476 GOTZ AND SUHRE

Design and
implementation of the
UIMA Common Analysis
System

The Common Analysis System (CAS) is the
subsystem in the Unstructured Information
Management Architecture (UIMA) that handles
data exchanges between the various UIMA
components, such as analysis engines and
unstructured information management
applications. CAS supports data modeling via
a type system independent of programming
language, provides data access through a
powerful indexing mechanism, and provides
support for creating annotations on text data.
In this paper we cover the CAS design
philosophy, discuss the major design
decisions, and describe some of the
implementation details.

The Unstructured Information Management Archi-
tecture (UIMA) defines a framework for implement-
ing systems for the analysis of unstructured data.'?
In contrast to structured information, whose mean-
ing is expressed by the structure or format of the data,
the meaning of unstructured information cannot be
so inferred. Examples of data that carry unstructured
information include natural language text and data
from audio or video sources. More specifically, an
audio stream has a well-defined syntax and seman-
tics for rendering the stream on an audio device, but
its music score is not directly represented.

In UIMA, Common Analysis System (CAS)? is the sub-
system that handles data exchanges between the dif-
ferent components and unstructured information
management (UIM) applications. UIMA components
known as analysis engines receive analysis results from
other components and produce new results that in-

0018-8670/04/$5.00 © 2004 IBM

by T. Gotz
O. Suhre

clude their own contribution. Similarly, all results of
an analysis engine are contained in CAS and extracted
from there by the invoking application. Note that al-
though we refer to UIMA as a “component architec-
ture” for systems that perform analysis of unstruc-
tured data, it is not a general component architecture
such as CORBA*** or I2EE**.> An important con-
straint is that UIMA components do not share or ex-
change code; all they exchange is data.

The functionality of CAS can, on a high level, be com-
pared to that of a database engine. The data model
is defined by a type system that corresponds to the
table and column definitions of a relational database.
The objects licensed by the type system, called fea-
ture structures, correspond to rows in a database ta-
ble. Unlike databases, however, feature structures
created by one component cannot be accessed di-
rectly by another. A component makes its feature
structures accessible to other components by explic-
itly placing them in an index (not to be confused with
a database index). Accessing a CAS index can be com-
pared with accessing database records through views,
which may hide certain rows or change their order-
ing. The application programming interface (API) for
accessing CAS indexes is based on the iterator pat-
tern, in the same way as views (or tables, in general)
can be traversed by cursors.®

©Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

The current UIMA work is the successor and a gen-
eralization of the IBM Text Analysis Framework
(TAF),” based, as its name suggests, upon text anal-
ysis. Nevertheless, many ideas in TAF on componen-
tization and data modeling have been adapted and
generalized in UIMA. Today, TAF is the C+ + imple-
mentation of UIMA.

There are other UIM frameworks similar to UIMA,
most notably GATE (see Reference 8 and references
cited therein) and ATLAS.® GATE is specific to text
and does not appear to provide a specialized data
layer, using instead native data structures (the cur-
rent version of GATE is implemented in Java™®*).

Although the ATLAS project has an effort underway
to add a data abstraction layer, its basic approach
is somewhat different from ours. On the one hand,
it has a richer built-in data model, one that is suited
to specific tasks; that is, all data in ATLAS appear to
be (a generalization of) annotation graphs as devel-
oped in Reference 10. In CAS, such data structures
would need to be built out of the basic building
blocks. On the other hand, the added convenience
for application developers comes at the price of re-
duced generality. In our case, we opted for increased
flexibility in the core—more specific data models and
support layers can always be added on top of CAS.

The rest of the paper is structured as follows. In the
next section, we discuss why something like CAS is
needed in UIMA, and we justify the requirements for
CAS by describing typical usage scenarios in UIMA.
Then, we describe the key concepts of CAS and in
particular the type system, the feature structures, and
the index repository. We also include an example il-
lustrating the APIs for implementing these concepts.
In the following section, we discuss aspects of the
implementation, namely the implementation of fea-
ture structures and the index repository. We also in-
clude a section on serialization in CAS, a topic of in-
terest when using CAS over a network or when
interoperability between Java and C+ + is an issue.
In the concluding section we provide a brief
summary.

Motivation

Individual components in UIMA may use not only
data provided by external applications, but also data
from upstream components. The question is the kind
of data that should be passed between components
and between these components and external
applications.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

In principle, there is a continuum of approaches that
can be taken on this issue. At one extreme data mod-
eling could be left entirely to the individual compo-
nents, and data could simply be transferred between
components without any knowledge about the struc-
ture of the data. This is the most flexible approach
because there are no restrictions on the kind of data
that can be modeled. But there are drawbacks. The
framework can offer no support for handling the
data. Moreover, APIs and tools for dealing with the
data must be provided by the individual components.
In the Web world, this can be compared to XML (eX-
tensible Markup Language) without validation, i.e.,
without DTDs (document type definitions) or sche-
mas.!! Such an XML document might contain any
kind of data, and for communication to be possible,
the data format must be known both to the sender
and the receiver of the XML message.

At the other extreme we could have the framework
precisely define the kind of data that may be used
and exchanged by individual components. Then, the
framework provides APIs to define and manipulate
data. Clearly the advantage is that many generic data
services can be provided by the framework. How-
ever, this approach is not flexible because the data
model is defined beforehand and cannot be easily
extended. This approach works well only if the data
model is unlikely to change. In our Web analogy, this
might correspond to HTML (HyperText Markup Lan-
guage); that is, data with a fixed structure and
meaning.

In a third alternative, we try to steer a middle course
between the two extremes by using a data model that
is understood by the framework but can be freely
modified. The data model itself is treated as data.
In our Web analogy, this might correspond to XML
schemas that define the structure of XML documents.
Schemas are used by XML parsers to validate the syn-
tax of XML data and constitute data objects in their
own right. This works although there are an infinite
number of different XML schemas.

