Building an example
application with

the Unstructured
Information
Management
Architecture

IBM’s Unstructured Information Management
Architecture (UIMA) is a software architecture
for developing and deploying unstructured
information management (UIM) applications.
In this paper we provide a high-level overview
of the architecture, introduce its basic
components, and describe the set of tools
that constitute a UIMA development
framework. Then we take the reader through
the steps involved in building a simple UIM
application, thus highlighting the major UIMA
concepts and techniques.

Structured information may be characterized as in-
formation whose intended meaning is unambiguous
and explicitly represented in the structure or format
of the data. The canonical example of structured in-
formation is a relational database table. Unstructured
information may be characterized as information
whose intended meaning is only loosely implied by
its form and therefore requires interpretation in or-
der to approximate and extract its intended mean-
ing. Examples include natural language documents,
speech, audio, still images, and video.

One reason we focus on deriving implied meaning
from unstructured information is that 80 percent of
all corporate information is unstructured.! An even
more compelling reason is the rapid growth of the
Web and the perceived value of its unstructured in-
formation to applications that range from e-com-
merce and life science applications to business and
national intelligence.

An unstructured information management (UIM) ap-
plication may be generally characterized as a soft-

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

0018-8670/04/$5.00 © 2004 IBM

by D. Ferrucci
A. Lally

ware system that analyzes large volumes of unstruc-
tured information in order to discover, organize, and
deliver relevant knowledge to the end user.? An ex-
ample is an application that processes millions of
medical abstracts to discover critical drug interac-
tions. Another example is an application that pro-
cesses tens of millions of documents to discover ev-
idence of probable terrorist activities. We have seen
a sharp increase in the use of UIM analytics (the anal-
ysis component of UIM applications), in particular
text and speech analytics, within the class of applica-
tions designed to exploit the large and rapidly growing
number of sources of unstructured information.?

In analyzing unstructured content, UIM applications
make use of a variety of technologies including sta-
tistical and rule-based natural language processing
(NLP), information retrieval, machine learning, on-
tologies, and automated reasoning. UIM applications
may consult structured sources to help resolve the
semantics of the unstructured content. For example,
a database of chemical names can help in focusing
the analysis of medical abstracts. A database of ter-
rorist organizations and their locations can help in
analyzing documents for terror-related activities. A
UIM application generally produces structured infor-
mation resources that unambiguously represent con-
tent derived from unstructured information input.
These structured resources are made accessible to
the end user through a set of application-appropri-

©Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

FERRUCCI AND LALLY

ate access methods. A simple example is a search
index and query processor that makes documents
quickly accessible by topic and ranks them accord-
ing to their relevance to key concepts specified by
the user. A more complex example is a formal on-
tology and inference system that, for example, al-
lows the user to explore the concepts, their relation-
ships, and the logical implications contained in a
collection consisting of millions of documents.

IBM is in the business of enabling on-demand deliv-
ery of information. This involves providing hardware,
middleware, and database management and collab-
oration software. In the rapidly growing world of nat-
ural language text, speech, audio, and video, these
traditional strengths must be coupled with systems
that enable the analysis and integration of unstruc-
tured information. IBM’s Unstructured Information
Management Architecture (UIMA) is a component-
based software architecture for developing UIM ap-
plications. The UIMA project, which originated at the
IBM Research Division, was intended to leverage a
wealth of research results in the area of unstructured
information analysis toward advancing science and
impacting IBM products and services. Although UIMA
was designed for the entire range of unstructured
information types, the implementation discussed in
this paper focuses on natural language text.

UIMA has many features in common with other soft-
ware architectures for language engineering such as
GATE*® and ATLAS.® Each of these systems isolates
the core algorithms that perform language process-
ing from system services such as storing of data, com-
munication between components, and visualization
of results. However, UIMA’s emphasis on transfer-
ring UIM technologies to products has led to a richer
architecture that allows integrating applications with
a host of enterprise products (e.g., WebSphere* Por-
tal Server, Lotus* Workplace) and a variety of
middleware and platform options.

The rest of the paper is structured as follows. In the
next section, we provide a high-level overview of the
architecture, introduce the basic components, and
discuss the component architecture of UIMA. Then
we describe the UIMA development frameworks and
the developer roles defined for building UIM appli-
cations. Next, we take the reader through the steps
involved in building a simple UIM application, Meet-
ing Finder, designed to highlight the main UIMA con-
cepts and its methodology. We present the imple-
mentation results of our project and relate this work

456 FERRUCCI AND LALLY

to similar efforts elsewhere. We conclude with a sum-
mary of the work and some ideas for future research.

Architecture overview

A UIM application may be thought of as comprising
two phases: analysis and delivery. In the analysis
phase, collections of documents are acquired and an-
alyzed. The results are stored in one or more forms
as needed for the delivery phase. In the delivery
phase, the analysis results, possibly together with the
original documents or other structured information,
are made accessible to the application’s end user
through application-appropriate access methods and
interfaces.

For example, the analysis phase of the application
illustrated in Figure 1 may include tokenization and
semantic class detection on input documents. Con-
sulting structured sources such as dictionaries or on-
tologies, the application may find and annotate
classes of entities such as organizations, persons, lo-
cations, and events. In addition, the application may
annotate classes of relationships such as located_in,
attends_event, or employee_of. The result of the anal-
ysis phase would be a search engine index that con-
tains tokens as well as the detected entities and re-
lationships. In the delivery phase, the application
might present a query interface and allow the user
to search for documents that contain some Boolean
combination of tokens, entities, and relationships
through a semantic search engine.

UIMA is focused on providing the conceptual foun-
dation and component infrastructure for supporting
the discovery, development, composition, and de-
ployment of unstructured information analysis ca-
pabilities and their integration with structured in-
formation sources. Delivery of the information to the
application’s end users is open-ended and typically
very specialized. Consequently, although the deliv-
ery phase is a critical aspect of a UIM application,
it is not directly addressed by the architecture.

For a broader description of the UIMA high-level ar-
chitecture, we refer the reader to a general UIMA
overview paper.? In an attempt to provide the reader
with a deeper sense of how UIMA development
frameworks support the design, development, inte-
gration, and deployment of unstructured informa-
tion analysis functions, we focus here on using UIMA
to implement an example application. In the remain-
der of this section we discuss unstructured informa-

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Figure 1 Example UIM application

Analysis infers semantics of
unstructured information and
induces application-specific

Analysis
S2S Unstructured gue—"\\| Acquisition
== Information
structure
Delivery
Query and
Presentation
Client/User

tion analysis at two levels: analysis of a single doc-
ument (document-level) or of a collection of
documents (collection-level).

Document-level analysis. In document-level analy-
sis, the focus is on an individual document (as op-
posed to a collection of documents). The analysis
component takes that document as input and out-
puts its analysis as meta-data describing portions of
the original document. These may refer to the doc-
ument as a whole or to any sized region of the doc-
ument. In general, we use the term document to re-
fer to an arbitrarily grained element of unstructured
information processing. For example, for a UIM ap-
plication, a document may represent an actual text
document, a fragment of such a document or even
multiple such documents. Examples of document-
level analyses include language detection, tokeniza-
tion, syntactic parsing, named-entity detection, clas-
sification, summarization, and translation. In each
of these examples, the analysis component examines
the document and associated meta-data and pro-
duces additional meta-data as a result of its analysis.

An analysis component may be implemented by com-
posing a number of more primitive components, as
illustrated in Figure 2. In this figure a number of com-
ponents are assembled in series in order to imple-
ment a “government official detector” function. The
output of each stage consists of the document with
the result of the analysis. For example, the output
of the language identifier component consists of the

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Unstructured Information Analysis

Structured Information

Structured Information

“— Access

document annotated with a label that specifies its
language; the output of the detagger component con-
sists of the document with HTML tags identified and
content extracted, and so on. Composition of anal-
ysis components is a valuable aspect of UIMA because
implementing each of the analysis components may
require specialized skills. Thus, when complex pro-
grams are built by uniquely skilled individuals or
teams, reuse through composition becomes partic-
ularly valuable in reducing redundant effort.

