is implementa-
tion independent and may be serialized in XML (i.e.,
its syntax is defined in XML). Adding semantic in-
formation to Web documents is called semantic an-
notation.18 RDF in combination with RDFS (Resource
Description Framework Schema)19 offers modeling
primitives that can be extended to meet the needs
of a specific situation. Basic class hierarchies and re-
lations between classes and objects are expressible
in RDFS. In general, however, RDFS suffers from a
lack of formal semantics for its modeling primitives,
making proper interpretation an error-prone process.

A solution to this problem is provided by the third
basic component of the Semantic Web, namely on-
tologies. Ontologies are well-suited for describing
the heterogeneous, distributed, semistructured in-
formation sources (e.g., XML documents) that can
be found on the Web or on intranets. By defining
shared and common domain theories, ontologies
help both people and machines to communicate con-
cisely by supporting the exchange of semantics rather
than just syntax. It is therefore important that any
semantics for the Web be based upon an explicitly

specified ontology. In this way consumer and pro-
ducer agents can reach a shared understanding by
exploiting ontologies that provide the vocabulary
needed for negotiation.

KAON ontologies
Many representation languages for ontologies have
been defined, including OIL (Ontology Interchange

Language),20 DAML (DARPA Agent Markup Lan-
guage) � OIL,21 and OWL (Ontology Web Lan-
guage).22 Our work is based upon the KAON
(KArlsruhe ONtology) ontology language defini-
tion.23 Briefly, the KAON ontology language is based
on RDFS, but provides a clean separation of the mod-
eling primitives from the ontology itself. KAON pro-
vides means for modeling metaclasses and incorpo-
rating several commonly used modeling primitives,
such as transitive, symmetric, and inverse properties,
as well as cardinalities. Figure 3 shows a very simple
KAON ontology.

An ontology in the KAON language consists of con-
cepts (sets of elements) and properties (specifica-
tions of how objects may be connected). For exam-
ple, the ontology shown in Figure 3 contains, among
others, the concepts Person, Department, and Prod-
uct, and the properties worksIn, and produces. Each
property must have at least one domain concept; for
example, the domain concept for the property
worksIn is the concept Person. Its range may either
be a literal (e.g., the hasName property), or a set of
at least one concept; thus the range concept for the
property worksIn is the concept Department. Domain
and range concept restrictions are treated conjunc-
tively. Consequently, all of them must be fulfilled for
each property instantiation. Some properties may be
marked as symmetric (cooperatesWith) or transitive
(hasPart). Further, it is possible to say that two prop-
erties are the inverse of one another, such as the
properties owns and isOwnedBy. Moreover, it is pos-
sible to specify rules such as, “If a person works in

An ontology in the
KAON language consists

of concepts (sets of elements)
and properties (specifications

of how objects
may be connected).
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a department, he or she has knowledge about a prod-
uct produced in that department.”

For each concept-property pair it is possible to spec-
ify the minimum and maximum cardinalities, defin-
ing how many times a property may be specified for
instances of that class. Concepts and properties can
be arranged in a hierarchy. For example, the con-
cepts Software and Hardware are subconcepts of the
concept Product. The hierarchy relationship inter-
relates directly connected concepts (properties) and
is defined as a transitive relationship.

Each ontology has an instance pool associated with
it. An instance pool is constructed by specifying in-
stances of different concepts and by establishing
property instantiations between instances. Property
instantiations must follow the domain and range con-
straints and must obey the cardinality constraints,
as specified by the property specifications.

An ontology also contains so-called lexical entries,
such as labels, synonyms, stems, or textual documen-
tation, that reflect various lexical properties of on-

tology entities. There is an m:n relationship between
lexical entries and ontology entities. Thus, the same
lexical entry may be associated with several elements
(e.g. the label APPLE may be associated with an in-
stance representing an apple fruit or an Apple
computer).

All information is organized in so-called OI models
(ontology-instance models), containing both ontol-
ogy entities (concepts and properties) and their in-
stances. This allows grouping of concepts with their
instances into self-contained units. For example, the
ontology modeling IBM products shown in Figure 3
contains the concept Software along with instances
representing several well-known products, including
DB2*, Lotus Notes*, and WebSphere*. An OI model
may include another OI model, thus making all def-
initions from the included OI model automatically
available.