In this third approach, the one adopted for UIMA
and CAS, we try to combine the advantages of the
two extremes: the flexibility of the first approach and
the framework support for data services of the sec-
ond approach. On the negative side, there is in-
creased complexity; for the framework designers it
is more difficult to get the details right, and for the
application developers, it is more difficult to master
the programming environment.

GOTZ AND SUHRE 477

The usability issue is addressed by the Java class
model (JCas) Java APIs. A precompilation step can
be used to generate Java source code that provides
users with an intuitive, bean-like view of their data.
This can be compared to the Java API for XML Bind-
ing (JAXBY), "> which provides a similar service for XML
data. See the sidebar in the subsection, “Code Ex-
ample,” under the section, “Main Concepts,” for
more detailed information on JCas.

In the rest of this section, we explain why we con-
sider control over the data so important that we are
willing to live with the disadvantages mentioned
above. The main considerations in our decision in-
volved runtime component assembly, data-driven in-
ference, and data exchange. We will address each of
these in turn.

Component assembly at runtime. Probably the most
important reason to build UIMA was component re-
use. In the absence of such an architecture, the av-
erage team finds building its own tokenizer easier
than interfacing to one of the myriad of tokenizers
that are already available. Thus one of the funda-
mental requirements of UIMA is that one team should
be able to easily integrate another team’s compo-
nents. To this end, we need to be able to write com-
ponents without full knowledge of the data that those
components consume. We now consider some ex-
amples that further illustrate this point.

Example: Get analysis results; take only what you need.
Team A has written a lexical analysis component that
does tokenization, part-of-speech tagging, and dic-
tionary look-up for 30 languages, including Chinese.
Team B also needs a tokenizer. They have written
their own for English, but their customers also re-
quire one for Chinese, which they are unable to do
themselves (other required functionality is language
independent). Although they would like to use team
A’s tokenizer for Chinese, they prefer not to adopt
Team A’s entire data model, because it goes beyond
the tokenization function they are interested in. In
a few months, they will need to add Arabic, which
Team A doesn’t provide, and then they may have to
get that tokenizer from yet another team. Thus, they
would like to be able to declare only that their com-
ponent consumes tokens. The fact that team A’s
component produces much more than just tokens
should not matter. Furthermore, they should be able
to keep using their own English tokenizer, and later
integrate an Arabic tokenizer, with few or no code
changes.

478 GOTZ AND SUHRE

This kind of scenario requires that UIMA be able to
handle different tokenizers whose data models are
compatible, but not necessarily identical. Replacing
one tokenizer by a compatible one should not re-
quire coding changes or even recompilation (this
might be done even at deployment time, when no
source code is involved). To enable this, the data
model must not be hard-coded in component imple-
mentations. Rather, the data model must itself be
implemented as data that UIMA can inspect and has
control over. When an instance of an analysis en-
gine is created at runtime, the framework checks that
all data models are compatible and provides the con-
sumer of data with the appropriate view, without the
consumer having to “know” the exact internal struc-
ture of the data.

Example: Add part-of-speech tagging to an existing
tokenizer. Team A has written the ultimate token-
izer for some language, and Team B would like to
extend the tokenizer data model to include part-of-
speech information. Because Team B does not have
access to the tokenizer source code, they write their
own component that adds part-of-speech informa-
tion to the tokens they consume, and thus declar-
atively extend the tokenizer data model. As before,
this is possible only if the tokenizer implementation
does not fix its data model, but uses a mechanism
that allows downstream components to extend its
data model without the need to change the code.

These examples show the kind of flexibility required
of UIMA as a component architecture, which makes
the introduction of a data abstraction layer very use-
ful. The data engine that drives such a layer must be
powerful enough to merge compatible data models,
while still providing individual components with cus-
tomized views of their data.

Data-driven inference. UIMA may be viewed as a da-
ta-driven architecture in which the components, that
is, analysis engines, are consumers and producers of
data. An analysis engine specifies what kind of data
it needs to work properly, and also, what data it pro-
duces as the result of its analysis. This information
is described declaratively in the XML specifier of each
component. The UIMA Analysis Structure Broker
(ASB) uses this information to verify aggregate text-
analysis-engine (TAE) specifiers and to dynamically
decide which TAEs to call, and which not. In the fu-
ture, the ASB will automatically assemble TAEs based
on output requirements and known component
specifications.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

To be able to perform this kind of inference, we must
have simple and well-defined semantics for the data
specification. General-programming-language con-
structs are too powerful and unconstrained for this
purpose, even if we are willing to ignore platform
issues (this is particularly true if one wants CAS to
be programming-language and operating-system in-
dependent and, even more important, to be able to
interoperate between UIMA implementations in dif-
ferent programming languages and operating sys-
tems). Our data-specification language must be flex-
ible enough to allow component providers to express
their data models, and constrained enough to allow
the ASB and other UIMA subsystems to draw mean-
ingful inferences from the data specifications.

This architecture makes it possible to assemble ex-
isting TAEs in a declarative manner without the need
for their source code. In fact, the UIMA defines an
“analysis engine assembler” as a person who assem-
bles existing TAEs and thus creates new applications
without writing any code. Also, for TAE developers
who want to reuse a component written by others,
the integration is performed in a declarative way—no
recompiling or other programming-language-specific
tasks of any sort are necessary.

Example: Tokenization and part-of-speech tagging for
multiple languages. Team A implements an appli-
cation that requires tokenization and part-of-speech
tagging for multiple languages. Because part-of-
speech taggers for some languages are hard to find,
they use a grab bag of components from various
sources, which includes a tokenizer for Italian and
Spanish, a combined tokenizer and part-of-speech
tagger for French, and a part-of-speech tagger that
can handle Italian, Spanish, and French. An Italian
document is to be processed. The system determines
that it needs to call the tokenizer for Italian, followed
by the part-of-speech tagger. Next, a French docu-
ment is analyzed. The engine calls the combined to-
kenizer and part-of-speech tagger for French, and
automatically figures out from the output specifica-
tion of that component that it need not call the part-
of-speech tagger separately, because the part-of-
speech information has already been added.