The fundamental processing component for docu-
ment analysis in UIMA is the analysis engine, which
for text documents is known as the text analysis en-
gine (TAE). TAEs have a standardized interface and
may be declaratively composed to build aggregate
analysis capabilities. TAEs built by composition have
arecursive structure—the primitive TAEs may be core
analysis components implemented in C++ or
Java™*, whereas aggregate TAEs are composed of
such primitive TAEs or other aggregate TAEs. Because
aggregate TAEs and primitive TAEs have exactly the
same interfaces, it is possible to recursively assem-
ble advanced analysis components from more basic
elements while the implementation details are trans-
parent to the composition task. Composing text pro-
cessing modules to form aggregate analysis capabil-
ities is not new to the field of natural language
engineering. For example, TAEs are functionally anal-
ogous to Processing Resources in the GATE
architecture.*’

FERRUCCI AND LALLY 4§57

Figure 2 An analysis component as a series of primitive components

Document
Language ~_| Detagger ~_| Tokenizer
Identifier
Level of Document Word Meta-data
Granularity Meta-data

The document analysis operates on a common data
structure that consists of the original document (the
subject of analysis) and its associated meta-data. A
container object is also defined that provides inter-
faces for indexing, accessing, and updating the com-
mon data structure. This data structure and container
are collectively referred to as the Common Analysis
System (CAS).” We should point out that different
interfaces to the CAS are possible. Whatever inter-
face is used, during analysis the common data struc-
ture, representing the subject of analysis and its meta-
data, is made accessible to an application-specified
sequence of TAEs. In this paper we refer to both the
common data structure shared by a sequence of TAEs
and a container object that provides an interface to
this data structure as the CAS.

Each TAE in a specified sequence operates on the
input CAS, performs its analysis function, and then
updates the CAS with additional meta-data. The up-
dated CAS is the result of that analysis. For example,
see Figure 3, which depicts a government official de-
tector TAE recursively composed from core analysis
components. After the “Aggregate Analysis Engine:
Named-Entity Detector” completes its analysis, the
CAS contains meta-data including the Persons,
Places, and Organizations detected in the document.
The “Government Official Detector” then reads the
CAS, considers the Persons, identifies which of those
Persons are Government Officials, and records this
information in the CAS.

The CAS contains meta-data in the form of annota-
tions, which are similar to the annotations used in
other systems, beginning with TIPSTER.® An anno-
tation associates meta-data (e.g., a label) with a re-
gion in the artifact that is being analyzed; for text
documents, this is done by identifying start and end
positions within the text. An example would be the

458 FERRUCCI AND LALLY

~_ Part of ~_| Named- Government
Speech Entities Official
Tagger Detector Detector

Phrase Meta-data

label “token” being associated with each word in the
document. Another would be the label “person” an-
notating the mentions of people in the document.
The CAS uses stand-off annotations rather than in-
line markup, as this achieves greater flexibility.” UIMA
specifies an eXtensible Markup Language (XML)
representation for CAS data models (i.e., schemas),
asimilar concept to the Meta-Annotation Infrastruc-
ture for ATLAS (MAIA). UIMA also defines a CAS in-
terface for indexing, accessing, and updating the con-
tents of a CAS.’

A number of development frameworks have been
implemented for the UIMA architecture. Two major
ones provide implementations of the CAS interface
inboth C++ and Java. A native object-oriented pro-
gramming interface to the CAS has been developed
for Java, named JCas. !’ JCas automatically gener-
ates Java classes from developers’ annotation mod-
els, allowing them to use plain Java to interact with
annotation data models, and thus reducing their
learning curve for using UIMA. The process of using
JCas is described in more detail as we discuss the
example UIMA application later in this paper.

UIMA specifies component interfaces for implement-
ing, composing, and deploying analysis engines and
for representing, routing, and accessing analysis re-
sults. The architecture specifies three varieties of
technical TAE interfaces to support a broad set of
implementation and deployment options. These are
the C+ + interface, the Java interface, and the net-
work service interface (when analysis components
are distributed over a network).

Collection-level analysis. In collection-level analysis
the UIM application processes an entire collection
of documents. Whereas each document may undergo
document-level analysis as part of collection process-

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Figure 3 An encapsulation and composition of TAEs

Aggregate Analysis Engine: Government Official Detector

Aggregate Analysis Engine: Named-Entity Detector

~ Tokenizer

Part of
Speech
Tagger

ing, the results of collection-level analysis represent
inferences made over the entire collection. Exam-
ples of collection-level results are glossaries, dictio-
naries, databases, search indexes, and ontologies.
UIMA does not restrict the content, form, or tech-
nical realization of collection-level results; they are
treated generally as structured information resources.

The fundamental UIMA processing element for col-
lection analysis is the collection-processing engine
(CPE). CPEs are responsible for controlling the ap-
plication of TAEs to elements of a collection and man-
aging the routing of results to C4S consumers. These
components are the final stage in a CPE, and thus,
they consume but do not produce CAS objects. CAS
consumers may perform a wide variety of special-
ized functions ranging from simply storing CASs for
subsequent access by the application to computing
global inferences that consider the analyses of all the
documents in the collection.

The CPE includes APIs that allow the application to
specify the document-level analysis that should be
performed and the CAS consumers that should have
access to the results. The API includes methods to
support the following features:

1) Control—start, stop, pause, resume, restart from
checkpoint.

2) Filtering—allows processing of a subset of the
collection, specified by constraints on the meta-
data within the CAS.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Named- Government
Entities | Official
Detector Detector
CAS
CAS - Tokens
- Tokens - Parts of Speech
- Parts of Speech - Names
- Names - Places
- Organizations - Persons
- Places - Government
- Persons Official Detector

3) Error handling—the user may specify how er-
rors should be handled. For example, failed doc-
uments may be automatically retried some num-
ber of times, then skipped and added to a list
of failed documents that the user can manually
review.

4) Performance monitoring—monitors and reports
statistics for each component such as process-
ing time, memory usage, and error rates.

5) Parallelization—may replicate TAEs and CAS
consumers, utilizing available computing re-
sources to simultaneously process multiple
documents.

The structured information feedback loop. A com-
mon feedback loop present in UIM applications pro-
duces structured resources from collection-level
analysis and then uses these resources to enable sub-
sequent unstructured information analysis. A clas-
sic example of this feedback loop is present in a type
of application we refer to as the classifier-trainer ap-
plication, depicted in Figure 4. This type of appli-
cation may be decomposed into two phases: the train-
ing phase (the upper part of the figure) and the
classification phase (the lower part).

In the training phase, a collection of documents, the
training set, is analyzed by a CPE. The CPE invokes
a set of TAEs and statistically analyzes the results,
producing a structured resource called the model.
The model explicitly assigns weights to the features
detected by the TAEs. The classifier-trainer, in ad-

FERRUCCI AND LALLY

459

Figure 4 Feedback loop: The classifier-trainer example

Unstructured Information

Unstructured Information Analysis

Structured Information

Training Set --
Training ﬁ \
Phase ——— “Classifier Trainer” ——
(CPE)
Model
(Features and
New Their Weights)
Document . Y
Classification Applier

Phase

dition to the model, produces a new TAE called the
applier. The purpose of the classifier-trainer appli-
cation is to create and train this new analysis engine
to analyze new documents in a way that is consistent
with the training set.

In the classification phase, the model is the struc-
tured resource built by the collection-level process-
ing step and consulted by the applier when it ana-
lyzes a new document. If the algorithms used in the
classifier-trainer are appropriate and the input TAE
annotations sufficiently predictive of those in the
training set, then the applier may accurately analyze
a new document, even rivaling human performance
in the analysis task. !

Other examples of this feedback loop include the
construction of ontologies where a collection of doc-
uments must first be analyzed to detect concepts and
the many possible mentions of the concepts through-
out the documents. Looking at the entire collection
improves the accuracy of concept determination. The
result might be a “glossary”—a database of concepts
with links to definitional resources. This database
would then be used as a structured resource in sub-
sequent analysis to detect relations between concepts
required to fill out the ontology. UIMA supports the
managed deployment and access of structured infor-
mation resources from analysis-engine components.?

Semantic search. Common to many UIM applica-
tions is the integration of search technology with un-
structured information analysis. Traditional search
engines index the tokens or words that make up a
document and then process queries as Boolean com-

460 FERRUCCI AND LALLY

=T | MB

binations of tokens. They then return a ranked list
of documents that contain the combinations of to-
kens specified in the query. UIM applications, how-
ever, often require semantic search, which UIMA de-
fines as the capability to issue queries for documents
based on not just key words that appear in the doc-
ument, but also any concept derived from the text
by the applied analysis engines. Such concepts are
represented in CAS by annotations over specified
spans of text. Therefore, a UIMA-compliant search
engine indexer must be capable of indexing anno-
tations as well as tokens. Such an indexer must also
support cross-over annotations, which are annota-
tions whose spans intersect. Cross-over annotations
can allow multiple interpretations of a sentence to
be easily represented and indexed. Representing
multiple parses, for example, is important for defer-
ring sense disambiguation until more information is
available.