Ontology-based correlation engines
The major objective of this paper is to show how to
bring one aspect of autonomic computing, namely
the use of correlation engines, to its full potential

Figure 3 Example of KAON ontology
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by extending and combining it with the Semantic
Web technologies described previously.

Specifically, we will now focus on how ontologies may
advance autonomic-computing solutions. We use the
eAutomation correlation engine24 as an example
throughout this section. Note that similar strategies
can be applied for other engines as well. The ap-
proach can be summarized in the following steps:

1. The model of the eAutomation engine is first
transformed into the eAutomation ontology.

2. Hidden (hard-coded) knowledge embedded in
the eAutomation engine is translated into a set
of rules in the corresponding ontology and is
used in typical inferencing tasks.

In the rest of this section we describe the model of
the eAutomation engine and show how it can be im-
proved by translating the model of the eAutomation
engine into the eAutomation ontology.

The eAutomation engine. Any correlation engine has
to provide answers to three questions: (1) what to
manage, (2) why management is required, and (3)
how to manage. Hence, for the rest of this subsec-
tion we elaborate the resource, event, and rule mod-
els used in the eAutomation engine.

Resources. One of the core foundations of the eAu-
tomation engine is the abstract representation of any
type of IT resource, with the ultimate goal of avail-
ability management. This abstract resource repre-
sentation is depicted in Figure 4. (Note that we will
not discuss all elements of the abstract resource
model explicitly in this paper.) Each resource has a
unique name that is represented through the Name
attribute. The most important attributes of a resource
are those related to the operational state of a re-
source. Whereas the Current_Operational_State at-
tribute describes the current availability state of a
resource, which is typically monitored and whose
change is represented as an event, the Desired_
Operational_State attribute is used to specify the de-
sired state of a resource. This state is typically set
by an administrator or is part of a policy reflecting
overall goals. The Compound_State attribute indi-
cates the state of a resource in the context of other
resources together with the composition of the states
of these other resources, thus providing a view of
the overall situation. This state is computed based
on internal aggregation; a correlation rule is used to
derive an overall state. The set of possible values of
the state attributes is predefined. For example, if the
resource is not started, the value of the Current_
Operational_State attribute is Offline. The Online value
means that the resource is ready for work, whereas
Pending Online means that the resource has been
started, but is not yet ready for work. There are sev-
eral operational states indicating problems. For ex-
ample, Failed Offline signifies that a resource is bro-
ken and cannot be used.

The eAutomation resource model allows resources
to be grouped in resource groups, a process known
as composition. A resource group is itself an eAu-
tomation resource which contains a collection of re-
sources that are handled as one logical entity. Dif-
ferent types of groups can be supported by
implementing different state aggregation rules. These
rules are used to derive the observed state of the
group resource. Because a resource group is just an-
other resource, it can in turn be a member of an-
other resource group. Internally, we build an isMem-
berOf relationship tree.

An equivalency is a collection of resources that pro-
vide the same functionality. An equivalency consists
of a set of resources from the same class. For ex-
ample, network adapters might be defined as mem-
bers of an equivalency. If one network adapter fails,

Figure 4 Abstract resource model
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another network adapter can take over processing.
In essence, an equivalency is a resource group, but
it does not have its own state.

The eAutomation correlation engine allows the def-
inition of two types of relationships between resourc-
es:

1. Start/stop relationships—These are used to de-
fine the start and stop dependencies between re-
sources. A startAfter relationship indicates that
resource X will only be started after resource Y
has been started. This is an active relationship
because when there is a start request (i.e., the
Desired_Operational_State attribute is set to On-
line) for X, eAutomation will propagate this re-
quirement to Y along the relationship subgraph.
Start/stop relationships can provide even more
complex behavior, which can be described by the
function dependency. A dependsOn relationship
is used when a resource X cannot operate prop-
erly if another resource is offline. A dependsOn
relationship actually implies a startAfter require-
ment.

2. Location relationships—These are used for lo-
cating resources on nodes or other hosting con-
tainers. Several relationships are defined: Col-
located, AntiCollocated, Affinity, AntiAffinity, and
IsStartable. The Collocated relationship requires
that a resource A can only be started at a loca-
tion where a resource B is already running.
AntiCollated means that resource A must be
started at a location different from that where
resource B is running. These are hard location
relationships, meaning that the location relation-
ship must be fulfilled. The Affinity and AntiAffinity
relationships have a similar behavior, except that
these are soft location relationships that can be
ignored in problem situations. An example is an
AntiAffinity relationship between the resources A
and B when only one node in a cluster is avail-
able. Here, both resources are allowed to run
on the same node. The IsStartable relationship
between A and B defines that a resource A can
only be placed on a node where a resource B is
startable.