Although the example is not very complex, it illus-
trates the kind of data-driven inference that can be
done automatically by the engine based on the data
that is being exchanged by the components.

Data exchange. The UIMA components do not work
inisolation, but as producers of data for downstream

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Figure 1 A conceptual view of CAS

CAS
TYPE SYSTEM HEAP INDEX
REPOSITORY
O INDEX1
NN

el | e
:

components and as consumers of data from upstream
components. The location of the downstream com-
ponent may be as close to the producer of data as
the same machine, or as far as a machine halfway
around the globe. The producer of data does not
know where the data are going to, and the consumer
does not know where the data are coming from.

To address this requirement, UIMA implementations
must have complete knowledge and control over the
data that are passed between components (data used
internally by a component are not included). Thus,
data passed to other components must be “under-
stood” by the UIMA subsystem that performs the data
transfer, whether they are parameters to a function
call, serialized objects to be transported to a remote
machine, or something in between.

Main concepts

CAS entities fall into three major groups. First, we
have a type system that has a dual role—it is respon-
sible for creating the data model from the TAE spec-
ifiers at start-up, and it provides information about
the data model at runtime. The second group is con-
cerned with creating and supporting feature struc-
tures, that is, data according to the type system. Fi-
nally, a group of APIs specifies indexing information.
Data can be indexed in various ways; indexing de-
termines how data may be accessed.

Figure 1 shows a conceptual view of the system. The
type system is shown as a tree-shaped type hierar-
chy, the heap is shown as a container where all fea-
ture structures reside (these are represented by small
squares), and the index repository is shown as a con-

GOTZ AND SUHRE 479

Figure 2 An example type hierarchy

uima.cas.Integer uima.cas.String

TokenAnnotation

stem: uima.cas.String

tainer for indexes. The indexes contain references
to feature structures on the heap. Note that the re-
lationships between the objects in different groups
are not one-to-one. In particular, there can be more
than one feature structure of one type, and one fea-
ture structure can be associated with different indexes
(more details are provided later). We now examine
these different concepts in more detail and conclude
the section with a brief code example that illustrates
the APIs.

Type system and typed feature structures. UIMA re-
quires that CAS data structures accommodate all
kinds of information. In particular, data structures
should support development of applications beyond
text analysis. Thus, the concept of text annotation
could not play the role of a building block. The CAS
data structures should at the same time be con-
strained enough so that the framework can draw
meaningful inferences. For example, a TAE (more
precisely its ASB) should be able to determine which
annotators should be called when processing a CAS
with a specified resulting data structure (an anno-
tator is a UIMA analysis component; see Reference

1).

This led to the decision to choose typed feature struc-
tures as the CAS data structures. These are well-
known and understood data structures, widely used
in natural language processing and artificial intel-
ligence."? One can simply think of them as attribute-
value structures with an object-oriented-like type sys-
tem (without multiple inheritance). This type system
defines the inheritance relationship between types
and introduces so-called “features” (attributes) of
types that are inherited to all subtypes. These fea-

480 GOTZ AND SUHRE

uima.cas.TOP

uima.tcas.Annotation CanonicalForm

begin: uima.cas.Integer form:uima.cas.String

end: uima.cas.Integer

NameAnnotation

canonicalForm: CanonicalForm

tures also have a “range type” that indicates which
type the value of this attribute must have. The range
information is checked at runtime when feature val-
ues are set through the API. (We make use of the
“type” and “feature” concepts here for historic rea-
sons.) The most general type is called uima.cas.TOP,
and it serves as a root of the type tree.

The type system supports a simple name-space con-
cept, similar to Java packages. The uima.cas and
uima.tcas namespaces are reserved for built-in types.
As mentioned earlier, there are only a small num-
ber of built-in types: basic types, arrays, lists, and
annotations.

The basic types are integers, floats (floating-point
numbers), and (Unicode) strings. Arrays and lists of
all the basic types, as well as arrays of feature struc-
tures, are supported. Finally, types are defined to
support text processing, namely annotations (spans
of text) and documents. The document annotation
contains information about the language in which a
document is written, if known.

There is no user-level API to create or modify a type
system. UIMA developers create type system infor-
mation exclusively through XML specifications. There
is, however, a user-level API to query an existing type
system. Through this API, one can get information
on existing types and their features.

Consider the example type system in Figure 2 (all
types prefixed with uima are actually part of the pre-
defined type system). This hierarchy states that there
is a type uima.tcas.Annotation, which inherits from
uima.cas.TOP and has two features called begin and

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

end, which take integers as values. There are also
types TokenAnnotation and NameAnnotation, which
are subtypes of uima.tcas.Annotation, and thus have
the begin and end features. In addition, TokenAnno-
tation has a feature stern whose value is a string (in-
dicating the stem of the token, e.g., “house” for
“houses”); whereas, NameAnnotation has a feature
canonicalForm whose value is of type CanonicalForm.
Although we interpret the begin and end features as
“begin” and “end” positions in a text, this is not an
assumption built into CAS, but simply an interpre-
tation. We also note that annotations are just a spe-
cial form of feature structure and have no special
status.

We can view the type system as similar to a class hi-
erarchy in Java, with each type resembling a Java
class with no methods and only public data mem-
bers. These members are then inherited to sub-
classes. The uima.cas.TOP type is the equivalent of
the java.lang.Object class. However, it is important
to remember that these objects are pure data and
thus are not proper objects in the object-oriented
sense. We use the notions subtype and supertype to
refer to types higher up or lower down in the type
tree, respectively.

A feature structure then is an instance of a given type.
This object can have values for all the features de-
fined on it, that is, features inherited from supertypes
or features introduced at the type itself. Using again
the Java analogy, we think of a feature structure as
analogous to an object of a given class. This object
has all the members it inherits plus those defined in
the definition of its class.