Similarly, the query interface to a UIMA-compliant
search engine must support queries of annotations
as well as tokens. It must also be possible to query
for nested and intersecting annotations. These UIMA
indexing and query requirements are met by the Juru
XML search engine, which is used in the example
application discussed in this paper.

Component overview. As mentioned earlier, the two
primary components that UIMA specifies for address-
ing document-level and collection-level analysis are
TAEs and CPEs. Developing analysis capabilities for
UIM applications revolves around implementing, de-
ploying, and controlling combinations of these pri-
mary components.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Drilling down to the next level of detail, UIMA spec-
ifies component architectures for implementing TAEs
and CPEs from more basic components. As is the case
with all component architectures, the goal is to iden-
tify a component type for each conceptually distinct
function performed by the system and to ensure that
the components can be easily reused and combined
with one another. To support this reuse and interop-
erability, all UIMA components are required to be
data-driven and self-descriptive.

Being data-driven means that each component’s
function must depend only on its input. This is im-
portant because it ensures that the only requirement
for reusing a component within an aggregate system
is that the component’s input requirements are met.
Components that have other dependencies, such as
the presence of specific other components or a par-
ticular sequence of execution, are not suitable for
reuse and are therefore not permitted in UIMA.

All UIMA components must also be self-descriptive,
meaning that they publish declarative meta-data
about themselves. The most important piece of com-
ponent meta-data is the component’s capabilities,
which are its input requirements and output spec-
ification. Components may be registered in a browse-
able repository based on this meta-data, allowing de-
velopers to easily find components that meet their
needs. This reduces accidental duplication of effort,
which is a serious issue in an organization as large
and dispersed as the IBM Research Division. Capa-
bility specifications must be machine-readable, en-
abling UIMA development frameworks to intelligently
assemble components and produce TAEs and CPEs.

The declarative meta-data of a component is cap-
tured in component descriptors. Figure 5 shows the
logical content of a descriptor. UIMA specifies an XML
schema for component descriptors. In addition to
capabilities, descriptors also contain configuration
parameters to which values may be assigned by
applications.

The remainder of this section provides a brief over-
view of the component interfaces that a UIMA de-
veloper must implement to create a UIM application.
The UIMA development framework is used to con-
nect these components to form TAEs and CPEs as il-
lustrated in Figure 6.

TAE components. The primary TAE component is the

annotator. The annotator interface implements a par-
ticular analysis function (e.g., tokenization, language

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Figure 5 A UIMA component descriptor

UIMA Component Descriptor

Link to Code (for primitive component) or to
Subcomponent Descriptors (for aggregate)

Meta-data

Name, Description, Vendor, Version

Configuration Parameters

Declarations of Parameters and Their
Data Types, Required/Optional

Default Parameter Values

Data Model Definition (CAS Type System)

Capabilities

Inputs
Outputs

Preconditions (e.g. language of document)

detection, classification). In its simplest form the in-
terface may be described as “process CAS.” It is in
the implementation of this method that the devel-
oper encodes an analysis algorithm. The UIMA frame-
work takes an annotator and its descriptor and con-
structs a primitive TAE.

An aggregate analysis capability may be specified
from component TAEs by providing the framework
with a special descriptor called an aggregate TAE de-
scriptor. Such a descriptor identifies a set of other
TAE descriptors (either primitive or aggregate) and
specifies the order in which those components should
execute. The UIMA framework takes this descriptor,
instantiates each component TAE, and hooks them
together in the proper order. The result is an aggre-
gate TAE. At runtime the framework ensures that
each component TAE obtains access to the CAS in
the specified order.

CPE components. CPEs consist of a configuration of
TAEs, collection readers, CAS initializers, and CAS con-

FERRUCCI AND LALLY 461

Figure 6 Assembling a CPE from primitive components

Collection Processing Engine

Aggregate Text Analysis
Engine (TAE) CAS e
Consumer e On
Aggregate TAE — —> Analysis
Results
Primitive TAE
Annotator
5 CAS
Collection CAS
p eyl w/Document CAS
Collection Reader _ Initializer l DR
Analysi
Primitive TAE and Analysis
Annotator
CAS A
Collection
l Consumer Analysis
Results
Primitive TAE
Annotator

sumers. The UIMA framework orchestrates instances
of these components to implement and manage the
collocated or distributed execution of a CPE. As pre-
viously mentioned, a CAS consumer takes a CAS as
input; it may produce an arbitrary application-spe-
cific data structure, such as an index or database.

Collection readers have a simple conceptual inter-
face: Get next document. A collection-reader imple-
mentation is responsible for interfacing with a col-
lection of documents, determining the next
document in the collection, getting the next docu-
ment from the collection, and initializing a CAS with
its contents and any original document meta-data
deemed appropriate for downstream processing.

To support a wide variety of input document formats,
collection readers may use pluggable components
called CAS initializers to populate a CAS with a form
of the original document appropriate for input to
the CPE TAEs. The CAS initializer may optionally ex-
tract meta-data from the original document and store
it in the CAS. For example, a significant number of
UIMA TAEs are written to analyze plain text docu-
ments, rather than documents in markup languages
such as XML. To accommodate these analysis en-
gines, a reusable CAS initializer has been developed
that takes an XML document as input, removes the

462 FERRUCCI AND LALLY

tags, inserts the detagged document as the subject
of analysis in the CAS, and maps a specified set of
the inline XML tags to stand-off annotations in the
CAS. The initialized CAS is returned. This generally
reusable CAS initializer may be configured with an
arbitrary mapping of inline XML tags to stand-off CAS
annotations.

UIMA development frameworks and
developer roles

Like GATE,’ UIMA is not only an architecture but also
an implementation, known as a framework. More
precisely, there are two major frameworks, one for
C++ developers and one for Java developers. A
framework handles all the details for efficient in-
teroperability between components developed in the
two languages; this interoperability has been a crit-
ical factor in enabling the use of IBM Research Di-
vision’s existing C+ + text analytics components by
Java application developers.

Prior to UIMA, text analytics researchers at IBM were
often expected not only to develop innovative new
analysis algorithms but also to determine how best
to combine their work with that of other research-
ers and finally to deliver a coherent, well-engineered
solution to an IBM product or service organization.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

This was a formidable requirement, given that each
of these tasks requires a different set of specialized
skills. We have addressed this issue by identifying
five distinct development roles in UIMA, each with a
separate set of responsibilities.> Each role deals with
a different subset of framework interfaces and fa-
cilities, so no one person needs to understand the
details of the entire process. These roles are as fol-
lows: annotator developer, analysis-engine assem-
bler, collection-processing-component developer,
CPE assembler, and component deployer. The UIMA
development roles and the framework facilities de-
signed to support them are described in the follow-
ing sections.

Annotator developer. An annotator developer pro-
duces core analysis algorithms, delivering them as
annotators. These algorithms can be statistical or
rule-based, and can perform any type of analysis, such
as categorization, named-entity detection, or rela-
tion extraction. The framework insulates annotator
developers from technical interoperability and de-
ployment issues.

Annotator developers must define the data model
for representing the annotations they create, code
the analysis algorithm, and declare meta-data about
their component in its descriptor. The UIMA devel-
opment framework supports annotator developers
by providing:

* Asimple Java interface (the annotator interface),
which the annotator developer’s code must
implement.

e Interfaces for reading from and writing to CAS,
such as the native Java JCas interface, which gen-
erates simple Java classes for the annotation data
model.

* Interfaces for accessing framework facilities such
as logging and resource management.

UIMA also provides the following tools that assist an-
notator developers:

* A descriptor builder tool allowing the creation of
UIMA component descriptors without directly ed-
iting XML documents. The tool performs consis-
tency checking and allows the developer to focus
on the concepts present in the descriptor rather
than on syntax.

* A document analyzer tool that is useful for testing
annotators and TAEs. A user of the document an-
alyzer selects the TAE component descriptor from
a component browser. The user also selects a set

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

of input documents. The document analyzer then
passes the descriptor to the UIMA analysis-engine
factory, which takes care of instantiating the TAE.
After each input document has been processed by
the TAE, the document analyzer converts the re-
sulting CAS to an HTML view to illustrate the an-
notations produced by example TAEs using a web
browser.