Events. On the level of the eAutomation engine all
events are related to changes of the states of re-
sources. The event correlation techniques described
earlier can be used by agents to derive these states.

Rules. The eAutomation correlation engine com-
bines correlation and action rules into the following
three types of rules:

1. Simple correlation rules—These rules take the
form

WHEN condition
THEN action

The condition is an expression of resource at-
tributes. The evaluation takes place when one
of these attributes changes. An action can be,
for example, the setting of an attribute value.

2. Relationship correlation rules—This type of rule
is based upon the dependencies between re-
sources described in a model. These rules con-
sider attributes of related resources following a
relationship subgraph. In particular they de-
scribe the relationship subgraph that must be tra-
versed and the specific attributes that must be
considered in a given situation. An example of
a relationship correlation rule is one that states
that when all predecessor resources related
through the startAfter relationship are Online,
then a successor resource can be started. This
rule will be evaluated whenever there is a state
change in one of the resources involved.

3. Request propagation rules—Requests can be
propagated along a subgraph, and they can be
transformed during that propagation. For exam-
ple, when there is a start request for resource
A, this request is propagated down to all com-
ponents with which A has a startAfter relation-
ship, because all these other resources must be
up and running before A can start. The prop-
agation stops at resources that are at the end of
startAfter relationship chains. At these so-called
leaf resources, start commands are sent out as
decisions.

Although simple correlation rules combine stateless
rules (i.e., rules that perform only filtering), we could
argue that making decisions based on state propa-
gation rules and complex relationship rules extends
into the regime of inferencing technology.

It should be noted that none of the inference rules
described above are externalized to the customer
user interface. A customer defines an eAutomation
policy based on its IT resources and the desired au-
tomation behavior described through resource
groups, equivalencies, and relationships. This infor-
mation is then internally translated into resource
model inference rules for the system.
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The eAutomation ontology. The model of the eAu-
tomation engine presented in the previous section
was then used as the basis for defining the eAuto-
mation ontology. Our goal was to model all infor-
mation that exists in the eAutomation model, includ-
ing any implicit knowledge. Here we briefly describe
the process of enriching the eAutomation model into
the eAutomation ontology.

Figure 5 shows a part of the eAutomation ontology.
The most important concept in this ontology is the
concept Resource, corresponding to the abstract re-
source in the eAutomation model shown in Figure
4. Each ontology concept is described with a set of

properties that can be either attributes or relations.
The concept Resource contains only the one attribute
name; the value for this property can be an arbitrary
string (e.g., Resource123). All other properties de-
fined for the concept Resource are relationships. For
example, the current state of a resource is modeled
as the property currentState (the range of this prop-
erty is the concept CurrentState) because the set of
possible values is known in advance. In this way the
correctness of the concrete model is improved sig-
nificantly because only instances of the concept Cur-
rentState can be used to specify the value of the cur-
rent resource state. Note that domains and ranges
simply specify schema constraints that must be sat-

Figure 5 Part of the eAutomation ontology
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isfied for the property to be instantiated. They do
not infer new facts, but rather guide the user in con-
structing the ontology by determining what can and
cannot be explicitly stated.

In order to define the state of a resource in a unique
way, the concept State is organized into the concept
hierarchy shown in Figure 6. The concept State con-
tains two subconcepts. The first subconcept Com-
poundState has the instances good, bad, and unknown.
These instances represent the concrete values that
can be used for the property instances. Note that
good is a unique identifier for an instance of the con-
cept CompoundState and is much more than just the
string “good.” When good is considered as a URI
(unique resource indicator), additional values can
be specified according to the structure of the con-
cept CompoundState. Further, lexical entries can be
defined. For example, the instance good can be re-
lated to the term (string) “gut” in German. The sec-
ond subconcept OperationalState is divided into the
concepts DesiredState and CurrentState. The possi-
ble values for the operational state are modeled as
instances. The values that are specific only for the
current state (e.g., stopping) are represented as in-
stances of that concept.