We consider the following example of a feature struc-
ture that is licensed according to the type system (i.e.,
well-formed with respect to the type system) in the
example above. The notation we use here is called
attribute-value-matrix (a notation also used in Ref-
erence 13). Every structure within brackets is a fea-
ture structure.

[NameAnnotation
begin: 37
end: 40
. CanonicalForm
canonicalForm: []

form: “IBM Corp.”

This example denotes a feature structure of type
NameAnnotation with values 37 and 40 for features

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

begin and end, where the value of feature canoni-
calForm is, in turn, another feature structure of type
CanonicalForm. This embedded feature structure has
the string value “IBM Corp.” for its form feature, as
required by the type system.

We use a restricted version of typed feature struc-
tures here. In Reference 13, for example, the type
system also allows multiple inheritance and the over-
writing of the range type of a feature.

These feature structures fulfill the requirements
mentioned earlier, as follows:

¢ The feature structures are broad enough to accom-
modate almost all kinds of information. The added
type system gives the user the ability to group ob-
jects by the kind of information these structures
represent.

* The type system makes it possible to specify what
kind of feature structure an annotator consumes
and produces so that the TAE can determine which
annotators must be called during processing.

¢ The type system is extensible by the user through
a declarative XML syntax. Because no specific type
system is provided by CAS (except the built-in
types), users have complete freedom to develop
a type system of their own.

As shown next, these feature structures can be im-
plemented in a very efficient way.

Sharing analysis results through indexes. All an-
notators and UIMA applications use CAS feature
structures to store or read information they are in-
terested in and nothing else. In other words, all data
that a UIMA component uses are modeled as feature
structures. But, for example, how does an annotator
access feature structures created by an upstream an-
notator? For this purpose, CAS provides indexes and
an index repository. An index is a specialized con-
tainer for (references to) feature structures of a cer-
tain type. Access to previously created feature struc-
tures is only possible through the index repository.
Note that there is no one-to-one correspondence be-
tween annotators or TAEs and indexes. An annota-
tor or TAE can define an index itself (in its specifier)
or can use indexes defined elsewhere (in the spec-
ifier of another TAE, for example). Also note that
indexes always contain only references to feature
structures; an index never “owns” a feature structure.

GOTZ AND SUHRE 481

To share their analysis results with the outside world
annotators must (1) create feature structures that
contain all the relevant information, and (2) add
these feature structures to the index repository. The
index repository adds every new feature structure to
all the appropriate indexes. We note that a feature
structure F can be accessible to other annotators
without being in an index itself, provided another
feature structure that is contained in an index has
a feature which points to F.

An index declaration can be inserted into the TAE
specifier and comprises all of the following:

1. A name

2. A type (7): the most general type for which the
index is intended

3. A comparison criterion: a list of features defined
for T and the way the features should be
compared

4. The kind of index: sorted, set, or bag (The com-
parison criterion is used only for the first two,
sorted or set; in bag indexes features are inserted
in the order in which they were received.)

For instance, a straightforward annotation index
would have the following declaration:

1. Name: AnnotationIndex

2. Type: uima.tcas.Annotation

3. Comparison criterion:
a. Feature: begin, comparison: standard
b. Feature: end, comparison: reverse

4. Kind: sorted

We interpret this definition as follows. The index
called Annotationindex contains only feature struc-
tures of type uima.tcas.Annotation. The index is
sorted. For two feature structures F1 and F2, F1 is
considered less then F2 when its begin value is smaller
(standard!) than that of F2; if the two begin values
are equal, F1 is less then F2 when its end value is
larger (reverse!) than that of F2. If the two begin val-
ues are equal and the two end values are equal, then
F1 and F2 are considered equal for the purposes of
this index. (Our UIMA implementation includes this
annotation index as defined here.)

There are three different kinds of indexes: sorted,
set, and bag indexes. Because feature structures are
inserted in the order in which they are received, bag
indexes should only be used when random access to
data is not required and the order of the data does
not matter.

482 GOTZ AND SUHRE

In the more commonly used sorted and set indexes,
the sort order is determined through the use of the
comparison criteria. In set indexes a check for du-
plicates is performed when new feature structures
are inserted. If the set index already contains a fea-
ture structure that, according to the comparator, is
equal to the new feature structure, the new feature
structure will not be added (even if the feature struc-
tures have different values for non-key features). In
sorted indexes there is no check for duplicates. If
there is a second request to add the same data item
to the index, then a duplicate entry is entered in the
index.

To retrieve feature structures, one must specify the
index (using its name) and the type of these feature
structures. This type must be either a subtype of the
type specified when the index was created (the in-
dex type), or the index type itself. The API then pro-
vides iterators over the index. For example, you can
create an iterator over all feature structures in the
index named Annotationindex of type TokenAnnota-
tion. We note that this is possible because we assume
that TokenAnnotation is a subtype of uima.tcas.Anno-
tation. The order in which the feature structures are
returned by the iterator corresponds to the compar-
ison criterion. For the built-in annotation index, an
annotation is returned ahead of all those that start
to the right of it and also ahead of those that start
at the same position but span a shorter area of text.
For example, we have the sentence, “UIMA rules.”
It consists of three tokens (“UIMA”, “rules”, and “.”).
The iterator first returns the complete sentence, then
the three tokens from left to right.