Analysis engine assembler. The analysis-engine as-
sembler considers an analysis task and composes a
solution from existing annotators and analysis en-
gines. Such a composition is referred to as an ag-
gregate analysis engine. The analysis-engine assem-
bler may identify gaps where new annotators need
to be developed and communicate this to an anno-
tator developer.

In UIMA, analysis-engine assemblers do not need to
write any code. They simply use the descriptor
builder tool to create a simple descriptor identify-
ing the sequence of component annotators, and the
framework provides the rest:

e ATAE factory, which, given a TAE descriptor, con-
structs TAEs from component annotators, automat-
ically adapting for C++, Java, or network-based
TAE implementations.

¢ Aset of infrastructure components that implement
requirements common to many TAEs. The UIMA
framework includes infrastructure components im-
plementing shared resource management and con-
trol of processing flow.> These components are
used by the TAE factory to construct TAEs from
component annotators.

Collection-processing-component developer. A
collection-processing-component developer pro-
duces collection readers, CAS initializers, and CAS
consumers for use in collection analysis. This role
is similar to the annotator developer in that it in-
volves creating an algorithm and packaging it as a
class that implements a simple framework interface
(the collection reader, CAS initializer, or CAS con-
sumer interface in this case, rather than the anno-
tator interface). However, this role is more often fo-
cused on data processing than on text analytics
research.

Like annotator developers, collection-processing-
component developers make use of the JCas inter-
face of the framework and the descriptor builder tool.

CPE assembler. A CPE assembler declaratively spec-
ifies a configuration of analysis engines and collec-

FERRUCCI AND LALLY 463

Figure 7 Using the UIMA framework to generate a CPE

Component Descriptors

TAE CAS Initializer — CPE
i —> CPE Descriptor FACTORY
Cotecton { [ons L,
Consumers _

,—_T\

Collection Processing Component
JAR Files or DLLs

Collection Processing Engine (CPE)

Client/User CPE Interface

estart

estop

eget stats

eget error reports

Legend
Provided by Framework

Produced by Developer

tion-processing components to accomplish a partic-
ular collection-processing task. As with analysis-
engine assembly, this is done by using the descriptor
builder tool to identify the components and their
workflow; no coding is required. The framework pro-
vides:

* A CPE factory, which, given a CPE descriptor, con-
structs CPEs from collection-processing components.
Infrastructure components for workflow manage-
ment, performance monitoring, and error recov-
ery, which are used by the CPE factory to construct
CPEs from components (see Figure 7).

UIMA also provides a CPE interface or GUI (graph-
ical user interface), which the client uses to config-
ure and run CPEs. A user selects the component de-
scriptors for a collection reader, CAS initializer,
analysis engine, and one or more CAS consumers. The
configuration parameters for each component are
then displayed, and the user can override the default
values before starting the engine. The user can then
monitor progress and review performance statistics
and will be notified of any errors that occur.

464 FERRUCCI AND LALLY

Collection Processing Components

Collection Processing Infrastructure

*Workflow Management
eStatistics Collection
eError Handling
*Resource Pooling
eError Recovery

Component deployer. A component deployer de-
cides how TAEs or CPEs, along with their required
resources, are deployed on particular hardware and
system middleware. A component deployer chooses
appropriate middleware and produces a deployment
descriptor that specifies options, such as what distrib-
uted communication protocol to use and how many
simultaneous requests should be supported.

The UIMA development framework supports the
component deployer via its adapter framework. The
adapter framework is an extensible set of two types
of components:

1. Service wrappers, which permit components to
be deployed as distributed services.
2. Client adapters, which permit component services

to be used as if they were located on the same
machine as the caller.

The UIMA distribution includes service wrappers and
client adapters for the standard Web services Sim-
ple Object Access Protocol (SOAP) protocol as well
as an IBM-developed, lightweight protocol called

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Vinci.” The CAS is transmitted over the network in
a UIMA-standard XML format. The adapter frame-
work is extensible, in that support for new service
protocols can be added by developing appropriate
service-wrapper and client-adapter components and
plugging them into the framework. The developer
and assembler roles do not need to be aware of the
ways in which their analysis engines are deployed.

An example UIM application: Meeting
Finder

Consider a simple UIM application named Meeting
Finder. This application should allow e-mail users
to search their e-mail based on references to meet-
ings, their times, locations, or subjects, and to ex-
tract or highlight the found meeting information. The
Meeting Finder should perform the following tasks:

1. Access documents. Read e-mail documents from
a collection of e-mail.

2. Analyze documents. Analyze each e-mail look-
ing for meeting references and identifying time
of meeting, location, and subject.

3. Build collection analysis results.

* Build a search engine index of the e-mail
based on keywords as well as the detected
meeting content.

e Create astructured database containing a list
of all mentions of meetings and explicitly as-
sociating the meeting content with the sub-
ject and author of the containing e-mail.

4. Deliver results. Provide the user with a query in-
terface that allows the user to search the collec-
tion of e-mail based on a combination of key-
words and meeting elements. Present the found
e-mail, highlighting the meeting content.

A simple query, for example, would allow the user
to find all e-mails referring to a meeting with the sub-
ject related to UIMA. A more complex query may al-
low the user to find all UIMA-related meetings in
building HAWTHORNEI1 during which refreshments
would be served.

For the purposes of the example UIM application the
following assumptions apply:

1. The e-mail documents are stored in the Lotus
Notes e-mail export format.

2. Available for reuse in the implementation of
Meeting Finder are UIMA TAEs that perform to-
kenization, sentence detection, and date/time
detection.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

3. Juru XML is used as the search engine and is ca-
pable of indexing and querying tokens and
annotations.

4. A CAS consumer is available that indexes CAS
annotations for the Juru XML search engine.

Meeting Finder design. We implement the Meet-
ing Finder tasks outlined above using UIMA compo-
nents as follows:

1. For the access-task-documents task, a collection
reader retrieves documents from a collection of
e-mails. It makes use of a CAS initializer capa-
ble of taking a Lotus Notes e-mail document in
its original form and initializing a CAS with the
message text as the subject of analysis and the
e-mail’s Subject, To, and From fields as CAS
meta-data.

2. For the analyze-documents task, an aggregate
TAE, capable of analyzing an e-mail document
and annotating meetings, their times, locations,
and subjects,'® is assembled reusing available
TAEs, which include a tokenizer, a sentence de-
tector, and a date/time detector.

3. For the build-collection-analysis-results task, a
CPE is assembled from the collection reader and
the TAE described above and the following CAS
consumers (the CPE data flow is illustrated in Fig-
ure 8):

e Meeting file writer, which writes all discov-
ered meeting mentions to a structured text
file.

e The Juru CAS indexer (an existing CAS con-
sumer), which indexes e-mails based on to-
kens and annotated meeting content.

4. For the deliver-results task, the existing Juru XML
query processor and the front end are employed
to provide a query interface that searches the
index for documents based on a combination of
keywords and found meeting components.

We now discuss the implementation of the Meeting
Finder application using UIMA components. This dis-
cussion is organized according to the UIMA devel-
oper roles introduced previously.

TAE development. We first examine the assembly
of the analysis engine and then we discuss the an-
notators needed to implement the TAE.

TAE assembly. The analysis-engine assembler’s task
is to produce a TAE that detects meeting mentions
in e-mail documents. This meeting detector TAE first
locates room numbers, dates, and times. The TAE

FERRUCCI AND LALLY 465

Figure 8 Meeting Finder CPE data flow

Collection Processing Engine

Juru
CAS Search
]
Meeting Detector Indexer Engine
Index
Aggregate
CAS Text Analysis Engine (TAE)
Lotus Notes Lt Ll w/Document CAS
) Notes Notes
e-malil Bl . —— ——— w/Document
Collection | CAS Al s
Documents Reader Initializer
Meeting
File Meeting
Writer File

then looks for co-occurrences of these entities within
a certain distance of one another and annotates such
co-occurrences as meetings. For example, the fol-
lowing sentence contains a meeting that would be
detected by this algorithm:

“UIMA 101: The new UIMA tutorial, will be held
Tuesday August 26 9:00AM-4:30PM in GN-K35.”

Sentence information is also useful for determining
what span of text to annotate. For the preceding ex-
ample the entire sentence should be annotated as
the meeting; therefore, the TAE needs to first detect
sentence boundaries.

