The Four-Domain
Architecture:

An approach

to support enterprise
architecture design

Managing an enterprise architecture is a
challenging task. While careful planning
typically goes into its design, an enterprise
architecture actually emerges as a result of
implementing individual projects. It is this de
facto architecture, not the conceptual one,
that provides the capabilities for executing
business strategies, and understanding this
emergent architecture is of paramount
importance. In this paper, we present the
Four-Domain Architecture (FDA), which
integrates business process, information,
knowledge, and elements pertaining to
infrastructure and organization. The FDA
approach can help guide the development of
both the conceptual and emergent
architecture. The FDA helps an enterprise in
the definition, design, and creation of a set of
tools and methods to support frameworks
such as the Zachman framework.

As an enterprise grows in size and complexity, sev-
eral factors impede its abilities to solve the problems
that it faces. The point is rapidly reached where the
factors that come into play in structuring and con-
ducting the business of the enterprise become too
numerous and complex to manage. When working
on such complex systems, designers have typically
dealt with this complexity by breaking them into sub-
sets or domains that are less complex than the orig-
inal system. '

In the case of information systems, the abstraction

used to deal with complexity is called an architec-
ture. An architecture is a system design that spec-

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

0018-8670/04/$5.00 © 2004 IBM

by B. lyer
R. Gottlieb

ifies how the overall functionality of the design is to
be decomposed into individual functional compo-
nents and the way in which these components are
to interact to provide the overall functionality of the
system. The decomposition of the enterprise into
manageable parts, the definition of those parts, and
the orchestration of the interaction among those
parts constitutes the enterprise architecture. The or-
chestration of the interaction is governed by a set of
design rules and principles, also called the organi-
zation’s knowledge architecture.*

Architecture design has benefited from the work
done in the context of systems architecting® and the
design of buildings’ and information systems.®*’
Other authors writing on product design and devel-
opment'®!" have stressed the importance of manag-
ing the evolution and renewal of product architec-
ture for sustained competitiveness. In that context,
the architecture of a product refers to its overall de-
sign concept, which serves both as a basis for prod-
uct innovation and as a constraint on the variety of
product versions. In the context of this paper, we fo-
cus on a set of components that enable the flexible
retooling of the enterprise and the creation of sup-
porting environments for different business contexts.
As such, our enterprise architecture, the Four-Do-
main Architecture (FDA), reflects an integration of bus-
iness processes, engines, data sources (e.g., databases

©Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

B. IYER AND R. GOTTLIEB

587

and knowledge bases), visualization tools, dialog man-
agers, infrastructure, and organizational resources.

In presenting the FDA, we separate the business of
creating an enterprise architecture (i.e., the processes
of defining and building the models of the enterprise
and the requisite organizational resources) from the
business of doing the work of the enterprise (the
building and selling of products and services, the run-
ning of the enterprise itself, and the organizational
resources engaged in this work). The former we call
“Architecture-in-Design” (AID), and the latter “Ar-
chitecture-in-Operation” (AIO). AIO provides the
content for the enterprise’s models. '* Consequently,
we split the FDA into two “cross-sections” or sub-
architectures, the AID and the AIO.

To provide an enterprise with some guidance for
making decisions about information technology (IT)
projects, planning sessions are held to define the ideal
architecture. The AID thus defined is expected to pro-
vide guidelines for project-level decision making. In
reality, however, these guidelines, even when avail-
able, are rarely followed. A firm’s architecture—its
AlO—emerges as a result of each project’s impact
on applications, data, and technology. Therefore, it
is the AIO that becomes the de facto enterprise ar-
chitecture, and consequently, it becomes the archi-
tecture most in need of management.

The Four-Domain Architecture

The concept of an IT architecture does not have a
universally accepted definition in either the research
or industry context.® Although at a very high level,
we can describe the IT architecture as a capability
to integrate technical components to meet business
needs, in reality the concept is much more compli-
cated. Previous studies have concluded that an IT ar-
chitecture includes a group of shared, tangible IT re-
sources that provide a foundation to enable present
and future business applications.'*~"’

There are many elements within the information sys-
tems world with which to build an architecture: net-
works, computers, terminals, programs, cabling, data
sources, procedures, and so forth.'® By grouping like
elements into domains, domain-specific architectures
can be constructed which reflect a common compo-
sition and are simple and clearly focused. To be ef-
ficient, the elements chosen should have the follow-
ing characteristics:

* Areasonable level of abstraction (too high a level
of abstraction would mystify implementors, while

B88 B. IYER AND R. GOTTLIEB

too low a level would result in a welter of “nuts
and bolts”),

* Adequate coverage of the real world (i.e., the ar-
chitecture needs to be complete, without “holes”
indicative of situations not planned for),

* Reasonably familiar and accessible concepts,

* A basis in significant philosophical and practical
experience, and

 Entities in one domain that differ from those in
other domains, while maintaining a similarity to
each other.