Now, we consider two annotators: one which token-
izes text, and one which performs named-entity (NE)
recognition. The tokenizer, which is called first, cre-
ates feature structures of type TokenAnnotation. All
those feature structures are also added to the index
repository. Next, how does the NE recognizer read
all those tokens? The answer is that it creates an it-
erator over all TokenAnnotation feature structures of
the built-in annotation index via the API. In addition
to the fact that this iterator only returns feature struc-
tures of type TokenAnnotation, the defined order
assures that the tokens are returned in a way that
the NE recognizer interprets as “from left to right.”
The recognizer iterates over all tokens and deter-
mines whether a token or a number of consecutive
tokens form a name such as “IBM” or “International
Business Machines.” If so, it creates a new feature
structure of type NameAnnotation with the appropri-
ate begin and end values and adds this feature struc-

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Figure 3 Code example
01 // get cas from somewhere
02 CAScas=...;
03 // type of feature structures we want to retrieve
04 Type retrieveType = cas.getTypeSystem().getType ("MyType");
05 //featurel is defined on MyType
06 Feature feature1 = type.getFeature ("myFeature");
07 // type of feature structures we want to create
08 Type creationType = cas.getTypeSystem().getType("MyOtherType");
09 //feature2 is defined on MyOtherType
10 Feature feature2 = creationType.getFeature ("myOtherFeature");
11 //label of the index
12 String indexLabel = "Mylndex";
13 // get desired index
14 FSIndex index = cas.getindexRepository().getindex(indexLabel, retrieveType);
15 // create iterator over index
16 FSlterator it = index.iterator();
17 inti=0;
18 // for each feature structure fs in the index
19 for (it.moveToFirst(); it.isValid(); it. moveToNext()) {
20 FeatureStructure fs = it.get();
21 i++;
22 // analyze fs (here: check if the value of myFeature is 42)
23 if (fs.getIntValue (featurel) == 42) {
24 // create new feature structure
25 FeatureStructure newFS = cas.createFS(creationType);
26 // modify newFS
27 /I (here: set value of myOtherFeature to i)
28 newFS.setintValue(feature2, i);
29 // add newFsS to the index repository
30 cas.getindexRepository().add (newFS);
31 }
32 }

ture to the index repository (so that subsequent an-
notators have access to these names).

We point out that yet another kind of index might
be needed; for instance, one similar to a set index
could ensure that feature structures of type Canoni-
calForm occur at most once with the same form fea-
ture. In this case, when “IBM” and “International
Business Machines” occur in the same text, they both
refer to the same canonical form feature structure.

Apart from iterating over feature structures, indexes
can also be used to search for feature structures us-
ing the comparison criterion of the index. For ex-
ample, we could query the mentioned set index over
canonical forms whether a CanonicalForm with “IBM”
as form is found there; if so, we reuse this structure,
otherwise we create it.

Code example. Figure 3 shows what the typical pro-
cess method of an annotator may look like (although

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

this code is Java, the C++ API looks exactly the same
apart from the fact that it uses the UnicodeString class
of ICU (International Components for Unicode)—a
C++ library for Unicode support—rather than
java.lang.String). "

Lines 3 to 10 show how the type system is used, in
particular how access to types and features works.
In line 14, an index with a specified label, containing
only feature structures of the specified type, is re-
trieved from the index repository, and an iterator
over this index is created (line 16). In the for-loop
between lines 19 and 32, the current feature struc-
ture to which the iterator points is retrieved (line 20),
and if its value of feature1 (an integer) is equal to
42 (line 23), a new feature structure is created with
a new type (line 25), the value of the feature fea-
ture2 is set to i (we currently examine the 7/th feature
structure in the index we iterate over), and this newly
created feature structure is added to the index re-
pository (line 30).

GOTZ AND SUHRE 483

The sidebar shows the same example coded in JCas.

CAS vs. TCAS. Because many UIMA users work in
the field of text analysis, there exists a CAS imple-
mentation specialized for text processing, named
TCAS. As the namespace uima.tcas indicates, it in-
troduces several types, features, and indexes useful
for processing text, including some convenient API
functions. We note, however, that it simply provides
a convenience layer and does not add any basic func-
tionality. Thus, using just the CAS APIs of TCAS is suf-
ficient for building any text analysis task. The only
TCAS function not contained in CAS allows document
text to be set as part of the TCAS, so that a TCAS is
self-contained in the sense that the begin and end
values of annotations are interpreted with respect
to this very document text.

Implementation

We show in this section how the previously described
concepts can be implemented efficiently. There are
two reference implementations of UIMA TAEs,
namely JEDII in Java and TAF in C+ +. This section
applies to both. In fact, one of our design objectives
is to minimize the use of programming-language-spe-
cific features.

Type system. Types and features are created dur-
ing the initialization of a TAE, and thus the type sys-
tem remains fixed in normal operation. Applications
and annotators can always cache any types or fea-
tures at initialization, and, therefore, the perfor-
mance of the corresponding API calls is not an issue
here. It is easy to represent types and features as in-
tegers. Otherwise, the type system implementation
is straightforward; that is, it consists simply of a tree
of types, in which each node in the tree has infor-
mation as to which features are defined on this type.

Feature structures. Our implementation of feature
structures was strongly influenced by the Warren Ab-
stract Machine (WAM), " the standard implementa-
tion of Prolog. The restrictions we put on the type
system allow for very efficient representation of fea-
ture structures (see Reference 16 for an account of
how feature structures with less restrictive type hi-
erarchies can be efficiently implemented). Feature
structures can be represented as an array of integers
(as mentioned before, we assume that our types and
feature identifiers are represented as integers). Fol-
lowing the WAM conventions, we call this array the
heap.

484 GOTZ AND SUHRE

We consider again the same example of feature struc-
ture.

NameAnnotation
begin: 37
end: 40

canonicalForm: CanonicalForm
' form: “IBM Corp.”

This feature structure (plus the embedded one)
looks as follows on the heap:

Index Value

NameAnnotation
37

40

5
CanonicalForm

1

o0 WN =

The name of the types NameAnnotation and Canoni-
calForm are actually integer identifiers and are writ-
ten here as strings only for expository purposes. The
NameAnnotation feature structure starts at cell num-
ber 1, and the CanonicalForm feature structure starts
at cell number 5. Cell number 2 is the value of the
begin feature, cell number 3 is the value of the end
feature, and cell number 4 is the value of the canoni-
calForm feature. For the integer-valued features, the
values are stored directly on the heap, whereas the
feature with a “real” reference points to the heap
cell with the actual feature structure value (here cell
number 4). The value points to cell number 5, which
is the start of a feature structure of type Canonical-
Form (as cell 5 indicates). The value of cell 6 rep-
resents the value of the form feature that we inter-
pret as an entry into a separate symbol table. In this
example, we assume that the first entry of this table
is the string “I1BM Corp.”