The meeting detector TAE is implemented by assem-
bling four annotators, as illustrated in Figure 9. These
are:

1. Tokenizer and sentence detector annotator. The
IBM Research Division has developed a library
of NLP functions that includes tokenization and
sentence detection capabilities. This library has
been cast as a UIMA annotator, using the C+ +
development framework.

2. Date/time annotator. A simple date/time anno-
tator has been previously developed using the
UIMA Java development framework.

3. Room number annotator. This annotator detects
occurrences of room numbers in text.

4. Meeting annotator. This annotator uses the in-
formation produced by the previous three an-
notators to detect and annotate meeting
mentions.

466 FERRUCCI AND LALLY

Components 1 and 2 exist as UIMA annotators and
are reused without modification in the meeting de-
tector TAE. Implementation of the room number and
meeting annotators is discussed below. When these
annotators are implemented, the analysis-engine as-
sembler specifies, by means of a declarative descrip-
tor, that these four components comprise the aggre-
gate meeting detector TAE, and that their sequence
of execution is as illustrated in Figure 9.

The current UIMA implementation requires an ex-
plicit sequence of execution. The UIMA framework
architecture, however, is extensible and designed to
support more powerful sequencing algorithms that
can compute the execution sequence based on the
inputs or outputs of each component and additional
constraints supplied by the assembler.

The implementation of the meeting detector TAE,
as described, contains both C++ and Java annota-
tors. UIMA C+ +, Java, and network-analysis engines
can easily interoperate. They share a common de-
scriptor format, a common CAS representation, and
very similar APIs. In fact, the UIMA framework can
recognize the type of engine to which a descriptor
refers and automatically use its built-in adapters to
transparently serve as an interface between these
technical variants.

Annotator development. As noted in the previous
subsection, the Meeting Finder TAE requires two new
annotators to be implemented:

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Figure 9 Assembling the Meeting Detector TAE

Meeting Detector TAE

Tokenizer and Date/ Time Room Meeting
Sentence Detector ~—~=—= " Annotator ~— " Number ~——— | Annotator
Annotator CAS CAS Annotator CAS

CAS CAS

1. A room number annotator, which detects room
numbers in text.

2. A meeting annotator, which detects mentions of
meetings based on sentences that contain dates,
times, and room numbers.

The steps performed by the annotator developer are:
(1) create a data model, (2) develop an analysis al-
gorithm, and (3) declare meta-data (develop a com-
ponent descriptor).

Create data model. The first step in developing an
annotator is to decide on a data model for its input
and output. The data model of the room-number an-
notator should contain RoomNumber annotations
that are linked to a span of text in the document and
that indicate the name of the building in which the
room number is located.

In UIMA, data is stored in the CAS, and data models
are declared in a Java-like CAS Type Specification
(cts) file. From a CTs file, the framework automat-
ically generates Java classes that correspond to the
types in the data model. "

The cTs file of the room number annotator declares
a single annotation type named RoomNumber with
a property named building. From this CTS file, the
framework automatically generates a Java class
RoomNumber with the following methods:

* getBegin, setBegin—get and set the position in the
text at which the room number begins. (All an-
notations have begin and end positions.)

* getEnd, setEnd— get and set the position in the text
at which the room number ends.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

* getBuilding, setBuilding—get and set the name of
the building in which the room is located.

We next discuss how these generated Java classes
are used in the implementation of the room-number-
annotator analysis algorithm.

Develop analysis algorithm. The annotator algorithm
is written as a Java class, which is then plugged into
the UIMA framework. To enable this, the annotator
class must implement a standard framework inter-
face called JTextAnnotator. The most important
method on this interface is process, which invokes
the annotator’s analysis logic on a document.

In its process method, the room number annotator
searches for room number occurrences by using, for
example, regular expressions. When the annotator
is to record a room number annotation in JCas, it
simply creates an instance of the generated Room-
Number class, and assigns values to its begin, end, and
building features by calling standard Java set meth-
ods:

RoomNumber room = new RoomNumber (jcas);
room.setBegin (matcher.start());

room.setEnd (matcher.end());

room.setBuilding (“Hawthorne I”);

Declare meta-data. UIMA requires that each compo-
nent publish its meta-data in a descriptor, the gen-
eral structure of which was introduced in Figure 5.
The room-number-annotator descriptor contains:

1. Configuration parameter declarations—the an-
notator should be configurable to support dif-

FERRUCCI AND LALLY 467

ferent regular expression patterns for detecting
room numbers in different buildings. This is done
by declaring configuration parameters, perhaps
named “Room Number Patterns” and “Build-
ings,” in the descriptor and referring to those
parameters from the annotator code.

2. Capabilities—the room-number annotator de-
clares that it requires no input (other than the
document, which is assumed), produces Room-
Number annotations, and assigns values to the
building property of each annotation.

Having completed the room number annotator, the
annotator developer can use the UIMA document an-
alyzer tool to run it on sample documents and vi-
sually inspect its output. The next task for the an-
notator developer is to develop a meeting annotator,
which uses the annotations produced by the room
number annotator and the existing sentence detec-
tor and date/time annotators to detect and annotate
meeting mentions. The steps in the development of
the meeting annotator are analogous to those for the
room number annotator:

1. Create data model. Write a CTS file declaring a
Meeting annotation type, from which JCas gen-
erates the corresponding Java class.

2. Develop analysis algorithm. Write a Meeting-
Annotator Java class that implements the JText-
Annotator interface. The process method of this
class needs to access annotations produced by
the sentence detector, room number, and
date/time annotators.

3. Declare meta-data. Write a descriptor of the
same form as the room-number-annotator de-
scriptor. The capabilities section of this descrip-
tor declares that Sentence, RoomNumber, Date,
and Time annotations are required as input and
that Meeting annotations are produced as output.

Because the meeting annotator requires input from
other annotators, it cannot be run in isolation. First,
the analysis-engine assembler must combine it with
the tokenizer/sentence detector, date/time annota-
tor, and room-number annotator to produce the
meeting-detector aggregate TAE. That aggregate TAE
can then be run in the document analyzer tool, pro-
ducing the screen shot shown in Figure 10. In this
view, each annotation type is highlighted in a par-
ticular color, and the right pane shows the details of
the annotations over which the mouse is currently
positioned.

468 FERRUCCI AND LALLY

CPE development. The meeting detector TAE de-
veloped so far is a useful and reusable component
in itself, and could be directly embedded into an ap-
plication. However, the TAE is just one component
of the CPE, whose design was presented in Figure 8.
In this section, we discuss the implementation of the
three remaining types of components: a collection
reader that can read documents from a Lotus Notes*
export file, a CAS initializer that populates a CAS from
a Lotus Notes e-mail, and the CAS consumers that
aggregate the document-level analysis results to pro-
duce a search engine index and a structured database.

Collection-processing components, just as annota-
tors, consist of two parts: a Java class that implements
a framework interface and a descriptor.

Collection reader development. The Lotus Notes ex-
port file stores multiple messages in a single file, sep-
arated by form feed characters. The Lotus Notes col-
lection reader must extract individual e-mail
messages from such a file.

The UIMA collection reader interface requires that
we implement hasNext and getNext (CAS) methods.
For the Lotus Notes collection reader, the hasNext
method returns TRUE if we have not reached the end
of the file. The getNext (CAS) method reads from the
current file position to the next form feed character
and passes that text to a CAS initializer, which pop-
ulates the CAS.

This collection reader also has a descriptor that is
very similar to the annotator descriptors we have pre-
viously discussed. For example, an InputFile config-
uration parameter is defined that determines the Lo-
tus Notes export file to be read from.

CAS initializer development. An example e-mail mes-
sage in a Lotus Notes export file is shown in Figure
11. There are several header lines, followed by a
blank line, and then followed by the text of the
message.