FDA divides the enterprise into four domains and tai-
lors an architecture model for each. The domains
are independent and therefore can be driven by the
external factors for which each is designed. Each do-
main, as described in the following subsections, en-
compasses a traditional area of expertise, which pro-
vides a unifying discipline for each model.

The four domains

The four domains of the FDA, and some examples
of elements of the domains, are shown in Table 1.

Process domain. This domain includes the processes,
procedures, business tools, tasks that encode bus-
iness rules, and dependencies required to support
the various functions within a business. It includes
the applications needed at the levels of operations,
management control, and strategic planning. For ex-
ample, this domain may include recurrent tasks or
routines'*? that encode design rules and principles.
These may come in the form of communication chan-
nels, both formal and informal, or in the form of in-
formation filters and strategies.?!

Information/knowledge domain. This domain in-
cludes business rules and business data and infor-
mation of all types, their usage, interrelationships
and demographics, as well as their definitions, own-
ership, distribution, and composition. Meta-data, sys-
tem data, and operational data are also included
within this domain.

Infrastructure domain. This domain includes hard-
ware and facilities, system software, data storage re-
sources, networks and communications, human in-
terfaces, and other underlying technologies. It is the
platform that supports the activities and interfaces
of the other domains.

Organization domain. This domain includes busi-
ness people and their roles and responsibilities, or-

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Table 1 Typical elements of the Four-Domain Architecture

Process Domain Information/Knowledge Infrastructure Organization
Domain Domain Domain

Business context engines Business data Computers People

Planning engine Business profiles Operating systems Roles

Visualization engine Business models Display devices Organizational structures

Business tools Data models Networks Alliances

ganizational structures and boundaries, as well as
their interrelationships to alliances, partnerships,
customers, suppliers, and other stakeholders in the
enterprise.

In our view, the FDA as described above can sup-
port frameworks such as the one proposed by
Zachman.’

The Zachman Framework

In 1987, John Zachman introduced his framework
for the definition of the architecture of information
systems.”? The concept was inspired by the millen-
nial disciplines of classical architecture and the more
recent development of the disciplines and methods
successfully adopted for the creation, design, and
production of complex machine systems such as air-
planes. The construction of information systems
(and, more recently, enterprises) exhibits complex-
ities and characteristics no less daunting and chal-
lenging than the creation of large edifices or ma-
chines. Therefore, a great deal can be learned by
observing how the expert practitioners of those arts
and sciences go about their work. The craft of de-
signing and building systems based on computer
technology is rendered more difficult by the general
proliferation of that technology, its wide dissemina-
tion throughout the enterprise, and its rapid
evolution.

Unfortunately, discontent with the general quality
and usefulness of information systems has not re-
sulted in a groundswell of recognition of its causes.
Unlike design failures of buildings or airplanes (e.g.,
collapsing atria, tail assemblies that fall off), archi-
tectural design failures of information systems have
not caught the public’s attention or its wrath. Indeed,
two recent events, the Y2K concerns and the Mars
Lander debacle, have already faded from view with-
out generating any visible heat, much less demand
for removing the root causes of these events.

The Zachman framework (referred to hereafter as
“the framework”) for dealing with the weaknesses

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

of the state of the art of information systems archi-
tecture was prescient. It explicitly recognized the styl-
ized roles played by key actors (e.g., owners and
users) in the creation of buildings and aircraft, how
they are involved in the related processes, and their
unique informational needs and contributions. In ad-
dition, it posited a series of aspects or views of in-
terest to each actor, and an appropriate (and unique)
representation for each instance. The resulting as-
pect matrix, originally five by three and subsequently
expanded to a five-by-six matrix, presented an ex-
haustive set of definitional, design, and implemen-
tation artifacts for the complete and coherent ide-
ation and construction of any complex system, and,
specifically, information systems. The six columns of
the matrix can be tied to the basic set of interrog-
ative primitives?: “What, how, where, who, when
and why.” In the framework, these translate to data,
function, network, people, time, and motivation as
shown in Figure 1. The aspect or view of the whole
that is provided by each column is unique in its na-
ture. Within each column, however, each row rep-
resents the needs (identical in nature) of different
stakeholders and their concerns. The rows indicate
the architecture’s scope, enterprise model, system
model, technology model, and components.*

With the passage of time, it was realized that lim-
iting the use of the framework to the information
systems of an enterprise was not justified, given the
background and thinking that led to its creation. Be-
cause the distinction between an enterprise and the
processes, data, and infrastructure of which it is com-
posed is purely arbitrary, the framework focused in-
stead on the abstraction of the enterprise
architecture.