We note that no feature names appear anywhere in
this example. Thus, in order for this to work the type
system, in addition to mapping types and features
to integer identifiers, must also compute the offsets
for all features. In the example, the begin feature has
offset 1, the end feature has offset 2, and canonical-
Form has offset 3.

A feature structure with n features consists of n+1
heap cells (1 for the type and » for the feature val-

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

AN EFFECTIVE, JAVA-FRIENDLY INTERFACE TO CAS

J ava programmers who began using the Common Analysis System (CAS) saw a natural mapping from the CAS type
system to Java classes. Some of them implemented their own mappings. We recognized we could use the declarative
specification of the CAS type system to generate a Java class model that closely follows the CAS types. In this model,
named JCas, CAS types have corresponding Java classes of the same name; “get” and “set” methods on these types are
generated for all the CAS features. For instance, a feature structure (see the section “Type system and typed feature
structures”) with the name com.ibm.demo.Token would create a corresponding Java class Token in the Java package
com.ibm.demo. If Token had features begin and end defined as integers, these would appear in the Java class definition
as getBegin() and setBegin (int value) method definitions.

In the figure, a utility, JCasGen, takes the declarative specification for a collected set of components, some of which may
be extending type specifications of other components (see the section “Component assembly at runtime”), and generates
the proper Java class definitions. When compiled, these class definitions provide at runtime a high-performance type-
checked interface to the underlying CAS data. This approach allows moving some of the runtime type checking to
compile time, using the strong-typing features of Java.

JCasGen —> (MULTIPLE) JAVA COMPILATION
D AR A AVY (AT ASSEMBLY)
SPECIFICATION CLASSES,

Java programs created
with JCas hide some of
the complexity of using
CAS. Using the JCas
approach, the code in the
section “Code example”
becomes the following:

// get jcas from somewhere
JCasjcas = ...;
// no need to access the type system or
// to declare and initialize variables to hold Type or Feature values
// 1abel of the index
String indexLabel = "myIndex";
// We use Java classes instead of strings to reference types
// Supports compile-time checking of misspelled type names
// get desired index
FSIndex index = jcas.getJFSIndexRepository () .getindex(indexLabel,MyType.type);
// create iterator over index
FSlterator it = index.iterator();
int i=0;
// for each feature structure fs in the index
for (it.moveToFirst(); it.isValid(); it. moveToNext()) {

MyType fs = (MyType)it.get();

i++;

// analyze fs (here: check if the value of myFeature is 42)

if (fs.getMyFeature() == 42) {

// create new feature structure

N = — b 44 a
CQOONOURWN-OOONOORWN =

21 MyOtherType newFS = new MyOtherType();
22 // modify newFS

23 // (here: set value of myOtherFeature to i)
24 newFS.setMyOtherFeature(i);

25 // add newFsS to the index repository

26 newFS.addTolndexes();

27}

28 }

I n line 16, Java variables holding references to CAS feature structures are typed with the specific feature structure

(or a supertype of that feature structure). In line 19, the call to get the value of a feature named "MyFeature" is the
strongly typed getMyFeature method, generated by the convention of appending the feature name following the word
get. This generated method is strongly typed to return an integer in this case, and the type of the feature in the general
case. Likewise, in line 24 the setMyOtherFeature method is strongly typed to accept arguments that are appropriate for
that type. Line 21 shows a new object created in CAS via the familiar Java new operator. Line 26 shows the operation to
add an instance of a type to the CAS indexes by using the addTolndexes () method.

Marshall Schor
IBM Research Division, Yorktown Heights, N.Y

Reference
M. Schor, An Effective, Java-Friendly Interface for the Unstructured Management Architecture (UIMA) Common
Analysis System, IBM RC23176, IBM T.J.Watson Research Center, Yorktown Heights, N.Y. (2004).

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004 GOTZ AND SUHRE 485

ues). Because, following initialization, all types and
features in a TAE are fixed, the following holds:

e The size of a feature structure of a certain type
(in heap cells) is fixed before the first feature struc-
ture is ever created (and, by the way, can thus be
stored in the type system). This ensures that the
heapis “dense” in the sense that there is no wasted
space.

e The offset for a feature is the same for the type
atwhich it was introduced, and all its subtypes. This
means that a feature structure of type ¢ can just
be treated as a feature structure of a supertype of
¢t (in matters concerning the features of this

supertype).

Every feature structure is, in effect, an integer that
is an index into the heap array. As claimed earlier,
we can now easily see why feature structure oper-
ations are fast.

* Creating a feature structure involves mainly incre-
menting the top-of-heap counter by a number de-
pending on the cell type (which need not be com-
puted at runtime).

* Setting or getting feature values involves just look-
ing up the offset of the feature (which is computed
at initialization) and a simple array access.

 The size of the feature structure is minimal in the
sense that there is no padding.

All operations on a feature structure, such as cre-
ation and getting or setting feature values, are very
fast, independent of the usage scenario (this is dif-
ferent in the index repository, as we show later).

Index repository. The index repository supports two
main operations: (1) adding a feature structure, and
(2) retrieving feature structures of a specified index
via an iterator. Adding a feature structure means the
feature structure is added to all indexes that are de-
fined on the type of the feature structure or on one
of its supertypes. When retrieving feature structures
of a specified index via an iterator, one must also
specify a type; all feature structures returned by the
iterator should be of this type or one of its subtypes.