The Lotus Notes CAS initializer parses the headers
and stores relevant information, such as the Subject
and Author of the message, as CAS meta-data. When
the headers have been parsed, the rest of the doc-
ument is assumed to be the text of the message, and
the CAS initializer stores it in the CAS as the subject
of analysis. It is this text, and not the entire raw mes-
sage, which is passed on to the meeting detector TAE
for analysis.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Figure 10 Screen shot of the meeting detector TAE results

; Annotation Yiewer - Microsoft Internet Explorer = II:IIEI
Be (Edt View |Favortes ‘Todk| Heb i
GBack » & - @ [2) A} | Qoearch [jFavortes Pveda B | E\- S W - 2
Address I@ C:\Program Files\uima\viewer\index.html E| PG“
-
UINA Summer School Annotations
August 26, 2003
UIMA 101 - The New UIMA Introduction
(Hands-on Tutorial) GN-K35
9:00AM-5: 00PM in HAW GN-K35 CAS Type: comibmuimajedii_101 RoomNumber
begin=120
August 27, 2003 end=126

UIMA 0.6 Update
(Hands-on Tutorial)
9:00AM-12:30PM in HAW GN-K35

August 28, 2003
FROST Tutorial
9:00AM-5:00PM in HAW GN-K35

September 15, 2003

UIMA 201: UIMA Advanced Topics
{Hands-on Tutorial)
9:00AM-5:00PM in HAW 15-FS3

UIMA Summer School Tutorial and Presentation Details

UIMA 101: The new UIMA tutorial
Tuesday August 26 9:00AM - 4:30PM in GN-K3§

UIMA 101 is a hands-on programming tutorial.

like a refresher.

< |

UIMA 101 is intended for people who want a first introductory course to UIMA or for people who would

‘building = Hawthome |

August 26, 2003 UIMA 101 - The New UIMA
Introduction (Hands-on Tutorial) 9:00AM-5:00PM in
HAW GN-K35

CAS Type: com.ibmuimajedii 101 Meeting
begin=22

end =130

room = RoomNumber [GN-K35]

date = DateAnnot [August 26, 2003]

startTime = TimeAnnot [9:00AM-]

endTime = TimeAnnot [5:00PM]

s

Legend

W Mesting ¥ Roomiiumber V DaeAiinioh ¥ TimeA

Select All | Deselect All |

|&] Done

[[S my Computer 4

The descriptor of the Lotus Notes CAS initializer in-
cludes, in addition to other descriptive information,
the CAS initializer’s output specification: it adds Sub-
ject and Author meta-data to the CAS.

CAS consumer development. The Meeting Finder ap-
plication requires the implementation of two CAS
consumers: the meeting file writer and the Juru CAS
indexer.

The meeting file writer is a CAS consumer that writes
all discovered meeting mentions to a structured text
file. It implements the required methods of the UIMA
CAS consumer interface as follows:

1. initialize—opens an output file specified by a con-
figuration parameter.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

2. processCas—takes a CAS produced by the meet-
ing detector TAE, iterates over the Meeting an-
notations, and writes them to the file in some
structured format.

3. collectionProcessComplete—closes the output
file.

The meeting-file-writer descriptor declares that it re-
quires Meeting annotations, Subject, and Author as
input. The descriptor also declares a configuration
parameter for the name of the output file.

The Juru CAS indexer is an existing UIMA CAS con-
sumer that indexes CASs with the Juru XML search
engine. The Meeting Finder application will reuse
the Juru CAS indexer to build a searchable index of
e-mails that is aware of Meeting annotations discov-

FERRUCCI AND LALLY 469

Figure 11

Lotus Notes e-mail message

Principal: CN=Adam Lally/OU=Watson/O=IBM
InetSendTo: ferrucci@us.ibm.com, ...
$Mailer: Lotus Notes Release 6.0 September 26, 2002

$MessagelD: <OF17AC3DE3.40525AB8-ON85256D80.005E759E-85256D80.005EBA6D@LocalDomain>

INetFrom: alally@us.ibm.com

Subject: New UIMA Framework Version Released
$UpdatedBy: CN=Adam Lally/OU=Watson/O=IBM
$Revisions: 08/12/2003 01:17:49 PM

Hello Everyone,

Version 0.6.0 of the UIMA Java Development Framework has been
posted to the downloads section of the UIMA project website at
http://uima.watson.ibm.com.

The new version is backwards compatible with version 0.5.

Please note that if you are planning to attend the UIMA Summer School
later this month you will need to download and install this version prior

to attending.

Regards,
-Adam

ered by the meeting detector TAE. Like any CAS con-
sumer, the Juru CAS indexer publishes configuration
parameters in its descriptor, for example, the file sys-
tem directory where the index is built and the types
of annotations that should be indexed. These param-
eters are used to customize the Juru CAS indexer for
the Meeting Finder application.

CPE assembly. The CPE assembler produces a de-
scriptor that identifies and configures the UIMA com-
ponents implemented to comprise the Meeting
Finder CPE. The implementation of these compo-
nents was described earlier and includes: the Lotus
Notes collection reader, the Lotus Notes CAS initial-
izer, the meeting detector TAE, which is an assembly
of several annotators, and two CAS consumers: the
meeting file writer and the Juru CAS indexer.

For each component, the CPE descriptor also declares
deployment options: whether that component will
be run in the same process as the application using
the CPE, as a child process on the same machine, or
on a remote machine.

Component deployment. Although it is not a nec-

essary step towards building the Meeting Finder ap-
plication, for completeness we will describe how the

470 FERRUCCI AND LALLY

meeting detector TAE may be deployed as a Web ser-
vice that can be called from other machines over the
network by using the UIMA adapter framework. The
meeting detector TAE is deployed as a Web service
by using the following steps, which are performed
by the component deployer:

1. Specify deployment options. Develop a deploy-
ment descriptor specifying deployment options.
For example:

TAE = meeting detector TAE

Protocol = SOAP

Service Name = uima.tutorial. MeetingDetectorTAE
Number of simultaneous requests supported = 3
Timeout period = 10 seconds

2. Deploy. Use the deployment descriptor to de-
ploy in a Web services container, such as IBM
WebSphere Application Server.

In step 2, the SOAP service wrapper is instantiated.
This wrapper implements the SOAP service interface
by making calls to the TAE API.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

Figure 12 GUI for configuring and running CPEs

& Collection Processing Manager =]ﬂ'ﬂ
File Misc. Help]] e ~ 00:00:00
Collection Reader CAS Initializer
[catutori i ol | | | Descriptor: [c:tutorialiot itializersxml | | |
Input File: | EmailExport it [|
Text Analysis Engine
Descriptor: |c: tingDetectorTAExml | | |
Buildings: |ygrktown = Patterns: |\pjo.4)ud-[0-2]\d\b =
Hawthorne | |— [bIGA1-4JINSHA-Z]\duls _[Add]
Hawthorne Il B @ @ R bJM2}A-Z]ddb] @ @ RemOoS
< ID Ch| [»]
CAS Consumers
Add..
(] Meeting FileWriter | (X) Juru Cas Indexer |
Run: [
Index Dir: [C:yutori ingind N Indexing Specification ctutori pecxml |

[»]] [m

The deployed meeting detector TAE SOAP service can
now be used as part of a CPE that is running any-
where on the network. To do this, the CPE assem-
bler uses, in lieu of a full TAE descriptor, a simple
service client descriptor that indicates the service name
(uima.tutorial.MeetingDetectorTAE), host, and proto-
col (SOAP). The UIMA TAE factory recognizes this de-
scriptor and automatically instantiates the appropri-
ate client adapter to handle the details of
communicating with the remote TAE.

Running the application. After all the necessary com-
ponents have been developed or acquired and a CPE
descriptor has been written, only two lines of code
are required to invoke the UIMA development frame-
work in order to create and run the Meeting Finder
CPE. The produceCPE method of the framework in-
vokes the CPE factory, which constructs the CPE from
the components specified in the descriptor. The con-
figuration settings for each component are the de-
faults specified in its descriptor. The full CPE inter-

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

face of the framework provides many methods for
controlling the execution and for retrieving progress
and performance reports, but to simply process the
entire collection, all that is needed is to invoke the
start method.

UIMA includes a GUI for configuring and running
CPEs; it is shown in Figure 12. This tool simply trans-
lates user actions to calls to the CPE interface. The
CPE GUI allows the user to override default config-
uration settings. The buttons at the bottom control
the processing, and a progress bar is shown at bot-
tom left. When processing is complete, performance
statistics are displayed as shown in Figure 13.