The Zachman framework is not an architecture and
was never proposed as such. It can be thought of as
amultidimensional visual checklist. The artifacts that
instantiate the cells of the framework for a given ar-
chitecture are indeed architectures or subsets of an
architecture, depending on one’s point of view. The
framework itself does not impose architectural rigor,

B. IYER AND R. GOTTLIEB 589

Figure 1 Six-column Zachman framework (With the exception of the first row, the items in the cells are examples.)
Data Function Network People Time Motivation
Scope List of things List of List of List of List of events List of
important to processes locations in which organizations/agents significant to business
the business the business the business important to the business goals/strategy
performs operates the business
Enterprise Entity/relation ~ Process flow Logistics Organization Master Business plan
Model diagram diagram network chart schedule
System Data model Data flow Distributed Human interface Processing Knowledge
Model diagram system architecture structure architecture
architecture
Technology Data design Structure System Human/techology Control Knowledge
Model chart architecture interface structure design
Components Data definition Program Network Security Timing Knowledge
description architecture architecture definition definition
Functioning Data Function Network Organization Schedule Strategy
System

Based upon “Extending and formalizing the framework for information systems architecture,” by J. F. Sowa and J. A. Zachman,

IBM Systems Journal 31, No. 3 (1992), 590-616.

although following its constructs would reduce the
probability of mishaps in an architecture defined us-
ing the framework. In fact, in later work, Zachman
introduced some principles® to guide the use of his
framework and also speculated about some of the
tools and methods that would make the framework’s
adoption less labor-intensive.

These considerations underscore and motivate this
paper. To design, define, and build a tool set and
methods to support the framework requires the use
of the framework itself, in order to help achieve ar-
chitectural integrity. This recursive requirement, in
effect, requires an architecture for its realization. This
paper proposes such an architecture (the FDA) and
describes how this architecture would be used to de-
fine the tools and methods needed to instantiate the
various cells of the framework. The paper demon-
strates the use of the framework in the proposed ar-
chitecture and shows how the framework could be
created by using the proposed architecture.

The framework and the FDA: A general
approach

The cells of the framework represent information
which can be thought of as a set of nested tree struc-

590 B. IYER AND R. GOTTLIEB

tures. For example, if we think of the set of systems
that represents a complex product family, a tree
would show how the various individual products and
options are related, how they interrelate to create
the various “sellable” instances of the products, and
how those instances are placed within the family. The
product family, so constituted, could be mapped
against a variety of external realities (markets, prod-
uct requirements, competitor offerings, etc.) to show
coverage and completeness of the product family.

The next lower level would decompose the products
into assemblies, and the assemblies could then be
broken down into components. The process for do-
ing this is recursive, and a single engine could be cre-
ated that would deal adequately with the structure
(and information content) of all the layers of detail.
This decomposition process can be applied to each
column of the framework, where the mechanisms for
instantiation of each cell are contained and are part
of the FDA.

An engine is defined as an analysis object that rep-
resents and implements a complex business capabil-
ity requiring the integration of knowledge, decision
models, and data resources of various types. It can

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

be thought of as a large block of reusable applica-
tion code that instantiates complex business func-
tions. Engines are shareable and reusable in dispar-
ate business contexts.

To conduct business using the AID and AIO, we pro-
pose a Virtual Business Environment (VBE). A bus-
iness environment is considered virfual when only
its spacial or temporal instantiation (and not its de-
scription or model) depends upon the physical sur-
roundings and locations of its actors, decision con-
texts, capabilities of the devices being used, and the
actors’ entitlements. VBE is an umbrella term for a
collection of technologies that allow an enterprise
architecture to exist as one seamless unit. A VBE re-
quires the management of storage devices, servers,
and network devices through a central console. Be-
hind the console, high-end database management
systems from Oracle, for example, should coexist with
open-source database managements systems such as
MySQL**. Similarly, high-end Sun servers should co-
exist with low-cost blade servers. In this way, multiple
and independent environments can use a single set of
resources. VBEs allow the architecture to become re-
sponsive (i.e., liquid) to unknown requirements.

Engines are used by the VBE, which requires their
functionality. The engine needs to integrate re-
sources, synchronize models and data, normalize out-
puts, dynamically allocate resources, and enforce
business rules. Engines may be added to or expunged
from a VBE. An engine manager (another instance
of an engine) maintains a library of engines and iden-
tifies appropriate engines and the resources neces-
sary to run them.

An enterprise may have many such environments (in
the process domain of its FDA), and their boundaries
may be established on an instance-by-instance ba-
sis. The business processes (or subprocesses) are de-
fined in a VBE based upon the needs of the decision
makers and users. The VBE would allow organiza-
tions to run different business processes concurrently
and securely, while sharing resources. For example,
a VBE can support concurrent availability of differ-
ent business views (e.g., one for senior executives and
another for project managers, both sharing data,
models, and business contexts).