Several properties of resources are derived from the
model of the eAutomation correlation engine. These
include startAfter, dependsOn, dependsOnAll, collo-
cated, anticollocated, affinity, antiaffinity, and isStart-

able among others. Based on their semantics, these
properties are organized into two groups: startStop-
Dependencies (used to define a start/stop behavior)
and locationDependencies (used for locating re-
sources on nodes). These groups correspond to the
relationships that can be defined between resources
in the eAutomation model.

Each of these relationships has an implicit meaning
that is hard-coded in the program that uses them.
Moreover, there are semantic connections between
some of these relationships. For example, the col-
located relationship is symmetric; the collocated and
anticollocated relationships are mutually inverse. This
knowledge may be defined formally and explicitly by
axioms.

In an ontology there are two types of implicit knowl-
edge: axioms and general rules. Axioms are a stan-
dard set of rules, such as the rules for symmetric,
transitive, and inverse properties. For example, if A
contains B, B contains C, and contains is a transitive
property, then the ontology system can infer that A
contains C as well. Thus, we do not need to express
this information explicitly. General rules are domain-
specific rules that are needed to combine and to
adapt information available in the ontology. They
are used to specify the relationships between onto-
logical entities in the form of rules. For example, if
A contains B and B is about C, then it can be con-
cluded that A also is about C.

Figure 6 The concept “state” in the eAutomation ontology
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In general, axioms and rules are used to infer new
knowledge. The possibility of deriving information
makes the model of a domain more concise, more
accurate, and easier to maintain. Obtaining and for-
malizing the nonexplicit but available information
about the knowledge model of a correlation engine
thus provides important advantages.

The implicit knowledge of the eAutomation model
is explicitly modeled through rules. In the previous
example for the collocation relationship, the sym-
metry axiom may be exploited when searching for
information. Without the definition of this axiom,
searching for collocated resources might depend on
the way meta-data was provided for the resources.
If one defines that some resource X is collocated with
some other resource Y, there is no possibility (with-
out programming or explicit specification) to find out
that the resource Y is collocated with resource X.
Further, it is impossible to conclude that the re-
sources X and Y cannot be anticollocated with re-
spect to each other.

A transitive axiom is a part of the standard set of
axioms. For example, if resource A should start af-
ter resource B, and resource B should start after re-
source C, then resource A should start after resource
C as well. Consequently, the property startAfter is de-
fined as a transitive property.

The additional advantage of this approach is that the
user can specify arbitrary attributes and relationships
and their semantics in a declarative way. For exam-
ple, the user can extend the model with the new prop-
erty startBefore and may define that this relationship
is transitive. Moreover, he can specify that this new
relationship has an inverse relationship to the start-
After property which is already a part of the model.

The set of rules modeling dependencies between the
properties of resources is specified in the general
rules of an ontology. For example, the fact that the

state of a resource group aggregates the states of all
its members can be modeled as a rule. General rules
are also useful for modeling behavior related to the
relationshipsamongresources.Forexample, thestart-
After relationship is used to ensure that a source re-
source is started only when its target resources are
online.

Figure 7 shows the result of inferencing for an on-
tology containing three resources: R1, R2, and R3.
A startAfter relationship can be found between the
resources R1 and R2 and between the resources R2
and R3. When the resource R1 has to be started,
then because of the startAfter relationship, the re-
source R3 must be started first. After the current
state of the resource R3 has changed to online, the
system calculates that the state of the resources R2
and subsequently R1 must be set to online as well.
More precisely, the change of the current state trig-
gers the start action, and then the dependency graph
is traversed to find R1. This is done because the re-
lationships are defined with appropriate transitive
axioms. Thus background knowledge about the do-
main can be used to find new but implicitly stated
facts.

The chain of rules evaluated during an inference pro-
cess can be represented as a derivation tree.25 Such
a proof structure enables justification of why and how
a solution was derived. In the previous example, the
derivation tree explains that the desired online state
of the resource R2 causes the online status of the re-
source R1. This change is caused in turn by the on-
line status of the resource R3. Moreover, this proof
structure can be used also for calculating the rele-
vance of a particular solution, as we discuss later.

There are several ways to model resource groups.
Each model has its own advantages and disadvan-
tages. The choice depends on the type of the appli-
cation. Figure 8 shows two different ways to model
resource groups. The first version, model A, does
not contain an explicit concept for resource groups.
The information regarding whether some resource
is a resource group must be obtained through
inferencing.