The result of the CPE execution is a Juru XML index.
This index contains both the tokens from the orig-
inal document and the Meeting annotations. Que-
ries can now be issued against this index using Juru
XML span-based query language. '* The syntax of this

FERRUCCI AND LALLY 471

Figure 13 CPE performance report

& Performance Report 3 5'

Processing completed full
Documents Processed: 100
Total Time: 8.45 seconds
[100% (8452 ms) - Collection Processing Engine
@ [63.0% (5327 ms) - Process CASes
@ [35.9% (3033 ms) - Meeting Detector TAE
[27.2% (2303 ms) - Tokenzier and Sentence Detector Annotator
D 6.9% (580 ms) - Date/Time Annotator
D 1.3% (110 ms) - Room Number Annotator
[0.5% (40 ms) - Meeting Annotator
[23.4% (1974 ms) - Juru CAS Indexer
@ (3 37.0% (3125 ms) - End of Collection Processing
D 37.0% (3125 ms) - Juru CAS Indexer (build index)

language is based on XML fragments. Some sample
queries follow:

* UIMA—returns any message containing the term
“UIMA.”

e <Meeting/>—returns any message with a Meet-
ing annotation in it.

* <Meeting>UIMA</Meeting>—returns any mes-
sage with a Meeting annotation where the anno-
tation’s span includes the term “UIMA.”

o <Meeting>UIMA</Meeting> refreshments—re-
turns messages matched by the previous query
which also contain the term “refreshments” any-
where in the message.

The Meeting Finder application can return hyper-
links to the returned e-mail documents that bring
up the HTML annotation view similar to that shown
in Figure 10, highlighting the meeting information.

Results and discussion

We described in this paper a purely pedagogical ap-
plication of UIMA in an attempt to highlight the UIMA
concepts and methodologies from the point of view
of component and application developers. The ar-
chitecture has been applied for developing more
practical applications, however, as a result of its wide-
spread adoption by IBM research teams worldwide.
As we noted in Reference 2, evaluation of the ar-
chitecture independent of the host organization is
nontrivial, and we identified three criteria to use in
such an evaluation:

472 FERRUCCI AND LALLY

1. Compliant components and their reuse. At the
time of this writing, we have a registry of over
25 UIMA-compliant TAEs produced by ten dif-
ferent groups in five IBM research laboratories
in four countries. These TAEs include named-en-
tity detectors for English, Arabic, and Chinese,
deep and shallow parsers for English and Jap-
anese, classifiers, a summarizer, an Arabic-to-
English translator, and relation extractors. Sev-
eral of these components evolved from legacy
systems components that were not previously
compatible; they can now be easily assembled
and deployed in an application. For example, a
collection of linguistic-processing components
including a shallow parser, all developed in
C+ +, have been combined with Java-based bi-
ological entity detectors and relation extractors,
as well as collection readers and CAS consum-
ers, to form a powerful CPE for the life science
domain."’

2. System performance. A thorough analysis of the
effect of UIMA on overall system throughput has
yet to be undertaken. Preliminary experiments,
however, suggest that the overhead imposed by
the architecture is minimal. Throughput is also
high enough not to represent an obstacle to
product deployment. As noted in Reference 2,
we have already reaped some throughput ben-
efits from the ability of the framework to easily
deploy multiple instances of components across
a set of machines, a result much more difficult
to accomplish with legacy systems.

3. Product integration. UIMA has become the es-
tablished platform for delivering and integrat-
ing text analytics into IBM products and services,
and it is success in this arena that will validate
the merits of the architecture. UIMA has already
been used to integrate summarization and cat-
egorization components into WebSphere Por-
tal Server, and UIMA components are being used
in several service offerings. More product de-
ployments are currently underway.

UIMA has many similarities to other software archi-
tectures for language engineering such as GATE*®
and ATLAS.® All these systems isolate the core al-
gorithms that perform language processing from sup-
port services such as data storage, communication
between components, and visualization of results.

UIMA, however, supports a richer set of architected
interfaces for document and collection processing
in order to meet the requirements of a substantial
pre-existing asset base in text analytics and UIM ap-

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

plications. Further emphasis was placed on scalabil-
ity and middleware and platform independence to
enable extensibility, product integration, and a wide
variety of deployment alternatives. These goals were
given priority over development tools and a prepack-
aged set of integrated analytics. This is largely be-
cause with over 200 researchers at IBM working in
this area, there was an extensive collection of exist-
ing capabilities that needed to be integrated and de-
ployed in order to bring value to IBM product lines
in data, content, and knowledge management. As just
one example, a large C+ + text analytics code base
developed within the IBM Research Division for high-
performance analysis, coupled with the Java focus
of the IBM WebSphere products, led to the devel-
opment of efficient Java/C+ + interoperability fea-
tures within UIMA.

Collection-level analysis may involve complex work-
flows, large volumes of documents, different deploy-
ment architectures (e.g., Web services, message-
based architectures), different document formats,
and a wide variety of collection-level results. While
GATE provides out-of-the-box support for different
document formats, UIMA defines a rich collection-
processing architecture that is extensible along all
these dimensions. For example, UIMA’s highly scal-
able and recoverable collection-processing architec-
ture supports the processing of very large volumes
of documents for IBM’s WebFountain*. '® WebFoun-
tain is a cluster of thousands of nodes dedicated to
mining the Web and other very large corpora. For
WebFountain, scalability and robustness are essen-
tial qualities. WebFountain architects and UIMA ar-
chitects collaborated in extending the UIMA frame-
work to process very large collections in a service-
oriented, managed-cluster environment. The result
is that WebFountain can deploy any combination of
UIMA TAEs and CPEs on its cluster.

One area in which GATE has focused more effort to
date than UIMA is in its development environment.
GATE provides an integrated set of graphical tools
that assist users in building, modifying, and debug-
ging language engineering systems. UIMA currently
has only a base set of standalone tools including a
descriptor builder, annotation viewer, and collection-
processing-manager GUIL. We are beginning efforts
to develop and integrate these and other tools into
a coherent development environment based on the
Eclipse open source, extensible IDE."

UIMA analysis components have to be able both to
stand alone and to be embedded in products and ser-

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

vice solutions including Lotus Workplace,* Web-
Sphere Portal Server, DB2* Content Manager,*
WebFountain, and Enterprise Search.? Each of
these carrier environments may rely on different sys-
tem middleware. The UIMA middleware adapter
framework extends to accommodate and integrate
with these environments while insulating the UIMA
component developer. For example, UIMA includes
a robust middleware adapter for the standard Web
services SOAP protocol. This adapter can be used to
easily deploy any type of UIMA component as a Web
service, without writing any additional code and with-
out requiring detailed knowledge of Web services.
The original developer of the component need not
be aware that the component might later be deployed
as a Web service.

UIMA also includes middleware adapters for deploy-
ment in IBM’s WebFountain environment, and, be-
fore the end of this year, we expect to have similar
adapters for deployment in the other major prod-
ucts indicated above.

Finally, the UIMA JCas interface is a novel extension
to the annotation model in ATLAS and GATE. By au-
tomatically generating Java code from a developer’s
data model definition, we allow Java developers to
easily create annotations by simply instantiating Java
classes, while the framework maintains tight control
over the data representation. Maintaining control
over the data representation supports efficient
C+ +/Java interoperability and preserves serializa-
tion options for transport to and from remote ser-
vices. Also, by allowing methods to be declared on
these annotation Java classes, the UIMA JCas inter-
face enables data model designers to leverage the
power of the object-oriented-programming paradigm
to abstract away many implementation details of a
complex data model.?

Conclusion

UIM applications must distill relevant content from
implicit and often ambiguous unstructured informa-
tion sources and deliver it in explicit, structured and
highly accessible forms to their end users. With huge
volumes of unstructured information including text
documents, video, and speech being generated at
ever increasing rates, the requirements to analyze,
discover, and deliver valuable content are over-
whelming industry and government. UIM applications
are being developed to assist in e-commerce, life sci-
ence, business, and National Security intelligence.

FERRUCCI AND LALLY 473

IBM’s UIMA project is focused on developing a soft-
ware architecture and associated development
frameworks for supporting the development, inte-
gration, and deployment of unstructured informa-
tion analysis capabilities. In this paper we provide
a high-level conceptual overview of UIMA and illus-
trate its use to design and implement a simple UIM
application. UIMA has been widely adopted through-
out the IBM Research Division and the 1BM Life Sci-
ences Division. UIMA has become the established
platform for delivering and integrating text analyt-
ics into IBM products. Its use in the IBM Research
Division has encouraged and facilitated advances in
text analytics based on technologies that would have
otherwise remained untried due to barriers such as
lack of skills, lack of interoperability, and lack of a
common architecture.