Conceptually, the VBE consists of a domain-resource
subsystem, a subsystem of engines, and a dialog-man-
agement subsystem. The domain-resource subsystem
manages structured and subtly structured (nontabu-
lar) data, including expert knowledge, models, doc-

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

uments, and data needed for decision making. The
dialog management subsystem is responsible for in-
teracting with the user to query information, pro-
vide inputs, and interpret the responses from the en-
gines to create individualized outputs for the user.
The outputs can be rendered in different ways as
specified in the user profile.

The process domain of the FDA also typically con-
tains software components called “business context
engines.” Examples of these include business-man-
agement environments, business-process-develop-
ment environments, and data-control environments.

Table 2 shows the elements we would expect to find
if we were to document a process (the “how” col-
umn of the framework) for each of the four domains
of the FDA.

We will now apply the decomposition process to two
columns (data and function) of the Zachman
framework.

Framework cell: Column: Function, Row: Scope

This cell could be occupied by a list of action verbs
that would categorize all of the business processes
that would be needed by the enterprise being doc-
umented in this framework instance. These action
verbs, supported by appropriate meta-data, would
be part of the information/knowledge domain arti-
facts related to this particular cell.

There would be a specific process (known as a mod-
eling process in the terminology of enterprise func-
tional decomposition?) that would produce this list
of action verbs and their meta-data as its output. Us-
ing this process, a planner can develop an under-
standing of the overall functions, activities, and com-
ponents of the enterprise. For example, the planner
could use techniques such as value chain analysis,**
enterprise functional decomposition, or business web
analysis % for this purpose. This process would be
a component of the architecture’s process domain.
It might be collocated with other processes in a stra-
tegic planning environment (an instance of a VBE),
and may make use of the facilities of several engines,
such as an inference engine, an induction engine, a
library engine, and a modeling engine. This process
itself would be created by a process for building bus-
iness processes, which would be, in turn, part of the
business process development environment (BPDE,
another instance of a VBE) of the architecture. The
subsetting process also would be a process of a VBE

B. IYER AND R. GOTTLIEB

991

Table 2 Expected elements in process documentation

Process Domain Contains:

Information/Knowledge
Domain Contains:

Infrastructure Domain
Contains:

Organization Domain Contains:

The process being
documented itself, and all
other processes that are
involved in the effort at this
level of detail

The names and functional
descriptions of the processes

The subsets of the
infrastructure domain that
are the essential platforms
for supporting its processes

The subsets of the organization
domain that are the essential
actors (owner, user, partner, ally)
for the processes

The Virtual Business
Environments (VBEs) that
“contain” the processes and
the engines that participate
in the instantiation of the
functionality of these
processes

The business rules that the
processes embody

At the appropriate level of
abstraction, the features
and functionality (e.g.,
security requirements,
reliability, availability,
responsiveness) that are
needed to effectively
instantiate the processes

At the appropriate level of
abstraction, the roles and
responsibilities that are needed to
effectively govern the processes

The business terms that
relate to the processes

The characterization of the
infrastructure-domain
sensory networks related
to the processes

The “spheres of influence” that
characterize the business webs
related to the processes

The meta-data related to the
processes and the data
subject areas that drive or
are produced by the
processes at the appropriate
level of abstraction

(strategic planning or portfolio management), which
would produce priorities among the processes
identified.

The data resources required to support this framework
cell would be part of the information/knowledge do-
main of the architecture. Data requirements would
be gathered and mapped to or integrated with the
data requirements of the other components of the
various domains. These requirements would estab-
lish the information/knowledge context of the en-
terprise by describing the processes of the VBEs of
the process domain (e.g., the data control environ-
ment) that manages the information/knowledge do-
main of the architecture. These data requirements
would be cataloged and stored as part of an appro-
priate information structure in this domain.

The platform resources required to support this cell
would be part of the infrastructure domain of the
architecture. Technical requirements and data needs
would be gathered and mapped to or integrated with
the technical requirements and data needs of the
other components of the various domains. These re-
quirements would establish the technical context for

B92 B. IYER AND R. GOTTLIEB

the emerging “virtual information factory” of the en-
terprise by describing the processes of the VBEs of
the process domain (e.g., the information-services-
operations environment and the security environ-
ment) which manage the infrastructure domain.
These technical requirements would be cataloged
and stored as part of an appropriate information
structure in the information/knowledge domain.