An implementational question arises directly from
the second function. Should an index be imple-
mented as a single (physical) container or multiple
containers, say one for each type? The exact nature
of this container depends on the programming lan-
guage; for C+ + this may be an STL (Standard Tem-
plate Library) vector or set,'” for Java an instance

486 GOTZ AND SUHRE

of java.util.Vector or java.util.HashSet. A single con-
tainer allows fast access when iterating over all fea-
ture structures that are contained in an index, and
there are no constraints on the types (e.g., we tra-
verse all uima.tcas.Annotation feature structures in
the annotation index), but access is slower when re-
trieving only feature structures of a subtype (e.g.,
TokenAnnotation) because we have to filter out the
feature structures of a type we do not want. The mul-
tiple-containers approach behaves somewhat in-
versely, in that when all feature structures of an in-
dex are retrieved, the access is slow because all
containers for all subtypes for this index must be
merged, but the access is very fast on “leaf” types
(i.e., types without subtypes) because the iterator re-
quired is simply an iterator over a physical container.

Which implementation should we choose? What us-
age scenarios require the level of performance as-
sociated with each of these alternatives? The imple-
mentation should be very fast in performance-critical
scenarios (such as search engines) and reasonably
fast in more complex analysis scenarios. Apart from
the manipulation of feature structures, for the de-
sign of the index repository one has to decide the
application scenario for which the data structure is
optimized. In a scenario involving tokenization for
asearch engine, the main operations are adding (and
retrieving) same-type feature structures to (and
from) a specified index. In particular, this type may
be TokenAnnotation, and the index is the default an-
notation index. Because it is reasonable to assume
that TokenAnnotation is a leaf type, we chose the sec-
ond of the two approaches above.

Let us consider an index with name [is defined on
type T. For every subtype 7" of T' (including T itself)
there exists a physical container that represents all
feature structures contained in I of exactly type 7"
(excluding subtypes). So if we assume that uima.
tcas.Annotation has a subtype NameAnnotation, which
in turn has a subtype PersonNameAnnotation, the an-
notation index is implemented as three physical con-
tainers, say, vectors: one that contains only feature
structures of type uima.tcas.Annotation (which is nei-
ther NameAnnotation nor PersonNameAnnotation—
rather unlikely in common usage scenarios), one that
contains only NameAnnotation (and no PersonName-
Annotation), and one that contains only
PersonNameAnnotation.

When a feature structure of some type 7" is added

to 1, the feature structure is inserted into the phys-
ical container of 7", and nowhere else. In our ex-

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

ample, a PersonNameAnnotation is added only to its
container, not to those for NameAnnotation or even
uima.tcas.Annotation; therefore, adding a feature
structure is fast as required by the search engine sce-
nario. In fact, it is fast in every scenario because no
matter how complex the type system is, the feature
structure is only added to a single physical container.

When we iterate over all feature structures of type
T" of I, the index repository must merge all physical
containers of all subtypes of 7" (including 7"") itself.
If the index is sorted (as our annotation index is),
we have to perform what amounts to a merge-sort
on all these containers before or while iterating. If,
however, T" has no subtypes, the iterator becomes,
in effect, an iterator over the native container. In our
example, iterating over NameAnnotation requires
merging the containers for NameAnnotation and Per-
sonNameAnnotation, whereas iterating only over Per-
sonNameAnnotation reduces to using the iterator over
its physical container. Thus, iterating over feature
structures of non-leaf types performs worse than it-
erating when leaf types are involved, but the latter
is, in turn, very fast.

The attentive reader might have noticed that we have
not yet mentioned how the various index kinds
(sorted, set, bag) are implemented. This depends on
the kind of physical container used. Thus, for a sorted
index the physical container could be a data struc-
ture such as a red-black tree, and for bag indexes,
the physical container could simply be a vector. (The
bag index implementation works also for sets, with
the minor change that no duplicate feature structures
with the same type are allowed.) We have previously
assumed that inserting into, and iterating over, such
physical containers is fast. Whereas iterating is fast,
regardless of whether we use vectors, lists, or sets,
inserting may indeed depend on the kind of the in-
dex. (Performance when an element is added to a
vector is different from the same operation on a set.)

Figure 4 shows an example of an index repository
in which the physical containers for the annotation
index contain a number of feature structures denoted
by offsets into the heap (note that these offsets have
nothing to do with begin or end positions). We view
these containers as nodes in a subtree of the type
hierarchy rooted at uima.tcas.Annotation. Thus, there
are no feature structures of type uima.tcas.
Annotation, there are two of NameAnnotation, two of
PersonNameAnnotation, and three of TokenAnnota-
tion in this index. If we wanted to add a new Person-
NameAnnotation (P3) to this index, we could add it

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Figure 4 An example index repository

Types Associated
containers

uima.tcas.Annotation

NameAnnotation —-+ [N1, N2]

TokenAnnotation ~ |————f-——————— - [T1, T2, T3]

PersonNameAnnotation --+ [P1, P2]

to the appropriate container, which would then con-
tain [P1, P2, P3].

For iterating over all NameAnnotation subtypes, the
two containers [N, N2] and [PI, P2] should be
merged according to the begin and end positions of
those feature structures. Note that they all have those
features because they are subtypes of uima.tcas.An-
notation. Iterating over all TokenAnnotation subtypes,
however, does not require any merging; we can sim-
ply return the feature structures 71, 72, and 73, in
that very order—adding a feature structure already
inserts it correctly with respect to the physical con-
tainer of its type. In other words, the tokens are al-
ready sorted from left to right. Of course, all those
implementation details are completely hidden be-
hind the API and are not visible to the user.