In plan for the UIMA project at IBM are investiga-
tions into advanced control structures, pluggable
workflow, stronger support for the disciplined inte-
gration and maintenance of ontology resources, sup-
port for multiple modalities, and the development
of Eclipse-based tooling for the UIM application
developer.

Acknowledgments

We acknowledge the efforts by Alfred Spector and
Arthur Ciccolo to make a unifying architecture the
focus of the NLP and UIM activities at the IBM Re-
search Division. We acknowledge the contributions
of Dan Gruhl and Andrew Tomkins of IBM’s Web-
Fountain project to the development of UIMA. In ad-
dition, we acknowledge David Johnson, Thomas
Hampp, Thilo Go6tz, and Oliver Suhre for their role
in the development of IBM’s Text Analysis Frame-
work, and Roy Byrd and Mary Neff for their role in
the design of the TALENT system. Their work con-
tinues to influence the UIMA designs and implemen-
tations. Starting this project and implementing UIMA
would not have been possible without the rapid pro-
totyping skills and committed software development
efforts of Jerry Cwiklik. Finally, we acknowledge
Marshall Schor for his invaluable contributions to
the design and implementation of the UIMA analysis
engine framework and JCas.

This work was supported in part by the U.S. govern-
ment’s Advanced Research and Development Ac-
tivity (ARDA) Advanced Question Answering for In-
telligence (AQUAINT) Program under contract
number MDA904-01-C-0988.

474 FERRUCCI AND LALLY

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

Cited references and note

1. C.Moore, “Diving into Data,” InfoWorld (October 25,2002),
http://www.infoworld.com/article/02/10/25/
021028feundata_1.html.

2. D.Ferrucciand A. Lally, “UIMA: An Architectural Approach
to Unstructured Information Processing in the Corporate Re-
search Environment,” Natural Language Engineering (2004,
to appear).

3. W. Roush, “Computers that Speak Your Language,” Tech-
nology Review 106, No. 5, 32 (2003).

4. H. Cunningham, K. Bontcheva, V. Tablan, and Y. Wilks,
“Software Infrastructure for Language Resources: A Taxon-
omy of Previous Work and a Requirements Analysis,” Pro-
ceedings of the Second Conference on Language Resources Eval-
uation, Athens, European Language Resources Association,
Paris (2000).

5. K. Bontcheva, H. Cunningham, V. Tablan, D. Maynard, and
H. Saggion, “Developing Reusable and Robust Language
Processing Components for Information Systems Using
GATE,” Proceedings of the 3rd International Workshop on Nat-
ural Language and Information Systems (NL1S’2002), IEEE
Computer Society Press, New York (2002).

6. C. Laprun, J. Fiscus, J. Garofolo, and S. Pajot, “A Practical
Introduction to ATLAS,” Proceedings of the Third Interna-
tional Conference on Language Resources and Evaluation, Eu-
ropean Language Resources Association, Paris (2002).

7. T. Gotz and O. Suhre, “Design and Implementation of the
UIMA Common Analysis System,” IBM Systems Journal 43,
No. 3, 476—489 (2004, this issue).

8. R. Grishman, Tipster Architecture Design Document Version
2.2, Technical Report, Defense Advanced Research Projects
Agency (DARPA), U.S. Department of Defense (1996).

9. S. Mardis and J. Burger, “Qanda and the Catalyst Architec-
ture,” AAAI Spring Symposium on Mining Answers from Text
and Knowledge Bases, American Association for Artificial In-
telligence (2002).

10. M. Schor, An Effective, Java-Friendly Interface to the CAS, Re-
search Report RC23176, IBM T.J. Watson Research Cen-
ter, Yorktown Heights, N.Y (2004).

11. D. Lewis, “Text Representation For Text Classification,” P.
Jacobs, Editor, Text-Based Intelligent System, Lawrence Er-
Ibaum Associates, Mahwah, N.J. (1992).

12. C. Apte, F. Damerau, and S. Weiss, “Automated Learning
of Decision Rules for Text Categorization,” ACM Transac-
tions on Information Systems 12, No. 3, 233-251 (1994).

13. Y. Yang, “An Evaluation of Statistical Approaches to Text
Categorization,” Information Retrieval Journal 1, No. 1-2,
69-90 (1999).

14. D. Carmel, Y. Maarek, M. Mandelbrod, Y. Mass and A. Sof-
fer, “Searching XML Documents via XML Fragments,” Pro-
ceedings of the 26th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval,
Toronto, Canada, ACM, New York (2003).

15. R. Agrawal, R. Bayardo, D. Gruhl, and S. Papadimitriou,
“Vinci: A Service-Oriented Architecture for Rapid Devel-
opment of Web Applications,” Computer Networks 39, No.
5, 523-539 (2002).

16. To accurately detect informal meeting references expressed
in natural language indicating times, locations, and subjects

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

may be nontrivial. Our focus in this paper is to describe how
to structure a UIM application based on UIMA, rather than
to present the most accurate algorithms.

17. R. Mack, S. Mukherjea, A. Sofer, N. Uramoto, E. Brown, A.
Coden, J. Cooper, A. Inokuchi, B. Iyer, Y. Mass, H. Mat-
suzaws, and L. V. Subramaniam, “Text Analytics for Life Sci-
ence Using the Unstructured Information Management Ar-
chitecture,” IBM Systems Journal 43, No. 3, 490-515 (2004,
this issue).

18. S. Cass, “A Fountain of Knowledge,” IEEE Spectrum 41, No.
1,60-67 (2004), http://www.spectrum.ieee.org/ WEBONLY/
publicfeature/jan04/0104comp1.html.

19. eclipse.org, http://eclipse.org.

20. Lotus Workplace, IBM Corporation, http://www.lotus.com/
engine/jumpages.nsf/wdocs/ondemand.

21. DB2 Content Manager Family, IBM Corporation, (http://
www.ibm.com/software/data/cm/cmgr).

22. See for example the presentations C. Wolpert, “Lotus Work-
place: Search,” Lotus Software, IBM Corporation, (http://
media.lotus.com/lotusphere2004/id/id505.pdf, and A. Soffer,
“IBM Search Technologies—The Haifa Perspective,” IBM
Haifa Labs, IBM Corporation, http://www.haifa.il.ibm.
com / Workshops / searchandcollaboration2004 / papers/
SearchTechnologies.pdf

23. R. Basili, M. Di Nanni, and M. Pazienza, “Engineering of IE
Systems: An Object-Oriented Approach,” M. Pazienza, Ed-
itor, Information Extraction, Lecture Notes in Artificial In-
telligence 1714, Springer-Verlag, Berlin (1999), pp. 134-164.

Accepted for publication March 16, 2004.

David Ferrucci IBM Research Division, Thomas J. Watson Re-
search Center, 19 Skyline Drive, Hawthorne, NY 10532
(ferrucci@us.ibm.com). Dr. Ferrucci is a research staff member
and senior manager at IBM’s Thomas J. Watson Research Cen-
ter. He manages the Semantic Analysis and Integration depart-
ment which develops technologies, architectures, and solutions
for mining unstructured information and applies them to infor-
mation processing systems. His team includes world-class re-
searchers and software engineers in NLP and knowledge repre-
sentation. Dr. Ferrucci is a co-architect of IBM’s Unstructured
Information Management Architecture (UIMA), a project that
spans six IBM research labs and provides the foundation for Re-
search Division work in text analytics. Dr. Ferrucci has published
in the fields of logic and knowledge representation, architectures
for natural language engineering, and automated question an-
swering. His research interests include advanced technologies for
representing and applying knowledge about logic and language.
He has eight patents pending in search and text analysis, inter-
active document configuration, and automatic story generation.
Dr. Ferrucci received a Ph.D. degree from Rensselaer Polytech-
nic Institute, Troy, N.Y., in the area of knowledge representa-
tion and automated reasoning.

Adam Lally BM Research Division, ThomasJ. Watson Research
Center, 19 Skyline Drive, Hawthorne, NY 10532
(alally@us.ibm.com). Mr. Lally is an advisory software engineer
in the Information Management Solutions group at IBM’s Tho-
mas J. Watson Research Center. He is the lead engineer for the
UIMA Java development framework, where his work focuses on
applying software architecture and engineering principles to ac-
celerate research and to facilitate integration of research into IBM
products. Mr. Lally received a B.S. degree in computer science
from Rensselaer Polytechnic Institute, Troy, N.Y.

IBM SYSTEMS JOURNAL, VOL 43, NO 3, 2004

FERRUCCI AND LALLY 475