The roles, responsibilities, and applicable business
rules for individual actors and operating units vis-
a-vis this framework cell, its supporting processes,
and their inputs and outputs would be articulated
within the organization domain of the architecture.
Included would be the definitions of the roles and
responsibilities for the framework’s row owner (i.e.,
planner), for the other participants in the definitional
work for this cell, and for the owner of the frame-
work itself. These actor and unit attributes would
be developed and maintained by using appropriate
process domain resources (i.e., environments, pro-
cesses, and engines). The organizational context of
the enterprise would also be established by describ-
ing the processes of the VBEs of the process domain
(e.g., the enterprise control environment) that man-

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

age the organization domain of the architecture.
These requirements would be cataloged and stored
as part of an appropriate information structure in
the information/knowledge domain.

Framework cell: Column: Function, Row: Enterprise
model

This cell could be populated by a set of functional
flow diagrams, which would document a selected sub-
set of the functions, activities, and components ar-
ticulated in the cell above. These flow diagrams, sup-
ported by appropriate meta-data, would be the
information/knowledge domain artifacts that satisfy
the purposes of this particular cell.

There would also be additional specific processes that
would produce these flow diagrams and their meta-
data and document their inputs and outputs. The
owner could use functional decomposition diagrams
to understand the selected subset of the enterprise
at this level of detail. This process would also be a
component of the architecture’s process domain. It
might be collocated with other processes in a BPDE
and might make use of the facilities of several en-
gines. This process itself would be created by a pro-
cess for building business processes, which also would
be part of the BPDE of the architecture.

Framework cell: Column: Function, Row: System
model

This cell could be populated by a set of flow diagrams,
which would document the business systems (pro-
cesses) identified earlier. These flow diagrams (e.g.,
data-flow diagrams), supported by appropriate meta-
data, would be the information/knowledge domain
artifacts that fulfill the needs of this particular cell.
A specific set of design processes would be used to
produce these flow diagrams and their meta-data.
The designer could use tools such as data-flow di-
agrams, state-transition diagrams, and so forth.

Framework cell: Column: Function, Row: Technol-
ogy model

This cell may contain a set of process structure charts
that describes how the process is to be constructed,
the critical functionality of each building block, and
the related inputs, outputs, and controls. For this row,
the information/knowledge domain artifacts may be
process charts or pseudo-code, supported by appro-
priate meta-data. The builder could use tools such
as HIPO (Hierarchical Input Process Output) charts,

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

flow charts, decision tables, and so forth, as design
processes to produce the process structure charts.

Framework cell: Column: Function, Row: Components

A specific set of authoring/generating processes and
procedures would be used to produce these artifacts
and their meta-data, which include programming en-
vironments and pseudo-code. In addition, other pro-
cesses, provided by other environments, might be re-
quired to test the deliverables of this cell, provide
configuration management and integration services,
and so forth.

Framework cell: Column: Data, Row: Scope

According to the framework, this cell could contain
a list of all the things (i.e., material) that are impor-
tant to the business and managed by it; for example,
entity classes, products, parts, supplies, equipment,
employees, customers, suppliers, competitors, build-
ings and real estate, policies and procedures, pur-
chase orders, and so forth. The meta-data about these
entities of interest is part of the information/
knowledge domain artifacts related to this particu-
lar cell.

The architecture should contain a process that would
help select the entity class or classes in which to in-
vest actual information-systems resources for the
purposes of data inventory management. This pro-
cess would help clarify the values and strategies of
the business, using various data gathering and an-
alytical techniques. After applying the analysis to the
total set of entity classes, a subset of classes may be
selected for implementation.

The infrastructure domain of the architecture in-
cludes the functionality, such as security, availabil-
ity, and responsiveness, that is necessary to effectively
instantiate the processes just described. This domain
includes the sensory networks necessary to collect
data from the environment to support the selection
of the entity classes. The organization domain for
this cell includes the roles, responsibilities, and ap-
plicable business rules for individual actors and op-
erating units, such as the team that decides which
entity class is selected for implementation.

Framework cell: Column: Data, Row: Enterprise model
This cell contains a description of the business en-

tities and their relationships. The relationship in this
case would be the business rule or strategy that links

B. IYER AND R. GOTTLIEB 5§93

one entity to another. The owner describes the bus-
iness entities and their relationships by using bus-
iness rules. For example, in a particular business set-
ting, a premium customer is always assigned to a

The infrastructure domain
of the architecture includes
the functionality, such as
security, availability, and
responsiveness, that is
necessary to effectively
instantiate the processes.

unique relationship manager. Another example is a
stipulation by the owner that all the different bus-
inesses must be first or second in their particular mar-
ket space. The architecture should contain a process
that would help describe the entity class or classes
in which the owner has an interest. This process
would help clarify the importance of key entities and
the business rules that link them. After analysis is
applied on the total set of entity classes, a subset of
classes is selected for implementation.