Because a resource group is an automated resource
which contains a collection of resources that are au-
tomated as one logical entity, this behavior must be
defined using rules. Here the ontology model is more
compact and flexible because all rules that are spec-
ified for resources can be applied to resource groups
as well. The disadvantage is that resource-group-spe-

Figure 7 Inferencing in KAON
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cific attributes cannot be defined because there is
no concept representing groups.

Model B in Figure 8 contains the concept Resource-
Group, which can include either resources or resource
groups. (The property includes has two domain con-
cepts: the concept Resource and the concept Re-
sourceGroup.) This solution requires a set of addi-
tional rules to model how modification of the state
of a group causes a change of the status of the re-
sources within the group. On the other hand, re-
source groups can be described more precisely. In
our approach we selected this latter solution because
the model is more understandable for users.

The eAutomation model also allows modeling of the
equivalency between resources. In the eAutomation
ontology, equivalency is modeled as a separate con-
cept, and associated rules are used to specify con-
sistency constraints, that is, to verify whether an
equivalency may be created.

Advantages of ontology-based correlation
engines
In this section we discuss the advantages of applying
ontologies to correlation engines with our approach.
We begin by describing the benefits from a model-
ing point of view. Then we discuss the benefits from
a usage point of view.

Modeling benefits. Inference mechanisms for the de-
duction of information not explicitly asserted are the
most important characteristics of ontology-based sys-
tems, as described previously. Here we discuss other
advantages of translating the model of the eAuto-
mation correlation engine into the eAutomation on-
tology. They include the following:

1. Reusability—When an automation system has to
be applied in a new domain, a model for that
domain is needed. It is inefficient and error prone
to always build the model from the ground up.
Obviously it is better to build these models by
reusing smaller well-defined components. An
ontology can reuse concept and instance defi-
nitions from other ontologies through modular-
ization.26 This allows the creation of a library of
ontologies. The library should contain ontolo-
gies that are well separated and coherent with
respect to functionality. Users can thus develop
their own ontologies by taking advantage of the
predefined ontologies from the library, without
having to develop the underlying model man-
ually. A library of reusable modules reduces the

time and cost of developing a correlation engine.
Moreover, it increases the quality of the result-
ing models as well.

For example, to model a domain that includes
many application servers, one can reuse the Ap-
plication Server ontology. This ontology includes
the Server ontology, which contains concepts,
properties, and rules that are characteristic of
all servers, independent of the type of service
they provide. The eAutomation ontology defined
previously could be reused in other ontologies
that model autonomic computing systems. The
Server ontology includes this ontology directly.
However, the eAutomation ontology is indirectly
included in the Application Server ontology
through the transitivity of the ontology inclusion
relationship. The inclusion graph between on-
tologies is shown in Figure 9.

2. Extensibility—The previous example demon-
strates the open-closed principle. Each ontology

Figure 8 Different ways to model a resource group
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keeps track of its own information and is a con-
sistent, self-contained, and closed unit. On the
other hand, each ontology is open for reuse, in
which case any part of its structure can be ex-
tended as long as the original model itself is not
changed. This means that a new concept which
is specific to the current domain can be added
very easily as a specialization of an existing con-
cept. For example, the concept WebSphere can
be defined as a subconcept of the concept Ap-
plication Server, which in turn is defined in the
previously mentioned Application Server ontol-
ogy. Moreover, the set of properties can be ex-
tended. Because the eAutomation ontology con-
tains only one attribute related to the name of
the resource, it is expected that the set of at-
tributes will be extended to cover the features
of the concrete domain. For example, the at-
tribute number of threads can be specified for
the concept Application Server. The same holds
for domain-specific relationships. Thus the at-
tribute load balanced can be a characteristic of
the concept WebSphere.

3. Applicability—For on demand computing,2 of
which autonomic computing1,27 is an integral
part, it is very important to be able to find a re-
quired service. From the viewpoint of the user,
there is a need to know the terms or keywords
to use when searching for services. Simple key-
word queries are valuable when users know what
they are searching for and when the informa-
tion is well-defined. Such queries do not work
for on demand computing, where the viewpoints
and knowledge levels of the service provider and
service consumer may be completely different.
Therefore, some mechanism for establishing a
shared understanding is needed. Moreover, sim-
ple keyword searches cannot deal with synonyms
(agent versus actor), abbreviations (World Wide
Web versus WWW), different languages (database
versus Datenbank) and even morphological vari-
ations (point-to-point network versus point to
point network), much less context. This prob-
lem can be resolved by defining corresponding
relations (e.g., synonym, abbreviation) in the do-
main ontology. Ontology relationships can also
be used in the process of navigating through ser-
vices. For example, it is reasonable to browse
from the topic “network” to the topic “protocol.”