Serialization. The CAS heap layout allows not only
feature structures within one TAE to be represented
efficiently, but also CAS entities to be serialized and
deserialized efficiently. Note that CAS serialization
does not mean Java built-in serialization but a spe-
cial way of “flattening” complex data structures of
the CAS into data structures which are simple, easy
to transport over a network, and easy to use for in-
teroperating between different programming lan-
guage (typically arrays of integers and the like). In
particular, it is enough to use an integer array (the
heap as such) and a string array (a table for string-
valued features). Because CASs usually contain many
data objects, the ability to serialize and deserialize
a CAS without examining and rebuilding each fea-
ture structure it contains is crucial. There are a num-
ber of scenarios where this might be necessary:

GOTZ AND SUHRE 487

1. Deploying TAEs in a distributed environment (cur-
rently only supported by JEDII)

2. Crossing a language-framework boundary (JEDII
to TAF or vice versa)

3. Saving data to disk

Note that although it would be possible to just use
the Java built-in serialization, our CAS serialization
mechanism is also used in scenario 1 for performance
reasons. Scenario 2 means, in effect, that you can use
a TAF annotator in JEDII or a JEDII annotator in TAF
by serializing the CAS in one language (e.g.,
C++/TAF), crossing the language boundary only
once (passing the serialized CAS to Java), and de-
serializing the CAS in the other language (Java/JEDII).
This is more efficient than having a Java “proxy” ob-
jecttoa C++ CAS which has native implementations
for all CAS functionality so that basically all calls to
this Java proxy cross the language boundary. More-
over, a Java CAS which is the result of processing a
TAF TAE is a pure Java object (similarly for a TAF
CAS the other way round) and thus completely lives
in the environment where it is used and obeys its rules.

From a user perspective, all this happens “under the
covers,” that is, only the framework implementation
(namely, TAF or JEDII) need be indicated in the de-
scriptor of the TAE, and the framework used creates
an instance of a TAF/JEDII TAE automatically.

Conclusion

We have demonstrated that for a data analysis com-
ponent architecture such as UIMA, it is advantageous
toimplement a data model and a data container that
enables the framework engine to (1) monitor the data
produced and consumed by various components and
use this knowledge to (among other things) instru-
ment the work flow, and (2) control the data that is
being created as a result of analysis work (so the data
can, for example, be serialized for storage or net-
work transport).

Having a separate data layer puts an additional bur-
den on users of the architecture because they need
to understand its concepts in order to use its APIs.
On the other hand, this allows many services to be
provided by the framework, such as serialization for
storage, that would otherwise have to be imple-
mented by each application. Our data layer does not
overly constrain developers in their choice of data
structures because typed feature structures are gen-
eral enough to model most data. Moreover, we
showed that an implementation of such a data layer

488 GOTZ AND SUHRE

need not be slow. Using well-known techniques from
compiler construction, data containers can be de-
signed that allow for fast data creation and access.

**Trademark or registered trademark of Object Management
Group, Inc. or Sun Microsystems, Inc.

Cited references and note

1. D.Ferrucciand A. Lally, “UIMA: An Architectural Approach
to Unstructured Information Processing in the Corporate Re-
search Environment,” Journal of Natural Language Engineer-
ing (to appear).

2. D.Ferrucciand A. Lally, “UIMA by Example,” IBM Systems
Journal 43, No. 3, 455-475 (this issue, 2004).

3. The acronym CAS in Reference 1 has a different meaning
than the one used in this paper - it stands for Common Anal-
ysis Structure.

4. Object Management Group, http://www.omg.org/.

5. Java 2 Platform, Enterprise Edition (J2EE), Sun Microsystems,
Inc., http://java.sun.com/j2ee/.

6. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Pat-
terns, Addison-Wesley Publishing, Reading, MA (1995).

7. T.Hampp, “Beyond Text Representation,” Proceedings of the
18th International Unicode Conference, Unicode Consortium,
Hong Kong (2001).

8. H. Cunningham, Software Architecture for Language Engineer-
ing, Ph.D. Thesis, University of Sheffield, UK (2000).

9. C. Laprun, J. Fiscus, J. Garofolo, and S. Pajot, “A Practical
Introduction to ATLAS,” Proceedings of the Third Interna-
tional Conference on Language Resources and Evaluation(L-
REC), Evaluations and Language Resources Distribution
Agency, Paris (2002).

10. S.Bird and M. Liberman, A Formal Framework for Linguistic
Annotation, Technical Report MS-CIS-99-01, Department of
Computer and Information Science, University of Pennsyl-
vania, PA (1999).

11. Extensible Markup Language (XML) 1.0, World Wide Web
Consortium (W3C) (2000), http://www.w3.0org/TR/REC-xml.

12. Java Architecture for XML Binding (JAXB), Sun Microsys-
tems, Inc., http://java.sun.com/xml/jaxb/.

13. B. Carpenter, The Logic of Typed Feature Structures, Cam-
bridge University Press, New York (1992).

14. M. Davis and S. Loomis, International Components for Uni-
code (ICU) Version 2.4.,(2003), http://oss.software.ibm.com/
icu/docs.

15. D. H. D. Warren, An Abstract Prolog Instruction Set, Tech-
nical Note 309, SRI International, Menlo Park, CA (Octo-
ber 1983).

16. G. Penn, “Generalized Encoding of Description Spaces and
its Application to Typed Feature Structures,” Proceedings of
the 40th Annual Meeting of the Association for Computational
Linguistics (ACL 2002), Philadelphia, PA (2002).

17. M. H. Austern, Generic Programming and the STL, Addison-
Wesley Publishing, Reading, MA (1999).

Thilo Gétz IBM Germany, P.O. Box 1380, Boeblingen, Germany
(tgoetz@de.ibm.com). Dr. GOtz joined IBM in 1997 at the Watson
Research Center in Yorktown Heights, New York, where he
worked on text analysis. In 2003 he moved to the IBM Devel-
opment Lab in Boeblingen, where he is a software engineer in
the Data Management department. He received an M.A. degree
in linguistics and computer science from the University of Tiib-
ingen in 1994, and a Ph.D. degree in computational linguistics
from the same university in 2000.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Oliver Suhre [BM Germany, P.O. Box 1380, Boeblingen, Ger-
many (suhre@de.ibm.com). Mr. Suhre received his M.Sc. degree
in computer science from the University of Tiibingen in 1999.
Since joining IBM in 2000, he has worked as a software engineer
in the areas of text analysis and information integration.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

GOTZ AND SUHRE 489