Framework cell: Column: Data, Row: System model

This cell contains the model of the information sys-
tem in the descriptive form of entities and relation-
ships. The designer may think of an entity as an in-
formation item on a computer data store and a
relationship as a data relationship. For example, ev-
ery identified market space has a well-defined set of
competitors, growth rates, and total revenue fore-
casts. The architecture should contain a process that
would help the designer describe these entities and
their relationships. The data resources required to
support this cell would include meta-data about the
entities and their relationships.

Framework cell: Column: Data, Row: Technology
model

This cell would contain the description model and
the data design for the conceptual model of the in-
formation system. In this model, various constraints
that are to be applied are specified. For example,
the builder could specify that every market space has
three forecasts for growth rates (optimistic, average,
and pessimistic). The decision about which alterna-

B94 B. IYER AND R. GOTTLIEB

tive database management system to be used is also
specified here.

Application of AIO and AID using the
Zachman framework

In the previous section, we discussed how the FDA
can be used to instantiate the various cells of the
Zachman framework, and we illustrated the recur-
sive nature of this exercise within columns of the
framework. Here, we illustrate how the subarchitec-
tures (the AID and AIO) of the FDA are to be applied
to the framework, and we show that the outcomes
are consistent with the results achieved by applying
the entire FDA to the same cells. Similar concepts
have been discussed in Reference 27, which, in ad-
dition to providing an excellent introduction to the
Zachman framework, introduces the concept of
primitive and composite models that can be used to
implement the subarchitectures (AID and AIO) de-
scribed here.

In the FDA, each cell of the Zachman framework is
split into two—the AID and AIO subcells. In the fol-
lowing subsection, we present as an example of the
FDA several subcells used in the definition and cre-
ation of a process (and related tool set) for the de-
sign of an electronic product to be manufactured by
the enterprise’s manufacturing organization.

AID subcells. We describe here two AID subcells of
cells described in the previous section.

Framework cell: Column: Function, Row: System
model

This subcell could be populated by a set of flow di-
agrams, which would document the product design
system.? The design processes used to create flow
diagrams to populate this AID subcell would be com-
ponents of the process domain of the architecture,
collocated with other processes in a BPDE. These de-
sign processes themselves would be created by a pro-
cess for building business processes and their sup-
porting tool sets, which are also part of the
architecture’s BPDE for this subcell.

The infrastructure required to support this cell would
be part of the infrastructure domain of the AID. Tech-
nical requirements and needs would be gathered and
mapped to or integrated with the requirements and
needs of various other AID-related domain compo-
nents and implemented by the infrastructure domain
services of the AID.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

In other words, the AID components produced for
this cell of the framework would contain the models
for the emerging business processes needed to de-
sign an electronic product. These models would be
stored in the AID information/knowledge domain
along with the product-design process meta-data. All
of this activity would be carried out or supported by
specialized subsets of the infrastructure and orga-
nization domains of the AID that are involved in the
work of designing the processes for designing
products.

Framework cell: Column: Data, Row: System model

This subcell contains the model of the information
system in the descriptive form of entities and rela-
tionships. For example, every electronic component
has a well-defined set of physical, electrical, and op-
erational characteristics, and these characteristics
would give rise to entity and relationship definitions.
The process domain of the FDA (for the AID) should
contain processes that would help the designer de-
scribe the entities and their relationships. Other tools
in the AID might test candidate entities and relation-
ships for coherence with existing entities, their def-
initions, process models and other data models, and
so forth.

AlO subcells. We describe here two AIO subcells of
cells described in the previous section.

Framework cell: Column: Function, Row: System
model

This AIO subcell could be populated by a set of elec-
tronic-product design artifacts (circuit schematics,
design diagrams, performance charts, etc.) which
would document the emerging product design. The
information/knowledge domain artifacts for this sub-
cell are produced in the electronic product design
environment of the ATO. This environment is instan-
tiated from (1) the models of the product design pro-
cess produced by the tools and (2) the process for
designing product design processes of the BPDE for
the AID.

The electronic product designer (e.g., an electronic
design engineer) would use the instantiated elec-
tronic design tools (e.g., computer-aided-design
tools) and design processes for producing the prod-
uct design. These design tools and processes would
also be components of the AIO process domain of
the FDA, collocated with other processes in a prod-
uct engineering environment.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

In other words, the AIO instantiation components
produced for this cell of the framework would con-
tain the business processes needed to design an elec-
tronic product. These instantiated processes would
be stored in the information/knowledge domain of
the operational module along with the meta-data and
data of the design processes. All of these activities
would be carried out or supported by specialized sub-
sets of the infrastructure and organization domains
of the AIO that are dedicated to doing the work of
designing products.