4. Verification—Ontology axioms and rules play an
important role in the verification of a model. For
example, an axiom that states that two relations

are mutually inverse can be used for checking
consistency in an instantiated model. Moreover,
consider the knowledge that a resource can be
a member of either an equivalency or a resource
group, but not both of them. This can be mod-
eled explicitly as a rule. Further, the fact that
resource groups may not be members of an
equivalency can also be represented formally as
a rule.

In general, reasoning tasks can be used to verify
a model. Consistency checking, detection of re-
dundancies, and refinement of properties are
some of these reasoning activities. Using these
concepts it is possible to guide an administrator
through the model development process by pro-
viding such additional information as why a us-
er�s activity did not succeed or what else must
be done in order to finish the current activity.3,4

5. Integration—Heterogeneous information sys-
tems can take advantage of the framework of a
formal ontology. Applications can become more
powerful when they integrate horizontally, but
this can require connection of vast amounts of
data, legacy systems and custom business appli-
cations that may spread across internal opera-
tions, partners, suppliers, and customers. There
are several reasons for using ontologies for in-
formation integration.9,28 As the most advanced
knowledge representation model available to-
day, ontologies can include essentially all cur-
rently used data structures. They also can accom-
modate complexity because the inclusion of
deductive logic extends existing mapping and
business logic capabilities. Further, ontologies
provide shared conceptualization and agreed-
upon understanding of a domain, both prereq-
uisites for (semi-) automatic integration.

6. Evolution—Since domain models are rarely
static, evolution of the model is also important.
A model must adapt to changing requirements.29

Hence, an infrastructure for management of
changes that takes into account dependencies
between ontologies is necessary.

7. Visualization—Visual, hierarchical arrangements
of subject categorizations trigger associations
and relationships that are not obvious when a
model is given only in a textual form. It is well
known that visualization is important to the pro-
ductivity of domain experts.
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8. Open standards—Any enterprise must connect
with other enterprises, any department with
other departments, or any one system with other
systems. The only realistic way to achieve this
requirement is to use open standards. As de-
scribed previously, ontologies are standard for
the Semantic Web. Therefore, the usage of on-
tologies will enable the compliance of correla-
tion engines with current W3C (World Wide
Web Consortium) standards. This will increase
the likelihood that models can be exchanged be-
tween different systems with minimal loss of
knowledge in the translation processes.

Runtime benefits. As noted previously, the resolu-
tion of a request in an ontology-based system is re-
alized as an inference process. This process is re-
corded as a derivation tree, which can be analyzed
in order to provide more information about the so-
lutions resulting from an initial request. This tree
can be interpreted at the level of the ontology-based
correlation engine, where the request corresponds
to a problem that has to be resolved and the solu-
tion corresponds to an action that must be triggered.
In particular, we see three benefits of applying this
derivation tree analysis in the context of the corre-
lation engines: (1) justification, (2) ranking, and (3)
gap analysis.

1. Justification refers to the generation of human-
understandable descriptions of the inference
process (i.e., how a result was inferred). An ex-
planation of the reasons for suggesting a certain
corrective action can be presented to adminis-
trators for their information or to a software
agent that is responsible for recovering from er-
rors. In this way, the confidence of the admin-
istrators in the correlation engine�s response can
be significantly improved, and the software agent
can optimize its actions.

2. Ranking involves determination of the relevance
of results when many results were inferred. The
estimation of the relevance of a result can be
obtained by analyzing the complexity of the der-
ivation tree for computing that result. More
breadth indicates significant support for that par-
ticular result; more depth indicates less confi-
dence in that result.25

This strategy can be applied to assess the impor-
tance of proposed actions in autonomic comput-
ing systems. An action that is obtained as the
result of a larger number of independent rules

is more important and therefore should take pre-
cedence over actions resulting from fewer inde-
pendent rules. With respect to tree depth, an ac-
tion that is recommended directly (i.e. through
only one rule) is more important than an action
that is suggested indirectly (i.e., through the com-
position of several rules) because the second case
requires that more conditions be fulfilled.