Framework cell: Column: Data, Row: System model

This cell contains the instantiated data model (in the
AIO) required to operate and support the product
design process of the A10. The electronic product
designer thinks of these data as design variables or
parameters that are fundamental inputs or aspects
of the product design, for example, the set of phys-
ical, electrical, and operational specifications for ev-
ery circuit to be considered for possible inclusion in
the emerging design. The electronic-product-design
environment of the process domain of the AT10 should
contain a process to help the designer create spe-
cific electronic libraries and populate them. Other
tools in the AIO might generate component taxon-
omies or search criteria, or allow for the generation
of simulator programs to be used in the testing of
the emerging design.

Conclusion

The artifacts chosen to capture and represent activ-
ities within each one of the cells within the Zach-
man framework are left to the discretion of the en-
terprise, making it difficult to impose rigor or share
knowledge across enterprises. The FDA model pro-
posed in this paper helps in the design and building
of a tool set and methods to support frameworks such
as Zachman’s. Rigor is added to the process by con-
sidering both the AID and AIO, and tracking the dif-
ference between them over time.

A key benefit of this approach is the ability to assess
how a project may impact the emergent architecture
via a process. Observing the emergent architecture
and evaluating it in light of the project requirements
will enable an enterprise to fine tune the impact of
the project on the architecture, thus improving the
design and facilitating decision making concerning
which projects to implement in a constrained
environment. In addition, the FDA approach will help
enterprises synchronize their business needs and IT

B. IYER AND R. GOTTLIEB 50§

capability through conscious changes to the emer-
gent architecture, thereby improving project perfor-
mance in both the near term and the long term.

A separate issue not addressed in this paper is the
activity of harvesting architectural assets gleaned
from different projects. This knowledge management
imperative requires consistency of terminology and
notation to create and utilize engagement artifacts.
For an overview of this issue, see Reference 29.

Researchers have posited that architectures have
three value-creating potentials: responsiveness, in-
novativeness, and economies of scope. '’ Companies
with a better-designed architecture will be more re-
sponsive in adapting their knowledge repositories to
accommodate changing business conditions than
those with a poorly designed architecture. A flexi-
ble architecture provides a foundation for innova-
tion in light of uncertain future knowledge require-
ments. In addition, such an architecture allows
experimentation with innovative information
technologies.

The third value-creating potential, economies of
scope, refers to the ability of architectures to reduce
IT-related costs for the development of knowledge
repositories. As a result, the development cost and
time to develop knowledge management systems for
repositories should be lower for firms with more ca-
pable architectures than for firms with less capable
architectures.

We believe that creating an environment to support
the FDA model will enable organizations to capture
the anticipated benefits from architecture design, de-
velopment, and use.

**Trademark or registered trademark of MySQL AB Company.

Cited references and note

1. E. Yourdon and L. Constantine, Structured Design: Funda-
mentals of a Discipline of Computer Program and Systems De-
sign, Yourdon Press, Englewood Cliffs, New Jersey (1986).

2. C.Gane and T. Sarson, Structured Systems Analysis: Tools and
Techniques, Prentice-Hall, Inc., Englewood Cliffs, New Jer-
sey (1979).

3. T. DeMarco, Structured Analysis and System Specification,
Yourdon Press, Englewood Cliffs, New Jersey (1979).

4. R. Sanchez, “Modular Architectures in the Marketing Pro-
cess,” Journal of Marketing 63, No. 5, 92-111 (1999).

5. C.Y.Baldwin and K. B. Clark, Design Rules: Volume 1. The
Power of Modularity, MIT Press, Cambridge, MA (2000).

6. M. W. Maier and E. Rechtin, The Art of Systems Architecting,
CRC Press, Boca Raton, FL (2000).

B96 B. IYER AND R. GOTTLIEB

10.

11.

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

. C. Alexander, Notes on the Synthesis of Form, Harvard Uni-

versity Press, Cambridge, MA (1964).

. M. R. Vigder and J. C. Dean, “An Architectural Approach

to Building Systems from COTS Components,” Proceedings
of the 22nd Annual Software Engineering Workshop, Goddard
Space Flight Center, National Aeronautics and Space Ad-
ministration (1997).

. J. A. Zachman, “A Framework for Information Systems Ar-

chitecture,” IBM Systems Journal 26, No. 3,276-295 (1987).
K. T. Ulrich and S. D. Eppinger, Product Design and Devel-
opment, Second Edition, McGraw-Hill Companies, Inc., Bos-
ton, MA (2000).

M. Meyer and A. Lehnerd, The Power of Product Platforms:
Building Value and Cost Leadership, The Free Press, New York
(1997).

We wish to thank John Zachman, who, in a private commu-
nication about our architecture on September 28, 2002, sug-
gested this approach.

J. Ross, “Creating a Strategic IT Architecture Competency:
Learning in Stages,” MIS Quarterly Executive 2, No. 1, 31-43
(2003).