3. Gap analysis is related to the discovery of prob-
lems or deficiencies in domain knowledge when
no result is retrieved. The lack of a result is the
most frustrating situation in an information
search because users receive no feedback on
what was wrong with a request specification. A
derivation tree contains information about
where a derivation process was broken, what the
reasons were, and how it might be possible to
continue the process. Therefore, the analysis of
a derivation tree can show which parts of the do-
main knowledge (i.e., rules) are missing, lead-
ing to incremental improvement of the knowl-
edge base.

In order to determine which events to monitor
in autonomic computing systems and how to an-
alyze them, administrators must be intimately
familiar with the operational parameters of each
managed resource and the significance of related
events. Certainly, there is no administrator who
possesses absolutely all knowledge about a do-
main. This represents a bottleneck in the devel-
opment of a model for a concrete domain. The
analysis of a broken chain during the inference
process can be considered as a methodology for
extracting knowledge in a domain in a semiau-
tomatic way. It helps administrators comprehend
the effect of an event. If properly used, this pro-
cess can reduce the number of incorrect activ-
ities and can even guide a refinement process.
Moreover, this analysis can assist in evaluating
whether rules produce the same output as would
be generated by a human expert in that domain.

Moreover, information about an inference can be
combined with information about the usage of some
entities in the domain to discover corrupted re-
sources or problematic situations. This could lead
to the development of proactive autonomic comput-
ing systems that use predictive methods to eliminate
problems or to redirect the system toward better re-
sults. In contrast to reactive systems that are able to
maintain themselves on demand (i.e., when a prob-
lem arises), proactive systems will be able to diag-
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nose themselves (i.e., check their states) and plan
repairs in advance, eliminating problems before they
arise.

Related work
The importance of ontologies for autonomic com-
puting has also been discussed in Reference 30,
where the authors applied reasoning mechanisms
across not only the entities of the model but also the
resource models. Reasoning mechanisms working
across resource models could gracefully extend from
the autonomic management of a single element, such
as an operating system, a database, or a business ap-
plication, to the autonomic management of a solu-
tion, such as a set of components (e.g., operating sys-
tem, middleware, and application) solving a specific
business problem. With respect to modeling, the au-
thors propose the System Management Ontology for
representing resources. However, this ontology does
not model other aspects of an autonomic comput-
ing system, such as events and rules.

In Reference 31 the authors show how current net-
work management methods can be improved by the
application of formal ontology techniques. Although
they use ontologies for the integration of different
models, we have tried to improve the existing mod-
els with ontologies. This results in easier integration
because all implicit knowledge is represented
explicitly.

In References 3 and 4, formal verification methods
were applied to the rules of the eAutomation cor-
relation engine to reveal residual bugs resulting in
non-termination situations.

Summary
Within the scope of IBM�s research and development
activities, several correlation engines have been de-
veloped and successfully applied in various domains.
However, the increasing importance of such self-
managed systems in an intra-enterprise environment
requires their deep semantic interoperability. More-
over, such integration is of primary importance for
on demand computing, one of IBM�s strategic goals.

In order to achieve this semantic integration, we have
proposed in this paper the usage of ontologies as the
conceptual backbones of correlation engines. We see
several benefits of using such an approach: First, in
the area of domain modeling ontologies facilitate in-
teroperability between correlation engines by pro-
viding shared understanding of a problem domain.

Second, ontologies provide the formalization of
shared understanding necessary to make such un-
derstanding machine-processable. Such machine
processability is the basis for the next generation of
the World Wide Web, the so-called Semantic Web,
allowing us to achieve compliance with existing Web
standards. Finally, the explicit representation of the
semantics of data, in combination with ontologies,
enables correlation engines to provide a qualitatively
new level of services in autonomic computing
systems.

In order to illustrate these benefits, we have pre-
sented a case study for the eAutomation correlation
engine. We showed how an ontology-based corre-
lation engine can extend the capabilities of the orig-
inal engine by exploiting the properties of an ontol-
ogy, namely better modeling of the underlying
domain, especially with respect to the expression of
axiomatic knowledge, higher reusability, easier ex-
tensibility of the system, and the possibility of for-
mal verification of the system.

Finally, we showed how the use of ontologies can
help to improve the effectiveness of autonomic sys-
tems. In particular, ontologies enable additional lev-
els of services such as justification, ranking of pro-
posed solutions to a failure, and gap analysis.
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