D. McKay and D. Brockway, “Buidling IT Infrastructure for
the 1990s,” Stage by Stage 9, No. 3, 1-11 (1989).

N. Duncan, “Capturing Flexibility of Information Technol-
ogy Infrastructure: A Study of Resource Characteristics and
Their Measure,” Journal of Management Information Systems
12, No. 2, 37-57 (1995).

P. Weill and M. Broadbent, Leveraging the New Infrastruc-
ture: How Market Leaders Capitalize on Information Technol-
ogy, Harvard Business School Press, Boston, MA (1998).
T. Kayworth, D. Chatterjee, and V. Sambamurthy, “Theo-
retical Justification for IT Infrastructure Investments,” In-
formation Resources Management Journal 14, No. 3, 5-14
(2001).

. R. Gottlieb and R. McCluskey, Factory Mutual: Information

Technology Architecture, Factory Mutual: Boston, MA (2000).
R. Cyert and J. March, A Behavioral Theory of the Firm, Pren-
tice-Hall, Englewood Cliffs, NJ (1963).

R. Nelson and S. Winter, An Evolutionary Theory of Economic
Change, Harvard University Press, Cambridge MA (1982).
R. M. Henderson and K. B. Clark, “Architectural Innova-
tion: The Reconfiguration of Existing Product Technologies
and the Failure of Established Firms,” Administrative Science
Quarterly 35, No. 9, 9-30 (1990).

J. A. Zachman, “The Framework for Enterprise Architec-
ture (The “Zachman Framework”) and the Search for the
Owner’s View of Business Rules,” Database Newsletter 1, No.
26 (1998).

J. F. Sowa and J. A. Zachman, “Extending and Formalizing
the Framework for Information Systems Architecture,” /IBM
Systems Journal 31, No. 3, 590-616 (1992). See also http://
www.zifa.com/framework.html.

M. Porter, Competitive Advantage, Free Press, New York
(1985).

D. Bovet and J. Martha, Value Nets: Breaking the Supply Chain
to Unlock Hidden Profits, John Wiley & Sons, Inc., New York
(2000).

S. Cartwright and R. Oliver, “Untangling the Value Web,”
Journal of Business Strategy 21, Vol. 1, 22-27 (2000).

C. O’Rourke, N. Fishman, and W. Selkow, Enterprise Archi-
tecture: Using the Zachman Framework, Course Technology,
Boston, MA (2003).

P. Balasubramanian, K. Nochur, J. C. Henderson, and M. M.
Kwan, “Managing Process Knowledge for Decision Support,”
Decision Support Systems 27, Nos. 1-2, 145-162 (1999).

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

29. R. Youngs, D. Redmond-Pyle, P. Spaas, and E. Kahan, “A
Standard for Architecture Description,” IBM Systems Jour-
nal 38, No. 1, 32-50 (1999).

Accepted for publication February 26, 2004.

Bala lyer Assistant Professor, Boston University School of Man-
agement, 595 Commonwealth Avenue #641A, Boston, Massachu-
setts 02215 (bala@bu.edu) Professor Iyer is an Assistant Profes-
sor of Management Information Systems in the Department of
Information Systems, Boston University. He received his Ph.D.
degree from New York University with a minor in computer sci-
ence. His research interests include designing knowledge man-
agement systems by using concepts from systems design, hyper-
text design, and workflow management, by exploring the role of
IT architectures in delivering business capabilities, and by que-
rying complex dynamic systems, hypermedia design and devel-
opment, and model management systems. Recently, he has be-
gun to analyze data on the software industry to understand the
logic and patterns of emergence of software architecture from
multiple perspectives. He has published widely on information
systems and operations research. In 2003 he won the IBM faculty
award.

Richard M. Gottlieb Former Executive in Residence, Boston Uni-
versity School of Management, 60 Ruggles Street, Westborough, Mas-
sachusetts, 01581 (richgott@localnet.com). Mr. Gottlieb received
his M.S. degree from Rutgers University in 1961 and an S.B.E.E.
degree from the Massachusetts Institute of Technology in 1958.
During a career of more than 40 years in the United States and
abroad, he has been actively engaged with almost all aspects of
computer and information technology, from systems design, mar-
keting and systems sales, to the management of information ser-
vices. He has had hands-on experience with reengineering cor-
porate IT functions and with the introduction of high-level
architectures and advanced technologies into the enterprise. Be-
fore joining the faculty of Boston University, he was the Vice Pres-
ident of Information Services at Factory Mutual Engineering and
Research, where he articulated, promoted, and implemented
many of the Four-Domain-Architecture concepts upon which this
paper is based. Mr. Gottlieb is now retired.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

B. IYER AND R. GOTTLIEB §97

